• Negrifeminicídio: O feminicídio de mulheres negras no estado de São Paulo 

      Carvalho, Alicia Scordamaia de (Universidade Federal de São Carlos, UFSCar, , Câmpus São Carlos, 20/01/0022)
      Violence against women and racism are extremely important issues that must be addressed with great care and seriousness. In this work, they will be presented together: the violent deaths of white and black women and their ...
    • Um perfil do comportamento e características dos indivíduos frente a covid-19 a partir da pnad covid19 

      Janine, Samantha Navarro (Universidade Federal de São Carlos, UFSCar, , Câmpus São Carlos, 09/09/2022)
      The National Household Sample Survey (PNAD), which is conducted by IBGE, consists of general characteristics of the population, education, labor, income and housing. The COVID-19 pandemic, started in March 2020, imposed ...
    • Perspectivas pód-Pandemia de COVID-19: Previsão do desemprego no Brasil com o méttodo de Holt-Winters 

      Silva, Adriana Eva Fernandes da (Universidade Federal de São Carlos, UFSCar, , Câmpus São Carlos, 13/08/2024)
      This study aims to analyze the impact of the COVID-19 pandemic on unemployment rates, with a special focus on the gender gap. Using time series methods, we will focus our attention on understanding how the pandemic has ...
    • Predição do desempenho de jogadores da National Basketball Association 

      Bueno Júnior, Alberto Torres (Universidade Federal de São Carlos, UFSCar, , Câmpus São Carlos, 06/09/2024)
      The objective of this study is to explore an alternative for predicting the technical and tactical performance of athletes in the National Basketball Association (NBA). The focus will be on the individual performance of ...
    • Prevendo a popularidade de um post no Instagram via métodos de Machine Learning 

      Silva, Marcos Costa da (Universidade Federal de São Carlos, UFSCar, , Câmpus São Carlos, 24/01/2024)
      This work was motivated by the current technological scenario in which we live, where people are increasingly connected on social networks, generating a vast amount of data daily. If used appropriately, these data can ...
    • Previsão probabilística dos resultados da copa do mundo de 2022 usando uma abordagem bayesiana 

      Moribayashi, Rodrigo Hideki (Universidade Federal de São Carlos, UFSCar, , Câmpus São Carlos, 06/09/2023)
      This work aims to build and evaluate a predictive statistical model for football matches. To achieve this, we consider a Bayesian approach in a new model inspired by Lee (1997). The inspiration comes from two points ...
    • Reconhecimento de entidades nomeadas aplicado em prontuários médicos 

      Souza, Thais Cristina Cardozo de (Universidade Federal de São Carlos, UFSCar, , Câmpus São Carlos, 15/09/2022)
      A named entity is a real-world object, such as a person (e.g. Alan Turing), a location (e.g. London), or an organization (e.g. UFSCar). Named Entity Recognition (NER) is a subarea of Natural Language Processing (NLP) whose ...
    • Redes neurais aplicadas a grafos: uma abordagem semi-supervisionada 

      Treméa, Samuel (Universidade Federal de São Carlos, UFSCar, , Câmpus São Carlos, 18/04/2022)
      In this work, we propose an in-depth analysis of Graph Convolutional Networks, a semi-supervised machine learning method for node classification in graph-structured data. Based on the seminal work proposed by Thomas Kipf ...
    • Seleção de marcadores SNP: uma aplicação com diferentes metodologias 

      Ióca, Mariana Pavan (Universidade Federal de São Carlos, UFSCar, , Câmpus São Carlos, 25/09/2020)
      The quantity and complexity of generated data due to advances in genetic sequencing technologies has made statistical analysis an essential tool for their correct study and interpretation. However, there is still no agreement ...
    • Seleção de variáveis: uma aplicação a dados de moinho de cimento 

      Higashizawa, Lissa Kido (Universidade Federal de São Carlos, UFSCar, , Câmpus São Carlos, 07/12/2019)
      Having as object of study a certain mill that produces cement, we use two methods of variable selection, LASSO and stepwise, to identify variables that influence the engine power and, consequently, impact the cement ...
    • Seleção estatística de árvores de contexto 

      Almeida, Isadora Nascimento de (Universidade Federal de São Carlos, UFSCar, , Câmpus São Carlos, 22/01/2024)
      Context trees are models that parsimoniously generalize Markovian models. These models were introduced by Jorma Rissanen in 1983, as an efficient tool in Information Theory. Since then, these models have been widely used ...
    • Testes múltiplos para comparação de dados funcionais 

      Oliveira, Vinícius Santos de (Universidade Federal de São Carlos, UFSCar, , Câmpus São Carlos, 28/03/2023)
      The recording of human motion is an essential requirement for biomechanical studies aimed at understanding normal and altered movement patterns to propose preventive or rehabilitation programs. In these studies, the analysis ...
    • Uso de cadeias de Markov para identificar atribuições em mídias digitais 

      Carvalho, Raquel Malheiro de (Universidade Federal de São Carlos, UFSCar, , Câmpus São Carlos, 15/09/2022)
      With the advancement of digital marketing and the rise of new paid media channels for running campaigns and ads aimed at selling products, many advertisers question the use of media that do not directly lead to conversions, ...
    • Utilização de algoritmos de classificação para diagnóstico de diabetes 

      Oliveira, Larissa de (Universidade Federal de São Carlos, UFSCar, , Câmpus São Carlos, 15/02/2024)
      The undergraduate thesis consists of the study of binary classification algorithms for diagnosing diabetes based on clinical data and physical activity data. For this purpose, we will accomplish a statistical and conceptual ...
    • Utilização de métodos de aprendizado de máquina para estimação de escores de propensão 

      Santos, Amanda Kely Faria dos (Universidade Federal de São Carlos, UFSCar, , Câmpus São Carlos, 18/04/2022)
      Increasingly larger and more complex databases can be easily obtained and appropriate technologies for modeling massive amounts of data become increasingly necessary in order to optimize results and predictions. Machine ...