Show simple item record

dc.contributor.authorBondancia, Thalita Jessika
dc.date.accessioned2020-10-06T09:33:15Z
dc.date.available2020-10-06T09:33:15Z
dc.date.issued2020-05-29
dc.identifier.citationBONDANCIA, Thalita Jessika. Rotas verdes para obtenção de nanocelulose em biorrefinarias: desenvolvimento de estratégias via hidrólise enzimática e com ácidos orgânicos. 2020. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/13313.*
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/13313
dc.description.abstractThe growing demand for materials from sustainable sources with potential to replace petroleum-based polymers in technological applications projects lignocellulosic biomass as a promising raw material. In this context, nanocellulose has attracted interest due to its numerous properties and functionalities. In this work, different green routes associated with the concept of biorefinery to obtain cellulose nanocrystals (NCC) and cellulose nanofibrils (NFC) in biorefineries were studied. Initially, the use of different enzymatic cocktails was investigated obtain nanocellulose from eucalyptus cellulose pulp (model material) were evaluated. The results showed that cocktails with greater activity of the enzymes xylanases and endoglucanases favored the achievement of more uniform nanometric structures. In contrast, higher glucose release was reached when the enzymatic hydrolysis was performed by complexes containing the class of polysaccharide lytic monoxygenase enzymes (LPMO), which also resulted in nanostructures with higher crystallinity levels. Another method evaluated for nanocellulose extraction was the hydrolysis with citric acid, an organic acid that can be obtained in a biorefinery concept. This approach resulted in a single-step extraction and esterification of the nanocelluloses. Also, the charged surface groups of these nanomaterials improved the colloidal stability of the suspensions in aqueous medium. Another advantage of this method was the higher thermal stability of these nanomaterials compared to those obtained by using sulfuric acid. Based on these results, the use of the enzymatic route and citric acid for sugarcane bagasse was evaluated. Initially, study involved hydrothermal treatment, organosolv followed by the sugarcane bagasse bleaching by a mixture of hydrogen peroxide and sodium hydroxide. After these treatments, the bagasse was hydrolyzed by a commercial cellulolytic cocktail in order to obtain the glucose release integrated with the production of nanostructures. The subsequent study involved the enzymatic hydrolysis of the pre-treated bagasse by the hydrothermal process, which after the release of fermentable sugars was treated by the organosolve method and successively bleached submitted. The bleached residual material was then submitted to three different acid treatments: sulfuric acid, citric acid and a mixture of both acids. In both studies, after the organosolv treatment, 55.8% of the residual lignin was recovered with the potential to be used in other applications. The enzymatic route allowed the obtention of nanostructures with high thermal stability associated with a high glucose release, which can be used in the production of ethanol, organic acids and other bioproducts. The extraction by citric acid and by using a mixture of acids resulted in a nanocellulose with high thermal stability and good colloidal stability, attributed to the presence of charged functional groups on the material surface. In addition, all methods resulted in nanocellulosic materials with a high crystallinity index. Finally, the results here obtained by using different green routes for nanocellulose production may contribute to the selection of the method according to the desired application, in order to add value to the biorefineries residues.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)por
dc.language.isoporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectNanocelulosepor
dc.subjectBiorrefinariapor
dc.subjectHidrólise enzimáticapor
dc.subjectHidrólise com ácidos orgânicospor
dc.subjectProdutos de biorrefinariapor
dc.subjectNanocelluloseeng
dc.subjectBiorefineryeng
dc.subjectEnzymatic hydrolysiseng
dc.subjectHydrolysis by organic acidseng
dc.subjectBiorefinery productseng
dc.titleRotas verdes para obtenção de nanocelulose em biorrefinarias: desenvolvimento de estratégias via hidrólise enzimática e com ácidos orgânicospor
dc.title.alternativeGreen routes to obtain nanocellulosis in biorrefines: developing strategies through enzymatic hydrolysis and with organic acidseng
dc.typeTesepor
dc.contributor.advisor1Farinas, Cristiane Sanchez
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9933650905615452por
dc.description.resumoA demanda crescente por materiais obtidos de fontes sustentáveis com potencial de substituir polímeros à base de petróleo em aplicações tecnológicas coloca a biomassa lignocelulósica como uma matéria-prima promissora. Nesse contexto, a nanocelulose tem atraído interesse por suas inúmeras propriedades e funcionalidades. Neste trabalho, foram estudadas diferentes rotas verdes associadas ao conceito de biorrefinaria para obtenção de nanocristais de celulose (NCC) e nanofibrilas de celulose (NFC) em biorrefinarias. Inicialmente foi investigada a utilização de diferentes coquetéis enzimáticos para a obtenção de nanocelulose a partir da polpa de celulose de eucalipto (material modelo). Os resultados mostraram que os coquetéis com maiores atividades das enzimas xilanases e endoglucanases favoreceram a obtenção de estruturas nanométricas mais uniformes. Em contrapartida, a liberação de glicose foi superior para a hidrólise enzimática realizada por complexos contendo a classe de enzimas monoxigenases líticas de polissacarídeos (LPMO), que também resultou em nanoestruturas com maiores índices de cristalinidade. A polpa de celulose de eucalipto também foi usada para estudar a obtenção de nanocelulose via hidrólise com ácido cítrico, um ácido orgânico que pode ser produzido na biorrefinaria. Essa abordagem é capaz de realizar a extração e a esterificação das nanoceluloses em uma única etapa, produzindo nanomateriais com grupos superficiais que favoreceram a estabilidade coloidal das suspensões em meio aquoso. Outra vantagem desse método foi a maior estabilidade térmica dos nanomateriais em comparação aos obtidos usando ácido sulfúrico. Com bases nesses resultados, avaliou-se o emprego da rota enzimática e com ácido cítrico para o bagaço de cana-de-açúcar. O primeiro estudo envolveu o tratamento hidrotérmico, organossolve e posteriormente passou por um processo de branqueamento por uma mistura de peróxido de hidrogênio e hidróxido de sódio no bagaço de cana. Após a etapa de pré-tratamento, foi realizada a hidrólise enzimática utilizando complexo celulolítico comercial para obtenção de glicose integrada à liberação de nanoestruturas. O segundo estudo envolveu a hidrólise enzimática do bagaço pré-tratado pelo processo hidrotérmico, que após a liberação dos açúcares fermentescíveis foi tratado pelo método organossolve e sucessivamente branqueado. O material residual branqueado foi então submetido a três diferentes tratamentos ácidos: ácido sulfúrico, ácido cítrico e mistura destes dois ácidos. Em ambos estudos, após os tratamentos organossolve, 55% da lignina residual foi recuperada com potencial de ser utilizada em outras aplicações. A rota enzimática permitiu a obtenção de nanoestruturas com elevada estabilidade térmica associadas à elevada liberação de glicose, que pode ser usada na produção de etanol, ácidos orgânicos e outros bioprodutos. Já a extração usando ácido cítrico e a mistura de ácidos resultaram em materiais de elevada estabilidade térmica e boa estabilidade coloidal, atribuída à presença de grupos funcionais carregados na superfície do material. Além disso, todos os métodos resultaram em materiais nanocelulósicos com elevado índice de cristalinidade. Os resultados obtidos usando diferentes rotas verdes de obtenção de nanocelulose poderão contribuir para a seleção do método de acordo com a aplicação desejada de forma a agregar valor aos resíduos das biorrefinarias.por
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Química - PPGEQpor
dc.subject.cnpqENGENHARIAS::ENGENHARIA QUIMICApor
dc.description.sponsorshipIdCAPES: Código de Financiamento 001por
dc.publisher.addressCâmpus São Carlospor
dc.contributor.authorlatteshttp://lattes.cnpq.br/1654721179575206por


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Brazil
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Brazil