Show simple item record

dc.contributor.authorKaus-Zampieron, Alan
dc.date.accessioned2024-10-29T19:01:57Z
dc.date.available2024-10-29T19:01:57Z
dc.date.issued2024-09-19
dc.identifier.citationKAUS-ZAMPIERON, Alan. Teorema de Gauss-Bonnet via formas dferenciais. 2024. Trabalho de Conclusão de Curso (Graduação em Matemática) – Universidade Federal de São Carlos, São Carlos, 2024. Disponível em: https://repositorio.ufscar.br/handle/ufscar/20900.*
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/20900
dc.description.abstractThis monograph focuses on demonstrating and understanding the geometric motivation of the Gauss-Bonnet Theorem. To this end, the project initially envisages the study of differentiable manifolds, tangent space, cotangent space, surface orientation and Frobenius’ theorem. Sequentially, the study follows the study of tensor and vector bundles, connections in vector bundles, affine connections and connections in reference bundles. The project ends with the study of Riemannian geometry, which will include the fundamental theorem of Riemannian geometry, geodesic normal coordinates, sectional curvature and, finally, the Gauss-Bonnet theorem.eng
dc.language.isoporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectTopologiapor
dc.subjectÁlgebrapor
dc.subjectAnálisepor
dc.subjectGeometriapor
dc.subjectTopologyeng
dc.subjectAlgebraeng
dc.subjectAnalysiseng
dc.subjectGeometryeng
dc.titleTeorema de Gauss-Bonnet via formas dferenciaispor
dc.title.alternativeGauss-Bonnet theorem through differential formseng
dc.typeTCCpor
dc.contributor.advisor1Gomes, José Nazareno Vieira
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5896951132632512por
dc.description.resumoEsta monografia tem foco demonstrar e entender a motivação geométrica do Teorema de Gauss-Bonnet. Para tanto, inicialmente o projeto prevê o estudo de variedades diferenciáveis, espaço tangente, espaço cotangente, orientação de superfície e o teorema de Frobenius. Sequencialmente o estudo segue passa pelo estudo de fibrados tensoriais e vetoriais, conexões em fibrados vetoriais, conexões afins e conexões em fibrados de referenciais. Finaliza-se o projeto com o estudo de geometria Riemanniana, no qual estará previsto o teorema fundamental da geometria Riemanniana, coordenadas normais geodésicas, curvatura seccional e, finalmente, o teorema de Gauss-Bonnet.por
dc.publisher.initialsUFSCarpor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::MATEMATICApor
dc.publisher.addressCâmpus São Carlospor
dc.publisher.courseMatemática - Mpor


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Brazil
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Brazil