Show simple item record

dc.contributor.authorFaustino, Patrícia Brígida
dc.date.accessioned2016-06-02T19:55:42Z
dc.date.available2014-12-09
dc.date.available2016-06-02T19:55:42Z
dc.date.issued2014-07-30
dc.identifier.citationFAUSTINO, Patrícia Brígida. Catalisadores derivados de óxidos do tipo perovskita LaMO3, LaMFeO3 e LaMO3/γ-Al2O3 (M = Co, Ni ou Fe) aplicados à reforma a vapor de etanol. 2014. 203 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2014.por
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/3962
dc.description.abstractThe hydrogen production has been extensively studied as a clean and powerful energy source, indicating that in the future hydrogen will became a key component for the global energy production, since burning fossil fuels, used nowadays, emits disturbing amounts of gases that cause the greenhouse effect and the global warming, which urgently needs to be reduced. Thus, hydrogen use has been studied as electric power generation and as a fuel derived from, for example, fuel cells that are able to convert chemical energy from the reaction between H2 and O2 into electrical energy, thermal energy and water, without causing environmental impacts, since it has no noises or vibrations and there is neither combustion or emission of particulates. A feasible way to produce hydrogen is the Steam Reforming Reaction of ethanol, since ethanol is a renewable source obtained mainly from sugar cane and also due to the low costs of operation in the Steam Reforming Reaction. Due to these facts, the reactions of Steam Reforming of Ethanol (SRE) have been extensively studied in previous years, and several studies have shown that this reaction provides a high hydrogen production; however, some parallel reactions may occur, forming side products, leading to reduced amounts of produced H2. Thus, the development of appropriate catalysts in these reactions becomes necessary, in a way that it enhances the conversion favoring the major product and suppressing the conversion to side products. A good efficiency of perovskite type oxides as catalysts in the SRE has been reported in several studies. These materials are mixed oxides with an ABO3 chemical structure, A being the largest cation such as alkali metals, alkaline earth metals and rare earth elements, and B representing the smallest cation such as transition metals. The partial substitution of cations located in the B site by others with similar oxidation state can promote changes in the redox properties of these ions, causing changes in the stability of the crystal structure. Therefore, the perovskite type oxides LaNiO3, LaCoO3 and LaFeO3 were synthesized through the citrate and precipitation methods. In a second stage Fe was added into the structure of the oxides LaNiO3 and LaCoO3, and in a new stage LaNiO3, LaCoO3 and LaFeO3 was synthesized with perovskite type oxides supported on gamma alumina by precipitation-deposition. After the syntheses, the catalysts were characterized and the influence of the preparation method was studied, specifically the effect of Fe addition and of the support presence, in relation to the activity of the catalysts in the reactions of steam reforming of ethanol for hydrogen production. The experimental results showed that the LaCoO3 catalyst synthesized by precipitation method was more active and stable than the others, although the LaNiO3 (citrate and precipitation) and LaCoO3 (citrate) catalysts had also been active in SRE. The material LaFeO3 showed to be inactive in the reaction. The Fe addition in the catalysts LaNiO3 and LaCoO3 structure did not significantly alter their catalytic performance, indicating an economically advantageous feature, since iron is a cheaper metal than cobalt and nickel, and may partially replace these elements in the catalyst formulation, thus decreasing the synthesis cost without compromising the hydrogen yields. The use of gamma alumina as support in the SRE favored materials with higher specific surface area, whereas it did not favor a higher activity or stability of these catalysts, however the activity was maintained.eng
dc.description.sponsorshipFinanciadora de Estudos e Projetos
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAcesso Abertopor
dc.subjectCatálisepor
dc.subjectEtanolpor
dc.subjectEnergiapor
dc.subjectHidrogêniopor
dc.subjectEthanoleng
dc.subjectSteam reformingeng
dc.subjectCatalystseng
dc.subjectPerovskiteseng
dc.subjectHydrogeneng
dc.titleCatalisadores derivados de óxidos do tipo perovskita LaMO3, LaMFeO3 e LaMO3/γ-Al2O3 (M = Co, Ni ou Fe) aplicados à reforma a vapor de etanolpor
dc.typeTesepor
dc.contributor.advisor1Assaf, José Mansur
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9563312407691130por
dc.description.resumoA produção de hidrogênio tem sido bastante estudada como fonte de energia não poluente e potente, indicando que futuramente este será componente fundamental para a produção mundial de energia, já que a queima de combustíveis fósseis, utilizada nos dias atuais, emite uma preocupante quantidade de gases causadores do efeito estufa e aquecimento global, que precisam urgentemente ser reduzidos. Assim, tem sido estudada a utilização de hidrogênio na geração de energia elétrica e como combustível veicular, a partir, por exemplo, da célula a combustível, que converte a energia química proveniente da reação entre H2 e O2 em energia elétrica, energia térmica e água, sem causar impactos ambientais já que não apresenta ruídos, vibrações, não ocorre combustão e não são emitidos particulados. Uma forma de produção do hidrogênio viável é a reação de reforma a vapor do etanol, pelo fato deste álcool ser um composto renovável proveniente principalmente da cana de açúcar e também devido à reação de reforma oferecer um baixo custo operacional. A partir destes fatos, as reações de reforma a vapor do etanol (RVE) têm sido extensivamente estudadas nos últimos anos e vários estudos mostram que esta possibilita uma elevada produção de hidrogênio. No entanto, podem ocorrer algumas reações paralelas com formação de subprodutos, provocando a diminuição da quantidade de H2 produzido. Assim torna-se necessário o desenvolvimento de catalisadores apropriados para estas reações, que favoreçam a conversão ao produto principal e suprimam a formação de subprodutos indesejados. Tem sido reportada em diversos estudos a boa eficiência de óxidos do tipo perovskita como catalisadores para a RVE. Estes são óxidos mistos com estrutura química ABO3, sendo A um cátion grande tal como os metais alcalinos, os alcalinos terrosos e os elementos terras raras e B um cátion menor, tal como um metal de transição. A substituição parcial de cátions do sítio B por outros de número de oxidação semelhante pode promover mudanças nas propriedades redox dos íons, provocando alterações na estabilidade da estrutura cristalina. Deste modo, neste trabalho, óxidos tipo pervskita LaNiO3, LaCoO3 e LaFeO3, foram sintetizados através dos métodos citrato e de precipitação. Em uma segunda etapa do trabalho adicionou-se Fe na estrutura dos óxidos LaNiO3 e LaCoO3 e em uma nova etapa sintetizou-se, por precipitação-deposição, óxidos do tipo pervskita LaNiO3, LaCoO3 e LaFeO3 suportados em gama-alumina. Após as sínteses, os catalisadores foram caracterizados e foram realizados estudos da influência dos métodos de preparação, do efeito da adição de ferro e da presença do suporte, na atividade dos catalisadores nas reações de reforma a vapor de etanol para produção de hidrogênio. Os resultados experimentais mostraram que o catalisador LaCoO3 sintetizado pelo método de precipitação se apresentou mais ativo e estável que os demais, embora os catalisadores LaNiO3 (citrato e precipitação) e LaCoO3 (citrato) também tenham sido ativos na RVE. Já o composto LaFeO3 não mostrou atividade na reação. A inserção de Fe na constituição dos catalisadores LaNiO3 e LaCoO3 não alterou significativamente suas eficiências, sugerindo uma característica economicamente vantajosa, já que o ferro é um componente de menor custo que cobalto e níquel, podendo substituir parcialmente estes elementos na formulação do catalisador, diminuindo seu custo de síntese sem comprometer o rendimento a hidrogênio. O estudo do suporte na RVE mostrou que a utilização de gama-alumina resultou em aumento da área específica mas não levou a uma maior atividade ou estabilidade dos catalisadores, no entanto manteve sua atividade.por
dc.publisher.countryBRpor
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Química - PPGEQpor
dc.subject.cnpqENGENHARIAS::ENGENHARIA QUIMICApor
dc.contributor.authorlatteshttp://lattes.cnpq.br/6807169442685729por


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record