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Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for the
financial support related to the process number 2013/22044-0.

1





1

Acknowledgment

First, I want to thank God.

My wife Rosalia and my parents.

My advisors Francisco Odair and David Arcoya.

FAPESP for the �nancial support.



2

Abstract

For a bounded domain Ω, a bounded Carathéodory function g in Ω × R, p > 1,

a nonnegative integrable function h in Ω which is strictly positive in a set of positive

measure and a continuous function a which is superlinear with polynomial growth we

prove that, contrarily with the case h ≡ 0, there exists a solution of the semilinear elliptic

problem  −∆u = λu+ g(x, u)− h(x)a(u) + f, in Ω

u = 0, on ∂Ω,
(0.1)

for every λ ∈ R and f ∈ L2(Ω). And also give results of existence and multiplicity

of similar problems, such that fractional laplacian problem, homogeneous problem and a

concave perturbation of the above problem.
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Resumo

Sejam Ω um domínio limitado, g uma função Carathéodory limitada em Ω×R, p > 1, h

uma função integrável não negativa em Ω e estritamente positiva num conjunto de medida

positiva e a uma função continua e superlinear com crescimento polinomial provamos que,

contrariamente no caso h ≡ 0, existe uma solução do problema elíptico semilinear

 −∆u = λu+ g(x, u)− h(x)a(u) + f, em Ω

u = 0, sobre ∂Ω,

para cada λ ∈ R e f ∈ L2(Ω). Também mostramos resultados de existência

e multiplicidade de problemas similares como problema com laplaciano fracionário,

problema homogêneo e uma perturbação do problema (0.1).
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Introduction

Existence and multiplicity of solutions in Elliptic Problems are the main topic of this

thesis. The �rst elliptic problem studied is the following:

 −∆u = λu+ g(x, u)− h(x)a(u) + f, in Ω

u = 0, on ∂Ω,
(0.2)

where Ω is a bounded domain, λ ∈ R, g is a bounded Carathéodory function in Ω × R,

f ∈ L2(Ω), h ∈ L1(Ω) with h ≥ 0 and a is a superlinear continuous function with

polynomial growth. This problem is well-known when h = 0 a.e. in Ω (see [4]). Indeed,

if we assume additionally that g ≡ 0, then the problem is linear and it has a solution of

(0.2) for every datum f(x) if and only if λ is not an eigenvalue of −∆ in H1
0 (Ω) (Fredholm

alternative). On the other hand, if g 6≡ 0 the existence of solution remains valid for any λ

which doesn't belong to the spectrum of −∆ in H1
0 (Ω). In the case that λ is an eigenvalue

of this operator the existence of solution is not guaranteed, but assuming an additional

hypothesis, for instance the Landesman-Lazer condition, the existence is established.

In this thesis we consider functions h ≥ 0 which are di�erent from zero. Respect to

this case, the homogeneous semilinear elliptic equations (i.e., when g = f = 0) have been

studied recently by several authors. In the particular case than a(u) = |u|p−1u Kazdan

and Warner [13] obtained the �rst results in the context of curvature problem on compact

manifolds, i.e., if λ > 0 and h > 0 then there is a positive solution u > 0 of the equation

−∆u = λu− h|u|p−1u on compact Riemannian manifold; Ouyang, in [15], considered the

same equation that Kazdan and Warner on compact manifolds and bounded domains

Ω ⊂ Rn in case h ≤ 0 and not only h > 0. He showed that there exists a λ̃ > λ1 (λ1 the

�rst eigenvalue of the laplacian operator in Ω and λ̃ the �rst eigenvalue of the laplacian
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operator in Ω̃ = {x ∈ Ω : h(x) = 0}) such that there is a unique positive solution uλ > 0

of the problem  −∆u = λu− h(x)|u|p−1u, in Ω

u = 0, on ∂Ω,
(0.3)

if and only if λ1 < λ < λ̃. Ouyang also gave a result of the bifurcation curve of positive

solutions, speci�cally limλ→λ̃ ‖uλ‖L2(Ω) = +∞; Del Pino and Felmer [10] deal with the

existence, nonexistence and multiplicity of changing sign solutions of (0.3). Results with

non power nonlinearities were obtained by Alama and Tarantello in [2], i.e., they gave

similar results for the problem

 −∆u = λu− h(x)a(u), in Ω

u = 0, on ∂Ω,
(0.4)

with a being only a continuous function such that limu→0
a(u)
u

= 0 and lim|u|→∞
a(u)
u

= +∞.

When the function h(x) changes sign, the homogeneous elliptic problem (0.2) have been

studied by Alama and Tarantello [1], Berestycki, Capuzzo-Dolcetta and Nirenberg [8],

Ramos, Terracini and Troestler [19], among other authors.

To our knowledge, the only result on the nonhomogeneous problem (0.2) is obtained by

Alama and Tarantello [3, Lemma A.3] for the case that a(u) = |u|p−1u, where they showed

existence of solution (corresponding to a minimum of the associated Euler functional)

when

λ < λ1(Ω̃) := inf

{∫
Ω

|∇u|2 dx : u ∈ H1
D(Ω̃), ‖u‖2 = 1

}
where Ω̃ = {x ∈ Ω : h(x) = 0} and H1

D(Ω̃) := {u ∈ H1
0 (Ω) : u(x) = 0 a.e. x ∈ Ω\Ω̃}.

Notice that if meas (Ω̃) = 0 (i.e. h > 0 a.e. in Ω), then H1
D(Ω̃) = {0} and λ1(Ω̃) = +∞,

while, in the case that it would be meas (Ω\Ω̃) = 0 (i.e. h = 0 a.e. in Ω) we would have

that λ1(Ω̃) would not be but the �rst eigenvalue λ1 of the Laplacian operator −∆ with

zero Dirichlet boundary conditions.

Thus, similarly to the case h = 0 a.e. in Ω in which the existence of solution of (0.2)

depend on the interplay between λ and the spectrum of −∆ in H1
0 (Ω), one can think

that, in the case that h 6= 0, the existence will depend on the relationship between λ and
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the spectrum of the unique self-adjoint operator H∞ associated to the quadratic form

b(u) =
∫

Ω
|∇u|2 dx with domain H1

D(Ω̃). Nevertheless, we show that the presence of the

nontrivial h possesses a regularizing e�ect with respect to the existence. Indeed, we prove

that if h 6= 0, then there exists a solution of (0.2) for every λ ∈ R, f ∈ L2(Ω) and p > 1.

Next, we consider the problem (0.2) for the fractional laplacian operator:

 (−∆)su = λu+ g(x, u)− h|u|p−1u+ f, in Ω

u = 0, in Rn \ Ω,
(0.5)

where n > 2s and for s ∈ (0, 1), (−∆)s is the nonlocal fractional Laplace operator de�ned

on the space

Hs(Ω) = {u ∈ L2(Ω) :

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2s
dxdy <∞}.

by

(−∆)su(x) = C(n, s) P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy, x ∈ Rn,

with

C(n, s) =

(∫
Rn

1− cos(ξ1)

|ξ|n+2s
dξ

)−1

.

For the classical Laplacian operator, the problem (3.1) was studied by Alama and

Tarantello (see [2]) when h 6≡ 0 and f = g = 0. Their obtained results about the existence

and multiplicity of nontrivial solutions are based on the interaction of the parameter λ

with the spectrum of the Laplacian operator in Ω̃. This is consistent with the case h ≡ 0

(i.e., Ω̃ = Ω) in which the existence of solutions for general f and g depends on the

position of λ with respect to the spectrum of the Laplacian operator in Ω. However,

recently Arcoya, Paiva and Mendoza in [5] (and in this thesis) showed that if h 6≡ 0 the

existence of solutions does not depends on the spectrum of the Laplacian operator in Ω̃.

We extend this result to the fractional Laplacian operator by proving the existence of

solution of problem (0.5) for every λ.
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The last problem considered in this thesis is a concave perturbation of problem (0.4)

 −∆u = −µ|u|q−2u+ λu− h(x)a(u), in Ω

u = 0, on ∂Ω,
(0.6)

where λ1 < λ < λ1(Ω̃), µ > 0, 1 < q < 2, a is a superlinear continuous function

with polynomial growth and 0 ≤ h ∈ L∞(Ω) with h 6= 0. In the case that µ = 0,

λ1 < λ < λ1(Ω̃) and p ∈ (1,+∞), Alama and Tarantello in [2] showed that if N(λ) = 1

(see Chapter 3) and a(u)
|u| is strictly increasing for u 6= 0, then problem (0.6) only have two

nontrivial solutions (one positive and one negative) and if N(λ) ≥ 2, then there exists

a third nontrivial solution. Perera in [16] shows existence and multiplicity of nontrivial

solutions of problem (0.6) when h ≡ C ≡constant, speci�cally he shows that problem (0.6)

have at least 4 nontrivial solutions (two positive and two negative) and if λk < λ < λk+1,

λ < λ1(Ω̃), then problem (0.6) have at least 5 nontrivial solutions. Thus we see that the

perturbated problem obtain more solutions than the original problem. We obtain similar

results than Perera when h is a L∞(Ω) function and not only a constant.

This thesis is organized as follows. Chapter 1 provides the proof of the existence of

one solution of problem (0.2). In Section 2 we present a compactness condition, similar

to the (P.S.) condition. In Section 3 we split the proof in 3 cases. Chapter 2 deal with

the problem (0.5) and in Chapter 3 we consider two problems: In Section 3 we study the

homogeneous case of problem (0.2) and show existence and multiplicity. In Section 4 we

study problem (0.6).
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Chapter 1

Preliminaries

1.1 The Space E

In this section, we are going to de�ne the principal spaces used in this thesis and also give

some results.

First, we have some notations:

• Lp(Ω) ≡ Space of Lebesgue-measurable functions u : Ω→ R with �nite Lp(Ω) norm

‖u‖Lp(Ω) =

(∫
Ω

|u|p dx
)1/p

, 1 ≤ p <∞.

• We will denote the L2(Ω) norm of u ∈ L2(Ω) by ‖u‖2 =
∫

Ω
u2 dx.

• For some Lebesgue-measurable function h ≥ 0, we denote the Banach space

Lp(Ω, hdx) ≡ {f : Ω → R : f is a measurable function, with
∫

Ω
|f |ph dx < ∞},

1 ≤ p <∞ and its norm

‖f‖Lp(Ω,hdx) =

(∫
Ω

|f |ph dx
)1/p

.

• Cm(Ω) ≡ Space of m times continuosly di�erentiable functions u : Ω→ R.

• Cm
0 (Ω) ≡ Space of Cm(Ω)−functions with compact support in Ω.
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De�nition 1.1. Let Ω be a open subset of Rn. We de�ne the Hilbert space H1(Ω) as

H1(Ω) = {f ∈ L2(Ω) : f has a weak derivate, ∇f , with |∇f | ∈ L2(Ω)}

with scalar product

〈u, v〉 =

∫
Ω

uv dx+

∫
Ω

∇u∇v dx ∀u, v ∈ H1(Ω).

and the associated norm

‖u‖H1(Ω) =

∫
Ω

u2 dx+

∫
Ω

|∇u|2 dx ∀u ∈ H1(Ω).

We also de�ne the Hilbert space H1
0 (Ω) as the closure of C1

0(Ω) in H1(Ω) equipped with

the H1(Ω) scalar product.

In this thesis we are going to work on bounded domains Ω. For such Ω we have the

following result:

Theorema 1.2 (Poincaré's inequality). Suppose that Ω ⊂ Rn is a bounded open set.

Then there exists a constant C = C(Ω) such that

‖u‖2 ≤ C‖∇u‖2 ∀u ∈ H1
0 (Ω).

Thus we have that the expression ‖∇u‖2 is a norm on H1
0 (Ω) and it is equivalent to

the norm ‖u‖H1(Ω). In this thesis, we will use this norm on H1
0 (Ω) and will be denoted by

‖u‖ = ‖∇u‖2 for every u ∈ H1
0 (Ω).

Now, for some p > 1 and a measurable function h : Ω→ R with h ≥ 0, we de�ne the

Banach space E as

E = {u ∈ H1
0 (Ω) :

∫
Ω

h|u|p+1 < +∞},

endowed with the norm

‖u‖E = ‖u‖H1
0 (Ω) +

(∫
Ω

h|u|p+1 dx

)1/(p+1)

.
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The principal result about this space is that E is a Re�exive space. To show this, we are

going to use the exercise 4.16 from [7] to show the following lemma:

Lemma 1.3. Let 1 < p < +∞, {fn} ⊂ Lp(Ω, hdx), h ≥ 0 and measurable in Ω and

a) ‖fn‖Lp(Ω,hdx) ≤ C,

b) fn → f a.e. in Ω.

Then f ∈ Lp(Ω, hdx) and fn ⇀ f in Lp(Ω, hdx).

Proof. For the proof, we de�ne gn = h1/p.fn ∈ Lp(Ω). Then

∫
Ω

|gn|p dx =

∫
Ω

h.|fn|p dx ≤ C,

and gn → h1/p.f = g a.e. in Ω. Now we can apply the exercise 4.16 for gn and so gn ⇀ g

in Lp(Ω). Finally calling p′ such that 1/p+ 1/p′ = 1 and for all ϕ ∈ Lp′(Ω, hdx) we have

ϕ.h1/p′ ∈ Lp′(Ω) and thus

∫
Ω

fn.ϕ.h dx =

∫
Ω

gn.ϕ.h
1/p′ dx −→

∫
Ω

g.ϕ.h1/p′ dx =

∫
Ω

f.ϕ.h dx,

concluding this lemma.

Now, we use this lemma to show the re�exivity of the space E.

Lemma 1.4. The Banach space E is re�exive.

Proof. Let be {un} ⊂ E a sequence such that ‖un‖E ≤ C. Then {un} ⊂ H1
0 (Ω) is bounded

in H1
0 (Ω) and, up to a subsequence, we can assume un ⇀ u0 in H1

0 (Ω), un → u0 in L2(Ω)

and a.e. in Ω. Moreover, the sequence {un} ⊂ Lp+1(Ω, hdx) is bounded in Lp+1(Ω, hdx)

and we can apply the Lemma 1.3 to obtain that un ⇀ u0 in Lp+1(Ω, hdx) and thus that

un ⇀ u0 in E.

1.2 Some Variational theorems

Let I be a Fréchet-di�erentiable functional on a Banach space B with normed dual B∗

and let dI : B → B∗ denote the Fréchet-derivate of E. We call a point u ∈ B critical if
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dI(u) = 0, otherwise, u is called regular. A number β ∈ R is a critical value of I if there

exists a critical point u of I with I(u) = β, otherwise, β is called regular.

We also denote by I ′(u) = dI(u) and I ′′(u) = d2I(u).

De�nition 1.5 (Palais-Smale sequence). A sequence {un} in B is a Palais-Smale sequence

for I if |I(un)| ≤ C and ‖dI(un)‖ → 0 as n→∞.

De�nition 1.6 (Palais-Smale condition). A Fréchet-di�erentiable functional I : B → R

satis�es the Palais-Smale condition (P.S.) if any Palais-Smale sequence has a convergent

subsequence.

The �rst result is about critical points that minimizes the functional I when it is

bounded below.

Theorema 1.7. Suppose I ∈ C1(B) satis�es (P.S.). Then, if

β = inf
u∈B

I(u)

is �nite, β = minu∈B I(u) is attained at a critical point of I.

The second result is the Montain Pass theorem.

Theorema 1.8. Suppose I ∈ C1(B) satis�es (P.S.). Assume that

1) I(0) = 0;

2) ∃ρ > 0, α > 0 such that if ‖u‖B = ρ then I(u) ≥ α;

3) ∃u1 ∈ B such that ‖u‖B ≥ ρ and I(u1) < α.

De�ne

Γ = {γ ∈ C0([0, 1];B) : γ(0) = 0, γ(1) = u1}.

Then

β = inf
γ∈Γ

sup
u∈γ

I(u) ≥ α

is a critical value.

The last result is the Rabinowitz Saddle Point theorem [18]
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Theorema 1.9. Suppose I ∈ C1(B) satis�es (P.S.). Let B = B1⊕B2, with dimB1 <∞

and there exists R > 0 such that

max
v∈B1, ‖v‖B=R

I(v) < inf
w∈B2

I(w).

If we denote by B(0, R) the ball in B1 of radius R and center 0 and we de�ne the set

Γ = {h ∈ C(B(0, R), B) : h(v) = v, ∀v ∈ B1 with ‖v‖B = R}.

Then the number

c = inf
h∈Γ

max
v∈B(0,R)

I(h(v))

de�nes a critical value c ≥ infw∈B2 I(w) of I.

1.3 Morse theory and Critical groups

We will give the principal results of Morse theory and critical groups (see [9]) used in this

thesis.

De�nition 1.10. (see [9, pag. 33]) Let H be a Hilbert space, I : H → R a C2(H)

functional and u ∈ H a critical point of I. We de�ne the Morse index of u, denoted by

m(u), as the dimension of the negative space corresponding to the spectral decomposing

of d2I(u).

De�nition 1.11. (see [9, De�nition 4.1], Chapter I) Let u be an isolated critical point of

I, and set c = I(u). We de�ne the qth critical group of I at u as

Cq(I, u) = Hq(Ic ∩ U, (Ic \ {u}) ∩ U),

q = 0, 1, 2, ..., where U is a neighborhood of u such that {v ∈ U ∩ Ic : dI(v) = 0} = {u},

Ic = {v ∈ H : I(v) ≤ c} and H∗(A,B) stands for the singular relative homology groups

with abelian coe�cient group Z.
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The following result (see [9, Corollary 5.1], Chapter I) is used to compare diferents

critical points:

Theorema 1.12. Suppose that Ker(d2I(u)) is �nite dimensional with dimension k and

let m = m(u) be the Morse index of I at u, then either

(1)

Cq(I, u) = δq,mZ, or

(2)

Cq(I, u) = δq,m+kZ, or

(3)

Cq(I, u) = 0 for q ≤ m, and q ≥ m+ k.

Next, we give two abstracts results that will be used in Chapter 4.

Theorema 1.13. (See [17, Theorem 1.3]) Suppose that there is a direct sum

decomposition H = V ⊕W , with V �nite dimensional, such that

a = inf
W
I > −∞, b = sup

V
I < +∞,

and assume that I satis�es (P.S.) condition in [a− ε, b+ ε], for some ε > 0. Then I has

a critical point u such that

a ≤ I(u) ≤ b, Cj(I, u) 6= 0

where j = dimV .
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Theorema 1.14. (see [16, Theorem 3.1]) Let H = V ⊕ W de a Banach space with

0 < k = dimV <∞. Suppose that I ∈ C1(H,R) satis�es

I1) there exists ρ > 0 such that

sup
S1
ρ

< 0,

where S1
ρ = {v ∈ V : ‖v‖ = ρ},

I2) I ≥ 0 on W , and

I3) there exists a nonzero vector v1 ∈ V such that I is bounded below on the half-space

{sv1 + w : s ≥ 0, w ∈ W}.

In addition, assume that I satis�es P.S. and has only isolated critical values with each

critical value corresponding to a �nite number of critical points. Then I has two (di�erent)

critical points u1, u2 with I(u1) < 0 ≤ I(u2) and Ck−1(I, u1) 6= 0, Ck(I, u2) 6= 0.
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Chapter 2

Existence of solutions for a

nonhomogeneous semilinear elliptic

equation

2.1 Introduction

We consider the following problem:

 −∆u = λu+ g(x, u)− h(x)a(u) + f, in Ω

u = 0, on ∂Ω,
(2.1)

where Ω is a bounded domain, λ ∈ R, g is a bounded Carathéodory function in Ω × R,

f ∈ L2(Ω), h ∈ L1(Ω) with h ≥ 0 and is di�erent from zero in a set of positive measure.

Speci�cally, if we denote by

Ω̃ = {x ∈ Ω : h(x) = 0},

we assume that

meas (Ω\Ω̃) = meas {x ∈ Ω : h(x) > 0} > 0. (2.2)
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We also assume that a is a C(R) function such that, denoting by A(u) =
∫ u

0
a(t)dt,

(p+ 1)A(u) ≤ a(u)u for |u| ≥ R, for some 1 < p and R large; (2.3)

|a(u)| ≤ c|u|p + c, where c is a constant; (2.4)

a(u)

u
> 0 ∀u 6= 0, which implies that a(0) = 0 and A(u) > 0 for u 6= 0; (2.5)

(a(u)− a(v))(u− v) ≥ C|u− v|p+1, for some C > 0 and for all u, v ∈ R. (2.6)

We can observe that conditions (2.3), (2.4) and (2.5) on a implies that

C1|u|p+1 − C2 ≤ A(u) ≤ C3|u|p+1 + C4 (2.7)

for some constans Ci > 0, i = 1, 2, 3, 4 and this inequality implies that

lim
|u|→∞

a(u)

u
=∞.

We obtain an inequality similar to (2.7) for the function a(u)u.

The function a(u) = |u|p−1u satisfaz all these conditions, and in this thesis we also

give weak hypothesis and better results for this particular case on a.

In this chapter we prove that if condition (2.2) holds true, then there exists a solution

of (2.1) for every λ ∈ R, f ∈ L2(Ω) and p > 1. Indeed, we prove the following result

Theorema 2.1. If g is a bounded Carathéodory function, p > 1, 0 ≤ h ∈ L1(Ω) satisfying

(2.2) and a satisfaz (2.3), (2.4), (2.5) and (2.6), then the problem (2.1) has at least one

solution for each λ ∈ R and f ∈ L2(Ω).

The above result is proved by variational tools. As usual, we need to prove that the

Euler functional Iλ associated to the problem (2.1) satis�es the Palais-Smale compactness

condition, as well as suitable geometrical properties. We devote Section 2 to introduce
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the functional Iλ and to study a general compactness condition for the family of the

functionals Iλ, λ ∈ R. The geometrical properties of the functional Iλ are studied in

Section 3 which concludes the proof of Theorem 2.1.

Notation. We will denote by ‖u‖ = ‖u‖H1
0 (Ω) =

(∫
Ω
|∇u|2 dx

)1/2
(respectively, ‖u‖2 =(∫

Ω
u2 dx

)1/2
) the norm of a function u in the space H1

0 (Ω) (respectively, L2(Ω)). In the

following the letter C will denote a positive constant which can change from a line to

another and even within the same formula.

2.2 A compactness condition

In order to prove the Theorem 2.1 we follow a variational approach. Speci�cally, we

consider the re�exive space

E = {u ∈ H1
0 (Ω) :

∫
Ω

h|u|p+1 < +∞},

endowed with the norm

‖u‖E = ‖u‖H1
0 (Ω) +

(∫
Ω

h|u|p+1 dx

)1/(p+1)

.

For G(x, t) =
∫ t

0
g(x, s) ds and A(t) =

∫ t
0
a(s) ds (x ∈ Ω, t ∈ R), we consider the C1-

functional Iλ : E → R given by

Iλ(u) =
1

2

∫
Ω

|∇u|2dx+

∫
Ω

hA(u)dx− λ

2

∫
Ω

u2dx−
∫

Ω

G(x, u)dx−
∫

Ω

fudx,

for every u ∈ E. This functional is well de�ned in view of (2.7) and that h ∈ L1(Ω).

However, for the particular case a(u) = |u|p−1u we can de�ne the functional if h ∈ L1
loc(Ω).

We say that a solution u of (2.1) is just a critical point u ∈ E of the functional Iλ;

i.e., a function u ∈ E such that

∫
Ω

∇u∇ϕdx+

∫
Ω

h(x)a(u)ϕdx− λ
∫

Ω

uϕdx−
∫

Ω

g(x, u)ϕdx−
∫

Ω

fϕdx = 0, ∀ϕ ∈ E.
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In the particular case a(u) = |u|p−1u: Since h ∈ L1
loc

(Ω), we deduce that the space

C∞0 (Ω) of C∞-functions with compact support in Ω is a subset of E and thus any ϕ ∈

C∞0 (Ω) can be chosen as test function in the previous identity. Therefore, the notion of

solution given for (2.1) is just the standard one for a Dirichlet problem, namely a solution

u of the equation −∆u = λu + g(x, u) − ha(u) + f in Ω in the sense of distributions

(test functions in C∞0 (Ω)) which in addition belongs to H1
0 (Ω) (boundary condition) and

satis�es that h|u|p+1 ∈ L1(Ω).

We prove the following compactness condition:

Lemma 2.2. Let g be a bounded Carathéodory function, p > 1, f ∈ L2(Ω) and 0 ≤ h ∈

L1(Ω) satisfying (2.2) and a satisfaz (2.3), (2.4), (2.5) and (2.6). Assume that {αn} ⊂ R

is a bounded sequence and {εn} ⊂ (0,∞) is a sequence converging to zero. If {un} is a

sequence in E such that Iαn(un) ≥ −C and |dIαn(un)(ϕ)| ≤ εn‖ϕ‖E for all ϕ ∈ E, then

{un} is bounded in E and admits a convergent subsequence in E.

Remark 2.3. If we take αn = λ for every n in this lemma then the functional Iλ satis�es

the Palais-Smale compactness condition for every λ ∈ R.

Proof of Lemma 2.2.. For a such sequence, it follows that

1

2

∫
Ω

|∇un|2 dx+

∫
Ω

hA(un) dx− αn
2

∫
Ω

u2
n dx−

∫
Ω

G(x, un) dx−
∫

Ω

fun dx ≥ −C (2.8)

and

∣∣∣∣∫
Ω

∇un · ∇ϕdx+

∫
Ω

ha(un)ϕdx− αn
∫

Ω

unϕdx

−
∫

Ω

g(x, un)ϕdx−
∫

Ω

fϕ dx

∣∣∣∣ ≤ εn‖ϕ‖E, (2.9)

for every ϕ ∈ E.

We claim that the sequence {un} is bounded in E. Otherwise, up to a subsequence, we

can assume that ‖un‖E → +∞, αn → α and if we de�ne vn := un/‖un‖E, then ‖vn‖E = 1

and, by the re�exivity of E, there is a subsequence of {vn} (still denoted by vn) and a

v0 ∈ E such that vn ⇀ v0 in E, vn ⇀ v0 in H1
0 (Ω), vn ⇀ v0 in Lp+1(Ω, hdx) and vn → v0
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in L2(Ω) and a.e. in Ω. Taking ϕ =
un
‖un‖2

E

in (2.9), we deduce that vn satis�es

∫
Ω

|∇vn|2 dx+

∫
Ω

h
a(un)un
‖un‖2

E

dx ≤ εn
‖un‖E

+ αn

∫
Ω

v2
n dx

+

∫
Ω

g(x, un)

‖un‖E
vn dx+

‖f‖2‖vn‖2

‖un‖E
(2.10)

which implies by the boundedness of g and the hypotheses on a that

‖un‖p−1
E

∫
Ω

h|vn|p+1 dx ≤ C.

In particular, since p > 1 we have

lim
n→∞

∫
Ω

h|vn|p+1 dx = 0.

Using this and that ‖vn‖E = ‖vn‖H1
0 (Ω) +

(∫
Ω

h|vn|p+1 dx

)1/p+1

= 1 we have that

lim
n→∞

∫
Ω

|∇vn|2 dx = 1 and from (2.10), using again the boundedness of g, we obtain

1 ≤ α

∫
Ω

v2
0 dx,

which implies that v0 6= 0. In addition, Fatou lemma (

∫
Ω

h|v0|p+1 dx ≤

lim inf
n→∞

∫
Ω

h|vn|p+1 dx) and the non-negativeness of h give

lim
n→∞

∫
Ω

h|vn|p+1 dx = 0 =

∫
Ω

h|v0|p+1 dx

and h|v0|p+1 = 0. If meas (Ω̃) = 0, then v0 = 0 a.e. in Ω and we get a contradiction and

it is proved that the sequence {un} is bounded in E in this case.

On the other hand, if meas (Ω̃) > 0, then v0 = 0 a.e. in Ω\Ω̃ and thus v0 ∈ H1
D(Ω̃).
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Taking ϕ = un/2 in (2.9) and subtracting (2.8), we obtain

∫
Ω

h

(
a(un)un

2
− A(un)

)
dx+

1

2

∫
Ω

fun dx ≤ C +
εn‖un‖E

2

+

∫
Ω

(
1

2
g(x, un)un −G(x, un)

)
dx

In particular, dividing by ‖un‖E and using that p > 1, the boundedness of g and the

hypotheses on a, we have

1

‖un‖E

∫
Ω

h|un|p+1 dx ≤ C.

By using this and the Hölder inequality, for every ϕ ∈ E we get

∣∣∣∣∫
Ω

h|un|pϕdx
∣∣∣∣ ≤ (∫ hϕp+1 dx

) 1
p+1
(∫

h |un|p+1 dx

) p
p+1

≤
(∫

hϕp+1 dx

) 1
p+1

C‖un‖
p
p+1

E

and

lim
n→∞

1

‖un‖E

∫
Ω

h|un|pϕdx = 0.

Using the hypotheses on a and the last equality we also have

lim
n→∞

1

‖un‖E

∫
Ω

ha(un)ϕdx = 0.

Hence, if we divide (2.9) by ‖un‖E and pass to the limit as n → ∞ we deduce by the

boundedness of g that ∫
Ω

∇v0 · ∇ϕdx = α

∫
Ω

v0ϕdx,

for every ϕ ∈ E. By density of E into H1
0 (Ω) (due to the local integrability of h), the

above equality holds true for every ϕ ∈ H1
0 (Ω); i.e., v0 6= 0 is a solution of the problem

 −∆v = α v, in Ω

v = 0, on ∂Ω,

which, in addition, vanishes on the set Ω\Ω̃. However, this is impossible by (2.2) and the
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unique continuation property (see Proposition 3 and Remark 2 in [12]). Therefore, we

conclude that the sequence {un} is bounded in E also when meas (Ω̃) > 0.

Using that E is re�exive we have that there exists u0 ∈ E such that, up to a

subsequence, un ⇀ u0 in E, un ⇀ u0 in H1
0 (Ω), un ⇀ u0 in Lp+1(Ω, hdx), un → u0

in L2(Ω) and a.e. in Ω . Since the sequence a(un) is bounded in L
p+1
p (Ω, hdx) and

converges a.e. to a(u0), we deduce that it converges weakly to a(u0) in L
p+1
p (Ω, hdx) [7,

Exercise 4.16], which implies that

∫
Ω

ha(un)ϕdx −→
∫

Ω

ha(u0)ϕdx, ∀ϕ ∈ Lp+1(Ω, hdx), (2.11)

Using this, if we take the limit in (2.9) as n→∞ we deduce that

∫
Ω

∇u0∇ϕdx+

∫
Ω

ha(u0)ϕdx− α
∫

Ω

u0ϕdx−
∫

Ω

g(x, u0)ϕdx−
∫

Ω

fϕ dx = 0,

for every ϕ ∈ E. Substracting it from (2.9) we get

∣∣∣∣∫
Ω

∇(un − u0) · ∇ϕdx+

∫
Ω

h(a(un)− a(u0))ϕdx

−
∫

Ω

(αnun − αu0)ϕdx−
∫

Ω

(g(x, un)− g(x, u0))ϕdx

∣∣∣∣ ≤ εn‖ϕ‖E,

which by the choice ϕ = un − u0 implies that

∣∣∣∣∫
Ω

|∇(un − u0)|2dx+

∫
Ω

h(a(un)− a(u0))(un − u0)dx

−
∫

Ω

(αnun − αu0)(un − u0)dx−
∫

Ω

(g(x, un)− g(x, u0))(un − u0)dx

∣∣∣∣
≤ εn‖(un − u0)‖E.

Noting that the third and fourth terms are going to 0 as n → ∞ (by the convergence of

un to u in L2(Ω)) and using (2.6), we have that ‖un − u0‖H1
0 (Ω) → 0 and

∫
Ω

h|un − u0|p+1 dx→ 0.
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Consequently un → u0 in E. �

2.3 Proof of Theorem 2.1

We will see that the variational nature of the solution given by Theorem 2.1 depends on the

relationship of λ with the spectrum of the operator H∞ (associated to the quadratic form

b(u) =
∫

Ω
|∇u|2 dx with domain H1

D(Ω̃)). Notice that a particular example corresponds

with the case in which meas (Ω̃) > 0 and meas (∂Ω̃) = 0. In this case, the measure of the

interior Ω̃◦ of Ω̃ has to be positive (i.e. meas (Ω̃◦) > 0) and we have

h(x) > 0 a.e. in Ω\Ω̃◦.

Therefore, if we assume in addition that the interior Ω̃◦ of Ω̃ satis�es an exterior cone

condition at every point of its boundary, then H1
D(Ω̃) = H1

0 (Ω̃◦) and H∞ is nothing but

the classical Laplace operator H1
0 (Ω̃◦) (i.e., with zero Dirichlet condition on the boundary

of Ω̃◦).

In the general case, when we only assume that meas (Ω̃) > 0, we denote by {λi(Ω̃)}i∈N

the spectrum ofH∞ ordered by the min-max principle with eigenvalues repeated according

to their multiplicity and by ϕ̃i the associated eigenfunctions to λi(Ω̃), normalized so that∫
Ω̃
ϕ̃i.ϕ̃j dx = δi,j.

The proof of Theorem 2.1 is split in cases in the following subsections.

2.3.1 Case λ < λ1(Ω̃).

We devote this subsection to prove Theorem 2.1 when λ < λ1(Ω̃).

Theorema 2.4. Let g be a bounded Carathéodory function, p > 1, f ∈ L2(Ω), 0 ≤ h ∈

L1(Ω) satisfying (2.2) and a satisfaz (2.3), (2.4), (2.5) and (2.6). If λ < λ1(Ω̃), then the

problem (2.1) has at least one solution.

Remark 2.5. As it has been mentioned in the introduction, the above theorem is proved

in [3] for the particular case a(u) = |u|p−1u . Since the authors only indicate the steps for

their proof, we will include here a detailed proof for completeness.
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Remark 2.6. If H1
D(Ω̃) = {0}, then λ1(Ω̃) is in�nite and we deduce from Theorem 2.4

the existence of solution for every λ ∈ R. Hence the Theorem 2.1 is deduced in this case

from the above theorem. Note that a su�cient condition to have H1
D(Ω̃) = {0} is that

meas (Ω̃) = 0, i.e., that h > 0 a.e. in Ω. In addition, this observation also shows that the

Theorem 2.4 can not be extended to the case p = 1 (think in the simple case that h is a

positive constant).

Therefore to conclude the proof of the Theorem 2.1, in the rest of this chapter we can

assume that H1
D(Ω̃) 6= {0} (which implies that all the eigenvalues λi(Ω̃) of the operator

H∞ are �nite) and that λ ≥ λ1(Ω̃).

Proof. (of Theorem 2.4.) The existence of a solution of the problem (2.1) is deduced by

proving that the C1-functional Iλ has a global minimum in E.

To show this, �rst we show that the functional Iλ is bounded from below and we argue

by contradiction assuming that there exists a sequence {un} ⊂ E such that 0 > Iλ(un)→

−∞. Since

Iλ(un) ≥− λ

2

∫
Ω

u2
n dx−

∫
Ω

G(x, un) dx−
∫

Ω

fun dx

≥− λ

2
‖un‖2

2 − (C + ‖f‖2)‖un‖2,

we deduce that ‖un‖2 →∞. In particular, ‖un‖H1
0 (Ω) →∞. If we consider the normalized

sequence vn = un/‖un‖H1
0 (Ω), we can also assume, up to a subsequence, that there exists

v0 ∈ E such that vn ⇀ v0 in H1
0 (Ω), vn → v0 in L2(Ω) and a.e in Ω. Using that Iλ(un) is

negative, we obtain

0 >
Iλ(un)

‖un‖2
H1

0 (Ω)

≥1

2
+ C‖un‖p−1

H1
0 (Ω)

∫
Ω

h|vn|p+1 dx− C

‖un‖2
H1

0 (Ω)

∫
Ω

h dx

− λ

2
‖vn‖2

2 −
∫

Ω

G(x, un)

‖un‖2
H1

0 (Ω)

dx− 1

‖un‖H1
0 (Ω)

∫
Ω

fvn dx.

From this inequality and the boundedness of g, we deduce the following:

1. By taking limits as n→ +∞, we have

1 ≤ λ‖v0‖2
2

and v0 6= 0.
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2. Dividing by ‖un‖p−1

H1
0 (Ω)

and using Fatou lemma, we get

0 ≥ lim inf
n→+∞

∫
Ω

h|vn|p+1 ≥
∫

Ω

h|v0|p+1 dx.

and hence

v0 = 0 a.e. in Ω\Ω̃. (2.12)

If it would be meas (Ω̃) = 0, then it would be concluded by (2.12) that v0 = 0 a.e. in Ω,

contradicting 1. Then, in this case, necessarily Iλ has to be bounded from below.

In the other case, i.e. if meas (Ω̃) > 0, then (2.12) means that v0 ∈ H1
D(Ω̃) and, by

the variational characterization of λ1(Ω̃) we have λ1(Ω̃)‖v0‖2
2 ≤ ‖v0‖2

H1
0 (Ω)

. By the weak

convergence of vn to v0 in H1
0 (Ω) and the inequality 1 ≤ λ‖v0‖2

2, we derive that

λ1(Ω̃)‖v0‖2
2 ≤ ‖v0‖2

H1
0 (Ω) ≤ lim inf

n→∞
‖vn‖2

H1
0 (Ω) = 1 ≤ λ‖v0‖2

2, with v0 6= 0.

i.e., λ1(Ω̃) ≤ λ, contradicting our hypothesis on λ and proving, in this case, that Iλ is

bounded from below.

We know that Iλ ∈ C1(E) and from Lemma 2.2 satis�es (P.S.). Thus, we can use

Theorem 1.7 to show that Iλ has a critical point u0 ∈ E with I(u0) = infu∈E Iλ(u) and

then u0 is a solution of the problem (2.1).

2.3.2 Case λi(Ω̃) < λ < λi+1(Ω̃), for i ≥ 1

In this subsection we consider the case that (H1
D(Ω̃) 6= {0} and) the parameter λ is

between two consecutive eigenvalues of the operator H∞.

Theorema 2.7. Let g be a bounded Carathéodory function, p > 1, f ∈ L2(Ω) and 0 ≤

h ∈ L1(Ω) satisfying (2.2) and a satisfaz (2.3), (2.4), (2.5) and (2.6). If H1
D(Ω̃) 6= {0}

and λi(Ω̃) < λ < λi+1(Ω̃) for i ≥ 1, then the problem (2.1) has at least one solution uλ.

Proof. We are going to show that the problem (2.1) has at least one weak solution, by

showing that the functional Iλ has a critical point of the form saddle point as in theorem

of Rabinowitz [18, Theorem 1.2]. In order to make it, we choose V = 〈ϕ̃1, . . . , ϕ̃i〉 ⊂ E



2.3 Proof of Theorem 2.1 26

andW = {w ∈ E /
∫

Ω
∇ϕ̃j.∇w dx = 0 for 1 ≤ j ≤ i}. Observe thatW is the intersection

of E with the orthogonal V ⊥ in H1
0 (Ω) of V and that E = V ⊕W . We begin by studying

the geometrical properties of the functional.

First, we claim that Iλ is bounded from below onW . Otherwise, there exists a sequence

{wn}n∈N ⊂ W such that 0 > Iλ(wn)→ −∞. Since

Iλ(wn) ≥− λ

2

∫
Ω

w2
n dx−

∫
Ω

G(x,wn)−
∫

Ω

fwn dx

≥− λ

2
‖wn‖2

2 − (C + ‖f‖2)‖wn‖2,

we deduce that ‖wn‖2 →∞. In particular, ‖wn‖H1
0 (Ω) →∞. If we consider the normalized

sequence zn = wn/‖wn‖H1
0 (Ω), we can also assume, up to a subsequence, that there exists

z0 ∈ W such that zn ⇀ z0 in H1
0 (Ω), zn → z0 in L2(Ω) and a.e in Ω. Using that Iλ(wn)

is negative, we obtain

0 >
Iλ(wn)

‖wn‖2
H1

0 (Ω)

≥1

2
+ C‖wn‖p−1

H1
0 (Ω)

∫
Ω

h|zn|p+1 dx− C

‖wn‖2
H1

0 (Ω)

∫
Ω

h dx

− λ

2
‖zn‖2

2 −
∫

Ω

G(x,wn)

‖wn‖2
H1

0 (Ω)

− 1

‖un‖H1
0 (Ω)

∫
Ω

fzn dx

From this inequality we deduce �rst that (by taking limits as n→ +∞)

1 ≤ λ‖z0‖2
2 and z0 6= 0.

Secondly, dividing by ‖wn‖p−1

H1
0 (Ω)

and using Fatou lemma, we also deduce that

0 ≥ lim inf
n→∞

∫
Ω

h|zn|p+1 ≥
∫

Ω

h|z0|p+1 dx

and hence z0 = 0 in Ω\Ω̃, i.e., z0 ∈ H1
D(Ω̃) ∩W . Consequently, by the weak convergence

of zn,

λi+1(Ω̃)‖z0‖2
2 ≤ ‖z0‖2

H1
0 (Ω) ≤ lim inf

n→∞
‖zn‖2

H1
0 (Ω) = 1 ≤ λ‖z0‖2

2,
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i.e., λi+1(Ω̃) ≤ λ contradicting our hypothesis on λ and proving that

inf
w∈W

Iλ(w) > −∞.

On the other hand, using that the support of every function v in V is contained in Ω̃,

we have ‖v‖E = ‖v‖H1
0 (Ω) and

Iλ(v) ≤1

2
‖v‖2

H1
0 (Ω) + C

∫
Ω

h dx− λ

2
‖v‖2

2 −
∫

Ω

G(x, v) dx−
∫

Ω

fv dx (2.13)

≤1

2

(
1− λ

λi(Ω̃)

)
‖v‖2

H1
0 (Ω) + (C + ‖f‖2)‖v‖2 + C‖h‖L1(Ω), (2.14)

for all v ∈ V , and taking into account that λi(Ω̃) < λ, we deduce that

limv∈V, ‖v‖E→+∞ Iλ(v) = −∞. Therefore, there exists Rλ > 0 such that

max
v∈V, ‖v‖E=Rλ

Iλ(v) < inf
w∈W

Iλ(w).

Additionally, Iλ ∈ C1(E) and satis�es (P.S.) (Lemma 2.2). Using Theorem 1.9 we have

that if we denote by BV (0, Rλ) the ball in V of radius Rλ and center 0 and

Γλ = {h ∈ C(BV (0, Rλ), E) : h(v) = v, ∀v ∈ V with ‖v‖E = Rλ},

then cλ, de�ned as,

cλ = inf
h∈Γλ

max
‖v‖E≤Rλ

Iλ(h(v)) ≥ inf
w∈W

Iλ(w)

is a critical value of Iλ, this is, there exists u0 ∈ E such that I ′λ(u0) = 0 and Iλ(u0) = cλ.

Therefore u0 is a solution of the problem (2.1).

Remark 2.8. With the notation of the above proof, observe that if λi(Ω̃) < λ ≤ α <

λi+1(Ω̃), then Iλ ≥ Iα and thus infw∈W Iλ(w) ≥ infw∈W Iα(w). Consequently, Iλ(uλ) =

cλ ≥ infw∈W Iλ(w) ≥ infw∈W Iα(w).
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2.3.3 Case λ = λi(Ω̃), for i ≥ 1

Theorema 2.9. Let g be a bounded Carathéodory function, p > 1, f ∈ L2(Ω), 0 ≤ h ∈

L1(Ω) a measurable function satisfying (2.2) and a satisfaz (2.3), (2.4), (2.5) and (2.6).

If H1
D(Ω̃) 6= {0} and λ = λi(Ω̃) for i ≥ 1, then the problem (2.1) has at least one solution.

Proof. Let {αn}n∈N be a strictly decreasing sequence in the interval

(λi(Ω̃), λi+1Ω̃)) which converges to λi(Ω̃). By Theorem 2.4 and Remark 3.9, for each

n ∈ N there exists un ∈ E such that I ′αn(un) = 0 and Iαn(un) = cαn ≥ infw∈W Iαn(w) ≥

−C := infw∈W Iα1(w). Hence, by aplying the Lemma 2.2, we deduce the existence of a

subsequence unk such that unk → u0 in E for some u0 ∈ E, which is a solution of the

problem (2.1) for λ = λi(Ω̃).

2.4 Conclution of the proof of Theorem 2.1

The proof of this theorem is now a direct consequence of the Theorems 2.4, 2.7 and

2.9.
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Chapter 3

Fractional Laplacian operator case

3.1 Introduction

For a bounded smooth domain Ω with Lipschitz boundary in Rn, n > 2s, we consider the

following problem:

 (−∆)su = λu+ g(x, u)− h|u|p−1u+ f, in Ω

u = 0, in Rn \ Ω,
(3.1)

where for s ∈ (0, 1), (−∆)s is the nonlocal fractional Laplace operator de�ned on the

space

Hs(Ω) = {u ∈ L2(Ω) :

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2s
dxdy <∞}.

by

(−∆)su(x) = C(n, s) P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy, x ∈ Rn,

with

C(n, s) =

(∫
Rn

1− cos(ξ1)

|ξ|n+2s
dξ

)−1

is a constant depending on n and s (which for simplicity, we are going to take it as 1, this

is, C(n, s) = 1 and P.V. is the principal value of the integral (which we are going to omit

it in this work). (See [11] for further details on the fractional Laplace operator).

In addition, λ ∈ R, p > 1, g is a bounded Carathéodory function in Ω×R, f ∈ L2(Ω)
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and 0 ≤ h ∈ L1
loc(Ω) is such that if we denote by

Ω̃ = {x ∈ Ω : h(x) = 0},

we assume that

meas (Ω \ Ω̃) = meas {x ∈ Ω : h(x) > 0} > 0. (3.2)

We say that u ∈ Hs(Rn) is a solution for the problem (3.1) if u = 0 a.e. in Rn \Ω and

∫
R2n

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dxdy =λ

∫
Ω

uϕ dx+

∫
Ω

g(x, u(x))ϕdx

−
∫

Ω

h|u|p−1uϕ dx+

∫
Ω

fϕ dx

for any ϕ ∈ Hs(Rn) with ϕ = 0 a.e. in Rn \ Ω.

The scope of this Chapter is to extend the result in [5] to the fractional Laplacian

operator by proving the existence of solution of the problem (3.1) for every λ. Speci�cally,

we prove the following theorem.

Theorema 3.1. If Ω is a bounded domain with Lipschitz boundary in Rn, n > 2s, s ∈

(0, 1), p > 1, g is a bounded Carathéodory function in Ω×R and 0 ≤ h ∈ L1
loc(Ω) satisfying

(3.2), then the problem (3.1) has at least one solution for each λ ∈ R and f ∈ L2(Ω).

3.2 Preliminary Results

We devote this section to remind (see [20] for more details) the main properties of the

fractional Sobolev space

Hs
0(Ω) = {u ∈ Hs(Rn) : u = 0 a.e. in CΩ},

(CΩ = Rn \ Ω is the complement of Ω) which is a Hilbert space endowed with the norm

‖u‖Hs
0(Ω) =

(∫
Q

|u(x)− u(y)|2

|x− y|n+2s
dxdy

) 1
2

,

where Q = (Rn × Rn) \ (CΩ× CΩ).
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The following lemma is a sort of Poincaré-Sobolev inequality for functions in Hs
0(Ω).

Lemma 3.2 ([20], Lemma 6). There exists a constant C > 1, depending only on n, s and

Ω, such that for any v ∈ Hs
0(Ω)

‖v‖2 ≤ C‖v‖Hs
0(Ω).

The next lemma gives the compactness of Hs
0(Ω) in L2(Rn).

Lemma 3.3 ([20], Lemma 8). If Ω is a bounded domain with Lipschitz boundary in Rn

and {vj} is a bounded sequence in Hs
0(Ω), then, there exists v ∈ L2(Rn) such that, up to

a subsequence,

{vj} → v in L2(Rn) as j → +∞.

Now, we discuss some known results for the following eigenvalue problem

 (−∆)su = λu, in A

u = 0, in Rn \ A,
(3.3)

where A is a measurable bounded set in Rn. Speci�cally, if we consider the Hilbert space

Hs
D(A) = {u ∈ Hs(Rn) : u = 0 a.e. in CA}.

(note that if A is an open set of Rn, then Hs
D(A) = Hs

0(A)), we say that λ ∈ R is an

eigenvalue of (−∆)s in A if there exists a non-trivial function u ∈ Hs
D(A) such that

∫
R2n

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dxdy = λ

∫
A
uϕ dx, ∀ϕ ∈ Hs

D(A),

and, in this case, u is called an eigenfunction of (−∆)s in A corresponding to λ .

It is standard that the existence of a �rst eigenvalue of (−∆)s in A, denoted by λ1(A),

is related to the attainability of the following in�mum

λ1(A) = inf
u∈Hs

D(A), ‖u‖L2(A)=1

∫
R2n

|u(x)− u(y)|2

|x− y|n+2s
dxdy.
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However, it is clear that this in�mum λ1(A) = ∞ provided that Hs
D(A) = {0}. On the

other hand; i.e., if Hs
D(A) 6= {0}, this in�mun is attained and thus it is the �rst eigenvalue

of (−∆)s in A.

Indeed, the following lemma gather the main properties of the eigenvalues and

eigenfunctions of (3.3) in the case that Hs
D(A) 6= {0}. It is proved in [21] in the case

that A is an open bounded set in Rn. We observe that the proof given in [21] also works

for the general case in which it is only assumed that A is a measurable bounded set in

Rn.

Lemma 3.4 ([21], Proposition 9). Let s ∈ (0, 1), n > 2s and suppose that Hs
D(A) 6= {0}.

Then,

1. problem (3.3) admits an eigenvalue λ1(A) which is positive and that can be

characterized as follows

λ1(A) = min
u∈Hs

D(A), ‖u‖L2(A)=1

∫
R2n

|u(x)− u(y)|2

|x− y|n+2s
dxdy = min

u∈Hs
D(A)\{0}

∫
R2n

|u(x)−u(y)|2
|x−y|n+2s dxdy∫
A |u(x)|2dx

;

2. there exist a non-negative function ϕA1 ∈ Hs
D(A), which is an eigenfunction

corresponding to λ1(A), attaining the minimum in the item 1., that is,

λ1(A) =

∫
R2n

|ϕA1 (x)− ϕA1 (y)|2

|x− y|n+2s
dxdy, with ‖ϕA1 ‖L2(A) = 1.

3. λ1(A) is simple; i.e., if u ∈ Hs
0(A) is an eigenfunction corresponding to λ1(A), then

u = αϕA1 , for some α ∈ R;

4. the set of the eigenvalues of problem (3.3) consists of a sequence {λk(A)}k∈N with

0 < λ1(A) < λ2(A) ≤ · · · ≤ λk(A) ≤ λk+1(A) ≤ . . .

where every eigenvalue is repeated according its �nite multiplicity and

λk(A)→ +∞ as k → +∞.
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Moreover, for any k ∈ N the eigenvalues can be characterized as follows:

λk+1(A) = min
u∈Pk+1, ‖u‖L2(A)=1

∫
R2n

|u(x)− u(y)|2

|x− y|n+2s
dxdy = min

u∈Pk+1\{0}

∫
R2n

|u(x)−u(y)|2
|x−y|n+2s dxdy∫
A |u(x)|2dx

,

where

Pk+1 = {u ∈ Hs
D(A) :

〈
u, ϕAj

〉
Hs
D(A)

= 0 ∀j = 1, . . . , k}.

And for any k ∈ N, ϕAk+1 ∈ Pk+1 is an eigenfunction corresponding to λk+1(A) with

‖ϕAk+1‖L2(A = 1 and

λk+1(A) =

∫
R2n

|ϕAk+1(x)− ϕAk (y)|2

|x− y|n+2s
dxdy;

5. the sequence {ϕAk }k∈N of eigenfunctions corresponding to λk(A) is an orthonormal

basis of L2(A) and an orthogonal basis of Hs
D(A).

Remark 3.5. From the item 5. of the above lemma, we can deduce that

‖u‖2
Hs
D(A) ≤ λk(A)‖u‖2

2, ∀u ∈ span{ϕA1 , . . . , ϕAk }.

Remark 3.6. For the case in which A = Ω̃, we denote ϕAj by ϕ̃j, for every j ∈ N.

Finally, we recall the Unique Continuation Property for the eigenfunctions of the

problem (3.3) when A = Ω.

Lemma 3.7 ([14], Theorem 1.4). Let u ∈ Hs
0(Ω) be an eigenfunction of (−∆)s in Ω. If

u = 0 on a set E ⊂ Ω of positive measure, then u = 0 in Ω.

3.3 Proof of the Theorem 3.1

In order to prove the Theorem 3.1 we follow a variational approach. That is, we consider

the re�exive space

E = {u ∈ Hs
0(Ω) :

∫
Ω

h|u|p+1 < +∞},



3.3 Proof of the Theorem 3.1 34

endowed with the norm

‖u‖E = ‖u‖Hs
0(Ω) +

(∫
Ω

h|u|p+1 dx

) 1
p+1

and we de�ne the C1-functional Iλ : E → R by

Iλ(u) =
1

2

∫
R2n

|u(x)− u(y)|2

|x− y|n+2s
dxdy − λ

2

∫
Ω

u2 dx−
∫

Ω

G(x, u)dx

+
1

p+ 1

∫
Ω

h|u|p+1dx−
∫

Ω

fudx, ∀u ∈ E,

where G(x, u) =
∫ u

0
g(x, s)ds. Observe that the derivative of Iλ at u ∈ E is given by

〈I ′λ(u), ϕ〉 =

∫
R2n

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dxdy − λ

∫
Ω

uϕ dx−
∫

Ω

g(x, u(x))ϕdx

+

∫
Ω

h|u|p−1uϕ dx−
∫

Ω

fϕ dx, ∀ϕ ∈ E.

Thus, critical points of Iλ are just solutions to problem (3.1).

Following the outline of the proof in [5] we split the proof in three steps.

Step 1. Case λ < λ1(Ω̃).

The existence of a solution of the problem (3.1) is deduced by proving that the

functional Iλ has a global minimum in E. This is done by showing that Iλ is coercive,

bounded below and lower semicontinuous in E.

In order to make it, we �rst claim that if Iλ(un) is bounded from above for a sequence

{un} ⊂ E, then ‖un‖2 is bounded. Indeed, if we assume by contradiction that there exists

a subsequence of {un}, still denoted by {un}, such that ‖un‖2 → +∞ and we divide the

inequality Iλ(un) ≤ C by ‖un‖2
2 and denote vn = un/‖un‖2 it is deduced that

‖vn‖2
Hs

0(Ω) +
2

p+ 1
‖un‖p−1

2

∫
Ω

h|vn|p+1 dx ≤ λ+
C

‖un‖2

+
2‖f‖2

‖un‖2

+
C

‖un‖2
2

≤ C. (3.4)

Hence

lim sup
n→+∞

‖vn‖2
Hs

0(Ω) ≤ λ and lim
n→+∞

∫
Ω

h|vn|p+1 dx = 0
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and by Lemma 3.3 there is a subsequence of {vn}, denoted by the same vn, which is weakly

convergent to some v0 in Hs
0(Ω), vn → v0 in L2(Ω) and a.e. in Ω with ‖v0‖L2(Ω) = 1,

‖v0‖2
Hs

0(Ω) ≤ λ < λ1(Ω̃) and
∫

Ω
h|v0|p+1 dx = 0, which implies that v0 = 0 in Ω\Ω̃ and

Hs
D(Ω̃). We show that then we get a contradiction. Indeed, if would be Hs

D(Ω̃) = {0},

then v0 = 0 in Ω, contradicting that ‖v0‖L2(Ω) = 1; while if Hs
D(Ω̃) 6= {0}, then we have

λ1(Ω̃) ≤ ‖v0‖2
Hs

0(Ω) ≤ λ < λ1(Ω̃), obtaining a contradiction. Therefore, we conclude that

‖un‖2 is necessarily bounded.

By the above claim, if a sequence {un} ⊂ E satis�es that Iλ(un) is bounded from

above, then ‖un‖2 is bounded and consequently, by (3.4), ‖un‖E is also bounded. This

means that Iλ is coercive in E. The claim also shows that Iλ is bounded from below.

Otherwise, there exists a sequence {un} ⊂ E such that Iλ(un) → −∞. In particular,

Iλ(un) is bounded from above and then ‖un‖2 is bounded and thus Iλ would be bounded

from below, which contradicts the fact that Iλ(un)→ −∞.

To prove that Iλ is w.l.s.c., let {un} ⊂ E be a sequence weakly converging to u0 in

E. Then un ⇀ u0 in Hs
0(Ω) and un ⇀ u0 in Lp+1(Ω, hdx) which imply that ‖u0‖2

Hs
0(Ω) ≤

lim infn→+∞ ‖un‖2
Hs

0(Ω) and
∫

Ω
|u0|p+1h dx ≤ lim infn→+∞

∫
Ω
|un|p+1h dx. By the Lemma

3.3, we also deduce that limn→+∞ ‖un‖2 = ‖u0‖2 and limn→+∞
∫

Ω
fun dx =

∫
Ω
fu0 dx.

Therefore, the weak lower semicontinuity of Iλ is proved and the proof of Step 1 is

concluded.

Remark 3.8. If Hs
D(Ω̃) = {0} (for example, if h > 0 a.e. in Ω; i.e., meas(Ω̃) = 0) we have

λ1(Ω̃) = +∞ . Therefore, in this case, the proof of this step also proves the Theorem 3.1

for all λ ∈ R.
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Step 2. Case λi(Ω̃) < λ < λi+1(Ω̃), for i ≥ 1.

Here, we prove the Theorem 3.1 in the case that Hs
D(Ω̃) 6= {0} and λi(Ω̃) < λ <

λi+1(Ω̃), for i ≥ 1. We are going to show that the problem (3.1) has at least one weak

solution, by applying the saddle point theorem of Rabinowitz [18, Theorem 1.2]. In order

to make it, we choose V = 〈ϕ̃1, . . . , ϕ̃i〉 ⊂ E andW = {w ∈ E : 〈ϕ̃j, w〉 = 0 for 1 ≤ j ≤ i}

to obtain that E = V ⊕ W . First, we claim that Iλ is bounded from below on W .

Otherwise, there exists a sequence {wn}n∈N ⊂ W such that 0 > Iλ(wn)→ −∞ and then

‖wn‖2 → ∞. In particular, ‖wn‖Hs
0(Ω) → ∞. If we consider the normalized sequence

zn = wn/‖wn‖Hs
0(Ω), we can also assume, up to a subsequence by the Lemma 3.3, that

there exists z0 ∈ W such that zn ⇀ z0 in Hs
0(Ω), zn → z0 in L2(Ω) and a.e in Ω.

Dividing the inequality 0 > Iλ(wn) by ‖wn‖p+1
Hs

0(Ω) and ‖wn‖2
Hs

0(Ω) we deduce, by taking

n → +∞, that 0 =
∫

Ω
h|z0|p+1 dx and hence z0 = 0 in Ω\Ω̃, i.e., z0 ∈ H1

D(Ω̃) ∩W and

that 1 ≤ λ‖z0‖2
2. Consequently

λi+1(Ω̃)‖z0‖2
2 ≤ ‖z0‖2

Hs
0(Ω) ≤ lim inf

n→∞
‖zn‖2

Hs
0(Ω) = 1 ≤ λ‖z0‖2

2, with z0 6= 0,

i.e., λi+1(Ω̃) ≤ λ contradicting our hypothesis on λ and proving the claim.

On the other hand, using that the support of every function v in V is contained in Ω̃

and the Remark 3.5, we have ‖v‖E = ‖v‖Hs
0(Ω) and

Iλ(v) ≤ 1

2

(
1− λ

λi(Ω̃)

)
‖v‖2

Hs
0(Ω) −

∫
Ω

G(x, v)dx−
∫

Ω

fv dx, ∀v ∈ V,

and taking into account that λi(Ω̃) < λ, we deduce that limv∈V, ‖v‖E→+∞ Iλ(v) = −∞.

Therefore, there exists Rλ > 0 such that

max
v∈V, ‖v‖E=Rλ

Iλ(v) < inf
w∈W

Iλ(w).

Now we prove that the functional Iλ satis�es the Palais-Smale compactness condition.
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Speci�cally, if {un} ⊂ E satis�es

Iλ(un) =
1

2
‖un‖2

Hs
0(Ω)−

λ

2

∫
Ω

u2
n dx+

1

p+ 1

∫
Ω

h|un|p+1 dx−
∫

Ω

G(x, un)dx−
∫

Ω

fun dx ≤ C

(3.5)

and, for a real sequence εn → 0, that |I ′λ(un)(ϕ)| ≤ εn‖ϕ‖E; i.e.,

∣∣∣∣〈un, ϕ〉Hs
0(Ω) − λ

∫
Ω

unϕdx+

∫
Ω

h|un|p−1unϕdx−
∫

Ω

g(x, un)ϕdx−
∫

Ω

fϕ dx

∣∣∣∣ ≤ εn‖ϕ‖E,

for every ϕ ∈ E; then {un} admits a convergent subsequence in E. Indeed, we �rst claim

that the sequence ‖un‖2 is bounded. Otherwise, up to a subsequence, we can assume that

‖un‖2 → +∞ and dividing (3.5) by ‖un‖2
2, we deduce that vn := un/‖un‖2 satis�es

1

2
‖vn‖2

Hs
0(Ω) +

1

p+ 1

∫
Ω

h
|un|p+1

‖un‖2
2

dx ≤ C

‖un‖2
2

+
λ

2
+
‖f‖2

‖un‖2

+
C

‖un‖2

which implies that

lim sup
n→∞

‖vn‖2
Hs

0(Ω) ≤ λ and lim
n→∞

∫
Ω

h|vn|p+1 dx = 0.

In particular, passing to a subsequence, we can also assume that vn ⇀ v0 in Hs
0(Ω),

vn → v0 in L2(Ω) and a.e. in Ω with

∫
Ω

h|v0|p+1 dx = 0 and v0 ∈ H1
D(Ω̃).

On the other hand, by (3.6) and the weak convergence of vn to v0, we deduce that

0 = lim
n→∞
〈vn, ϕ〉Hs

0(Ω) − λ
∫

Ω

vnϕdx = 〈v0, ϕ〉Hs
0(Ω) − λ

∫
Ω

v0ϕdx,

for every ϕ ∈ H1
0 (Ω̃) ⊂ E. Thus, v0 ∈ H1

0 (Ω̃) is a solution of


(−∆)sv = λv, in Ω̃

v = 0 in Rn \ Ω̃

which implies that λ ∈ {λi(Ω̃) : i = 1, 2, . . . }, contradicting that λi(Ω̃) < λ < λi+1(Ω̃),

and proving that ‖un‖2 ≤ C.
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From the boundedness of un in L2(Ω) and (3.5) we deduce that un is also bounded in

E and using that E is re�exive we have that, up to a subsequence, un ⇀ u0 in E. Since

the sequence |un|p−1un is bounded in L
p+1
p (Ω, hdx) and converges a.e. to |u0|p−1u0, we

deduce that it converges weakly to |u0|p−1u0 in L
p+1
p (Ω, hdx), which implies that

∫
Ω

h|un|p−1unϕdx −→
∫

Ω

h|u0|p−1u0ϕdx, ∀ϕ ∈ Lp+1(Ω, hdx). (3.6)

Using this, if we take the limit as n→∞ in (3.6) we deduce that

〈u0, ϕ〉Hs
0(Ω) − λ

∫
Ω

u0ϕdx+

∫
Ω

h|u0|p−1u0ϕdx−
∫

Ω

fϕ dx−
∫

Ω

g(x, u0)ϕdx = 0,

for every ϕ ∈ E. Subtracting it from (3.6), taking ϕ = un − u0 and by taking n → ∞

we get that ‖(un − u0)‖Hs
0(Ω) → 0 and that

∫
Ω
h|un|p+1 →

∫
Ω
h|u|p+1 which, by using the

Fatou lemma, implies that
∫

Ω
h|un − u0|p+1 → 0 and consequently un → u0 in E. This

complete the proof of the Palais-Smale condition of Iλ and thus of all hypotheses of the

Rabinowitz saddle point theorem. Applying this theorem, there is a critical point uλ ∈ E

of the functional Iλ with Iλ(uλ) = cλ ≥ infw∈W Iλ(w).

Remark 3.9. With the notation of the above proof, observe that if λi(Ω̃) < λ ≤ α <

λi+1(Ω̃), then Iλ ≥ Iα and thus Iλ(uλ) = cλ ≥ infw∈W Iλ(w) ≥ infw∈W Iα(w).

Step 3. Case λ = λi(Ω̃), for i ≥ 1.

Let {αn}n∈N be a strictly decreasing sequence in the interval (λi(Ω̃), λi+1Ω̃)) which

converges to λi(Ω̃). By Remark 3.9, for each n ∈ N there exists un ∈ E such that

I ′αn(un) = 0 and Iαn(un) = cαn ≥ infw∈W Iαn(w) ≥ −c := infw∈W Iα1(w). Hence c ≥
1
2
〈I ′αn(un), un〉 − Iαn(un) which implies that 1

‖un‖2

∫
Ω
h|un|p+1 dx ≤ C and, by aplying the

Hölder inequality we obtain that

1

‖un‖2

∣∣∣∣∫
Ω

h|un|p−1unϕdx

∣∣∣∣ ≤ (∫ hϕp+1 dx

) 1
p+1

 C

‖un‖
1
p

2

 (3.7)

Now we claim that {un}n∈N is bounded in L2(Ω). Otherwise, up to a subsequence, we can

assume that ‖un‖2 → +∞. By de�ning zn = un/‖un‖2 and using 〈I ′αn(un), un
‖un‖22
〉 = 0 we
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obtain

‖zn‖2
Hs

0(Ω) +
1

‖un‖2
2

∫
Ω

h|un|p+1 ≤ αn +
‖f‖2

‖un‖2

+
C

‖un‖2

. (3.8)

In particular, {zn}n∈N is bounded in Hs
0(Ω) and, passing to a subsequence, we can assume

that there exists z0 ∈ Hs
0(Ω) such that ‖z0‖2 = 1, zn ⇀ z0 in Hs

0(Ω), zn → z0 in L2(Ω)

and a.e. in Ω. By (3.8), we also deduce that
∫

Ω
h|z0|p+1 dx = 0 and z0 = 0 in Ω\Ω̃; i.e.

z0 ∈ H1
D(Ω̃). Using (3.7), 〈I ′αn(un), ϕ

‖un‖2 〉 = 0 for each ϕ ∈ Hs
0(Ω) and taking n→∞ we

deduce that z0 is a solution of


(−∆)sv = λi(Ω̃)v in Ω

v = 0 in R \ Ω

which vanishes on the open set Ω\Ω̃. However, this is impossible in view of the unique

continuation property (Lemma 3.7) and we conclude that {un} is bounded in L2(Ω). Thus

un is also bounded in E and then, up to a subsequence, un ⇀ u0 in E for some u0 ∈ E,

which is a solution of the problem (3.1) for λ = λi(Ω̃).
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Chapter 4

A result of multiplicity for the

homogeneous case of the problem (2.1)

4.1 Introduction

In this chapter, we study the existence and multiplicity of nontrivial solutions from the

subcritical homogeneous case of the problem (2.1):

 −∆u = λu− h(x)a(u), in Ω

u = 0, on ∂Ω,
(4.1)

where Ω is a bounded smooth domain in Rn, λ ≥ λ1(Ω̃), a is a C1(R) function satisfying

for some 1 < p < 2∗ − 1 (p subcritical)

(p+ 1)A(u) ≤ a(u)u for |u| ≥ R, for some 1 < p and R large; (4.2)

|a(u)| ≤ c|u|p + c, where c is a constant; (4.3)

a(u)

u
> 0 ∀u 6= 0, which implies that a(0) = 0 and A(u) > 0 for u 6= 0; (4.4)
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(a(u)− a(v))(u− v) ≥ C|u− v|p+1, for some C > 0 and for all u, v ∈ R; (4.5)

a′(0) = 0 (4.6)

and also assume that the function 0 ≤ h ∈ L∞(Ω) satis�es an strongly condition than

(2.2):

h > 0 a.e. in Ω\Ω̃ with Ω̃ = int {x ∈ Ω / h(x) = 0}. (4.7)

Alama and Tarantello studied this problem for every p > 1 in [2]. They de�ned the

number

N(λ) = #{j;λj < λ} −#{j; λ̃j ≤ λ}.

and showed the following result:

Theorema 4.1 (Theorem C in [2]). Assume that a ∈ C(R) satisfaz (4.2), (4.3), (4.4) for

some p ∈ (1,+∞) and lim
u→0

a(u)

u
= 0. Then (4.1) has a nontrivial solution if and only if

N(λ) ≥ 1.

In Section 4.2 we apply Theorem 2.1 for λ ≥ λ1(Ω̃) to �nd a solution of the problem

(4.1) and we show that if N(λ) ≥ 1, this solution is a nontrivial critical point of the

functional Iλ, given by

Iλ(u) =
1

2

∫
Ω

|∇u|2 dx− λ

2

∫
Ω

u2 dx+

∫
Ω

A(u)h(x) dx

with A(u) =
∫ u

0
a(t)dt. The idea is to use the Morse theory and critical groups, but this

theory only works on C2 functionals de�ned in a Hilbert space (see [9] for the de�nitions).

This is the reason to assume p subcritical, h ∈ L∞(Ω) and a ∈ C1(R), thus we have that

Iλ ∈ C2(H1
0 (Ω),R). We also show that if N(λ) ≥ 2, we have two nontrivials solutions

(the second solution is given using the same idea than in Theorem 4.1).
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In section 4.3, we consider a concave perturbation of problem (4.1):

 −∆u = −µ|u|q−2u+ λu− h(x)a(u), in Ω

u = 0, on ∂Ω,
(4.8)

where Ω is a bounded smooth domain in Rn, λ1 < λ < λ1(Ω̃), µ > 0, 1 < q < 2, a is a

C1(R) function satisfying for some 1 < p < 2∗ − 1 (p subcritical), (4.2), (4.3), (4.4) and

(4.6) and also assume that the function 0 ≤ h ∈ L∞(Ω) satis�es (4.7).

We show that problem (4.8) have at least 4 nontrivial solutions (two positive and two

negative) and if λk < λ < λk+1, λ < λ1(Ω̃), then problem (4.8) have at least 5 nontrivial

solutions.

4.2 Principal Results on the problem (4.1)

Now, we can give the main results of this Chapter and we begin with the following lemma:

Lemma 4.2. We assume that a ∈ C1(R) satisfaz (2.4) and λm(Ω̃) < λ. Then every

critical point u of Iλ satis�es m(u) ≥ m, where m(u) denote the Morse index of u.

Proof. If u is a critical point of Iλ and v ∈ 〈ϕ̃1, · · · , ϕ̃m〉, v 6= 0 then

〈I ′′λ(u)v, v〉 =

∫
Ω

|∇v|2 dx− λ
∫

Ω

v2 dx+

∫
Ω

a′(u)v2h dx =

∫
Ω

|∇v|2 dx− λ
∫

Ω

v2 dx < 0.

By the de�nition of m(u), we can deduce that m(u) ≥ m.

We give a existence result of problem (4.1).

Theorema 4.3. Assume that a ∈ C1(R) satis�es (4.2), (4.3), (4.4) and (4.5) for some

1 < p < 2∗−1 and (4.6). If N(λ) ≥ 1 and λ ≥ λ1(Ω̃), then problem (4.1) has a nontrivial

solution.

Proof. Assume that, for some m ∈ N, λm(Ω̃) ≤ λ < λm+1(Ω̃). The �rst step is to use

Theorem 1.13.
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To do this, we take V = 〈ϕ̃1, . . . , ϕ̃m〉 and W = {w ∈ H1
0 (Ω) /

∫
Ω
∇ϕ̃j.∇w dx =

0 for 1 ≤ j ≤ m} and thus H1
0 (Ω) = V ⊕W . Since λ < λm+1(Ω̃) then, as in the proof

of Theorem 2.7, we have that infW Iλ > −∞. For u ∈ V we have that
∫

Ω
|∇u|2 dx ≤

λm(Ω̃)
∫

Ω
u2 dx and

∫
Ω

A(u)h dx ≤ C

∫
Ω

|u|p+1h dx+ C

∫
Ω

h dx = C‖h‖L1(Ω),

and thus Iλ(u) ≤ 1
2
(λm(Ω̃)− λ)‖u‖2 + C‖h‖L1(Ω) ≤ C‖h‖L1(Ω) for every u ∈ V .

Also, by Lemma 2.2 the functional Iλ satis�es the (P.S) condition and thus we can

apply the Theorem 1.13 to obtain a critical point u1 of Iλ such that

Cm(Iλ, u1) 6= 0. (4.9)

In order to prove that u1 is nontrivial, notice that N(λ) ≥ 1 implies that , for some k > m,

λk < λ ≤ λk+1.

Thus, by using a′(0) = 0, the Morse index of the trivial solution satis�es m(0) = k > m.

It follows, by Theorem (1.12), that

Cm(Iλ, 0) = 0. (4.10)

Then, comparing (4.9) and (4.10), we conclude that u is nontrivial.

Next, we give a multiplicity result of the problem (4.1).

Theorema 4.4. Assume that a ∈ C1(R) satis�es (4.2), (4.3), (4.4) and (4.5) for some

1 < p < 2∗ − 1 and (4.6). If N(λ) ≥ 2, λ /∈ {λi(Ω̃)} and λ > λ1(Ω̃), then the problem

(4.1) has at least two nontrivial solutions.

Proof. Assume that λm(Ω̃) < λ < λm+1(Ω̃) and λk < λ ≤ λk+1 with N(λ) = k −m ≥ 2.

By the previous theorem we have a nontrivial solution u1 that satis�es Cm(Iλ, u1) 6= 0.
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Using Lemma (4.2) and Theorem (1.13) we obtain that

Cq(Iλ, u1) = δq,mZ.

Now consider H1
0 (Ω) = V ⊕W where V = 〈ϕ1, · · · , ϕk〉. We have that Iλ(w) ≥ 0 for all

w ∈ W .

It follows from (4.4) and (4.6) that, given ε > 0, there exists C > 0 such that

|A(u)| ≤ ε

2
u2 + C|u|p+1 ∀u.

Taking 0 < ε < λ−λk
‖h‖∞ and using that λk‖u‖2 ≥ ‖u‖H1

0 (Ω) for u ∈ V , we have

Iλ(u) ≤1

2
‖u‖2 − λ

2
‖u‖2

2 +
ε‖h‖∞

2
‖u‖2

2 + C‖u‖p+1

=
1

2
‖u‖2 − (λ− ε‖h‖∞)

2
‖u‖2

2 + C‖u‖p+1

≤1

2
‖u‖2 − (λ− ε‖h‖∞)

2λk
‖u‖2 + C‖u‖p+1

=
(λk − λ+ ε‖h‖∞)

2λk
‖u‖2 + C‖u‖p+1

=(
(λk − λ+ ε‖h‖∞)

2λk
+ C‖u‖p−1)‖u‖2

If we take ‖u‖ = ρ = (λ−λk−ε‖h‖∞
4λkC

)
1
p−1 > 0, we obtain that

Iλ(u) ≤ (λk − λ+ ε‖h‖∞)

4λk
ρ2 < 0

for every u ∈ V with ‖u‖ = ρ and thus, for some δ > 0

sup
v∈V,||u||=δ

Iλ(v) < 0.

We can choose a nonzero v1 ∈ V such that Iλ is bounded below in W + 〈v1〉 (see [2,

Lemma 4.4].

Now, we use the Theorem 1.14 to get a nontrivial solution u2 such that Iλ(u2) < 0

and

Ck−1(Iλ, u2) 6= 0.
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Since k − 1 > m, u2 is a second nontrivial solution of the problem (4.1).

4.3 Principal results on the problem (4.8)

We de�ne the functional associated to the problem (4.8) Iµ,λ : H1
0 (Ω)→ R by

Iµ,λ(u) =
1

2

∫
Ω

|∇u|2 dx+
µ

q

∫
Ω

|u|q − λ

2

∫
Ω

u2 dx+

∫
Ω

A(u)h(x) dx u ∈ H1
0 (Ω),

where λ1 < λ < λ1(Ω̃), µ > 0, 1 < q < 2, a is a C1(R) function satisfying for some

1 < p < 2∗ − 1 (p subcritical), (4.2), (4.3), (4.4), (4.5) and (4.6) and also assume that

the function 0 ≤ h ∈ L∞(Ω) satis�es (4.7). Thus weak solutions of (4.8) correspond to

critical points of the functional Iµ,λ ∈ C1(H1
0 (Ω),R).

We also de�ne the functionals I+
µ,λ and I−µ,λ given by

I+
µ,λ(u) =

1

2

∫
Ω

|∇u|2 dx+
µ

q

∫
Ω

|u+|q − λ

2

∫
Ω

(u+)2 dx+

∫
Ω

A(u+)h(x) dx u ∈ H1
0 (Ω)

and

I−µ,λ(u) =
1

2

∫
Ω

|∇u|2 dx+
µ

q

∫
Ω

|u−|q − λ

2

∫
Ω

(u−)2 dx+

∫
Ω

A(u−)h(x) dx u ∈ H1
0 (Ω),

where u+ = max{u, 0} and u− = min{u, 0}. Since a′(0) = a(0) = 0 , by (4.4) and (4.6),

we have that I+
µ,λ, I

−
µ,λ ∈ C1(H1

0 (Ω),R).

We begin by giving a relationship between critical points of Iµ,λ, I
+
µ,λ and I−µ,λ.

Lemma 4.5. If u+ and u− are critical points of I+
µ,λ and I−µ,λ respectively. Then, u+ ≥ 0

and u− ≤ 0 in Ω. Moreover, u+ and u− are solutions of the problem (4.8) and Iµ,λ(u+) =

I+
µ,λ(u+) and Iµ,λ(u−) = I−µ,λ(u−).

Proof. Since u+ is a critical point of I+
µ,λ, we have that I

′+
µ,λ(u+)(u−+) = 0 and from this

we conclude that u−+ = C = 0 and thus u+ ≥ 0. Hence u+ is a solution of (4.8) as well

and Iµ,λ(u+) = I+
µ,λ(u+). Similarly, we obtain that u− ≤ 0 in Ω and is a solution of the

problem (4.8) with Iµ,λ(u−) = I−µ,λ(u−).
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Lemma 4.6. The functionals Iµ,λ, I
+
µ,λ and I−µ,λ are bounded below, coercive and sati�es

the (P.S.) condition.

Proof. For every u ∈ H1
0 (Ω) we obtain Iµ,λ(u) ≥ Iλ(u). From Theorem 2.4, we have that

Iλ is bounded from below since λ < λ1(Ω̃) and also Iλ is coercive (the proof is the same

that bounded from below). Hence Iµ,λ is bounded from below and coercive.

Let un be a sequence in H1
0 (Ω) such that Iµ,λ(un) is bounded, i.e. |Iµ,λ(un)| ≤ C, and

∣∣∣∣∫
Ω

∇un · ∇ϕdx+ µ

∫
Ω

|un|q−2unϕdx− λ
∫

Ω

unϕdx

+

∫
Ω

a(un)ϕh dx

∣∣∣∣ ≤ εn‖ϕ‖, (4.11)

for some εn → 0 with εn > 0 and every ϕ ∈ H1
0 (Ω). Since Iµ,λ is coercive, we have that

‖un‖ ≤ C. Thus, there exists u0 ∈ H1
0 (Ω) such that, up to a subsequence, un ⇀ u0 in

H1
0 (Ω), un → u0 in L2(Ω), in Lµ(Ω), in Lp+1(Ω) and a.e. in Ω. Also for some function

g̃ ∈ Lp+1(Ω), |un| ≤ g̃. Thus, by the dominated convergence theorem and tending n→∞

in (4.11) we deduce

∫
Ω

∇u0∇ϕdx+ µ

∫
Ω

|u0|q−2u0ϕdx− λ
∫

Ω

u0ϕdx+

∫
Ω

a(u0)ϕh dx = 0

for every ϕ ∈ H1
0 (Ω). Substracting it from (4.11) we get

∣∣∣∣∫
Ω

∇(un − u0) · ∇ϕdx+ µ

∫
Ω

(|un|q−2un − |u0|q−2u0)ϕdx− λ
∫

Ω

(un − u0)ϕdx

+

∫
Ω

(a(un)− a(u0))ϕh dx

∣∣∣∣ ≤ εn‖ϕ‖,

(4.12)

which by the choice ϕ = un − u0 implies that

∣∣∣∣∫
Ω

|∇(un − u0)|2 dx+ µ

∫
Ω

(|un|q−2un − |u0|q−2u0)(un − u0) dx

−λ
∫

Ω

(un − u0)2 dx+

∫
Ω

(a(un)− a(u0))(un − u0)h dx

∣∣∣∣ ≤ εn‖ϕ‖, (4.13)

Using, again, the dominated convergence theorem we conclude that un → u0 in H1
0 (Ω)
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and thus Iµ,λ satis�es the P.S. condition. Similarly to this functional we show to the

functionals I+
µ,λ and I−µ,λ.

Lemma 4.7. If u+ is a local minimizer of I+
µ,λ (u− is a local minimizer of I−µ,λ), then it

is also a local minimizer of Iµ,λ and hence the critical groups of Iµ,λ at u+ (u−) are given

by

Cq(Iµ,λ, u+) = Cq(Iµ,λ, u−) = δq,0Z.

Proof. By a result of Brezis and Nirenberg [6], it su�ces to show that u+ is a local

minimizer of Iµ,λ in the C1 topology. It is easily seen that u+ is a local minimizer of I+
µ,λ

in the C1 topology also, say, ρ > 0 is such that I+
µ,λ(u) ≥ I+

µ,λ(u+) ∀u ∈ BC1(u+, ρ) =

{u ∈ C1
0(Ω) : ‖u− u+‖C1 < ρ}. Then for u ∈ BC1(u+, ρ),

Iµ,λ(u)− Iµ,λ(u+) =Iµ,λ(u)− I+
µ,λ(u+)

≥Iµ,λ(u)− I+
µ,λ(u)

=
µ

q

∫
Ω

(|u|q − |u+|q) dx− λ

2

∫
Ω

(u2 − |u+|2) dx+

∫
Ω

(A(u)− A(u+))h dx

=
µ

q

∫
Ω

|u−|q dx− λ

2

∫
Ω

|u−|2 dx+

∫
Ω

A(u−)h dx

≥µ
q

∫
Ω

|u−|q dx− λ

2
‖u−‖2−q

C0

∫
Ω

|u−|q dx

=(
µ

q
− λ

2
‖u−‖2−q

C0 )

∫
Ω

|u−|q dx.

Since ‖u − u+‖C1 < ρ and u+ ≥ 0, then ‖u−‖C0 < ρ. Thus taking ρ̃ = min{ρ, (2µ
qλ

)
1

2−q },

we have that u+ is a minimum of Iµ,λ on BC1(u+, ρ̃).

Since q < 2, the conclusion of the lemma follows (for the critical groups see Example

1 in Chapter I, Section 4 of Chang [9]). Similarly we have the same conclusion to u−.

Lemma 4.8. u ≡ 0 is a local minimizer of Iµ,λ, I
+
µ,λ and I−µ,λ

Proof. As in the proof of Lemma 4.7, we show that 0 is a local minimizer of Iµ,λ in the
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C1 topology. We have for u ∈ C1
0(Ω),

Iµ,λ(u) ≥µ
q

∫
Ω

|u|q dx− λ

2
‖u‖2−q

C0

∫
Ω

|u|q

=(
µ

q
− λ

2
‖u‖2−q

C0 )

∫
Ω

|u|q dx ≥ 0

if ‖u‖C0 ≤ (2µ
qλ

)
1

2−q . The argument for I+
µ,λ and I−µ,λ is the same.

Lemma 4.9. If λ > λk, then there exist µ∗, ρ > 0 such that

sup
Skρ

Iµ,λ < 0

for 0 < µ < µ∗, where Skρ = {u ∈ V : ‖u‖ = ρ} and V = 〈ϕ1, . . . , ϕk〉.

Proof. It follows from (4.4) and (4.6) that, given ε > 0, there exists C > 0 such that

|A(u)| ≤ ε

2
u2 + C|u|p+1 ∀u.

Taking 0 < ε < λ−λk
‖h‖∞ and using that λk‖u‖2 ≥ ‖u‖H1

0 (Ω) for u ∈ V , we have

Iµ,λ(u) ≤1

2
‖u‖2 +

µC ′

q
‖u‖q − λ

2
‖u‖2

2 +
ε‖h‖∞

2
‖u‖2

2 + C‖u‖p+1

=
1

2
‖u‖2 − (λ− ε‖h‖∞)

2
‖u‖2

2 +
µC ′

q
‖u‖q + C‖u‖p+1

≤1

2
‖u‖2 − (λ− ε‖h‖∞)

2λk
‖u‖2 +

µC ′

q
‖u‖q + C‖u‖p+1

=
(λk − λ+ ε‖h‖∞)

2λk
‖u‖2 +

µC ′

q
‖u‖q + C‖u‖p+1

=(
(λk − λ+ ε‖h‖∞)

2λk
+ C‖u‖p−1 +

µC ′

q
‖u‖q−2)‖u‖2

If we take ‖u‖ = ρ = (λ−λk−ε‖h‖∞
4λkC

)
1
p−1 we obtain that

Iµ,λ(u) ≤ (
(λk − λ+ ε‖h‖∞)

4λk
+
µC ′

q
ρq−2)ρ2

Finally, taking 0 < µ < µ∗ = ( q
C′ρq−2 )(λ−λk−ε‖h‖∞

4λk
) we conclude this lemma.
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Lemma 4.10. If λ < λk+1, then Iλ ≥ 0 on W = 〈ϕ1, . . . , ϕk〉⊥.

Proof. Using that for u ∈ W , λk+1‖u‖2 ≤ ‖u‖ we have that

Iµ,λ(u) ≥1

2
‖u‖2 − λ

2
‖u‖2

2

≥1

2
‖u‖2 − λ

2λk
‖u‖2

=
(λk+1 − λ)

2λk+1

‖u‖2 ≥ 0.

Theorema 4.11. Assume that λ1 < λ < λ1(Ω̃), µ > 0, 1 < q < 2, a is a C1(R) function

satisfying for some 1 < p < 2∗ − 1 (p subcritical), (4.2), (4.3), (4.4), (4.5) and (4.6)

and also assume that the function 0 ≤ h ∈ L∞(Ω) satis�es (4.7). Then there exists

µ∗ > 0 such that problem (4.8) has at least four nontrivial solutions (two positives and

two negatives) for 0 < µ < µ∗.

Proof. By Lemma 4.8, u ≡ 0 is a local minimizer of I+
µ,λ and I

−
µ,λ with I

+
µ,λ(0) = I−µ,λ(0) =

0. By Lemma 4.9 with k = 1, infH1
0 (Ω) I

+
µ,λ ≤ inft≥0 I

+
µ,λ(tϕ1) < 0 and infH1

0 (Ω) I
−
µ,λ ≤

inft≥0 I
−
µ,λ(−tϕ1) < 0. Hence, by Theorem 1.8, I+

µ,λ has a nontrivial critical point u+
1 of

the mountain pass type with I+
µ,λ(u

+
1 ) > 0. Also I−µ,λ has a nontrivial critical point u−1 of

the mountain pass type with I−µ,λ(u
−
1 ) > 0.

Since I+
µ,λ and I

−
µ,λ are bounded below and satisfy the (P.S.) condition, by Lemma 4.6,

they also have a nontrivial global minimizer u+
0 and u−0 respectively, such that I+

µ,λ(u
+
0 ) =

infH1
0 (Ω) I

+
µ,λ < 0 and I−µ,λ(u

−
0 ) = infH1

0 (Ω) I
−
µ,λ < 0. Finally, by Lemma 4.5 we conclude this

theorem.

Theorema 4.12. Assume that λk < λ < λk+1 with k ≥ 2, λ < λ1(Ω̃), µ > 0, 1 < q < 2,

a is a C1(R) function satisfying for some 1 < p < 2∗ − 1 (p subcritical), (4.2), (4.3),

(4.4), (4.5) and (4.6) and also assume that the function 0 ≤ h ∈ L∞(Ω) satis�es (4.7).

Then there exists µ∗ > 0 such that problem (4.8) has at least �ve nontrivial solutions for

0 < µ < µ∗.

Proof. As in the proof of Theorem 4.11, I+
µ,λ has a mountain pass point u+

1 at a positive

level and a global minimizer u+
0 at a negative level and I−µ,λ has a mountain pass point u−1
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at a positive level and a global minimizer u−0 at a negative level. By Lemma 4.7, u+
0 and

u−0 are local minimizers of Iµ,λ and the critical groups of Iµ,λ at u+
0 and u−0 are given by

Cq(Iµ,λ, u
+
0 ) = Cq(Iµ,λ, u

−
0 ) = δq,0Z.

We get one more critical point by applying Theorem 1.14 to Iµ,λ using the splitting

H1
0 (Ω) = V ⊕W with V = 〈ϕ1, . . . , ϕk〉. The conditions (I1) and (I2) have already been

veri�ed in Lemmas 4.9 and 4.10. Since Iµ,λ is bounded below, (I3) is also satis�ed.

Thus Iµ,λ has two critical points uk−1, uk with Iµ,λ(uk−1) < 0, Iµ,λ(uk) ≥ 0 and

Ck−1(Iµ,λ, uk−1) 6= 0, Ck(Iµ,λ, uk). Comparing the critical values and the critical groups

of 0, u+
0 , u

−
0 , u

+
1 , u

−
1 and uk−1, and using k ≥ 2 we see that they are all di�erent.
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