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Abstract

For a bounded domain €2, a bounded Carathéodory function ¢ in Q@ x R, p > 1,
a nonnegative integrable function h in €2 which is strictly positive in a set of positive
measure and a continuous function a which is superlinear with polynomial growth we
prove that, contrarily with the case h = 0, there exists a solution of the semilinear elliptic

problem

~Au = u+ g(z,u) — h(z)a(u) + f, in Q (0.1)

u = 0, on 0f),

for every A € R and f € L?(Q). And also give results of existence and multiplicity
of similar problems, such that fractional laplacian problem, homogeneous problem and a

concave perturbation of the above problem.



Resumo

Sejam (2 um dominio limitado, g uma funcao Carathéodory limitada em 2 xR, p > 1, h
uma funcao integravel nao negativa em (2 e estritamente positiva num conjunto de medida
positiva e ¢ uma funcao continua e superlinear com crescimento polinomial provamos que,

contrariamente no caso h = 0, existe uma solucao do problema eliptico semilinear

—Au = M+ g(z,u) — h(x)a(u) + f, em
u = 0, sobre 0f2,

para cada A € R e f € L?(Q). Também mostramos resultados de existéncia
e multiplicidade de problemas similares como problema com laplaciano fracionério,

problema homogéneo e uma perturbacao do problema ((0.1f).
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Introduction

Existence and multiplicity of solutions in Elliptic Problems are the main topic of this
thesis. The first elliptic problem studied is the following:
—Au = M+ g(z,u) —h(x)a(u) + f, in

(0.2)
u = 0, on 012,

where €2 is a bounded domain, A € R, ¢ is a bounded Carathéodory function in 2 x R,
f € L*Q), h € L'Y(Q) with h > 0 and a is a superlinear continuous function with
polynomial growth. This problem is well-known when h = 0 a.e. in Q (see [4]). Indeed,
if we assume additionally that ¢ = 0, then the problem is linear and it has a solution of
for every datum f(z) if and only if A is not an eigenvalue of —A in H}(2) (Fredholm
alternative). On the other hand, if g # 0 the existence of solution remains valid for any A
which doesn’t belong to the spectrum of —A in H}(Q2). In the case that ) is an eigenvalue
of this operator the existence of solution is not guaranteed, but assuming an additional
hypothesis, for instance the Landesman-Lazer condition, the existence is established.

In this thesis we consider functions h > 0 which are different from zero. Respect to
this case, the homogeneous semilinear elliptic equations (i.e., when g = f = 0) have been
studied recently by several authors. In the particular case than a(u) = |u|P~'u Kazdan
and Warner [13] obtained the first results in the context of curvature problem on compact
manifolds, i.e., if A > 0 and h > 0 then there is a positive solution u > 0 of the equation
—Au = Au — hju[P"'u on compact Riemannian manifold; Ouyang, in [I5], considered the
same equation that Kazdan and Warner on compact manifolds and bounded domains
Q2 C R" in case h < 0 and not only h > 0. He showed that there exists a 2> A1 (A the

first eigenvalue of the laplacian operator in €2 and \ the first eigenvalue of the laplacian
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operator in Q = {z € Q : h(x) = 0}) such that there is a unique positive solution uy > 0

of the problem
—Au = Mu— h(z)|ufPlu, inQ
(0.3)
u = 0, on 0f),
if and only if \; < A < A Ouyang also gave a result of the bifurcation curve of positive
solutions, specifically lim, .5 ||u|r2@) = +o0; Del Pino and Felmer [I0] deal with the
existence, nonexistence and multiplicity of changing sign solutions of . Results with
non power nonlinearities were obtained by Alama and Tarantello in [2], i.e., they gave
similar results for the problem
—Au = Au—h(z)a(u), in Q

(0.4)
u = 0, on 051,

with a being only a continuous function such that lim,_, # = 0 and limy, o0 % = +o0.
When the function h(x) changes sign, the homogeneous elliptic problem have been
studied by Alama and Tarantello [I], Berestycki, Capuzzo-Dolcetta and Nirenberg [§],
Ramos, Terracini and Troestler [19], among other authors.

To our knowledge, the only result on the nonhomogeneous problem ((0.2)) is obtained by
Alama and Tarantello |3, Lemma A.3] for the case that a(u) = |u[P~1u, where they showed

existence of solution (corresponding to a minimum of the associated Euler functional)

when

A< A\(Q) = inf {/ VulPde - ue Hh(Q), |uls = 1}
Q

where Q = {z € Q: h(z) = 0} and HL(Q) := {u € HY(Q) : u(z) = 0 ae. z € Q\Q}.
Notice that if meas (Q) = 0 (i.e. h > 0 ae. in ), then HL(Q) = {0} and A\ () = 400,
while, in the case that it would be meas (2\Q) = 0 (i.e. h =0 a.e. in ) we would have
that )\1(5) would not be but the first eigenvalue \; of the Laplacian operator —A with
zero Dirichlet boundary conditions.

Thus, similarly to the case h = 0 a.e. in ) in which the existence of solution of
depend on the interplay between A and the spectrum of —A in H{ (), one can think

that, in the case that h # 0, the existence will depend on the relationship between A and
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the spectrum of the unique self-adjoint operator H., associated to the quadratic form
b(u) = [, |Vul?dz with domain H}(Q). Nevertheless, we show that the presence of the
nontrivial h possesses a regularizing effect with respect to the existence. Indeed, we prove

that if h # 0, then there exists a solution of (0.2)) for every A € R, f € L*(Q2) and p > 1.

Next, we consider the problem (0.2)) for the fractional laplacian operator:

(—A)Yu = M+ g(z,u) —hluflu+ f, inQ 05)
u = O7 in R™ \ Q,
where n > 2s and for s € (0,1), (—A)? is the nonlocal fractional Laplace operator defined

on the space

H*(Q) = {u € L*Q): / dedy < oo}

ala |z—y[nrt2

(—A)u(z) = C(n, s) P.V. / u@) = uly) e,

Rr |[E _ y|n+28

For the classical Laplacian operator, the problem (3.1)) was studied by Alama and

with

Tarantello (see [2]) when h # 0 and f = g = 0. Their obtained results about the existence
and multiplicity of nontrivial solutions are based on the interaction of the parameter A
with the spectrum of the Laplacian operator in ). This is consistent with the case h = 0
(i.e., Q= ?) in which the existence of solutions for general f and g depends on the
position of A with respect to the spectrum of the Laplacian operator in ). However,
recently Arcoya, Paiva and Mendoza in [5] (and in this thesis) showed that if h # 0 the
existence of solutions does not depends on the spectrum of the Laplacian operator in Q.

We extend this result to the fractional Laplacian operator by proving the existence of

solution of problem (0.5)) for every .
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The last problem considered in this thesis is a concave perturbation of problem (|0.4)

—Au = —plu|T%u+ I — h(z)a(u), in Q
pl (2)a(w o
u = 0, on 0,

where \y < A < M(Q), 0 > 0,1 < ¢ < 2, a is a superlinear continuous function

with polynomial growth and 0 < h € L>*(Q) with A # 0. In the case that u = 0,

A < A< A(Q) and p € (1,400), Alama and Tarantello in 2] showed that if N(\) =1

(see Chapter 3) and a|(i|)

nontrivial solutions (one positive and one negative) and if N(A) > 2, then there exists

is strictly increasing for u # 0, then problem only have two

a third nontrivial solution. Perera in [16] shows existence and multiplicity of nontrivial
solutions of problem when h = C' =constant, specifically he shows that problem ((0.6))
have at least 4 nontrivial solutions (two positive and two negative) and if Ay < A < \giq,
A < A1(Q), then problem have at least 5 nontrivial solutions. Thus we see that the

perturbated problem obtain more solutions than the original problem. We obtain similar

results than Perera when h is a L>°(2) function and not only a constant.

This thesis is organized as follows. Chapter 1 provides the proof of the existence of
one solution of problem . In Section 2 we present a compactness condition, similar
to the (P.S.) condition. In Section 3 we split the proof in 3 cases. Chapter 2 deal with
the problem and in Chapter 3 we consider two problems: In Section 3 we study the
homogeneous case of problem (0.2)) and show existence and multiplicity. In Section 4 we

study problem (0.6)).



Chapter 1

Preliminaries

1.1 The Space E

In this section, we are going to define the principal spaces used in this thesis and also give
some results.

First, we have some notations:

e [P(Q) = Space of Lebesgue-measurable functions u : @ — R with finite LP({2) norm

1/p
|| o) = (/ lul? dm) , 1 <p< oo
Q

o We will denote the L*(2) norm of u € L*(Q) by [julls = [, u*dz.

e For some Lebesgue-measurable function h > 0, we denote the Banach space
LP(Q,hdx) = {f : @ = R : fis a measurable function, with [, |f[Phdz < oo},

1 < p < oo and its norm

1/p
| fllzr (0 pdzy = (/ |f|phdx) )
Q

e (" (Q2) = Space of m times continuosly differentiable functions u : Q — R.

o C'(€2) = Space of C™(Q2)—functions with compact support in €.
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Definition 1.1. Let  be a open subset of R". We define the Hilbert space H'(2) as
HY(Q) = {f € L*(Q) : f has a weak derivate, Vf, with |V f| € L*(Q)}
with scalar product
(u,v) = /qudx—l—/QVuVde Vu,v € H'(Q).
and the associated norm
|| 1) = /Qu2 dr + /Q IVul*dr Yu € H(Q).

We also define the Hilbert space H} () as the closure of C§(Q) in H'(Q2) equipped with

the H'(f2) scalar product.

In this thesis we are going to work on bounded domains 2. For such ) we have the

following result:

Theorema 1.2 (Poincaré’s inequality). Suppose that Q@ C R™ is a bounded open set.

Then there ezists a constant C = C(2) such that
lullz < ClIVully Yu € Hy(Q).

Thus we have that the expression ||[Vul|z is a norm on Hj(2) and it is equivalent to
the norm ||u|| 1) In this thesis, we will use this norm on Hj(£2) and will be denoted by
|u|| = ||Vul|2 for every u € HL(Q).

Now, for some p > 1 and a measurable function h : Q — R with h > 0, we define the

Banach space E as

E={ue Hy(Q) : / hlufP*t! < 400},
Q

endowed with the norm

1/(p+1)
lulls = Nl gy + ( [ bl d:c) |
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The principal result about this space is that E is a Reflexive space. To show this, we are

going to use the exercise 4.16 from [7]| to show the following lemma:

Lemma 1.3. Let 1 < p < +oo, {f,} C LP(Q, hdzx), h > 0 and measurable in Q@ and
a) || fallLr@nde) < C,
b) fn— f ae in Q.

Then f € LP(Q, hdx) and f, — f in LP(S2, hdx).

Proof. For the proof, we define g, = h'/?.f, € LP(Q). Then

/]gn\pdx:/h.|fn\pdx§0,
Q Q

and g, — h'/P.f = g a.e. in 2. Now we can apply the exercise 4.16 for g,, and so ¢, — g
in LP(2). Finally calling p’ such that 1/p + 1/p' = 1 and for all ¢ € L (Q, hdz) we have
©.hY? € [P (Q) and thus

/fn.go.hdx:/gn.cp.hl/p/ dx—)/g.gp.hl/p/ dx:/f.cp.hdx,
) Q Q Q

concluding this lemma. O]
Now, we use this lemma to show the reflexivity of the space F.

Lemma 1.4. The Banach space E s reflexive.

Proof. Let be {u,} C E asequence such that ||u,||z < C. Then {u,} C HZ(f) is bounded
in H}(Q) and, up to a subsequence, we can assume u, — ug in H (), u, — ug in L*(2)
and a.e. in . Moreover, the sequence {u,} C LP™ (2, hdz) is bounded in LP™(Q, hdz)
and we can apply the Lemma to obtain that u, — wuy in LPT1(Q, hdz) and thus that

U, — Ug in F. ]

1.2 Some Variational theorems

Let I be a Fréchet-differentiable functional on a Banach space B with normed dual B*

and let dI : B — B* denote the Fréchet-derivate of E. We call a point u € B critical if
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dI(u) = 0, otherwise, u is called regular. A number 5 € R is a critical value of I if there
exists a critical point w of I with I(u) = 3, otherwise, (3 is called regular.

We also denote by I'(u) = dI(u) and I"(u) = d*I(u).

Definition 1.5 (Palais-Smale sequence). A sequence {u,} in B is a Palais-Smale sequence

for I if |I(u,)| < C and ||dI(uy)|| — 0 as n — oo.

Definition 1.6 (Palais-Smale condition). A Fréchet-differentiable functional I : B — R
satisfies the Palais-Smale condition (P.S.) if any Palais-Smale sequence has a convergent

subsequence.

The first result is about critical points that minimizes the functional I when it is

bounded below.

Theorema 1.7. Suppose I € C*(B) satisfies (P.S.). Then, if

f = inf I(u)

ueEB

is finite, 5 = minyep I(u) is attained at a critical point of I.
The second result is the Montain Pass theorem.
Theorema 1.8. Suppose I € C*(B) satisfies (P.S.). Assume that
1) 1(0) = 0;
2) 3p >0, a > 0 such that if ||u||g = p then I(u) > «;
3) Juy € B such that ||u|lg > p and I(uy) < a.

Define
[ ={y€C%0,1);B) : 7(0) = 0, (1) = w }.

Then

f = inf sup I(u) > «
yel’ uey

18 a critical value.

The last result is the Rabinowitz Saddle Point theorem [1§]
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Theorema 1.9. Suppose I € C*(B) satisfies (P.S.). Let B = By ® B, with dim By < oo

and there exists R > 0 such that

max I(v) < inf I(w).
vEB1, ||U||B:R weBy

If we denote by B(0, R) the ball in By of radius R and center 0 and we define the set
I'={heC(B(0,R),B) : h(v) =v, Yv € By with ||v|]|p = R}.

Then the number

= inf I(h
©T A )

defines a critical value ¢ > inf,ecp, I(w) of I.

1.3 Morse theory and Critical groups

We will give the principal results of Morse theory and critical groups (see [9]) used in this

thesis.

Definition 1.10. (see [9, pag. 33|) Let H be a Hilbert space, I : H — R a C?*(H)
functional and v € H a critical point of I. We define the Morse index of u, denoted by

m(u), as the dimension of the negative space corresponding to the spectral decomposing

of d*I(u).
Definition 1.11. (see |9 Definition 4.1|, Chapter I) Let u be an isolated critical point of
I, and set ¢ = I(u). We define the ¢'" critical group of I at u as

Co(l,u) = Hy(I. N U, (I \ {u}) N V),

q=0,1,2,..., where U is a neighborhood of u such that {v € UNI.: dI(v) =0} = {u},
I.={ve H:I(v) <c}and H.(A, B) stands for the singular relative homology groups

with abelian coefficient group Z.
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The following result (see [9, Corollary 5.1], Chapter I) is used to compare diferents

critical points:

Theorema 1.12. Suppose that Ker(d*I(u)) is finite dimensional with dimension k and

let m = m(u) be the Morse index of I at u, then either

(1)
Cy(I,u) = dymZ, or

(2)
Cy(I,u) = 0gmirZ, or

(3)

Cy(I,u) =0 for g <m, and ¢ > m+ k.
Next, we give two abstracts results that will be used in Chapter 4.

Theorema 1.13. (See [I7, Theorem 1.3]) Suppose that there is a direct sum

decomposition H =V @& W, with V finite dimensional, such that
a=1infI > —oco, b=supl < o0,
w v

and assume that I satisfies (P.S.) condition in [a — €,b+ €|, for some ¢ > 0. Then I has

a critical point u such that
a<I(u)<b, C;j(I,u)#0

where 7 = dim V.
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Theorema 1.14. (see [16, Theorem 3.1]) Let H = V & W de a Banach space with
0<k=dimV < oco. Suppose that I € C*(H,R) satisfies

I,) there exists p > 0 such that

sup < 0,
where Sy = {v € V : |lv]| = p},
L) I>0o0nW, and

I3) there exists a nonzero vector vy € V' such that I is bounded below on the half-space

{svi+w:s>0,we W}

In addition, assume that I satisfies P.S. and has only isolated critical values with each
critical value corresponding to a finite number of critical points. Then I has two (different)

critical points uy, us with I(uy1) < 0 < I(ug) and Cy_1(I,u1) # 0, Cr(I,us) # 0.



16

Chapter 2

Existence of solutions for a
nonhomogeneous semilinear elliptic

equation

2.1 Introduction

We consider the following problem:

(2.1)

—Au = M+ g(z,u) — h(z)a(u) + f, in Q
u = 0, on 0f,

where (2 is a bounded domain, A € R, ¢ is a bounded Carathéodory function in 2 x R,
f e L), he LYQ) with h > 0 and is different from zero in a set of positive measure.

Specifically, if we denote by
Q={reQ: h(z)=0},

we assume that

meas (2\Q) = meas {z € Q : h(z) >0} > 0. (2.2)
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We also assume that a is a C(R) function such that, denoting by A(u) = [ a(t)dt,
(p+1)A(u) <a(u)u for |u] >R, forsome 1<p and R large; (2.3)
la(u)] < clulP + ¢, where ¢ is a constant; (2.4)
a(u) o
——= >0 Yu # 0, which implies that a(0) =0 and A(u) > 0 for u # 0; (2.5)
u
(a(u) — a(v))(u —v) > Clu — [P, for some C' > 0 and for all u,v € R. (2.6)
We can observe that conditions (2.3)), (2.4) and (2.5) on a implies that
Cl‘U’erl — CQ S A(U) S Cglu‘p+1 -+ 04 (27)
for some constans C; > 0, ¢ = 1,2, 3,4 and this inequality implies that
lim w = 00.
|lu|—»00 U
We obtain an inequality similar to (2.7) for the function a(u)u.
The function a(u) = |u[P~'u satisfaz all these conditions, and in this thesis we also

give weak hypothesis and better results for this particular case on a.
In this chapter we prove that if condition ([2.2]) holds true, then there exists a solution

of [2.1)) for every A € R, f € L*(Q2) and p > 1. Indeed, we prove the following result

Theorema 2.1. If g is a bounded Carathéodory function, p > 1, 0 < h € L(Q) satisfying

(2.2) and a satisfaz (2.3), (2.4), (2.5) and (2.6]), then the problem (2.1)) has at least one
solution for each A € R and f € L*(Q).

The above result is proved by variational tools. As usual, we need to prove that the
Euler functional I associated to the problem ({2.1]) satisfies the Palais-Smale compactness

condition, as well as suitable geometrical properties. We devote Section 2 to introduce
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the functional I, and to study a general compactness condition for the family of the
functionals Iy, A € R. The geometrical properties of the functional I, are studied in

Section 3 which concludes the proof of Theorem

Notation. We will denote by [lull = [[ullgi @) = (fo ]Vu|2dx)1/2 (respectively, ||uls =
(Jq, u?dz) 1/2) the norm of a function w in the space H}(Q) (respectively, L*(Q)). In the
following the letter C will denote a positive constant which can change from a line to

another and even within the same formula.

2.2 A compactness condition

In order to prove the Theorem we follow a variational approach. Specifically, we

consider the reflexive space
E={uc H}Q) : / hlu[P™ < +o0},
Q

endowed with the norm

) 1/(p+1)
lulls = Nl oy + ( [ v dx) |

For G(x,t) = [} g(x,s)ds and A(t) = [, a(s)ds (z € Q, t € R), we consider the C'-

functional I, : E — R given by

I(u) :%/Q|Vu|2dx—|—/ﬂh/1(u)dx—%/QUde—/QG(x,u)dx—/ﬂfudm,

for every u € E. This functional is well defined in view of (2.7) and that h € L'(Q).
However, for the particular case a(u) = |u[P~'u we can define the functional if h € L}, (©).
We say that a solution u of (2.1]) is just a critical point u € E of the functional Iy;

i.e., a function u € E such that

/Vch,odm+/h(m)a(u)gpdw—)\/ucpdx—/g(x,u)godx—/f(pdx =0, Vpe L.
Q Q Q Q Q
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In the particular case a(u) = |u[P"tu: Since h € Ll (Q2), we deduce that the space

loc
Ce(Q2) of C*°-functions with compact support in Q is a subset of E and thus any ¢ €
C5°(2) can be chosen as test function in the previous identity. Therefore, the notion of
solution given for is just the standard one for a Dirichlet problem, namely a solution
u of the equation —Au = Au + g(z,u) — ha(u) + f in Q in the sense of distributions
(test functions in C§°(Q2)) which in addition belongs to H}(2) (boundary condition) and
satisfies that hlu[P™' € L}(Q).

We prove the following compactness condition:

Lemma 2.2. Let g be a bounded Carathéodory function, p > 1, f € L*(2) and 0 < h €

LY(Q) satisfying 2.2) and a satisfaz 2.3), @.4), R.5) and [2.6). Assume that {a,} C R

is a bounded sequence and {e,} C (0,00) is a sequence converging to zero. If {u,} is a
sequence in E such that I, (u,) > —C and |d1l,, (u,) ()] < ell@lle for all ¢ € E, then

{u,} is bounded in E and admits a convergent subsequence in E.

Remark 2.3. If we take a,, = A for every n in this lemma then the functional I, satisfies

the Palais-Smale compactness condition for every A € R.

Proof of Lemma[2.4.. For a such sequence, it follows that

1/|Vun\2alac—i-/hA(un)d:lc—%/uialal:—/G(yc,un) dx—/fundxz —C (2.8)
2 Ja Q 2 Ja 0 0

and

/Vun -Vodr + / ha(u,)p dr — an/unwd:c
Q Q

Q

—/Qg(x,un)goda:—/gfgodx

< enllolls, (2.9)

for every ¢ € E.

We claim that the sequence {u,} is bounded in E. Otherwise, up to a subsequence, we
can assume that ||u,|g — +00, a;, = « and if we define v, := u,,/||u,|| g, then ||v,||g =1
and, by the reflexivity of E, there is a subsequence of {v,} (still denoted by v,) and a

vy € E such that v, — vy in E, v, — vy in H}(Q), v, — vo in LPTH(Q, hdz) and v, — vy
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in L?(Q) and a.e. in Q. Taking ¢ = I i (2.9), we deduce that v,, satisfies

[l
/\wn!?dx+/ha<“”)§" dr <— +an/v2dx
Q o lunll [ & Q
o |lunlle [t |

which implies by the boundedness of g and the hypotheses on a that
Junlls” | Blenlr de < C.
Q
In particular, since p > 1 we have

lim [ hlv,|Pde = 0.
1/p+1
Using this and that |lo]lz = [Joallmie) + (/ h|v, [P dx) = 1 we have that
0

lim / |V, |* dz = 1 and from (2.10)), using again the boundedness of g, we obtain
Q

n—oo

1§a/v§dw,
Q

which implies that vy # 0. In addition, Fatou lemma (/ hlvo|Pttde <
Q

lim inf/ h|v, [P dx) and the non-negativeness of h give
n—o0 0

lim [ hlv,|Pthdr =0 = / h|vo[PT dx
Q

n—oo Q

and hlvg[P*t = 0. If meas (2) = 0, then vy = 0 a.e. in Q and we get a contradiction and
it is proved that the sequence {u,} is bounded in E in this case.

On the other hand, if meas (Q) > 0, then vy = 0 a.e. in Q\Q and thus vy € H5(Q).
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Taking ¢ = u,,/2 in (2.9) and subtracting ([2.8]), we obtain

o 2 2 Jo 2

+/Q (%g(z,un)un—G(az,un)) dr

In particular, dividing by ||u,|| g and using that p > 1, the boundedness of g and the

hypotheses on a, we have
1

[nl

/ hlu, [P dz < C.
Q

By using this and the Holder inequality, for every ¢ € E we get

T P
‘/ hlu, P dz| < (/hcppJrl dx) </h|un|erl dx)
Q

1

P+l _P_
<([rera)” clulE

and

1
lim —/ hlu,|Po dx = 0.
Q

n=o0 ||un|p

Using the hypotheses on a and the last equality we also have

1
lim —/ha(un)w dx = 0.
Q

n=o0 ||un|

Hence, if we divide ([2.9) by |lu,||z and pass to the limit as n — oo we deduce by the

boundedness of g that

/VUO-chd:E:a/vogodx,
Q 9)

for every p € E. By density of F into Hi(Q2) (due to the local integrability of h), the

above equality holds true for every ¢ € Hj(Q); i.e., v # 0 is a solution of the problem

—Av = awv, in ()

v = 0, on 0N,

which, in addition, vanishes on the set Q\ﬁ However, this is impossible by (2.2) and the
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unique continuation property (see Proposition 3 and Remark 2 in [I2]). Therefore, we

conclude that the sequence {u,} is bounded in E also when meas (2) > 0.

Using that E is reflexive we have that there exists uy € FE such that, up to a
subsequence, u, — ug in E, u, — ug in H}(Q), u, — ug in LPT(Q, hdz), u, — up

in L*(Q) and a.e. in ©Q . Since the sequence a(u,) is bounded in L%(Q, hdz) and

converges a.e. to a(ug), we deduce that it converges weakly to a(ug) in L%(Q, hdz) [T,

Exercise 4.16], which implies that
/ ha(uy,)p de — / ha(ug)p dz, Yo € LPTH(Q, hdzx), (2.11)
Q Q
Using this, if we take the limit in (2.9)) as n — oo we deduce that

/VuOVgpd:c—i-/ha(ug)gpdx—a/uowdx—/g(x,uo)wdx—/f(pd:c:(),
Q Q Q Q Q

for every ¢ € E. Substracting it from (2.9) we get

/QV(un —wp) - Vepdr + / h(a(un) — a(ue))e dx

Q

- / (it — avtig)p dr — / (92, wn) — gl u0))pdz| < enlliolli,
Q Q

which by the choice ¢ = u,, — uy implies that

/Q |V (w, — up)|“dz + /Q h(a(u,) — alug))(u, — ug)dz
- /Q(oznun — aug) (U, — ug)dr — /Q(g(x, un) — g(x, ug)) (u, — up)dx

< enl|(un = uo) |-

Noting that the third and fourth terms are going to 0 as n — oo (by the convergence of

Uy to win L*(Q)) and using (2.6), we have that [|u, — uo| g1(q) — 0 and

/ h|u, — uo|PT dz — 0.
Q
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Consequently u,, — ug in E. O

2.3 Proof of Theorem 2.1

We will see that the variational nature of the solution given by Theorem [2.I]depends on the
relationship of A with the spectrum of the operator H,, (associated to the quadratic form
b(u) = [, |Vul*dr with domain HL()). Notice that a particular example corresponds

with the case in which meas () > 0 and meas (9€2) = 0. In this case, the measure of the

interior €, of Q has to be positive (i.e. meas (€,) > 0) and we have
h(z) > 0 a.e. in Q\(L.

Therefore, if we assume in addition that the interior Q, of  satisfies an exterior cone

condition at every point of its boundary, then H}(Q) = H}(Q,) and H,, is nothing but

the classical Laplace operator H{(£2,) (i.e., with zero Dirichlet condition on the boundary
of ﬁo)

In the general case, when we only assume that meas (Q) > 0, we denote by {\;(Q)}ien
the spectrum of H,, ordered by the min-max principle with eigenvalues repeated according

to their multiplicity and by @; the associated eigenfunctions to A;(£2), normalized so that
fﬁ @@ dl’ = (51'7]'.
The proof of Theorem [2.1] is split in cases in the following subsections.

~

2.3.1 Case XA < A\((Q).
We devote this subsection to prove Theorem [2.1| when A < A (€).

Theorema 2.4. Let g be a bounded Carathéodory function, p > 1, f € L*(Q2), 0 < h €

LY(Q) satisfying 2.2) and a satisfaz 2.3), 2.4), @.5) and R.6). If X < Al(ﬁ), then the
problem (2.1)) has at least one solution.

Remark 2.5. As it has been mentioned in the introduction, the above theorem is proved
in [3] for the particular case a(u) = |u[P~'u . Since the authors only indicate the steps for

their proof, we will include here a detailed proof for completeness.
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Remark 2.6. If HL(Q) = {0}, then A\ () is infinite and we deduce from Theorem
the existence of solution for every A € R. Hence the Theorem [2.1]is deduced in this case
from the above theorem. Note that a sufficient condition to have HL(Q) = {0} is that
meas () = 0, i.e., that h > 0 a.e. in €. In addition, this observation also shows that the
Theorem can not be extended to the case p = 1 (think in the simple case that h is a
positive constant).

Therefore to conclude the proof of the Theorem 2.1} in the rest of this chapter we can
assume that HL(Q) # {0} (which implies that all the eigenvalues \;(Q) of the operator

H., are finite) and that A > A (Q).

Proof. (of Theorem [2.4]) The existence of a solution of the problem ([2.1]) is deduced by
proving that the C''-functional I has a global minimum in E.
To show this, first we show that the functional 7, is bounded from below and we argue

by contradiction assuming that there exists a sequence {u,} C F such that 0 > I,(u,) —

[,\(un)2—i/uidm—/G(w,un)dm—/fundx
2 Ja Q Q

A
> = Slwnlls = (€ + [1f 1) [unllz;

—00. Since

we deduce that [lu,|[; — oo. In particular, ||u, || g1q) — oo. If we consider the normalized
sequence v, = un/HunHHé(Q), we can also assume, up to a subsequence, that there exists
vp € E such that v, — vy in H}(Q), v, — vp in L*(Q) and a.e in Q. Using that Iy(u,) is

negative, we obtain

I 1
0> /\(gn> —+C’||un||H1 /h|vn|p+1d:v /hd:v
Q)
HunHH(l) 2 H nHHl(Q

A G(z,uy) 1
_ §||Un||§ - —dr — / fo,dx.
Q ||un||H&(Q) HunHHOl(Q) Q

From this inequality and the boundedness of g, we deduce the following:

1. By taking limits as n — +oo, we have
L < Mol

and vy # 0.
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2. Dividing by Hun||’;él(m and using Fatou lemma, we get

0 > liminf | A|v,[P™ > / h|vo|Pt da.
Q Q

n——+o00

and hence

v = 0 a.e. in Q\Q. (2.12)

If it would be meas (2) = 0, then it would be concluded by that vo = 0 a.e. in €,
contradicting 1. Then, in this case, necessarily I, has to be bounded from below.

In the other case, i.e. if meas(Q) > 0, then means that vy € HL(Q) and, by
the variational characterization of A;(€2) we have A (€)[|vl|2 < ||’U[)||§{5(Q). By the weak

convergence of v, to vy in H}(Q) and the inequality 1 < A||lvpl3, we derive that

M (Q)l[voll3 < [lvollFqy < lim inf [|v, |73 ) = 1 < Allvoll3, with vy # 0.

ie, A\(Q) < A contradicting our hypothesis on A and proving, in this case, that I, is
bounded from below.

We know that I, € C'(F) and from Lemma satisfies (P.S.). Thus, we can use
Theorem to show that I, has a critical point uy € F with [(ug) = inf,cg I\(u) and

then uq is a solution of the problem ({2.1)). O]

~ ~

2.3.2 Case \(2) <A< \n1(Q), fori >1

In this subsection we consider the case that (HL(2) # {0} and) the parameter ) is

between two consecutive eigenvalues of the operator H.

Theorema 2.7. Let g be a bounded Carathéodory function, p > 1, f € L*(Q) and 0 <

h € LY(Q) satisfying 2.2) and a satisfaz (2.3)), 2.4), R.5) and 2.6). If H5(Q) # {0}
and \(Q) < X < Aiz1(Q) for i > 1, then the problem Q1) has at least one solution u,.

Proof. We are going to show that the problem ([2.1) has at least one weak solution, by
showing that the functional I, has a critical point of the form saddle point as in theorem

of Rabinowitz [I8, Theorem 1.2]. In order to make it, we choose V. = (¢1,...,9;) C E
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and W ={weE/ [,V@;Vwdzr =0 for 1 < j <i}. Observe that W is the intersection
of E with the orthogonal V1 in H}(2) of V and that £ =V & W. We begin by studying
the geometrical properties of the functional.

First, we claim that I, is bounded from below on W. Otherwise, there exists a sequence

{wy }neny C€ W such that 0 > I,(w,) — —oo. Since

]A(wn)Z—é/wfbdx—/G(x,wn)—/fwndx
2 Ja Q Q

A
> = Slwalls = (€ + [1f o) lwnll2,

we deduce that [|w, ||z — co. In particular, ||w, | g3 ) — oo. If we consider the normalized
sequence z, = wn/||wn||Hé(Q), we can also assume, up to a subsequence, that there exists
2o € W such that z, — z in H}(Q), 2, — 20 in L*(Q) and a.e in . Using that I, (w,,)

is negative, we obtain

o >+ Cllunlligte, /h]zn’pﬂdx——” o /hdx
Wil @ Wil () /o

)
(x,wy) 1
2 l=all3 - / ; / fonda
wn” (®) Hun”H(}(Q) Q

From this inequality we deduce first that (by taking limits as n — +00)

0>

1 < A|20||3 and 2z # 0.

Secondly, dividing by HwnHiI_ll(Q) and using Fatou lemma, we also deduce that
0

n—oo

0> liminf/h\z P+l > /h\z P+ g
Q Q

and hence zy = 0 in Q\Q, ie., 2z € H})(ﬁ) N W. Consequently, by the weak convergence
of z,,

Aist(Qllz0ll3 < ll2oll7 ) < liminf [|2a]17q) =1 < Allzoll3,
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i.e., Aip1(2) < A contradicting our hypothesis on A and proving that

inf I(w) > —oc.
weW

On the other hand, using that the support of every function v in V' is contained in Q,

we have ||v]|g = HU”H&(Q) and

1 A
L) S‘”””%(QWC/QW%—5\\@!\3—/S)G(x,v)dx—/ﬂfvdx (2.13)
1 A
<5\ ) el hll s 2.14
—2< W)) 191130y + (€ + [ £ 1) 10ll2 + CllA] 2, (2.14)

for all v € V, and taking into account that X\ () < A, we deduce that

limyev, u) p—4o00 Ir(v) = —00. Therefore, there exists Ry > 0 such that

I < inf I )
ey max A(v) Jinf A(w)

Additionally, I, € C'(E) and satisfies (P.S.) (Lemma [2.2). Using Theorem [L.9 we have

that if we denote by By (0, Ry) the ball in V' of radius R, and center 0 and
I'y={h € C(By(0,Ry),E) : h(v) =v, Yo € V with ||v||g = R)},

then c,, defined as,

_, _
= s, DO 2 i )

is a critical value of I, this is, there exists ug € E such that I (ug) = 0 and I(ug) = ca.

Therefore ug is a solution of the problem ([2.1)). m

Remark 2.8. With the notation of the above proof, observe that if X;(Q2) < A < a <

Xir1(82), then I > I, and thus inf,ecpw [h(w) > infyew Io(w). Consequently, I)(uy) =

ey > infyew Ly(w) > inf,ew I (w).



2.4 Conclution of the proof of Theorem Iﬂ 28

2.3.3 Case A= );(0), for i > 1

Theorema 2.9. Let g be a bounded Carathéodory function, p > 1, f € L*(Q), 0 < h €

LY () a measurable function satisfying [2.2) and a satisfaz [2.3), (2.4), [2.5) and (2.6).

If HH(Q) # {0} and A = \;(Q) fori > 1, then the problem (2.1)) has at least one solution.

Proof. Let  {an}nen be a strictly decreasing sequence in the interval
(A(Q), Ai+1Q)) which converges to A;(Q2). By Theorem and Remark for each
n € N there exists u, € E such that I}, (u,) =0 and I,,(u,) = ¢, = infyew Iy, (w) >
—C = infew I, (w). Hence, by aplying the Lemma we deduce the existence of a

subsequence u,, such that w,, — wuo in F for some vy € F, which is a solution of the

problem (2.1 for A = A\;(£2). O

2.4 Conclution of the proof of Theorem

The proof of this theorem is now a direct consequence of the Theorems and
2.9 O
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Chapter 3

Fractional Laplacian operator case

3.1 Introduction

For a bounded smooth domain €2 with Lipschitz boundary in R™, n > 2s, we consider the

following problem:

(—A)Yu = M+ g(z,u) —hlufflu+ f, in Q (3.1)
u = 0, in R™\ €,

where for s € (0,1), (—A)® is the nonlocal fractional Laplace operator defined on the

space
)
H Q) = {u € L2(Q) - /Q i %m@ < oo},
by
(—A)u(z) = C(n, s) P.V. /R n % dy, z € R",
with

s = ([ etedac)

is a constant depending on n and s (which for simplicity, we are going to take it as 1, this
is, C'(n,s) = 1 and P.V. is the principal value of the integral (which we are going to omit
it in this work). (See [II] for further details on the fractional Laplace operator).

In addition, A € R, p > 1, g is a bounded Carathéodory function in Q x R, f € L*(Q)
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and 0 < h € L, () is such that if we denote by
Q= {zeQ:h(x)=0},

we assume that

meas (Q\ Q) = meas {z € Q: h(z) > 0} > 0. (3.2)

We say that uw € H*(R™) is a solution for the problem (3.1)) if u = 0 a.e. in R™\ Q and

/ (u(z) — u(y)(e(x) — (y))

|z —y|+e

dxdy :/\/ugodx—l—/g(x,u(x))gpdx
Q Q

—/h|u|p1ug0dx+/f<pd:c
Q Q

for any ¢ € H*(R™) with ¢ =0 a.e. in R™\ €.
The scope of this Chapter is to extend the result in [5] to the fractional Laplacian
operator by proving the existence of solution of the problem (3.1)) for every \. Specifically,

we prove the following theorem.

Theorema 3.1. If € is a bounded domain with Lipschitz boundary in R", n > 2s, s €

(0,1), p > 1, g is a bounded Carathéodory function in QxR and 0 < h € L} () satisfying

loc

[3.2)), then the problem (3.1)) has at least one solution for each A € R and f € L*(2).

3.2 Preliminary Results

We devote this section to remind (see [20] for more details) the main properties of the

fractional Sobolev space
Hi(Q) ={ue H*(R") : u =0 a.e. in CQ},

(CQ =R"\ Q is the complement of ) which is a Hilbert space endowed with the norm

2 3
u(x) — u(y
||U||H3(Q):( lu(x) — u(y)| dxdy) |
Q

‘.Z‘ _ y‘n+2s

where Q = (R" x R") \ (CQ x CQ).
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The following lemma is a sort of Poincaré-Sobolev inequality for functions in H§ ().

Lemma 3.2 (|20], Lemma 6). There exists a constant C > 1, depending only on n, s and

Q, such that for any v € H{(Q)

[v]l2 < Cll]

H5 ()

The next lemma gives the compactness of H3(Q) in L?(R").

Lemma 3.3 ([20], Lemma 8). If Q is a bounded domain with Lipschitz boundary in R"
and {v;} is a bounded sequence in H(Y), then, there exists v € L*(R™) such that, up to
a subsequence,

{v;} = v in L*(R") as j — +o0.

Now, we discuss some known results for the following eigenvalue problem

(=A)u = lu, inA
(3.3)
u = O, in R"” \ .A,

where A is a measurable bounded set in R"™. Specifically, if we consider the Hilbert space

Hj(A) ={u e H*(R") :u =0 a.e. in CA}.

(note that if A is an open set of R", then H§ (A) = HE(A)), we say that A € R is an

eigenvalue of (—A)® in A if there exists a non-trivial function u € H} (A) such that

[ )= D ole) = 00D 114, [ i, v € Hp

|$ _ y|n+2s A

and, in this case, u is called an eigenfunction of (—A)® in A corresponding to \ .
It is standard that the existence of a first eigenvalue of (—A)® in A, denoted by A;(A),

is related to the attainability of the following infimum

u(w) — ()P,

A (A) = /
1( ) uEI’IB(.A)7 HUHLQ(A):I R2n ‘J; — y‘n+23
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However, it is clear that this infimum \;(,A) = oo provided that H},(A) = {0}. On the
other hand; i.e., if H} (A) # {0}, this infimun is attained and thus it is the first eigenvalue
of (—A)* in A.

Indeed, the following lemma gather the main properties of the eigenvalues and
eigenfunctions of in the case that H}(A) # {0}. It is proved in [2I] in the case
that A is an open bounded set in R". We observe that the proof given in [2I] also works
for the general case in which it is only assumed that A is a measurable bounded set in

R™.

Lemma 3.4 ([21], Proposition 9). Let s € (0,1), n > 2s and suppose that H} (A) # {0}.

Then,

1. problem (3.3) admits an eigenvalue \(A) which is positive and that can be

characterized as follows

lu(z)—u(y)|?
_ 2 . s drdy
AM(A) = min / —\u(:v) u(%)’ dxdy = min fR2 ] +22 :
weHy (A, llull 2 ay=1 Jon T — y["T2s weHy (AN} [ Ju(x)|?dx

2. there exist a non-negative function it € H3(A), which is an eigenfunction

corresponding to A\ (A), altaining the minimum in the item 1., that is,

|01 (z) — ' ()] ‘
A(A) = /R% 1|x — y|ni28 dxdy, with ngf‘HLQ(A) =1

3. M(A) is simple; i.e., if u € HS(A) is an eigenfunction corresponding to \1(A), then

u = apfl, for some a € R;

4. the set of the eigenvalues of problem (3.3)) consists of a sequence {\i(A)}ren with
0<A(A) < X(A) <+ < A(A) < N (A) <L
where every eigenvalue is repeated according its finite multiplicity and

A (A) = +00 as k — +o0.
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Moreover, for any k € N the eigenvalues can be characterized as follows:

2 @) g g
_ no|g—y|nT2s Y
)\k+l<¢4) = min / Mdﬂ:d?j _ min fRQ [z—y] +22 ’
u€Pry1, [lullp2(4)=1 JR2n ’.%’ — y’n+ s wEPy 11\ {0} fA |u(x)| I
where
= s . A . .
Prr1 = {u € Hp(A) : (u,¢] >HE>(A) =0Vj=1,...,k}

And for any k € N, gojfﬂ € Pryq is an eigenfunction corresponding to Agi1(A) with

et llz2a =1 and

2

A — A
SNy = SO
R2n

|z =yl

5. the sequence {@{}ren of eigenfunctions corresponding to \y(A) is an orthonormal

basis of L*(A) and an orthogonal basis of Hj(A).

Remark 3.5. From the item 5. of the above lemma, we can deduce that

lullrg 4y < Me(A)llull3, Yu € span{et', ... @'}

Remark 3.6. For the case in which A = §~2, we denote gpj‘ by @;, for every j € N.

Finally, we recall the Unique Continuation Property for the eigenfunctions of the

problem (3.3) when A = €.

Lemma 3.7 ([T4], Theorem 1.4). Let u € HZ(Q2) be an eigenfunction of (—A)* in Q. If

u=0 on a set £ C Q) of positive measure, then u =0 in €.

3.3 Proof of the Theorem 3.1

In order to prove the Theorem we follow a variational approach. That is, we consider

the reflexive space

E={ueHjQ): / hlufPt! < 400},
Q
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endowed with the norm

lullz = llul

1
I
() T (/Q hlufP* d:v)

and we define the C'-functional I, : E — R by

L[ fu(x) —u(y)P Ao

1
+_/h|u\7’+1dx—/fud$, Vu e F,

where G(x, u) fo x,s)ds. Observe that the derivative of I, at u € E is given by

|.T _ y|n+23 Q

ugpdx—/gg(x,u(x))gpdx

+/h|u|p_1ug0dx—/fapdx, Vo e E.
Q )

Thus, critical points of Iy are just solutions to problem (3.1]).

Following the outline of the proof in [5] we split the proof in three steps.

Step 1. Case A < A1(Q).

The existence of a solution of the problem is deduced by proving that the
functional I, has a global minimum in F. This is done by showing that I, is coercive,
bounded below and lower semicontinuous in F.

In order to make it, we first claim that if ,(u, ) is bounded from above for a sequence
{u,} C E, then ||u,]|» is bounded. Indeed, if we assume by contradiction that there exists
a subsequence of {u,}, still denoted by {u,}, such that |lu,|s — +o0 and we divide the

inequality I, (u,) < C by ||u,||3 and denote v, = u,/||u,]|2 it is deduced that

2 ! 1 ¢ 2fle, C
ol + —— 15 /h|vn|p+ dr <At~k O o (3
MO p 41 Q [unlle  [lunlle  [lunll3
Hence
lim sup [|vn|[7s ) < A and lim [ Ao, [P* de =0

n—+00 n—+oo Jqo
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and by Lemmathere is a subsequence of {v, }, denoted by the same v,,, which is weakly

convergent to some vy in H§(Q), v, = v in L*(Q) and a.e. in Q with |Jvl/r2@) = 1,

0o l135) < A < M(€) and [, hlvg[+! da = 0, which implies that vy = 0 in Q\Q and

H3(€). We show that then we get a contradiction. Indeed, if would be H3(Q) = {0},

then vy = 0 in (2, contradicting that ||vg||r2(q) = 1; while if H%(fl) # {0}, then we have

A (Q) < vl %’8(9) < A < A(Q), obtaining a contradiction. Therefore, we conclude that

||tnl|2 is necessarily bounded.

By the above claim, if a sequence {u,} C E satisfies that I)(u,) is bounded from
above, then ||u,||2 is bounded and consequently, by (8.4), ||u.| /£ is also bounded. This
means that I, is coercive in E. The claim also shows that I, is bounded from below.
Otherwise, there exists a sequence {u,} C E such that I(u,) — —oo. In particular,
I (uy,) is bounded from above and then ||u,||s is bounded and thus I, would be bounded
from below, which contradicts the fact that I)(u,) — —oo.

To prove that I is w.Ls.c., let {u,} C E be a sequence weakly converging to ug in

E. Then u, — ug in H(Q) and u, — uy in LPT(Q, hdx) which imply that ||u0||§{5(9) <

liminf,, o ||ty %IS(Q) and [, |uo/P* hdxr < liminf, 4o [ |un|P*'hdz. By the Lemma
, we also deduce that lim,, o [|unll2 = |luollz and lim, 4 [, fu, de = [, fuode.
Therefore, the weak lower semicontinuity of I, is proved and the proof of Step 1 is

concluded.

Remark 3.8. If 15(Q) = {0} (for example, if b > 0 a.e. in €; i.e., meas(Q) = 0) we have
)\1(?2) = +00 . Therefore, in this case, the proof of this step also proves the Theorem
for all A € R.
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Step 2. Case A\;(2) < A < Ai1(92), for ¢ > 1.

Here, we prove the Theorem in the case that H5(9Q) # {0} and A(Q) < X <
Air1(Q), for i > 1. We are going to show that the problem has at least one weak
solution, by applying the saddle point theorem of Rabinowitz [I8, Theorem 1.2]. In order
to make it, we choose V = (¢1,...,¢;) C Eand W ={w € E: (p;,w) =0for 1 < j <i}
to obtain that £ = V & W. First, we claim that [ is bounded from below on W.

Otherwise, there exists a sequence {wy, }neny C W such that 0 > I(w,) — —oo and then

|wnlla — oo. In particular, ||wy|/ms@) — oo. If we consider the normalized sequence

Zn = Wy/||wnl|m5@), we can also assume, up to a subsequence by the Lemma that

there exists 2o € W such that z, — 2z in H$(Q), 2z, — 20 in L*() and a.e in Q.

1
?{—E(Q) and |[w,|

Dividing the inequality 0 > Iy(wy) by |Jw,] %’8(9) we deduce, by taking
n — +oo, that 0 = [, h|zo["*" dz and hence zy = 0 in Q\Q, i.e., 2o € HbH(Q) N W and

that 1 < A||29]/3. Consequently

A1 (D)120l13 < 120l

%’S(Q) < hrIngalf |2 %1’8(9) =1 < M|2o|l3, with z # 0,

e, N\ir1(Q2) < A contradicting our hypothesis on A and proving the claim.
On the other hand, using that the support of every function v in V' is contained in Q

and the Remark we have ||v||z = [|v|

Hy (o) and

1 A
L(v) < = [1——=|v|%: —/Gx,vdx—/fvdx, Yv eV,
\) 2( Ai(m)ruw [ Gada— |

and taking into account that X;(2) < A, we deduce that limycy, |jo|z—+oo Ia(v) = —00.

Therefore, there exists Ry > 0 such that

max  [\(v) < inf I)(w).
veV, ||[v||[e=Rx weW

Now we prove that the functional I, satisfies the Palais-Smale compactness condition.
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Specifically, if {u,} C E satisfies

1 A 1
I\(u,) = §||un\|§[3(9)—§/Quidx—i—m/ghjun]pﬂ dx—/QG(x,un)dx—/qundeC

(3.5)
and, for a real sequence €, — 0, that |15 (u,)(¢)| < €.||¢llg; i-e.,
<un790>H§(Q) - /\/ Un90d$+ / hlun|p_1un90dx - / g(x7un)90dx - / f(,Dd!L‘ S 5n||90||E7
Q Q Q Q

for every ¢ € E; then {u,} admits a convergent subsequence in F. Indeed, we first claim
that the sequence ||uy,||2 is bounded. Otherwise, up to a subsequence, we can assume that

|tn]|l2 — +oc and dividing (3.5) by ||u,||3, we deduce that v, := u,/||u,||» satisfies

L | / g c o a . C©
—vnllFs ) + h dr < + -+ +
2ol + T T ™ < T T2 Tanls T Tunl

which implies that

lim sup ||v,, |
n—oo

frs0) < A and JLIEO/QMU”’I)H dz = 0.

In particular, passing to a subsequence, we can also assume that v, — vy in H§(),

v, — vg in L*(Q) and a.e. in Q with / hlvo|P ™ dx = 0 and vy € HL(9).
Q
On the other hand, by (3.6) and the weak convergence of v,, to vy, we deduce that

0= lim (v, ©) gz () — A/ Untp dx = (Vo, @) Hs(0) — /\/ vop dz,
%

n—oo QO

for every v € H}(Q2) C E. Thus, vy € H3(Q) is a solution of

(—A)*v = v, in Q

v=0 in R"\

which implies that A € {\;(Q) : i = 1,2,...}, contradicting that A\;(Q) < A < A\i11(Q),

and proving that |u,|. < C.
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From the boundedness of u,, in L*(Q2) and (3.5)) we deduce that u, is also bounded in

E and using that F is reflexive we have that, up to a subsequence, u, — ug in F. Since
+1

the sequence |u, [P~ u, is bounded in L7 (2, hdz) and converges a.e. to |uo?~'ug, we

deduce that it converges weakly to |ug[P~1ug in LpTﬂ(Q, hdz), which implies that
/h|un\p1ung0 dz — / hluoP~ tugyp dx, Yo € LPTH(Q, hdx). (3.6)
Q Q

Using this, if we take the limit as n — oo in (3.6)) we deduce that

(o, ©) s (02) — )\/

uogodx+/h|u0\p1u0<pdx—/fgpd:c—/g(sc,uo)@daczo,
Q Q Q Q

for every ¢ € E. Subtracting it from , taking ¢ = u,, — up and by taking n — oo
we get that [|(u, — uo)||ms() — 0 and that [, hlu, [T — [, luP*! which, by using the
Fatou lemma, implies that [, hlu, — uo["™" — 0 and consequently u, — ug in E. This
complete the proof of the Palais-Smale condition of I, and thus of all hypotheses of the
Rabinowitz saddle point theorem. Applying this theorem, there is a critical point uy € E

of the functional I, with I)(uy) = ¢\ > inf,ew In(w).

Remark 3.9. With the notation of the above proof, observe that if \;(2) < A < a <

Xi11(2), then I, > I, and thus I(uy) = ¢\ > inf,ew I(w) > inf,ew Io(w).

Step 3. Case A = \;(Q), for ¢ > 1.

Let {an}nen be a strictly decreasing sequence in the interval ()\Z((Z), )\z‘+1§)) which
converges to \;(€). By Remark for each n € N there exists u,, € F such that
I, (un,) = 0 and I, (up) = co, > infyew Iy, (w) > —c = infyew Iy, (w). Hence ¢ >
(Il (un),up) — Ia, (u,) which implies that m Jo Plun [Pt dz < C and, by aplying the

Hoélder inequality we obtain that

1

||un”2

)
/Qh|un|p_1ungpda: < (/h(ppJrl dx) ¢ (3.7)

1
[unll3

Now we claim that {u, },en is bounded in L*(€2). Otherwise, up to a subsequence, we can

assume that |u,||2 — +o00. By defining 2, = u,/||u,|2 and using (I}, (u,),
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obtain

il ,
[ualz

(3.8)

1

a3 T fuall2
In particular, {z, },en is bounded in Hi(£2) and, passing to a subsequence, we can assume
that there exists 29 € Hi(Q) such that ||20]l2 = 1, 2, — 20 in H§(Q), 2, — 2 in L*(Q)
and a.e. in Q. By (B.8), we also deduce that [, h|zP*! dz = 0 and 2 = 0 in Q\; ie.

20 € Hp(Q). Using (.7), (I, (un), .55;) = 0 for each ¢ € Hi(Q?) and taking n — oo we

Qn

deduce that zy is a solution of

v=20 in R\ Q2

which vanishes on the open set Q\ﬁ However, this is impossible in view of the unique
continuation property (Lemma[3.7) and we conclude that {u,} is bounded in L*($2). Thus
U, is also bounded in E and then, up to a subsequence, u,, — ugy in E for some uy € F,

which is a solution of the problem (3.1f) for A = \;(2).
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Chapter 4

A result of multiplicity for the

homogeneous case of the problem (2.1))

4.1 Introduction

In this chapter, we study the existence and multiplicity of nontrivial solutions from the

subcritical homogeneous case of the problem ([2.1)):

—Au = Mu—h(z)a(u), inQ (4.1)

u = 0, on 02,

where () is a bounded smooth domain in R™, A > \1(Q), a is a C*(R) function satisfying

for some 1 < p < 2* — 1 (p subcritical)

(p+ 1DA(u) <a(u)u for |ul > R, forsome 1<p and R large; (4.2)

la(u)] < clulP + ¢, where ¢ is a constant; (4.3)

a(v) >0 VYu # 0, which implies that a(0) = 0 and A(u) > 0 for u # 0; (4.4)
u
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(a(u) — a(v))(u —v) > Clu —v[P™, for some C' > 0 and for all u,v € R; (4.5)

d'(0) =0 (4.6)

and also assume that the function 0 < h € L*°(Q) satisfies an strongly condition than

(2-2):
h >0 ae. in Q\Q with Q = int {z € Q/ h(z) = 0}. (4.7)

Alama and Tarantello studied this problem for every p > 1 in [2]. They defined the

number

N =#{5: A < A} = #{j: A < AL
and showed the following result:

Theorema 4.1 (Theorem C in [2]). Assume that a € C'(R) satisfaz (4.2)), (4.3), (4.4) for
au)

some p € (1,+00) and lir%— = 0. Then ({.1)) has a nontrivial solution if and only if
u—0

N(A) > 1.
In Section we apply Theorem for A > /\1(§NZ) to find a solution of the problem
(4.1) and we show that if N(X) > 1, this solution is a nontrivial critical point of the

functional I, given by

L(u) = %/Qwuﬁdx—%/QuzczH/QA(u)h(x) da

with A(u) = [} a(t)dt. The idea is to use the Morse theory and critical groups, but this
theory only works on C? functionals defined in a Hilbert space (see [9] for the definitions).
This is the reason to assume p subcritical, h € L>(Q) and a € C'(R), thus we have that
Iy € C*(H}(Q),R). We also show that if N(\) > 2, we have two nontrivials solutions

(the second solution is given using the same idea than in Theorem [4.1)).
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In section 4.3, we consider a concave perturbation of problem (4.1)):

—Au = —plu|T%u+ I — h(z)a(u), in Q
pl (2)a(w "
u = 0, on 0,

where  is a bounded smooth domain in R", Ay < A < A (Q), 0 >0,1<¢g<2 aisa
C'(R) function satisfying for some 1 < p < 2* — 1 (p subcritical), [{.2)), (4.3), and
[.6) and also assume that the function 0 < h € L>(Q) satisfies ([{.7)).

We show that problem have at least 4 nontrivial solutions (two positive and two

negative) and if A, < A < A1, A < A(Q), then problem (4.8) have at least 5 nontrivial

solutions.

4.2 Principal Results on the problem (4.1

Now, we can give the main results of this Chapter and we begin with the following lemma:

Lemma 4.2. We assume that a € C'(R) satisfaz 2.4) and A\n(Q) < X. Then every

critical point u of I satisfies m(u) > m, where m(u) denote the Morse indezx of u.

Proof. 1f w is a critical point of I and v € (@1, , Pm), v # 0 then

(I (u)v,v) :/|VU|2diL‘—)\/U2dl‘+/a/(u)v2hdI:/ |Vv|2d$—)\/v2dx<0.
0 Q 0 Q Q

By the definition of m(u), we can deduce that m(u) > m.

We give a existence result of problem (4.1)).

Theorema 4.3. Assume that a € C'(R) satisfies [1.2), [1.3), (£.4) and ([@.5) for some

l<p<2*—1and {1.6). If N(A) > 1 and A > \(Q), then problem (4.1)) has a nontrivial

solution.

Proof. Assume that, for some m € N, )\m(ﬁ) <A< )\m+1(§). The first step is to use

Theorem [L13
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To do this, we take V = (&1,..., @) and W = {w € H{(Q)/ [,VP;Vwdr =
0for 1 < j < m} and thus H}(Q) = V & W. Since A < Apns1(Q) then, as in the proof
of Theorem we have that infy I, > —oo. For u € V' we have that [, |Vul*dz <

Am(Q) [, u? do and

/A(u)hdng/\u|p“hdx+C/hd:c:CHhHLl(Q),
Q 0 Q

and thus I,(u) < 30a(@) = N Jull2 + CllAll ey < Cl[h] 2s(0) for every u € V.

Also, by Lemma the functional I, satisfies the (P.S) condition and thus we can

apply the Theorem to obtain a critical point u; of I, such that
Con(In,up) #0. (4.9)
In order to prove that u; is nontrivial, notice that N(A) > 1 implies that , for some k& > m,
A <A< Ayt

Thus, by using a/(0) = 0, the Morse index of the trivial solution satisfies m(0) = k > m.

It follows, by Theorem (|1.12)), that
Cin(Iy,0) = 0. (4.10)

Then, comparing (4.9) and (4.10]), we conclude that u is nontrivial. ]

Next, we give a multiplicity result of the problem (4.1)).

Theorema 4.4. Assume that a € C'(R) satisfies [(£.2), (1.3), (£.4) and (4.5) for some
1<p<2—1and T6). If N(A) > 2, A & {\(Q)} and X > M\ (Q), then the problem

(4.1) has at least two nontrivial solutions.

Proof. Assume that A\, () < A < Api1(2) and Mg < A < A\pyq with N(A) =k —m > 2.

By the previous theorem we have a nontrivial solution u; that satisfies C,, (I, u;) # 0.
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Using Lemma (4.2) and Theorem (|1.13]) we obtain that
Cq(I,\, U1> = 5q7mZ.

Now consider Hg(Q2) =V & W where V = (1, , ox). We have that I,(w) > 0 for all
weW.
It follows from (4.4) and (4.6]) that, given ¢ > 0, there exists C' > 0 such that

|Au)| < §u2 + Clufrt V.

Taking 0 < € < ﬁ and using that Allullz > ||lul[ g1 (o) for u € V, we have
1 A €l ]l
() <g P = Sl + T2l + O
1 (A — ellAll)
=5 lull* = ———"=ullz + Clul"**
2 2
1 (A — ellAfls)
<2 — o 2 p+l
<zl - S e )
A = A+ ellplloc) 1o |
— CllulP+
N [[ull” + Clull
A — A+ €|l oo _
(e A elfllee) 4 gt
2k
If we take ||ul| = p = (%)ﬁ > 0, we obtain that
A — A bl
iy < A relblle) 5

AN,

for every u € V' with ||u|| = p and thus, for some § > 0

sup I)(v) <O.
veV,||ul|=6

We can choose a nonzero v; € V such that I, is bounded below in W + (v;) (see [2]
Lemma 4.4].

Now, we use the Theorem to get a nontrivial solution uy such that I(ug) < 0
and

Ck—l(]/\a UQ) 7& O.
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Since k — 1 > m, us is a second nontrivial solution of the problem (4.1)). O

4.3 Principal results on the problem (4.8

We define the functional associated to the problem ([£.8)) 7, : Hi(Q) — R by

1
I\ (u) :§/Q|Vu|2dx—|—§/ﬂ|u|q—%/Q?fdx%—/ﬂfl(u)h(x)dx u € Hy(S),

where A} < A < A\(Q), p > 0,1 < ¢ < 2, aisa C'R) function satisfying for some
1 < p < 2" —1 (p subecritical), , , , and and also assume that
the function 0 < h € L>®(Q2) satisfies ({1.7). Thus weak solutions of correspond to
critical points of the functional I, , € C*(H(Q),R).

We also define the functionals I;/\ and [, given by

Ii\(u) = 1/ |Vul? dw+ﬂ/ ]u+]q—i/(u*)Qd:L‘—i-/A(u*)h(x) dx u € Hy(Q)
’ 2 Ja 7 Jo 2 Jo Q

and
- 1 2 H _p A —\2 - 1
I(u)=< [ |Vulde+= | [u|?"— = [ (u)de+ [ Alu")h(z)dr ue Hy(S2),
o 2 Jq q Ja 2 Jo Q

where vt = max{u,0} and v~ = min{u,0}. Since a’(0) = a(0) =0, by (4.4) and (4.6),

we have that 7, [, € C'(Hy(Q2), R).

We begin by giving a relationship between critical points of 1, ), I;f)\ and 1.

Lemma 4.5. If uy and u_ are critical points of II/\ and I, respectively. Then, u, > 0
and u_ < 0 in Q. Moreover, uy and u_ are solutions of the problem (4.8) and I, \(uy) =

];A(u+) and I, \(u-) =1 (u-).

Proof. Since uy is a critical point of I, we have that I/;TA(UJF)(u;) = 0 and from this
we conclude that u; = C' = 0 and thus uy > 0. Hence u, is a solution of (4.8]) as well
and I, x(uy) = I}, (uy). Similarly, we obtain that u_ < 0 in Q and is a solution of the

problem (4.8) with [, \(u-) = I (u-). O
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Lemma 4.6. The functionals I, , II/\ and 1, are bounded below, coercive and satifies

the (P.S.) condition.

Proof. For every u € Hg(§2) we obtain I, y(u) > I)(u). From Theorem [2.4] we have that
I, is bounded from below since A < )\1((~2) and also I, is coercive (the proof is the same
that bounded from below). Hence I, , is bounded from below and coercive.

Let u, be a sequence in Hj () such that I, ,(u,) is bounded, i.e. |, (u,)| < C, and

/Vun -Vodr —I—u/ |t |7 210 d — )\/ Upp d
Q Q Q

< Gnl‘(:pua (4'11)

+ / a(u,)ph dx
0

for some €, — 0 with ¢, > 0 and every ¢ € H}(f2). Since I, is coercive, we have that
|lu,|] < C. Thus, there exists ug € H}(Q) such that, up to a subsequence, u, — ug in
H}(Q), u, — up in L*(Q), in L*(Q), in LPT(Q) and a.e. in Q. Also for some function

g € LPT(Q), |u,| <g. Thus, by the dominated convergence theorem and tending n — oo

in (4.11) we deduce
/VUOVgodx+u/ [uo| " *ugp dz — )\/ uogpdx+/a(u0)g0hdx =0
Q Q Q Q

for every ¢ € H}(Q). Substracting it from (4.11)) we get

/ V(u, —ug) - Ve dr + ,u/(|un|q_2un — Juo | ug)p dx — )\/(un — up)p dx
Q Q Q

+ [ (atw) = atwa))ohda| < el
(4.12)
which by the choice ¢ = u,, — uy implies that
/ IV (ty, — o) |* d + / (|21 — Juo|? %) (un — o) da
Q Q
—)\/(un — o) dx + /(a(un) = auo))(un — u)hdz| < enllol,  (413)
Q Q

Using, again, the dominated convergence theorem we conclude that u, — uy in H} ()
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and thus [, , satisfies the P.S. condition. Similarly to this functional we show to the

functionals II/\ and I;/\. O

Lemma 4.7. If uy is a local minimizer of I:;)\ (u_ is a local minimizer of I;A), then it

is also a local minimizer of 1, and hence the critical groups of I, \ at uy (u_) are given
by
Collur,ut) = Cy(Lyn, u-) = dq 0.

Proof. By a result of Brezis and Nirenberg [6], it suffices to show that wu, is a local
minimizer of [, in the C" topology. It is easily seen that u, is a local minimizer of I},
in the C" topology also, say, p > 0 is such that I}, (u) > I} (uy) Yu € Bei(uyg,p) =

{u e CHQ) : |lu—uyller < p}. Then for u € Bei(uy, p),

Lua(w) = ua(ug) =Lua(u) = I (uy)
2Ty (u) = 1, (u)

L[ (alr =ty do = 5 [ @ = ot Prdo+ [ (Aw) - A Do

q.Jq Q
:H/ |u_|qu—é/ ]u_|2dx+/A(u_)hdx
qa Ja 2 Ja Q

A _
28 [ uptde = Sl [ s
q Jo 2 Q

H A 2q/ —q
(£ -2 dz.
<q QMHm)QWI x

~ . 1
Since [|[u — uy|lcr < p and u™ > 0, then ||u"||co < p. Thus taking p = min{p, (%)2—4},
we have that v, is a minimum of I,  on Be1(uyg, p).

Since ¢ < 2, the conclusion of the lemma follows (for the critical groups see Example

1 in Chapter I, Section 4 of Chang [9]). Similarly we have the same conclusion to u_. O
Lemma 4.8. u =0 is a local minimizer of I, , II/\ and 1,

Proof. As in the proof of Lemma [£.7] we show that 0 is a local minimizer of I,, 5 in the
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C! topology. We have for u € C}(Q),

)22 [ fulrds = Sl [ Ju

—(E _ 22 dz >0
&= Sl [ fufr o >

if [|ul|co < (z—é\‘)?%q The argument for I, and I, is the same. O

Lemma 4.9. If A\ > X\, then there exist u*, p > 0 such that
sup £, <0
Sk

for 0 < p <y, where S¥ ={u eV : ||lul| = p} and V = (p1,..., ¢x).

Proof. 1t follows from (4.4) and (4.6|) that, given ¢ > 0, there exists C' > 0 such that

|A(u)] < §u2 + ClulP*t Vu.

A=Ak

Taking 0 < € < Tl

and using that Allullz > ||lul[ g1 (o) for u € V, we have

1 uC’ A eHhHoo
Lua(u) <z Jlul* + —||U||q = S lullz + ull + Clu*
1 ( €| h2]| o)
=5 lull* = —H I2 + . ||u||q+CHUH”+1
1 (A —ellhll) pc’
<SlulP* - —|| I”+ ||U||(’+C||U||p+1
(A — /\+€||h||oo) pc’
e LI ||u||q+cuuup“
Ak = A+ €l[f]o) 1, mC
=( + CllullPh A+ = ful| ) u|?
2\
If we take ||ul| = p = (%)p T we obtain that
M — A+ €||h|so (G
[,u,)\(u) < (( k €H H ) + H Pq 2)p2
4)\k q

A=Ap—e€|[hlloo
Iy,

Finally, taking 0 < g < p* = (%= )(

= ) we conclude this lemma.
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Lemma 4.10. If A < \gy1, then [y >0 on W = {1, ..., o) .

Proof. Using that for u € W, A\giq|lu|l2 < ||u|| we have that

1 A
Tuaw) 25 1ull* = 5 ull

1 A
> lull® - Q—MIIUH2

Akl — A
:MHUHQ > 0.
2 k41

]

Theorema 4.11. Assume that A\ < A < A\ (Q), >0, 1< q <2, aisaC*R) function
satisfying for some 1 < p < 2* — 1 (p subcritical), [1.2), [£.3), ([£.4), and
and also assume that the function 0 < h € L>(Q) satisfies (L.7). Then there exists
w* > 0 such that problem has at least four nontrivial solutions (two positives and

two negatives) for 0 < p < p*.

Proof. By Lemma u = 0 is a local minimizer of I;:/\ and I, with [lt/\(O) =1,,(0)=
0. By Lemma with k& = 1, infyq) I,

iy < infiso Iy (tpr) < 0 and infyyq) I, <

infy>o I, (—te1) < 0. Hence, by Theorem I has a nontrivial critical point u; of
the mountain pass type with I (uy) > 0. Also I, has a nontrivial critical point u; of
the mountain pass type with I, (u;) > 0.

Since I;A and I, are bounded below and satisfy the (P.S.) condition, by Lemma
they also have a nontrivial global minimizer ug and u, respectively, such that IIA(ua“ ) =
infy1q) Iy <0and I, (ug) = infyiq) I, <0. Finally, by Lemmawe conclude this

theorem. O

Theorema 4.12. Assume that \y < X\ < Mgy with k> 2, A< \(Q), pn>0,1<g<2,

a is a CY(R) function satisfying for some 1 < p < 2* — 1 (p subcritical), (4.2)), (.3),

A.4), (4.5) and (4.6) and also assume that the function 0 < h € L>®(Q) satisfies (4.7)).
Then there ezists pu* > 0 such that problem (4.8)) has at least five nontrivial solutions for

0<p<p*

Proof. As in the proof of Theorem m, [:7/\ has a mountain pass point u; at a positive

level and a global minimizer ug at a negative level and [ .., has a mountain pass point u;
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at a positive level and a global minimizer u, at a negative level. By Lemma ug and

ug are local minimizers of I, , and the critical groups of I, , at ug and ugy are given by
ColIups ug) = Cq(lun, ug ) = 0402

We get one more critical point by applying Theorem to I, using the splitting
H}(Q) =V & W with V = (p1,..., ). The conditions (I;) and (I5) have already been
verified in Lemmas and 110 Since I, is bounded below, (I3) is also satisfied.
Thus I, has two critical points wy_1, w, with I, \(ug—1) < 0, I x(ux) > 0 and
Cr—1(Lyn, up—1) # 0, Crp(I,x, ug). Comparing the critical values and the critical groups

of 0, ug, uy, ui, u; and uy_q, and using k > 2 we see that they are all different.
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