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Resumo

Técnicas de aprendizado em profundidade têm sido amplamente investigadas pela co-

munidade cient́ıfica nos últimos anos, principalmente devido ao seu bom desempenho

em tarefas tidas como essenciais em diversas aplicações, tais como reconhecimento

de faces e comandos por voz, bem como classificação de objetos. Um dos métodos

mais empregados é o das Máquinas de Boltzmann Restritas, do inglês Restricted

Boltzmann Machines (RBMs), as quais são, basicamente, redes neurais estocásticas

que objetivam estimar os pesos das conexões entre camadas distintas utilizando,

dentre algumas técnicas, aquelas baseadas em amostragem em cadeias de Markov.

Atualmente, grande parte dos trabalhos cient́ıficos têm concentrado sua atenção em

métodos de amostragem nessas cadeias, dado que a sua eficiência e eficácia estão

intimamente ligadas ao sucesso do processo de treinamento de uma RBM. Assim,

a presente Tese contribui na área de aprendizado de RBMs, bem como de suas va-

riantes chamadas de Deep Belief Networks e Deep Boltzmann Machines. Métodos

de otimização para seleção dos parâmetros dessas técnicas também são estudados e

validados no contexto de reconstrução de imagens e reconhecimento de padrões. De

uma maneira geral, esta Tese objetiva estabelecer paralelos entre diferentes aborda-

gens de treinamento dessas técnicas, bem como estudar e avaliar a eficiência de seu

treinamento por meio de técnicas meta-heuŕısticas. Além disso, a proposta apresenta

uma coleção de trabalhos desenvolvidos pelo autor durante o peŕıodo de estudo, que

foram publicados/submetidos para publicação em periódicos e conferências até o

presente momento, sendo eles relacionados à: (i) inclusão do parâmetro tempera-

tura na formulação da DBM, (ii) utilização de temperatura adaptativa para DBM,

(iii) otimização dos meta-parâmetros da DBM utilizando técnicas meta-heuŕısticas e

(iv) otimização dos meta-parâmetros da iRBM utilizando técnicas meta-heuŕısticas.

Palavras-chave: Aprendizado de Máquina, Restricted Boltzmann Machine, Otimização



Abstract

Deep learning techniques have been studied extensively in the last years, due to its

good results related to essential tasks on a large range of applications, such as spe-

ech and face recognition, as well as objects classification. Among the most employed

techniques is the Restrict Boltzmann Machines (RBMs), which are energy-based sto-

chastic neural networks composed of two layers of neurons., i.e., visible and hidden,

whose objective is to estimate the connection weights between both layers, gene-

rally using Markov chains. Recently, the scientific community spent many efforts on

sampling methods, since RBMs effectiveness is directly related to the success of the

sampling process. Thereby, the present work contributes with RBMs Learning area,

as well as its variants DBNs and DBMs. Further, the work covers the application of

meta-heuristic methods concerning a proper fine-tune of these techniques. Moreover,

the validation of the model is presented in the context of image reconstruction and

pattern recognition. In general, the present work presents different approaches to

training these techniques, as well as the evaluation of meta-heuristic methods effici-

ency in training. Finally, this thesis presents a collection of works developed by the

author during the study period, which was published/submitted until the present

time, concerning: (i) temperature parameter introduction in DBM formulation, (ii)

DBM using adaptive temperature, (iii) DBM meta-parameters optimization through

meta-heuristic techniques, and (iv) iRBM meta-parameters optimization through

meta-heuristic techniques.

Keywords: Machine Learning, Restricted Boltzmann Machine, Optimization
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Chapter 1
Introduction

In the last decades, machine learning techniques employment has grown exponentially

in a wide range of applications, even more, the ones regarding decision-making tasks. Such

tasks become of extreme interest in environments that involve large amounts of data, such

as laboratory diagnosis, image and video processing, and data mining, just to cite a few.

Usually, the traditional data flow employed to “solve” machine learning related pro-

blems tend to follows four mains steps: (i) data processing, (ii) feature extraction, (iii)

feature selection/transformation, and (iv) pattern recognition. Although each of the afo-

rementioned steps had evolved in the last decades, a new set of techniques based in deep

learning (DL) strategies provide an approach that mimics the brain behavior while pro-

cessing visual information, where the data extraction is performed on distinct layers, and

each layer is responsible for extracting different kinds of information.

Convolutional Neural Networks (CNNs) (LECUN et al., 1998) and Restricted Boltz-

mann Machines (RBMs) (SMOLENSKY, 1986b) are among the most used techniques

nowadays. CNNs model the hierarchical information processing performed by the hu-

man brain in a natural manner, which is composed of three main steps: (i) application

of convolutions using distinct filters over the input signal, (ii) signal sampling, and (iii)

a normalization process. On the other hand, RBMs are classified as stochastic neural

networks composed of a set of “hidden” or latent units employed to encode a representa-

tion of a set of input data. Honestly speaking, RBMs are not a DL method itself, though

its “stacking” process characterizes it. In a nutshell, RBMs are used as building blocks

for deep learning models, such as the well-known Deep Belief Network (DBNs) (HINTON;

OSINDERO; TEH, 2006a) and the Deep Boltzmann Machines(DBMs) (SALAKHUTDINOV;

HINTON, 2012a).
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One of the major constraints regarding RBMs stands on the training step, which

can be interpreted as an optimization problem where the minimization of the system’s

energy implies directly in an increase of the a posteriori probability of activating a hidden

neuron. Such assumption lead many studies towards a more efficient manner of solving

this optimization problem and approximate the output to the log-likelihood, which is

considered the “perfect result”, however intractable to reach when the number of variables

is relatively large. Since the number of visible units generally stand for the number of

pixels when dealing with image problems, the number of visible units tends to be great

enough to convert such log-likelihood approximation into a prohibitive task.

Recently, many works addressed the task of modeling such log-likelihood approxima-

tion as a sampling over a Markov chain (HINTON, 2002; TIELEMAN, 2008a; TIELEMAN;

HINTON, 2009; BRAKEL; DIELEMAN; SCHRAUWEN, 2012; XU; LI; ZHOU, 2014), where the

initial solution, i.e., the model input, stands for some data sample, as well as the expected

output stands for the corresponding sample approximation. Such process is then repea-

ted over the training dataset until reaching some stopping criterion. Since RBM-based

algorithms are a recent subject and some research groups abroad have spent an intensive

effort to understand them, only a few works have been addressed towards such models in

Brazil.

The hypothesis and main contributions of the present thesis regard answe-

ring the following question: which strategies could one adopt towards enhan-

cing RBM-based models training process? Two approaches are proposed to

accomplish such task: (i) the application of meta-heuristic optimization algo-

rithms to fine-tune the hyper-parameters of such models, and (ii) the intro-

duction of the temperature parameter into the DBM-based formulation. The

experimental results, discussed in the following chapters, support the propo-

sed hypothesis. Moreover, this thesis is composed of a collection of works

published/submitted by the authors during the period of study.

The works presented in the next sections aim towards optimization of Restricted

Boltzmann Machines based machine learning algorithms, i.e., Restricted Boltzmann Ma-

chines itself, Deep Belief Networks, Deep Boltzmann Machines, and infinity Restricted

Boltzmann Machines. Additionally, the authors published yet three more papers related

to this subject during the study process, which were not included in this thesis: (i) Lear-

ning Parameters in Deep Belief Networks Through Firefly Algorithm (ROSA et al., 2016b),

(ii) Parkinson’s Disease Identification Using Restricted Boltzmann Machines (PEREIRA
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et al., 2017), and (iii) Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic

Approaches (PASSOS; RODRIGUES; PAPA, 2018). The previously mentioned works employ

meta-heuristic techniques for such tasks, as well as an approximation of the computati-

onal formulation to the original Boltzmann formulation, by introducing the temperature

parameter in the DBM domain.

Chapter 2 presents a meticulous referential background regarding RBMs, DBNs, and

DBMs, as well as the sampling methods most commonly used for training such techni-

ques. Further, the chapter presents some procedures employed for optimization of the

computational burden using CPUs and GPUs, as well as the optimization of the model’s

meta-parameters. Finally, it presents the most known techniques for RBM regularization,

such as the employment of dropout or the temperature parameter, which has a direct

relation to the activation of visible and hidden units, for instance.

The temperature meta-parameter is introduced for the very first time into the DBM

formulation in the paper presented in Chapter 3. Its impact is evaluated through the

learning steps, and the results are compared even with a distinct activation function,

once such parameter inserted in the energy function can be interpreted as a scalar mul-

tiplication of the Sigmoid function input. The provided results confirm the hypothesis

suggested by Li et al. (LI et al., 2016a) that lower temperatures tend to reach more curate

results. Furthermore, one can observe that lower temperatures also support sparseness

representations of the hidden layer, which leads to a dropout like regularization.

A continuation of the work presented in Chapter 3 is provided in Chapter 4. The

work proposes an adaptive temperature, where it increases smoothly while the training

progresses. Such approach can be compared to the behavior observed in meta-heuristic

algorithms, where each agent initially explores the search space in the quest for better

solutions, and later converges to the points whose results are more promising as training

advances. The main contribution of the work is the exemption of the task of fine-tuning

the temperature parameter, providing a friendly interface for less experienced users. Ad-

ditionally, it presents results at least competitive with the ones where the temperature is

fine-tuned.

The paper presented in Chapter 5 introduces the problem of DBMs meta-parameter

fine-tuning aided by meta-heuristic optimization techniques. The work compares seven

distinct techniques: IHS, AIWPSO, CS, FA, BSA, JADE, and CoBiDE, as well as a ran-

dom search. Further, DBM’s performance is compared against the DBN, outperforming

the results of the latter in two out of three datasets.
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Following the same idea, the work presented in Chapter 6 introduces a similar ap-

proach for meta-parameter optimization regarding oRBM and iRBM domain. The main

objective of iRBM is precisely to ease the proper selection of its meta-parameters, setting

automatically the number of hidden units that best fit the model. Notwithstanding, the

proper selection of such parameter, i.e., the number of hidden units, is replaced by the

need of fine-tuning a penalty parameter. The latter, however, is leastwise less sensitive

than the proper selection of the hidden layer size, but still deserves some attention while

fine-tuning the model. Finally, Chapter 7 presents a continuation of the work presented

in Chapter 6, applying iRBM for Barret’s Esophagus lesions detection. Finally, Chapter 8

provides the conclusions, as well as contributions of this work.



Chapter 2
Theoretical Background

This chapter presents the theoretical background regarding RBM-based models, as

well as proposed methods for sampling, optimization, and regularization.

2.1 Restricted Boltzmann Machines

Invented under the name Harmonium by Paul Smolensky in 1986, (SMOLENSKY,

1986a) and renamed in the mid-2000s by Geoffrey Hinton, after invented fast learning

algorithms for them, Restricted Boltzmann Machines are energy-based stochastic neural

networks composed of two layers of neurons (visible and hidden), in which the learning

phase is conducted by means of an unsupervised fashion. A näıve architecture of a Res-

tricted Boltzmann Machine comprises a visible layer v with m units and a hidden layer h

with n units. Additionally, a real-valued matrix Wm×n models the weights between the

visible and hidden neurons, where wi j stands for the weight between the visible unit vi

and the hidden unit h j. Figure reff.rbm depicts the RBM architecture.

Figure 2.1: The RBM architecture.

Let us assume both v and h as being binary-valued units. In other words, v ∈ {0,1}m
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e h ∈ {0,1}n. The learning process is conducted using the minimization of the system’s

energy, analogous to the Maxwell-Boltzmann distribution law of thermodynamics. The

energy function of a Restricted Boltzmann Machine is given by:

E(v,h) =−
m

∑
i=1

aivi−
n

∑
j=1

b jh j−
m

∑
i=1

n

∑
j=1

vih jwi j, (2.1)

where a e b stand for the biases of the visible and hidden units, respectively.

The probability of a joint configuration (v,h) is computed as follows:

P(v,h) =
1
Z

e−E(v,h), (2.2)

where Z stands for the so-called partition function, which is basically a normalization

factor computed over all possible configurations involving the visible and hidden units.

Similarly, the marginal probability of a visible (input) vector is given by:

P(v) =
1
Z ∑

h

e−E(v,h). (2.3)

Since the RBM is a bipartite graph, the activations of both visible and hidden units

are mutually independent, thus leading to the following conditional probabilities:

P(v|h) =
m

∏
i=1

P(vi|h), (2.4)

and

P(h|v) =
n

∏
j=1

P(h j|v), (2.5)

where

P(vi = 1|h) = φ

(
n

∑
j=1

wi jh j + ai

)
, (2.6)

and

P(h j = 1|v) = φ

(
m

∑
i=1

wi jvi + b j

)
. (2.7)

Note that φ(·) stands for the logistic-sigmoid function.
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Let θ = (W,a,b) be the set of parameters of an RBM, which can be learned through

a training algorithm that aims at maximizing the product of probabilities given by the

available training data D , as follows:

argmax
Θ

∏
v∈D

P(v). (2.8)

One can solve the aforementioned equation using Contrastive Divergence, for instance,

depicted on section 2.6.1.

2.2 Deep Belief Networks

Deep belief network (DBN) is a generative graphical model composed of multiple

layers of latent variables (“hidden units”), with connections between the layers but not

between units within each layer. In a nutshell, DBNs are composed of a set of stacked

RBMs, being each of them trained using the learning algorithm presented in Section 2.1 in

a greedy fashion, which means an RBM at a certain layer does not consider others during

its learning procedure. In this case, we have a DBN composed of L layers, being Wi the

weight matrix of the RBM at layer i. Additionally, we can observe the hidden units at

layer i become the input units to the layer i + 1. Figure reff.dbn depicts the model.

Figure 2.2: The DBN architecture.

The approach proposed by Hinton et al. (HINTON; OSINDERO; TEH, 2006a) for the

training step of DBNs also considers a fine-tuning as a final step after the training of

each RBM. Such procedure can be performed by means of a Backpropagation or Gradient

descent algorithm, for instance, in order to adjust the matrices Wi, i = 1,2, . . . ,L. The
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optimization algorithm aims at minimizing some error measure considering the output

of an additional layer placed on the top of the DBN after its former greedy training.

Such layer is often composed of softmax or logistic units, or even some supervised pattern

recognition technique.

2.3 Deep Boltzmann Machines

DBM formulation is rather similar to DBN one, with some slightly differences. Sup-

pose we have a DBM with two layers, where v stand for the visible units, as well as h1

and h2 stand for the hidden units at the first and second layer, respectively. Figure 2.3

depicts the architecture of a standard DBM, which formulation is slightly different from

a DBN one.

Figure 2.3: The DBM architecture with two hidden layers.

The energy of a DBM can be computed as follows:

E(v,h1,h2) =−
m1

∑
i=1

n1

∑
j=1

vih1
jw

1
i j−

m2

∑
i=1

n2

∑
j=1

h1
i h2

jw
2
i j, (2.9)

where m1 and m2 stand for the number of visible units in the first and second layers,

respectively, and n1 and n2 stand for the number of hidden units in the first and second

layers, respectively. In addition, we have the weight matrices W1
m1×n1 and W2

m2×n2 , which

encode the weights of the connections between vectors v and h1, and vectors h1 and h2,

respectively. For the sake of simplification, we dropped the bias terms out.

The marginal probability the model assigns to a given input vector v is given by:
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P(v) =
1
Z ∑

h1,h2

e−E(v,h1,h2). (2.10)

Finally, the conditional probabilities over the visible and the two hidden units are given

as follows:

P(vi = 1|h1) = φ

(
n1

∑
j=1

w1
i jh

1
j

)
, (2.11)

P(h2
z = 1|h1) = φ

(
m2

∑
i=1

w2
izh

1
i

)
, (2.12)

and

P(h1
j = 1|v,h2) = φ

(
m1

∑
i=1

w1
i jvi +

n2

∑
z=1

w2
jzh

2
z

)
. (2.13)

After learning the first RBM using Contrastive Divergence 2.6.1, for instance, the

generative model can be written as follows:

P(v) = ∑
h1

P(h1)P(v|h1), (2.14)

where P(h1) = ∑vP(h1,v). Further, we shall proceed with the learning process of the

second RBM, which then replaces P(h1) by P(h1) = ∑h2 P(h1,h2). In short, using such

procedure, the conditional probabilities given by Equations 2.11-2.13, and Contrastive Di-

vergence, one can learn DBM parameters one layer at a time (SALAKHUTDINOV; HINTON,

2012b).

2.4 Ordered Restricted Boltzmann Machines

The ordered Restricted Boltzmann Machine is a variant of the RBM such that the

hidden units are trained sequentially, from the left to the right. The current number of

trained units at a given time step is represented by the variable z ≤ n, as depicted in

Figure 2.4.

Given a number z of hidden units, one can compute the energy of the current model

as follows:
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Figure 2.4: An oRBM with z = 2 and n = 4.

E(v,h,z) =−
m

∑
i=1

aivi−
z

∑
j=1

b jh j−
m

∑
i=1

z

∑
j=1

(
vih jwi j−β j

)
, (2.15)

where β j represents the energy penalty associated to the hidden unit h j. Actually, β j

forces the model to avoid using more hidden units than needed, thus generating smaller

networks.

Therefore, the joint probability over v, h and z is given as follows:

P(v,h,z) =
1
Z

e−E(v,h,z). (2.16)

and the marginal probability is given by:

P(v) =
1
Z ∑

h

e−E(v,h,z). (2.17)

Similarly to the RBM, since Z is intractable in the above equation, the probabilities

over v and h are estimated by means of Gibbs sampling:

P(h j = 1|v,z) =


φ

(
m

∑
i=1

wi jvi + b j

)
if j ≤ z

0 otherwise,

(2.18)

and

P(vi = 1|h,z) = φ

(
z

∑
j=1

wi jh j + ai

)
. (2.19)

However, oRBM has an additional information that concerns the maximum number
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of hidden units that is going to be used, i.e., variable z. Given an input data v, the

conditional distribution over the value of z is given as follows:

P(z|v) =
exp(−F(v,z))

∑
n
z′=1 exp(−F(v,z′))

, (2.20)

where F(v,z) is the so-called “free energy”, being computed as follows:

F(v,z) =−
m

∑
i=1

aivi−
z

∑
j=1

(
ψ

(
m

∑
i=1

wi jvi + b j

)
−β j

)
, (2.21)

where ψ(x) = ln(1 + ex).

Equation 2.20 tells us we need to consider sampling z from the Markov chain as well.

In this case, Gibbs steps alternate between sampling (h,z)∼ P(h,z|v) and v∼ P(v|h,z).
Notice the sampling from P(h,z|v) can be performed in two steps: z∼ P(z|v) followed by

h∼ P(h|v,z).

Finally, the weight matrix W and the biases a and b in the oRBM model are than

updated by the following equations:

Wt+1 = Wt + η(ξξξvT − ξ̃ξξ ṽT ), (2.22)

where ξξξ = P(h|v)� (1−ρ(z|v)) and ξ̃ξξ = P(h̃|ṽ)� (1−ρ(z|ṽ)). Notice the operator �
stands for the element-wise product, and ρ(z|v) = [P(z < 1|v),P(z < 2|v), . . . ,P(z < n|v)]T .

The biases can be updated as follows:

at+1 = at + η(v− ṽ) (2.23)

and

bt+1 = bt + η(λλλ − λ̃λλ ), (2.24)

where λλλ = (P(h|v)−βββφφφ(b))� (1−ρ(z|v)) and λ̃λλ = (P(h̃|ṽ)−βββφφφ(b))� (1−ρ(z|ṽ)). No-

tice that βββ = [β1,β2, . . . ,βz], and φφφ is the same sigmoid-logistic function as before, but

now applied to the array b.

In short, the rationale of oRBMs is to perform the training step adding one hidden

unit at time, from the left to the right. Since P(z|v) usually increases according to

greater values of z (i.e., we have more complex models), the term (1−ρ(z|v)) decreases
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monotonically from the left to the right, thus forcing the model using less hidden units

(i.e., smaller values of z).

2.5 Infinity Restricted Boltzmann Machines

The infinity RBM mimics the same growing behavior of the oRBM, but the maximum

number of hidden units is not specified. This number increases automatically until its

capacity is sufficiently high, which is possible by taking the limit of n→ ∞. The model is

presented in Figure 2.5.

Figure 2.5: An iRBM trained previously with z = 2 units. There are some non-zero
(dashed lines) values connecting the third unit (l = 3) that is going to be used for
training. All remaining hidden units (i.e., l > 3) have zero-valued weights.

The updating equations concerning iRBM are given as follows:

Wt+1 = Wt + η(P(h|v,z)vT −P(h̃|ṽ, z̃)ṽT ), (2.25)

at+1 = at + η(v− ṽ) (2.26)

and

bt+1 = bt + η(ααα− α̃αα), (2.27)

where ααα = (P(h|v)−βββφφφ(b))�IIIz and α̃αα = (P(h̃|ṽ)−βββφφφ(b))�IIIz, and IIIz = [1, . . . ,1︸ ︷︷ ︸
z

,0, . . . ,0︸ ︷︷ ︸
n−z

]T .



2.6 Sampling Methods 28

2.6 Sampling Methods

Initially, the strategy adopted to estimate E[hv]model, which is the representation of

the data learned by the system, was basically to start the visible units with random

values and run alternating Gibbs chain until equilibrium, (i.e., convergence). However,

this approach is computationally expensive, since a good model is obtained when the

number of Gibbs steps k→ ∞. Figure 2.6 depicts the model.

Figure 2.6: Gibbs sampling

To tackle the aforementioned problem, some alternatives to Gibbs sampling were pre-

sented in the following years. The next sections discuss some of the most used techniques

for such purpose.

2.6.1 Contrastive Divergence

Hinton (HINTON, 2002) introduced a faster methodology to compute E[hv]model based

on contrastive divergence. Basically, the idea is to initialize the visible units with a training

sample, to compute the states of the hidden units using Equation 2.7, and then to compute

the states of the visible unit (reconstruction step) using Equation 2.6. In short, this is

equivalent to perform Gibbs sampling using k = 1 and initializing the chain with the the

training samples.

Based on the above assumption, we can now compute E[hv]model as follows:

E[hv]model = P(h̃|ṽ)ṽT , (2.28)

where ṽ stands for the reconstruction of the visible layer given h, and h̃ denotes a esti-

mation of the hidden vector h given ṽ.

Therefore, the equation below leads to a simple learning rule for updating the weight

matrix W, as follows:
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Wt+1 = Wt + η(E[hv]data−E[hv]model)

= Wt + η(P(h|v)vT −P(h̃|ṽ)ṽT ), (2.29)

where Wt stands for the weight matrix at time step t, and η corresponds to the learning

rate. Additionally, we have the following formulae to update the biases of the visible and

hidden units:

at+1 = at + η(v−E[v]model)

= at + η(v− ṽ), (2.30)

and

bt+1 = bt + η(E[h]data−E[h]model)

= bt + η(P(h|v)−P(h̃|ṽ)), (2.31)

where at and bt stand for the visible and hidden units biases at time step t, respectively.

In short, Equations 2.29, 2.30 and 2.31 are the standard formulation for updating the

RBM parameters.

Later on, Hinton (HINTON, 2012) introduced a weight decay parameter λ , which pena-

lizes weights with large magnitude, as well as a momentum parameter α to control possible

oscillations during the learning process. Therefore, we can rewrite Equations 2.29, 2.30

and 2.31 as follows:

Wt+1 = Wt + η(P(h|v)vT −P(h̃|ṽ)ṽT )−λWt + α∆Wt−1︸ ︷︷ ︸
=∆Wt

, (2.32)

at+1 = at + η(v− ṽ)+ α∆at−1︸ ︷︷ ︸
=∆at

(2.33)

and

bt+1 = bt + η(P(h|v)−P(h̃|ṽ))+ α∆bt−1︸ ︷︷ ︸
=∆bt

. (2.34)
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2.6.2 Persistent Contrastive Divergence

Most of the issues related to contrastive divergence approach are related to the number

of iterations employed to approximate the model to the real data. Although the approach

proposed by Hinton (HINTON, 2002) takes k = 1 and works well for real world problems,

one can settle different values for k (CARREIRA-PERPIÑÁN; HINTON, 2005)1.

Notwithstanding contrastive divergence provides a good approximation to the like-

lihood gradient, i.e., it provides a good approximation of the model to the data when

k→ ∞. However, its convergence might becomes poor when the Markov chain has a “low

mixing”. Furthermore, contrastive divergence has a good convergence only on the early

iterations, getting slower as iterations go by, thus, demanding the use of parameters decay

(as shown in equations 2.32, 2.33 and 2.34, for instance).

Therefore, an interesting alternative for contrastive divergence would be using higher

values for k, usually named CD-k. However, a major problem related to this approach

dues to its computational burden, since a greater number of iterations are required to

approximate the model to the data. Given such premise, Tieleman (TIELEMAN, 2008a)

proposed the Persistent Contrastive Divergence - PCD for short - which aims to appro-

ximate the model to the data similarly to CD-k, but with a lower computational burden.

The idea is quite simple: on CD-1, each training sample is employed to start an RBM and

rebuilds a model after a single Gibbs sampling iteration. Once every training sample is

presented to the RBM, we have a so-called “epoch”. The process is repeated for each next

epoch, i.e., the same training samples are used to feed the RBM and the Markov chain is

restarted at each epoch. PCD aims to achieve an “ideal” approximation of the model to

the data given CD-k (when k→∞) by means of not restarting the Markov chain, but using

the model built in the former epoch to feed the RBM in the current epoch. Therefore,

as the number of epochs increases, the model tends to be similar to the one obtained

through CD-k. The only problem related to this technique concerns the number of epochs

demanded for convergence, but yet the reconstruction error rate is generally still lower

than CD.

2.7 Regularization

This section presents some approaches applied to regularize RBM-based models.

1Usually, contrastive divergence with a single iteration is called CD-1.
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2.7.1 Sparce Representation

It was demonstrated by Ranzinato et. al.(BOUREAU; CUN et al., 2008) that unsuper-

vised methods based on reconstructing the input data from its representation, such as

Restricted Boltzmann Machines, has a better performance if this representation is com-

posed by a sparse vector. The authors proposed the Sparse Encoding Symmetric Machine

(SESM) , which has an architecture similar to the DBN, and compared both theoreti-

cally and experimentally. Meanwhile, Lee et al. (LEE; EKANADHAM; NG, 2008) employed

a sparse two-layered DBN to measure the degree to which it faithfully mimics biological

measurements of V2 visual cortex area, who has as input the response properties of neu-

rons in cortical areas receiving projections from V1 area. It was stated that the second

layer captures a variety of both collinear (“contour”) features as well as corners and junc-

tions. Furthermore, it provided similar responses along several dimensions in quantitative

comparison to measurements of V2 taken by (ITO; KOMATSU, 2004).

Since then, many works emerged in literature taking advantage of this property, such

as Swersky et al. (SWERSKY et al., 2012), that used a cardinality potential to control the

sparsity of the RBM, i.e., limiting the number of hidden units that can be active, as well

as the well known Dropout (SRIVASTAVA et al., 2014a), temperature based approaches (LI

et al., 2016a) (PASSOS; PAPA, 2017c) and the Infinite RBM (CÔTÉ; LAROCHELLE, 2016).

2.7.2 Dropout

Dropout is a technique for addressing the problem of over-fitting in large networks (SRI-

VASTAVA et al., 2014a). The main idea behind the concept is to temporarily remove a

hidden or visible unit from the network, along with all its incoming and outgoing connec-

tions, as shown in Figure 2.7. The units to drop are chosen randomly and removed with

a fixed probability p, commonly set to 0.5. This procedure is capable of dim the noise

resulted by sampling from limited training data on complicated relationships present on

RBMs and other networks. Experimentally, applications on vision, speech recognition,

document classification and computational biology obtained state-of-the-art results on

many benchmark data sets.

2.7.3 Temperature-based Models

Recently Li et. al. (LI et al., 2016a) introduced the“temperature”term, which was a key

factor of the Boltzmann distribution, in an RBM formulation. They revealed that tempe-
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(a) (b)

Figure 2.7: Examples of: (a) standard and (b) dropped-out RBM

rature controls the selectivity of the firing neurons in the hidden layers and theoretically

proved that the effect of temperature can be adjusted by setting the parameter of sharp-

ness on the logistic function, proposing the Temperature-based RBMs (TRBM). They

evinced that the performance of RBMs can be improved by adjusting the temperature

parameter of TRBMs. Passos and Papa (PASSOS; PAPA, 2017c) (PASSOS; COSTA; PAPA,

2017) adapted this idea to the DBM domain, and noticed that at lower temperatures, the

input information is limited and produces even more sparse representations, which is an

effect similar to the ones achieved through dropout-based approaches.

2.8 Parameter Optimization

The task of fine-tuning parameters in machine learning aims at finding suitable pa-

rameters values that maximize some fitness function, such as the classifier’s recognition

accuracy or the reconstruction error. In the subject, Papa et al. (PAPA et al., 2015a) em-

ployed the Harmony Search (HS) to optimize the parameters of Restricted Boltzmann

Machines in the context of binary image reconstruction. In the very same year, Papa et

al. (PAPA et al., 2015c) evaluated some meta-heuristic techniques to fine-tune Discrimina-

tive Restricted Boltzmann Machines, and finally employed Harmony Search and some of

its variants to optimize Deep Belief Networks (PAPA; SCHEIRER; COX, 2016a).

Recently, Papa et al. (PAPA et al., 2016) and Rosa et al. (ROSA et al., 2016b) em-

ployed quaternion algebra and the Firefly Algorithm for RBM and DBN parameter fine-

tuning, respectively. Moreover, Passos et al. (JUNIOR; PAPA, 2016) compared several

meta-heuristic techniques, such as Particle Swarm Optimization (PSO) and its variati-

ons, and the Harmonic Search (HS) and some variations for the task of Deep Boltzmann

Machine parameters and Infinity Restricted Boltzmann Machines (PASSOS; PAPA, 2017a)

meta-parameter fine-tuning.
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2.8.1 Metaheuristic Optimization Techniques

Below, we present a brief description of the metaheuristic techniques employed in this

work:

� Brain Storm Optimization (BSO) (SHI, 2011): the Brain Storm Optimization is

a meta-heuristic optimization technique inspired by the human behavior, whose

motivation is the brainstorming process performed by human beings to find solutions

and solve problems. The process can be divided into three main steps: (i) similar

solutions are clustered together, (ii) new solution is generated, and finally (iii) the

best solutions are selected.

� Harmony Search (HS) (GEEM, 2009): found inspiration in the creative process

of musicians while improvising. The idea is to start a song with a set of initial

harmonies and search in the memory for the harmonies that best fits the melody.

� Improved Harmony Search (IHS) (MAHDAVI; FESANGHARY; DAMANGIR, 2007): a

variant of the HS, which models the problem of function minimization based on

way musicians create their songs with optimal harmonies. This approach uses dy-

namic values for both the Harmony Memory Considering Rate (HMRC), which is

responsible for creating new solutions based on previous experience of the music

player, and the Pitch Adjusting Rate (PAR), which is in charge of applying some

disruption to the solution created with HMRC in order to avoid the pitfalls of local

optima. Both parameters are updated at each iteration with the new values within

the range [HMCRmin,HMCRmax] e [PARmin,PARmax], respectively. Concerning PAR

calculation, the bandwidth variable (bandwidth) ρ is used, and its values must be

between [ρmin,ρmax].

� Particle Swarm Optimization (PSO) (RODRIGUES et al., 2015): Any possible solu-

tion is represented as a particle (agent) in a swarm. Each agent has a position that

represents a parameter value and velocity vector in the search space. A fitness value

is associated with each position, and after some iterations, the global best position

is selected as the best solution to the problem.

� Adaptive Inertia Weight Particle Swarm Optimization (AIWPSO)(AIWPSO) (YU;

LIU; LI, 2009): a variant of the PSO, which considers any possible solution as a

particle (agent) in a swarm. Each agent has a position that represents a parameter

value and velocity vector in the search space. A fitness value is associated with each
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position, and after some iterations, the global best position is selected as the best

solution to the problem. The AIWPSO is proposed to balance the global exploration

and local exploitation abilities for PSO. For each iteration, every particle chooses

an appropriate inertia weight along the search space by dynamically adjusting the

inertia weight.

� Bat Algorithm (BA) (YANG; GANDOMI, 2012): is a nature-inspired metaheuristic

optimization algorithm based on the echolocation behavior of bats. Each bat flies

with a random velocity, position, and frequency. Additionally, they can vary the

wavelength and loudness to search for prey/food (best solutions), adjusting the rate

of pulses depending on the proximity of their target.

� Cuckoo Search (CS) (YANG; DEB, 2010): Cuckoo Search (YANG; DEB, 2009, 2010)

employs a combination of the Lévy flight, which may be defined as a bird flight-

inspired random walk over a Markov chain, together with a parasitic behavior of

some cuckoo species. The model follows three basic ideas: i) each cuckoo lays one

egg at a time in randomly chosen nests, ii) the host bird discover the cuckoo’s egg

with a probability pa ∈ [0,1] and either discard the egg or abandon the chest and

build a new one (a new solution is created), and iii) the nests with best eggs will

carry over to the next generations.

� Firefly Algorithm (FA) (YANG, 2010): is derived from the fireflies’ flash attractive-

ness when mating partners and attracting potential preys. The attractiveness of a

firefly is computed by its position related to other fireflies in the swarm, as well as

its brightness is determined by the value of the objective function at that position.

Furthermore, the attractiveness depends on each firefly light absorption coefficient

γ . In order to avoid local optima, the system is exposed to a random perturbation

α , and the best firefly performs a random walk across the search space.

� Backtracking Search Optimization Algorithm (BSA) (CIVICIOGLU, 2013): it is a

simple, effective and fast evolutionary algorithm developed to deal with problems

characterized by slow computation and excessive sensitivity to control parameters.

In a nutshell, it employs crossover and mutation operations together with a random

selection of stored memories to generate a new population of individuals based on

past experiences. BSA requires a proper selection of two parameters: the mixing rate

(mix rate), which controls the number of elements of individuals that will mutate

in the population, as well as the F parameter, which controls the amplitude of the

search-direction matrix.
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Adaptive Differential Evolution (JADE) (ZHANG; SANDERSON, 2009): a differen-

tial evolution-based algorithm that implements the“DE/current-to-p-best”mutation

strategy, which employs only the p-best agents in the mutation process. Additio-

nally, JADE uses an optional archive for historical information, as well as an adaptive

updating in the control parameter. JADE requires the selection of the parameter c,

which stands for the rate of parameter adaptation, and g (greediness), that deter-

mines the greediness of the mutation strategy.

� Differential Evolution Based on Covariance Matrix Learning and Bimodal Distri-

bution Parameter Setting Algorithm (CoBiDE) (WANG et al., 2014): it also a dif-

ferential evolution-based technique that employs a covariance matrix for a better

representation of the system’s coordinates during the crossover process. Additio-

nally, mutation and crossover are controlled using a bimodal distribution to achieve

a good trade-off between exploration and exploitation. The probability of executing

the differential evolution according to the covariance matrix is defined by the para-

meter pb, as well as the proportion of individuals chosen from the current population

to calculate the covariance matrix is denoted by ps.

2.9 Datasets

This section presents a brief description of the datasets imployed in this work.

� MNIST dataset2: it is composed of images of handwritten digits. The original

version contains a training set with 60,000 images from digits ‘0’-‘9’, as well as

a test set with 10,000 images3. Due to the high computational burden for DBM

model selection, we decided to employ the original test set together with a reduced

version of the training set4.

� CalTech 101 Silhouettes Data Set5: it is based on the former Caltech 101 dataset,

and it comprises 9,146 silhouettes of images split between 101 classes with resolution

of 28×28. We have used only the training and test sets, since our optimization model

aims at minimizing the mean squared error (MSE) over the training set.

2http://yann.lecun.com/exdb/mnist/
3The images are originally available in gray scale with resolution of 28×28, but they were reduced to

14×14 images.
4The original training set was reduced to 2% of its former size, which corresponds to 1,200 images.
5https://people.cs.umass.edu/~marlin/data.shtml
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� Semeion Handwritten Digit Dataset6: it is formed by 1,593 images from handwritten

digits ‘0’ - ‘9’ written in two ways: the first time in a normal way (accurately) and

the second time in a fast way (no accuracy). In the end, they were stretched with

resolution of 16×16 in a gray scale of 256 values and then each pixel was binarized.

Figure 2.8 displays some training examples from the above datasets.

(a) (b) (c)

Figure 2.8: Some training examples from (a) MNIST, (b) CalTech 101 Silhouettes
and (c) Semeion datasets.

6https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit



Chapter 3
Temperature-Based Deep Boltzmann

Machines

This chapter presents the content published in the journal Neural Processing Let-

ters (PASSOS; PAPA, 2017c), and it proposes the introduction of the temperature parameter

T into DBMs formulation.

3.1 Introduction

Deep learning techniques have attracted considerable attention in the last years due

to their outstanding results in a number of applications (GOH et al., 2012; DUONG et al.,

2015; SOHN; LEE; YAN, 2015), since such techniques possess an intrinsic ability to learn

different information at each level of a hierarchy of layers (LECUN; BENGIO; HINTON,

2015). Restricted Boltzmann Machines (HINTON, 2012), for instance, are among the most

pursued techniques, even though they are not deep learning-oriented themselves, but by

building blocks composed of stacked RBMs on top of each other one can obtain the so-

called Deep Belief Networks (HINTON; OSINDERO; TEH, 2006a) or the Deep Boltzmann

Machines (SALAKHUTDINOV; HINTON, 2012b), which basically differ from each other by

the way the inner layers interact among themselves.

The Restricted Boltzmann Machine is a probabilistic model that uses a layer of hid-

den units to model the distribution over a set of inputs, thus compounding a generative

stochastic neural network (LAROCHELLE et al., 2012; SCHMIDHUBER, 2015). RBMs were

firstly idealized under the name of “Harmonium” by Smolensky in 1986 (SMOLENSKY,

1986a), and some years later renamed to RBM by Hinton et. al. (HINTON, 2002). Since

then, the scientific community has been putting a lot of effort in order to improve the re-
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sults in a number of application that somehow make use of RBM-based models (HINTON;

SALAKHUTDINOV, 2006, 2011; PAPA et al., 2015b, 2015d; PAPA; SCHEIRER; COX, 2016a;

TOMCZAK; GONCZAREK, 2016).

In a nutshell, the key role in RBMs concerns their learning parameter step, which is

usually carried out by sampling in Markov chains in order to approximate the gradient

of the logarithm of the likelihood concerning the estimated data with respect to the in-

put one. In this context, Li et. al. (LI et al., 2016a) recently highlighted the importance

of a crucial concept in Boltzmann-related distributions: their “temperature”, which has

a main role in the field of statistical mechanics (MENDES et al., 2015), (Beraldo e Silva et

al., 2014), (GADJIEV; PROGULOVA, 2015), idealized by Wolfgang Boltzmann. In fact, a

Maxwell-Boltzmann distribution (GORDON, 2002; SHIM; GATIGNOL, 2010; NIVEN, 2005)

is a probability distribution of particles over various possible energy states without in-

teracting with one another, expect for some very brief collisions, where they exchange

energy. Li et. al. (LI et al., 2016a) demonstrated the temperature influences on the way

RBMs fire neurons, as well as they showed its analogy to the state of particles in a phy-

sical system, where a lower temperature leads to a lower particle activity, but higher

entropy (BEKENSTEIN, 1973), (RRNYI, 1961).

Since DBMs are a natural extension of RBMs and DBNs, we believe the temperature

can also play an important role in these models. In short, the main core of DBMs still

relies on the RBM formulation, which uses the temperature to approximate the distribu-

tion of the data during learning step. Therefore, this work aims at evaluating whether

our suspicion that temperature influences DBMs holds or not. However, as far we are

concerned, the impact of different temperatures during the Markov sampling has never

been considered in Deep Boltzmann Machines. Therefore, the main contributions of this

work are three fold: (i) to foster the scientific literature regarding DBMs, (ii) to evaluate

the impact of temperature during DBM learning phase, and (iii) to evaluate a different

Sigmoid function in the context of DBNs and DBMs. Since the temperature parameter in

the energy formulation can be interpreted as a multiplication of the Sigmoid function by

a scalar number, we also considered the Gompertz curve as an activation function (GOM-

PERTZ, 1825), given that its parameters allow one to map the outputs within [0,1], just

as the regular sigmoid function. Also, we considered Deep Belief Networks for comparison

purposes concerning the task of binary image reconstruction over three public datasets.

The remainder of this chapter is organized as follows. Section 3.2 presents the theo-

retical background related to the proposed temperature-based approach, and Section 3.3
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describes the methodology adopted in this work. The experimental results are discussed

in Section 3.4, and conclusions and future works are stated in Section 3.5.

3.2 Theoretical Background

In this section, we briefly explain the theoretical background related to the proposed

approaches.

3.2.1 Temperature-based Deep Boltzmann Machines

Li et. al. (LI et al., 2016a) showed that a temperature parameter T controls the

sharpness of the logistic-sigmoid function. In order to incorporate the temperature effect

into the RBM context, they introduced this parameter to the joint distribution of the

vectors v and h in Equation 2.2, which can be rewritten as follows:

P(v,h;T ) =
1
Z

e
−E(v,h)

T . (3.1)

As such, when T = 1 the aforementioned equation degenerates to Equation 2.2. Therefore,

the probability of a given sample v given by Equation 2.10 can be rewritten considering

now the temperature:

P(v;T ) =
1
Z ∑

h1,h2

e
−E(v,h1,h2)

T . (3.2)

In addition, Equation 2.7 can be rewritten in order to accommodate the temperature

parameter as follows:

P(h j = 1|v) = φ

(
∑

m
i=1 wi jvi

T

)
. (3.3)

Notice the temperature parameter does not affect the conditional probability of the input

units (Equation 2.6).

In order to apply the very same idea to DBMs, the conditional probabilities over the

two hidden layers given by Equations 2.12 and 2.13 can be derived and expressed using

the following formulation, respectively:

P(h2
z = 1|h1) = φ

(
∑

m2

i=1 w2
izh

1
i

T

)
, (3.4)
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and

P(h1
j = 1|v,h2) = φ

(
∑

m1

i=1 w1
i jvi + ∑

n2

z=1 w2
jzh

2
z

T

)
. (3.5)

3.2.2 Gompertz Function

The Gompertz function is a generalization of the well-known logistic function, where

its growth is slowest at the beginning and at the end, and it gradually increases according

to a given parameter. Such behavior can not be observed in the standard logistic function,

in which both sides are approached by the curve symmetrically. The Gompertz function

can be formulated as follows:

f (t) = ae−be−ct
, (3.6)

where a controls the bounds of the function such that f (t) ∈ [0,a], b and c are positive

numbers such that b sets the displacement along the x-axis (translates the graph to the

left or right) and c sets the growth rate (y scaling). Finally, t stands for a time step.

Figure 3.1 depicts the behavior of the function concerning its parameters.

3.3 Methodology

In this section, we present the methodology employed to evaluate the proposed ap-

proach, as well the datasets and the experimental setup.

3.3.1 Datasets

We propose to evaluate the behavior of DBMs under different temperatures in the con-

text of binary image reconstruction using three public datasets, i.e., MNIST, CalTech 101

Silhouettes Data Set, and Semeion Handwritten Digit Data Set, presented in Section 2.9.

3.3.2 Experimental Setup

We employed a 3-layered architecture for all datasets as follows: i-500-500-2,000,

where i stands for the number of pixels used as input for each dataset, i.e., 196 (14×14

images), 784 (28×28 images) and 256 (16×16 images) considering MNIST, Caltech 101
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Figure 3.1: Gompertz curves variating theirs parameters for a, b and c, respectively.
Note the remaining parameters are fixed to 1.

Silhouettes and Semeion Handwritten Digit datasets, respectively. Therefore, we have a

first and a second hidden layers with 500 neurons each, followed by a third hidden layer

with 2,000 neurons1. The remaining parameters used during the learning steps were fixed

for each layer as follows: η = 0.1 (learning rate), λ = 0.1 (weight decay), α = 0.00001

(penalty parameter). In addition, we compared DBMs against DBNs using the very same

configuration, i.e., architecture and parameters2.

In order to provide a statistical analysis by means of the Wilcoxon signed-rank test

with significance of 0.05 (WILCOXON, 1945), we conducted a cross-validation procedure

with 20 runnings. In regard to the temperature, we considered a set of values within the

range T ∈ {0.1,0.2,0.5,0.8,1.0,1.2,1.5,2.0} for the sake of comparison purposes. Additi-

onally, we employed the Gompertz curve for both regular (i.e., T = 1.0) DBN and DBM,

being its parameters b and c fine-tuned by means of the well-known Particle Swarm Op-

timization (PSO) (KENNEDY, 2011). Since a controls the bounds of the function, and we

are dealing with a binary reconstruction problem, we set a = 1.

1Similar architectures have been commonly employed in the literature (LI et al., 2016a), (HINTON;

OSINDERO; TEH, 2006a), (SALAKHUTDINOV; HINTON, 2009b), (WICHT; FISCHER; HENNEBERT, 2016) and
(SALAKHUTDINOV; HINTON, 2009a).

2Notice all parameters and architectures have been empirically chosen (PAPA; SCHEIRER; COX, 2016a).
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Finally, we employed 10 epochs for DBM and DBN learning weights procedure with

mini-batches of size 20. In order to provide a more precise experimental validation, we

trained both DBMs and DBNs with two different algorithms34: Contrastive Divergence

(CD) (HINTON, 2002) and Persistent Contrastive Divergence (PCD) (TIELEMAN, 2008a).

3.4 Experimental Results

In this section, we present the experimental results concerning the proposed temperature-

based Deep Boltzmann Machine over three public datasets aiming at the task of binary

image reconstruction. Table 3.1 presents the results considering Semeion Handwritten

Digit dataset, in which the values in bold stand for the most accurate ones by means of

the Wilcoxon signed-rank test. Notice we considered the mean squared error (MSE) over

the test set as the measure for comparison purposes.

Table 3.1: Average MSE over the test set considering Semeion Handwritten Digit
dataset.

0.1 0.2 0.5 0.8 1.0 1.2 1.5 2.0 Gompertz
DBM-CD 0.18518 0.18503 0.18504 0.19087 0.19718 0.20432 0.21495 0.21591 0.26833

DBM-PCD 0.18527 0.18606 0.18655 0.19154 0.19735 0.20511 0.21423 0.21532 0.27248
DBN-CD 0.21613 0.21977 0.21814 0.21465 0.21352 0.21413 0.21725 0.22455 0.22142

DBN-PCD 0.21051 0.21155 0.21660 0.21104 0.21012 0.21031 0.21080 0.21431 0.21617

One can observe the best results were obtained by DBM when using T ∈ {0.1,0.2,0.5}.
Also, DBN-CD benefit from lower temperatures, thus confirming the results obtained by

Lin et al. (LI et al., 2016a), i.e., the lower the temperature the higher the entropy. In

short, we can learn more information at low temperatures, thus obtaining better results

(obviously, we are constrained to a minimum bound concerning the temperature). Accor-

ding to Ranzato et al. (RANZATO; BOUREAU; CUN, 2008), sparsity in the neuron’s activity

favors the power of generalization of a network, which is somehow related to dropping

neurons out in order to avoid overfitting (SRIVASTAVA et al., 2014b).

We have observed the lower the temperature values, the higher the probability of

turning “on” hidden units (Equation 3.5), which forces DBM to push down the weights

(W) looking at sparsity. When we push the weights down, we also decrease the probability

of turning on the hidden units, i.e., we try to deactivate them, thus forcing the network

3One sampling iteration was used for all learning algorithms.
4We did not fine-tune parameters using back-propagation, since the main goal of this chapter is to

show the temperature does affect the behavior of DBMs.
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to learn by other ways. We observed the process of pushing the weights down to be more

“radical” at lower temperatures. Additionally, the Gompertz function did not achieve

good results for DBMs, but close ones considering DBNs.

Figure 3.2 displays the values of the connection weights between the input and the

first hidden layer. Since we used an architecture with 500 hidden neurons in the first layer,

we chose 225 neurons at random to display what sort of information they have learned.

According to Table I, some of the better results were obtained using T = 0.5 (Figure 3.2b),

with T = 1 (Figure 3.2c) achieving close results either, which can be observed in the images

either. Notice we can observe some digits at these images (e.g., highlighted regions in

Figure 3.2b), while they are scarce in others. Additionally, DBNs seemed to benefit from

lower temperatures, but their results were inferior to the ones obtained by DBMs. Once

again, the Gompertz function did not obtain suitable results concerning DBMs.

(a) (b) (c) (d)

Figure 3.2: Effect of different temperatures by means of DBM-PCD considering
Semeion Handwritten Digit dataset with respect to the connection weights of the
first hidden layer for: (a) T = 0.1, (b) T = 0.5, (c) T = 1.0, (d) T = 2.0.

Table 3.2 displays the MSE results over MNIST dataset, where the best results were

obtained with T = 0.2. Once again, the results confirmed the hypothesis that better

results can be obtained at lower temperatures, probably due to the lower interaction

between visible and hidden units, which may imply in a slower convergence, but avoiding

local optima (learning in DBMs is essentially an optimization problem, where we aim

at minimizing the energy of each training sample in order to increase its probability -

Equations 2.9 and 2.10). Figure 3.3 displays the connection weights between the input

and the first hidden layer concerning DBM-PCD, where the highlighted region depicts

some important information learned from the hidden neurons. Notice the neurons do not

seem to contribute a lot with respect to different information learned from each other at

higher temperatures (Figure 3.3d), since most of them have similar information encoded.

Figures 3.4 and 3.5 depict the evolution of two distinct measures to monitor the lear-

ning process of a DBM at the first layer over the Semeion Handwritten Digits and MNIST

datasets, respectively. Figures 3.4a and 3.5a are the logarithms of the pseudo-likelihood
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Table 3.2: Average MSE over the test set considering MNIST dataset.

0.1 0.2 0.5 0.8 1.0 1.2 1.5 2.0 Gompertz
DBM-CD 0.08298 0.08164 0.08676 0.08868 0.09109 0.09230 0.09347 0.09338 0.10257

DBM-PCD 0.08238 0.08280 0.08650 0.08866 0.09105 0.09227 0.09352 0.09335 0.10036
DBN-CD 0.08993 0.09432 0.09259 0.09012 0.08933 0.08924 0.08966 0.09110 0.10629

DBN-PCD 0.08784 0.08811 0.08919 0.08874 0.08833 0.08820 0.08838 0.08994 0.11112

(a) (b) (c) (d)

Figure 3.3: Effect of different temperatures by means of DBM-PCD considering
MNIST dataset with respect to the connection weights of the first hidden layer for:
(a) T = 0.1, (b) T = 0.5, (c) T = 1.0, (d) T = 2.0.

(PL) of Equation 3.2, where the larger its value, the more similar the reconstructed data

is concerning its original version. Figures 3.4b and 3.5b concern the mean squared error of

the reconstruction data over the training set, where the lower values are the best ones. One

can observe Gompertz presents an oscillatory behavior regarding PL values over Semeion

dataset, while the lowest errors are achieved with the values T ∈ {0.2,0.5,0.8}. Regarding

MNIST dataset, lower temperatures obtained the largest PL values (e.g. T = 0.1 and

T = 0.5) and the lowest errors (T = 0.1 and T = 0.2) in Figure 3.5.
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Figure 3.4: Evolution of the: (a) logarithm of the pseudo-likelihood, and (b) mean
squared error by means of DBM-PCD considering Semeion Handwritten Digit da-
taset.

Table 3.3 presents the MSE results obtained over Caltech 101 Silhouettes dataset,

where the lower temperatures obtained the best results, but being statistically similar

to other temperatures (except for T = 2.0). In this case, both DBM and DBN obtained
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Figure 3.5: Evolution of the: (a) logarithm of the pseudo-likelihood and (b) mean
squared error by means of DBM-PCD considering MNIST dataset.

similar results. Since this dataset comprises a number of different objects and classes,

it is more complicated to figure out some shape with respect to the neurons’ activity in

Figure 3.6. Curiously, the neurons’ response at the lower temperatures (Figure 3.6a) led

to a different behavior that has been observed in the previous datasets, since the more

“active” neurons with respect to different information learned were the ones obtained with

T = 2 at the training step. We believe such behavior is due to the number of iterations

for learning used in this chapter, which might not be enough for convergence purposes at

lower temperatures, since this dataset poses a greater challenge than the others (it has a

great intra-class variability).

We can also observe the best results were obtained by Gompertz function, which were

much better than the standard Sigmoid ones. The Gompertz function is not symmetric,

i.e., in the standard Logistic-Sigmoid function, we can obtain a probability equal or greater

than 50% to activate a given neuron when the input to the function is a positive value,

and a probability smaller then 50% when the input value is negative. However, such

behavior can not be observed in the Gompertz function, where most of its coverage area

(co-domain) is located above the 50% of probability of neuron activation, i.e., we can

obtain values greater then 50% with negative input values (domain) as well. Therefore,

this means that Gompertz function also forces the weights to be pushed down, similarly

to lower temperature values.

3.5 Conclusions and Future Works

In this work, we dealt with the problem of different temperatures at the DBM lear-

ning step. Inspired by a very recent work that proposed the Temperature-based Restricted
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Table 3.3: Average MSE over the test set considering Caltech 101 Silhouettes da-
taset.

0.1 0.2 0.5 0.8 1.0 1.2 1.5 2.0 Gompertz
DBM-CD 0.16052 0.16133 0.16392 0.16383 0.16365 0.16243 0.16203 0.16025 0.16928

DBM-PCD 0.16077 0.16152 0.16364 0.16342 0.16261 0.16271 0.16197 0.16033 0.16791
DBN-CD 0.16061 0.16107 0.16269 0.16301 0.16320 0.16310 0.16320 0.16282 0.14932

DBN-PCD 0.16062 0.16085 0.16146 0.16158 0.16158 0.16190 0.16176 0.16267 0.16104

(a) (b) (c) (d)

Figure 3.6: Effect of different temperatures by means of DBM-PCD considering
Caltech 101 Silhouettes dataset with respect to the connection weights of the first
hidden layer for: (a) T = 0.1, (b) T = 0.5, (c) T = 1.0, (d) T = 2.0..

Boltzmann Machines (LI et al., 2016a), we decided to evaluate the influence of the tem-

perature when learning with Deep Boltzmann Machines aiming at the task of binary

image reconstruction. Our results confirm the hypothesis raised by Li et al. (LI et al.,

2016a), where the lower the temperature, the more generalized is the network for some

applications. Thus, more accurate results can be obtained.

We observed the network pushes the weights down at lower temperatures in order

to favor the sparsity, since the probability of tuning on hidden units is greater at lower

temperatures. Therefore, by using proper temperature values, one can obtain a learning

algorithm that can converge faster, thus saving computational resources and learning more

accurate features. On the other hand, there is a need to fine-tune this hyper-parameter,

which is application-dependent.

In regard to future works, we aim to propose an adaptive temperature, which can

be linearly increased/decreased along the iterations in order to speed up the convergence

process. Additionally, we will model the problem of learning proper temperature values

by means of meta-heuristic-based optimization techniques.
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Figure 3.7: Evolution of log pseudo-likelihood and mean squared error for (a) and
(b), respectively, by means of DBM-PCD considering Caltech 101 Silhouettes da-
taset.



Chapter 4
Deep Boltzmann Machines Using Adaptive

Temperatures

Chapter 4 is continuity of the work started in Chapter 3. Here, one can observe the

behavior of DBMs under adaptive temperatures. The work was presented in the 17th

International Conference on Computer Analysis of Images and Patterns (PASSOS; COSTA;

PAPA, 2017)

4.1 Introduction

In the last years, deep learning-driven techniques have been the foremost feature lear-

ner tools for a number of applications, that range from object detection to speech recogni-

tion, just to name a few. Such techniques are based on the hierarchical-oriented mechanism

of the human brain, which learns different levels of information at each processing step.

Convolutional Neural Networks (LECUN et al., 1998), Deep Belief Networks (HINTON; OSIN-

DERO; TEH, 2006a), and Deep Boltzmann Machines (SALAKHUTDINOV; HINTON, 2012a)

appear to be the most used techniques concerning the deep learning paradigm.

Deep Boltzmann Machines and Deep Belief Networks extend the well-known Restric-

ted Boltzmann Machines to deeper representations, since they are composed of RBMs

stacked on top of each other. In a nutshell, RBMs are stochastic neural networks compo-

sed of an input and a latent (i.e., hidden) layer, being the latter one in charge of learning

the probability distribution of the input data. Roughly speaking, DBNs and DBMs differ

in the way the upper layers interact, thus leading to slightly different formulations.

The main problem related to deep architectures concerns the large amount of data

that is required for learning purposes; otherwise, the technique may overfit the data. As
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a consequence, a number of works have focused on mitigating such drawback, such as

regularizing techniques (WAN et al., 2013; SRIVASTAVA et al., 2014b) and parameter fine-

tuning (PAPA et al., 2015b; PAPA; ROSA; YANG, 2016; PAPA et al., 2015d; ROSA et al., 2015;

PAPA; SCHEIRER; COX, 2016a). An interesting approach related to RBM-based techniques

concerns working on the “stability” of the convergence process to prevent overfitting.

Recently, Li et al. (LI et al., 2016b) studied the influence of different temperatures during

DBN learning procedure, and later on Passos and Papa (PASSOS; PAPA, 2017c) conducted

a similar work, tough in the context of Deep Boltzmann Machines. Both studies agreed

that temperature helps preventing overfitting, where the lower the temperature values,

the better the results. The aforementioned works concluded that low temperature values

lead to higher sparsity levels, thus contributing to the regularization of the network. As

a matter of fact, sparsity is somehow analogous to dropping out neurons, i.e., one can

switch neurons “on” or “off”, forcing the network to adapt under such circumstances.

Basically, the problem of learning weights in the RBM training procedure aims at

minimizing the energy of each training sample, which leads us to increasing its probabi-

lity. Therefore, the training procedure of RBMs and related approaches is nothing more

than an optimization process. In this work, we borrow the idea from meta-heuristic-based

optimization processes, which aim at finding the best trade-off between exploitation and

exploration. The first term refers to improving the solutions around the neighborhood of

a given sample (local search), meanwhile exploration focuses on improving the solution

in far away locations (e.g., global search). At the very beginning of the optimization pro-

cess, meta-heuristic techniques usually converge faster (high exploration), thus decreasing

the step-size (high exploitation) along the iterations in order to avoid overshooting the

global/near-global optimum.

Therefore, we propose to use an adaptive temperature-based schema, where the tem-

perature (step-size) decreases along the training procedure, thus simulating the behaviour

of exploitation and exploration found out in many meta-heuristic techniques. We showed

the proposed approach can outperform temperature-fixed DBNs and DBMs in the context

of binary image reconstruction for some situations, or it can be at least competitive to

them. Additionally, the adaptive-driven approach does not need a fine-tuning step since

it requires the minimum and maximum temperature values only, which are considerably

less sensitive and easy to set than the temperature value itself.

In this chapter, we also considered two different formulations to control the tempera-

ture values. The remainder of this chapter is organized as follows. Section 4.2 presents
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the temperature-based DBMs and the approaches used in this work. The methodology

and experiments are presented in Sections 4.3 and 4.4, respectively, and Section 4.5 states

conclusions and future works.

4.2 Temperature-based Deep Boltzmann Machines

The theoretical background regarding temperature-based DBM is presented in Sec-

tion 3.2.1. The following section presents the adaptive temperature approach.

4.2.1 Adaptive Temperature-based Model

In this chapter, we study the influence of two different functions during the conver-

gence process:

� f1(t) = L− t
tmax

(L−U); and

� f2(t) = Lexp((log
(U

L

)
/tmax)t).

In the above functions, L = 0.1 and U = 2.0 stand for the lower and upper temperature

boundaries, respectively. Also, tmax = 200 denotes the maximum number of iterations

concerning DBN/DBM learning procedure. Figures 4.1a and 4.1b display the behaviour

of functions f1 and f2, respectively. In a nutshell, f1 stands for a bounded linear function,

meanwhile f2 represents a bounded exponential function. The reason for using functions

bounded in [0.1,2.0] concerns the fact that lower temperatures lead to better results (LI

et al., 2016b; PASSOS; PAPA, 2017c).
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Figure 4.1: Function F1 and F2 for (a) and (b), respectively. Used to update tempe-
rature values along the convergence process.
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Additionally, we used 100 iterations with step-size of 10 for convergence purposes

(i.e., the temperature changes every 10 iterations). Although such number may not be

enough to achieve state-of-the-art results, we would like to emphasize we are interested

into showing the proposed approach can outperform temperature-fixed ones even using a

small number of iterations.

4.3 Methodology

In this section, we present the methodology employed to evaluate the proposed ap-

proach, as well the datasets and the experimental setup. Notice the approach used in this

chapter is based on the one employed by Passos et al. (PASSOS; PAPA, 2017c).

4.3.1 Datasets

We propose to evaluate the behavior of DBNs and DBMs under adaptive temperatures

in the context of binary image reconstruction using two public datasets, i.e., MNIST and

CalTech 101 Silhouettes Data Set, presented in Section 2.9.

4.3.2 Experimental Setup

We employed a 3-layered architecture for all datasets as follows: I-500-500-2,000,

where I stands for the number of pixels used as input for each dataset, i.e., 196 (14×
14 images) and 784 (28× 28 images) considering MNIST and Caltech 101 Silhouettes

datasets, respectively. Therefore, we have a first and a second hidden layers with 500

neurons each, followed by a third hidden layer with 2,000 neurons1. The remaining

parameters used during the learning steps were chosen empirically and fixed for each

layer as follows: η = 0.1 (learning rate), λ = 0.1 (weight decay), α = 0.00001 (penalty

parameter).

In order to provide a statistical analysis by means of the Wilcoxon signed-rank test

with significance of 0.05 (WILCOXON, 1945), we conducted a cross-validation procedure

with 20 runnings. In regard to the fixed-temperature experiment, we considered a set of

values within the range T ∈ {0.1,0.2,0.5,0.8,1.0,1.2,1.5,2.0} for the sake of comparison

purposes.

1Since this architecture has been commonly employed in several works in the literature, we opted to
employ it in our work either.
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Finally, we employed 100 epochs for DBM and DBN learning weights procedure with

mini-batches of size 20. In order to provide a more precise experimental validation, we

trained both DBMs and DBNs with two different algorithms2: Contrastive Divergence

(CD) (HINTON; OSINDERO; TEH, 2006a) and Persistent Contrastive Divergence (PCD) (TI-

ELEMAN, 2008a). Also, in order to evaluate the techniques considered in this work, we

computed the mean square error (MSE) error over the training set. Therefore, the smaller

the MSE, the better the technique is.

4.4 Experiments

This section presents the experimental results concerning DBN and DBM optimiza-

tion by means of adaptive temperatures. Two different adaptive functions, i.e, f1 and f2,

as well as eight constant temperatures were used for the baseline approach (i.e., fixed-size

temperature): 0.1, 0.2, 0.5, 0.8, 1.0, 1.2, 1.5 and 2.0. Furthermore, DBM results were

compared against DBN using two different learning algorithms, i.e., Contrastive Diver-

gence and Persistent Contrastive Divergence in a three-layered model. Table 4.1 presents

the average MSE results for DBMs and DBNs over Caltech 101 Silhouettes datasets. The

most accurate results according to the Wilcoxon signed rank test are in bold.

Table 4.1: Average DBM/DBN MSE over the test set considering Caltech 101
Silhouettes dataset with 200 iterations.

0.1 0.2 0.5 0.8 1.0 1.2 1.5 2.0 Linear Curve
DBM-CD 0.16048 0.16048 0.16048 0.16049 0.16048 0.16049 0.16049 0.15983 0.15822 0.16053

DBM-PCD 0.16049 0.16049 0.16050 0.16048 0.16049 0.16048 0.16049 0.15983 0.15929 0.16039

DBN-CD 0.16049 0.16050 0.16049 0.16050 0.16049 0.16058 0.16249 0.17040 0.15822 0.16523
DBN-PCD 0.16048 0.16049 0.16049 0.16049 0.16048 0.16049 0.16081 0.16120 0.15929 0.16321

Clearly, the best results were obtained using the linear adaptive function for both

DBMs and DBNs. A closer look may suggest that adaptive temperature optimization

works well for challenging datasets, such as Caltech 101 Silhouettes. Also, one can observe

that both DBMs and DBNs obtained pretty much similar results, which can be explained

by the fact we are not fine-tuning DBMs with the mean-field learning process. However,

it is beyond the scope of this work to show that DBMs may be more accurate than DBNs,

since we are interested to show the robustness in using adaptive temperatures for both

models.

Table 4.2 presents the behavior of adaptive temperatures concerning DBMs and DBNs

2One sampling iteration was used for all learning algorithms.
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considering the MNIST dataset. Despite the adaptive linear function did not achieve the

best results according to Wilcoxon signed-rank test, the difference between fixed- and

adaptive-temperature is pretty much irrelevant. With respect to DBNs, both models

evaluated in this work, i.e., fixed and adaptive temperatures, obtained quite close results.

Additionally, in regard to DBMs, one can observe the best results were obtained with

smaller temperatures, as discussed by Passos et al. (PASSOS; PAPA, 2017c). In this case,

it is expected that adaptive models will not outperform fixed ones, since the temperature

values in these dynamic approaches increase along the iterations.

Table 4.2: Average DBM/DBN MSE over the test set considering MNIST dataset
with 200 iterations.

0.1 0.2 0.5 0.8 1.0 1.2 1.5 2.0 Linear Curve
DBM-CD 0.08642 0.08642 0.08674 0.08745 0.08753 0.08750 0.08751 0.08752 0.08747 0.08751

DBM-PCD 0.08674 0.08659 0.08681 0.08744 0.08752 0.08751 0.08750 0.08752 0.08747 0.08751

DBN-CD 0.08760 0.08771 0.08763 0.08752 0.08751 0.08751 0.08751 0.08749 0.08752 0.08775
DBN-PCD 0.08760 0.08769 0.08762 0.08751 0.08751 0.08751 0.08750 0.08751 0.08752 0.08775

We performed an extra round of experiments to analyze the impact of adaptive tem-

peratures during the convergence process. For comparison purposes, we considered both

the temperature value and learning algorithm that achieved the best results concerning

the fixed-temperature approach. Figure 4.2 depicts the MSE of the first layer during the

learning process across the iterations for both DBMs and DBNs considering the Caltech

101 Silhouettes dataset. Therefore, we compared DBM-CD with T = 2.0 against the pro-

posed approach in Figure 4.2a, as well as we compared DBN-PCD with T = 1.0 against

the proposed approach in Figure 4.2b.

Clearly, one can observe the adaptive temperatures converged faster during the first

50 iterations, and for DBN (Figure 4.2b) they did not get stuck in local optima, as one can

observe in the experiment with the fixed temperature, which stabilized after 75 iterations.

Also, it seems there is no difference in using the linear or exponential function to update

the temperature values considering DBMs, while the exponential model seemed to fit

better for DBNs, but for a very small difference.

Figure 4.3 shows the very same procedure for MNIST dataset. Once again, the

fast convergence of the proposed approaches can be evidenced. Notice that adaptive-

temperatures achieve by far the lower MSE since the beginning, but the model starts to

“unlearn” and moves back to a point where the MSE is higher than the one achieved by

the fixed-temperature after a long period of training.

Roughly speaking, the proposed approaches can benefit in situations where higher
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Figure 4.2: MSE during the learning step of the first layer considering Caltech 101
Silhouettes dataset for (a) DBM and (b) DBN.
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Figure 4.3: MSE during the learning step of the first layer considering MNIST
dataset for (a) DBM and (b) DBN.

temperatures lead to the better results. However, since the adaptive model always incre-

ases the temperature, one may not get suitable results at the very end of the convergence

process, which means one can halt the process much earlier.

4.5 Conclusions

In this work, we dealt with the problem of hastening the DBM learning step using

adaptive temperatures, as well as we also evaluated them in the context of DBNs. Recent

works presented the influence of different temperatures during DBN (LI et al., 2016b) and

DBM (PASSOS; PAPA, 2017c) learning process, which introduces an additional parameter

to the model. Adaptive temperatures exempt the need for the aforementioned extra

parameter, thus becoming easier to handle those models.

Furthermore, the experimental results over two public well-known datasets showed the

technique is at least competitive to optimize DBMs and DBNs, outperforming temperature-
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fixed DBNs and DBMs in one of the cases, but being much faster for convergence at the

early iterations in both datasets. In regard to future works, we aim to validate the pro-

posed approach to reconstruct gray-scale images either.



Chapter 5
A Metaheuristic-Driven Approach to

Fine-Tune Deep Boltzmann Machines

This chapter presents a paper under revision in the journal Applied Soft Computing.

The scope of the work is to enhance the robustness of DBMs using a proper selection of

its meta-parameters. For such task, eight distinct meta-heuristic optimization techniques

are compared, using both classical and state-of-art models.

5.1 Introduction

Restricted Boltzmann Machines (RBMs) are probabilistic models that employ a layer

of hidden binary units, also known as latent units, to model the distribution of the input

data (visible layer). Such models have been applied to deal with problems involving ima-

ges (HINTON; OSINDERO; TEH, 2006b; LAROCHELLE et al., 2007), text (WELLING; ROSEN-

ZVI; HINTON, 2004; SALAKHUTDINOV; HINTON, 2009b), and detection of malicious con-

tent (FIORE et al., 2013a; SILVA et al., 2016), just to name a few. Moreover, RBMs are also

used for building deep learning architectures, such as Deep Belief Networks (DBNs) (HIN-

TON; OSINDERO; TEH, 2006b) and Deep Boltzmann Machine (DBM) (SALAKHUTDINOV;

HINTON, 2009a), where the main difference is related to the interaction among layers of

RBMs.

Deep Learning techniques have been extensively used to deal with tasks related to

signal processing and computer vision, such as feature selection (RUANGKANOKMAS;

ACHALAKUL; AKKARAJITSAKUL, 2016) (SOHN; LEE; YAN, 2015), face (TAIGMAN et al.,

2014) (DUONG et al., 2015) and image reconstruction (DONG et al., 2014), multimodal le-

arning (SRIVASTAVA; SALAKHUTDINOV, 2012), and topic modeling (HINTON; SALAKHUT-
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DINOV, 2009), among others. Despite the outstanding results obtained by these models,

an intrinsic constraint associated with deep architectures is related to their complexity,

which can become an insurmountable problem due to the hundreds of hyperparameters

one must deal with. The present work focuses on this problem.

Some works have recently modeled the issue of hyperparameter fine-tuning as a me-

taheuristic optimization task. Such techniques show up as an interesting alternative for

such a task since they do not require computing derivatives of hundreds of parameters

as usually happen with standard optimization techniques, which is not recommended

for high-dimensional spaces. Papa et. al. (PAPA et al., 2015b, 2015d; PAPA; SCHEIRER;

COX, 2016b; ROSA et al., 2016a, 2015; RODRIGUES; YANG; PAPA, 2016; PASSOS; PAPA,

2017b) are among the first to introduce metaheuristic-driven optimization in the context

of RBMs, DBNs, Infinity Restricted Boltzmann Machines (iRBMs), and Convolutional

Neural Networks fine-tuning, obtaining more precise results than the ones achieved using

some well-known optimization libraries in the literature.

However, as far as we are concerned, metaheuristic approaches have never been used

for the task of DBM hyperparameter optimization, which turns out to be one of the

main contributions of this paper. Therefore, in this work, we considered DBM fine-tuning

using seven techniques: Improved Harmonic-Search (IHS) (MAHDAVI; FESANGHARY; DA-

MANGIR, 2007), Adaptive Inertia Weight Particle Swarm Optimization (AIWPSO) (YU;

LIU; LI, 2009), Cuckoo Search (CS) (MAHDAVI; FESANGHARY; DAMANGIR, 2007) (YANG;

DEB, 2009), Firefly Algorithm (FA) (YANG, 2010), Backtracking Search Optimization Al-

gorithm (BSA) (CIVICIOGLU, 2013), Adaptive Differential Evolution (JADE) (ZHANG;

SANDERSON, 2009), and the Differential Evolution Based on Covariance Matrix Learning

and Bimodal Distribution Parameter Setting Algorithm (CoBiDE) (WANG et al., 2014).

Furthermore, all techniques are compared with a random search for experimental purposes.

The application addressed in this paper concerns the task of binary image reconstruction,

and for that purpose, we considered three public datasets.

In a nutshell, the main contribution of this paper is to introduce metaheuristic op-

timization to the context of DBM hyperparameter fine-tuning, as well as to foster the

research towards such area. Additionally, we provided an extensive experimental evalua-

tion with distinct learning algorithms over a different number of layers. As far as we are

concerned, we have not observed any study with such level of details. The remainder of

this paper is presented as follows. Section 5.2 introduces the main foundations related

to the metaheuristic optimization techniques employed in this work. Sections 5.3 and 5.4
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present the methodology and experiments, respectively, and Section 5.5 states conclusions

and future works.

5.2 DBM Fine-Tuning as an Optimization Problem

In general, Restricted Boltzmann Machines demands a proper selection of four main

parameters: number of hidden units n, the learning rate η , the weight decay λ , and the

momentum ϕ . Since Deep Boltzmann Machines stack RBMs on top of each other, if one

has L layers, then each optimization encodes 4L variables to be optimized. However, as

the training procedure of DBMs are greedy-wise (we are not considering mean-field-based

learning in this work), which means each layer is trained independently, only 4 variables

are optimized per layer.

In short, the idea is to initialize all optimization techniques at random, and them the

algorithm takes place. The following ranges were considered in this work parameters1:

η ∈ [0.1,0.9], n ∈ [5,100], ϕ ∈ [0.00001,0.01] and λ ∈ [0.1,0.9]. Aiming to fulfill the re-

quirements of any optimization technique, one shall design a fitness function to guide the

search into the best solutions. For such purpose, the mean squared error (MSE) over the

training set was considered for the task of binary image reconstruction as the fitness func-

tion. Therefore, we adopted the very same methodology used by (PAPA; SCHEIRER; COX,

2016b) to allow a fair comparison against the works. Figure 7.3 depicts the optimization

model employed in this paper. In short, the approach proposed in this paper models the

whole set of 4L decision variables as being an optimization agent.

Figure 5.2 presents an overall idea of the pipeline used in this work to perform DBM

hyperparameter fine-tuning. Roughly speaking, the optimization technique selects the set

of hyperparameters that minimize the MSE over the training set considering a dataset

of binary images as an input to the model. After learning the hyperparameters, one can

proceed to the reconstruction step concerning the testing images, whose MSE is the one

used to finally evaluate the metaheuristic techniques considered in this work.

1The ranges used for each parameter were empirically selected based on values commonly adopted in
the literature (PAPA et al., 2017a; ROSA et al., 2016a; PAPA et al., 2015b; RODRIGUES; YANG; PAPA, 2016;
PASSOS; PAPA, 2017b)
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Figure 5.1: Proposed approach to encode the decision variables of each optimization
agent.

Training set

      DBM

      learning

hyperparameters

Learned model

      Testing set

reconstructed images

Figure 5.2: Proposed approach to encode the decision variables of each optimization
agent.

5.2.1 Optimization Techniques

This work employs seven metaheuristic techniques to the task of DBM fine-tuning,

i.e., IHS, AIWPSO, CS, FA, BSA, JADE, and CoBiDE, presented in Section 2.8.1.
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5.3 Methodology

In this section, we describe the datasets and the experimental setup employed in this

work.

5.3.1 Datasets

We validate DBM fine-tuning in the task of binary image reconstruction over three

public datasets, i.e., MNIST, CalTech 101 Silhouettes Data Set, and Semeion Handwritten

Digit Data Set, presented in Section 2.9.

5.3.2 Parameter Setting-up

One of the main shortcoming in using RBM-based models, such as DBM and DBN,

concerns their fine-tuning hyperparameter task, which aims at selecting a suitable set

of parameters in such a way that the reconstruction error is minimized. In this work,

we considered IHS, FA, CS, AIWPSO, BSA, JADE, and the CoBiDE against RS for

DBM hyperparameter fine-tuning. We also evaluated the robustness of the proposed

approach using three distinct DBN and DBM models: one layer (1L), two layers (2L) and

three layers (3L). Finally, Table 6.1 presents the parameters used for each optimization

technique2, where 5 agents (initial solutions) were used for all optimization techniques

during 50 iterations for convergence 3.

Table 5.1: Parameter configuration.

Technique Parameters

IHS HMCR = 0.7, PARMIN = 0.1
PARMAX = 0.7, ρMIN = 1

ρMAX = 10
AIWPSO c1 = 1.7, c2 = 1.7

CS α = 0.1, αMIN = 0.5, αMAX = 1
p = 0.25, pMIN = 0.05, pMAX = 0.5

FA γ = 1, β = 1, α = 0.2
BSA mix rate = 1.0, F = 3

JADE c = 0.1, g = 0.05
CoBiDE pb = 0.4, ps = 0.5

2Parameters were empirically selected based on each technique author’s suggestions, as well as the
values commonly adopted in the literature (PAPA et al., 2017a; ROSA et al., 2016a; PAPA et al., 2015b;
RODRIGUES; YANG; PAPA, 2016; PASSOS; PAPA, 2017b)

3The selected number of agents and iterations for convergence were empirically chosen based on values
commonly adopted in the literature (PAPA et al., 2017a; ROSA et al., 2016a; PAPA et al., 2015b).
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We conducted a cross-validation approach with 20 runnings, 10 iterations for the lear-

ning procedure of each RBM, and mini-batches of size 20. In addition, we also considered

two learning algorithms: Contrastive Divergence (CD) (HINTON, 2002) and Persistent

Contrastive Divergence (PCD) (TIELEMAN, 2008b). Finally, the Wilcoxon signed-rank

test (WILCOXON, 1945) with significance of 0.05 was used for statistical validation pur-

poses.

Finally, the codes used to reproduce the experiments of the paper are available on

GitHub4567. The experiments were conducted using an Ubuntu 16.04 Linux machine

with 64Gb of RAM running an 2x Intel Xeon Bronze 3106 with a frequency of 1.70 GHz.

All the coding was built in C.

5.4 Experiments

In this section, we present the experimental results concerning DBM and DBN hy-

perparameter optimization on the task of binary image reconstruction. Both techniques

were compared using two different learning algorithms, i.e. Contrastive Divergence and

Persistent Contrastive Divergence. Also, seven optimization methods were employed. Ad-

ditionally, three distinct models used for comparison purposes: one layer (1L), two layers

(2L), and three (3L) layers.

5.4.1 Experimental Results

Tables 5.2 presents the average values of the minimum squared error over the MNIST

dataset, being the values in bold the best results considering the Wilcoxon signed-rank

test. One can observe the metaheuristic techniques obtained the best results, with special

attention to IHS, JADE, and CoBiDE for both DBN and DBM models. Also, one can

not figure a considerable difference between shallow and deep models, since we limited

the number of iterations for convergence to 10, as well as we did not employ fine-tuning

as a final step for DBN and DBM connection weights. The main reasons for limiting the

number of iterations are related to time constraints, as well as the convergence process

itself. As a matter of fact, if one has unlimited resources in terms of computational load, a

standard random search may obtain results as good as the ones obtained by metaheuristic

4LibOPF: https://github.com/jppbsi/LibOPF
5LibDEEP: https://github.com/jppbsi/LibDEEP
6LibDEV: https://github.com/jppbsi/LibDEV
7LibOPT (PAPA et al., 2017b): https://github.com/jppbsi/LibOPT
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techniques, since they will have enough time for convergence. However, we would like to

emphasize that DBM hyperparameter fine-tuning is quite useful when time is limited and

a serious constraint.

Table 5.2: Average MSE values considering MNIST dataset.

1L 2L 3L
DBN DBM DBN DBM DBN DBM

CD PCD CD PCD CD PCD CD PCD CD PCD CD PCD
IHS 0.08758 0.08762 0.08744 0.08766 0.08762 0.08762 0.08761 0.08761 0.08762 0.08762 0.08760 0.08761

AIWPSO 0.08764 0.08761 0.08765 0.08771 0.08763 0.08762 0.08762 0.08761 0.08762 0.08762 0.08759 0.08760
CS 0.08763 0.08764 0.08767 0.08770 0.08764 0.08765 0.08760 0.08760 0.08764 0.08765 0.08762 0.08761
FA 0.08763 0.08764 0.08766 0.08762 0.08763 0.08763 0.08761 0.08763 0.08763 0.08763 0.08761 0.08761

BSA 0.08762 0.08762 0.08774 0.08766 0.08762 0.08763 0.08761 0.08762 0.08763 0.08762 0.08762 0.08762
JADE 0.08760 0.08763 0.08754 0.08749 0.08763 0.08764 0.08761 0.08761 0.08763 0.08763 0.08761 0.08761

CoBiDE 0.08763 0.08762 0.08757 0.08765 0.08763 0.08764 0.08762 0.08760 0.08763 0.08762 0.08761 0.08760
RS 0.08762 0.08763 0.08780 0.08782 0.08762 0.08763 0.08761 0.08760 0.08763 0.08763 0.08761 0.08761

Table 5.3 presents the results concerning CalTech 101 Silhouettes dataset. In this

case, the best results were achieved by DBN with one layer only. Caltech poses a greater

challenge, since it has more classes than MNIST, which should us to believe more iterations

for convergence would be required for DBM learning, since it a more complex model than

DBN. Also, the best results were obtained by means of Improved Harmony Search, BSA,

JADE, and CoBiDE.

Table 5.3: Average MSE values considering CalTech 101 Silhouettes dataset.

1L 2L 3L
DBN DBM DBN DBM DBN DBM

CD PCD CD PCD CD PCD CD PCD CD PCD CD PCD
IHS 0.15554 0.15731 0.15983 0.15980 0.16057 0.16054 0.16055 0.16055 0.16059 0.16058 0.16057 0.16056

AIWPSO 0.15641 0.15825 0.16006 0.16014 0.16056 0.16060 0.16056 0.16061 0.16058 0.16057 0.16057 0.16057
CS 0.15923 0.15992 0.16023 0.16024 0.16057 0.16062 0.16057 0.16056 0.16059 0.16061 0.16055 0.16057
FA 0.16002 0.15956 0.16051 0.16034 0.16060 0.16058 0.16069 0.16056 0.16060 0.16058 0.16055 0.16055

BSA 0.15599 0.15775 0.15992 0.15983 0.16056 0.16056 0.16052 0.16054 0.16057 0.16058 0.16057 0.16055
JADE 0.15608 0.15790 0.15945 0.15988 0.16058 0.16057 0.16055 0.16058 0.16059 0.16057 0.16058 0.16054

CoBiDE 0.15638 0.15800 0.15982 0.15982 0.16059 0.16057 0.16059 0.16056 0.16060 0.16059 0.16056 0.16054
RS 0.15676 0.15845 0.15967 0.15976 0.16060 0.16062 0.16059 0.16057 0.16057 0.16056 0.16056 0.16056

Table 5.4 presents the results obtained over Semeion Handwritten Digit dataset, being

IHS and JADE the most accurate techniques. The best results concerning MNIST and

Semeion Handwritten Digits datasets, as can be clearly seen on Tables 5.2 and 5.4,

was acquired using the DBM. DBN, however, had the best results considering CalTech

101 Silhouettes dataset, as presented in Table 5.3. Some interesting conclusions can be

extracted from a closer look at these results: (i) meta-heuristic-based optimization allows

more accurate results than a random search, as argued by the works of Papa et al. (PAPA

et al., 2015b, 2015d; PAPA; SCHEIRER; COX, 2016b) already; (ii) DBMs seem to produce
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more accurate results than DBNs; (iii) the number of layers do not seem to influence the

results when one fine-tune parameters; (iv) IHS achieved the best results in all datasets

(concerning both DBN and DBN), but with results statistically similar to other meta-

heuristic techniques as well; and (v) we could not realize a significant difference between

CD and PCD, since we employed 10 iterations for learning only. Actually, PCD is expected

to work better, but at the price of a longer convergence process.

Table 5.4: Average MSE values considering Semeion Handwritten Digit dataset.

1L 2L 3L
DBN DBM DBN DBM DBN DBM

CD PCD CD PCD CD PCD CD PCD CD PCD CD PCD
IHS 0.19359 0.20009 0.19025 0.19078 0.20961 0.20961 0.20956 0.20956 0.20961 0.20963 0.20958 0.20958

AIWPSO 0.20044 0.20274 0.19679 0.19426 0.20959 0.20961 0.20958 0.20956 0.20964 0.20961 0.20959 0.20959
CS 0.20528 0.20647 0.20728 0.20651 0.20965 0.20960 0.20957 0.20959 0.20964 0.20963 0.20960 0.20960
FA 0.20638 0.20894 0.20649 0.20319 0.20966 0.20965 0.20960 0.20960 0.20964 0.20965 0.20960 0.20928

BSA 0.19571 0.20002 0.19221 0.19325 0.20961 0.20959 0.20960 0.20958 0.20962 0.20962 0.20960 0.20956
JADE 0.19893 0.20165 0.19152 0.19170 0.20962 0.20960 0.20957 0.20958 0.20964 0.20959 0.20956 0.20961

CoBiDE 0.19328 0.19896 0.19190 0.19138 0.20962 0.20961 0.20959 0.20958 0.20960 0.20961 0.20958 0.20959
RS 0.19710 0.20361 0.19458 0.19463 0.20962 0.20959 0.20960 0.20957 0.20960 0.20960 0.20960 0.20959

Figures 5.3 and 5.4 display the convergence process regarding the mean squared error

(MSM) and logarithm of the pseudo-likelihood (PL) values obtained during the learning

step for DBM and DBN, respectively, trained with CD over MNIST dataset. We used

the mean values of the first layer for all optimization algorithms. One can observe DBM

obtained the better approximation of the model during all iterations, and both ended up

with similar log PL values (iteration #10). However, it is important to shed light over

the main contribution of this paper is not to show DBM may learn better models than

DBNs, but to stress meta-heuristic techniques are suitable to fine-tune DBM parameters

as well.
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Figure 5.3: MSE and Log PL values during the convergence process considering
DBM over MNIST dataset for (a) and (b), respectively.
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Although one can realize an oscillating behavior of the optimization techniques, all

of them obtained better models at the last iteration (i.e. a highest log PL) than RS,

except for the nature-inspired algorithms, that achieved similar results in most of the

experiments, probably due to its demand for more iterations to convergence. The results

implies that using meta-heuristic techniques to fine-tune DBMs seems to be reasonable.

DBMs optimized by meta-heuristic-based techniques obtained the best results considering

all datasets used in this work as well.
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Figure 5.4: MSE and Log PL values during the convergence process considering
DBN over MNIST dataset for (a) and (b), respectively.

5.4.2 Statistical Analysis

In this section, we detailed the Wilcoxon signed-rank test obtained through a pairwise

comparison among the techniques. For such purpose, we used 5% of significance to provide

the statistical similarity among the best results obtained by each technique, i.e., conside-

ring both number of layers and learning algorithm. Tables 5.5, 5.6 and 5.7 presents the

statistical evaluation concerning MNIST, CalTech 101 Silhouettes, and Semeion datasets.

It is interesting to point out that memory- (IHS) and evolutionary-based (BSA, JADE,

and CoBiDE) techniques obtained the best results for all datasets, outperforming swarm

collective approaches (AIWPSO, FA, and CS). Regarding evolutionary techniques, muta-

tion and crossover operators may move solutions far apart from each other (i.e., they favor

the exploration), which can be interesting in the context of DBM/DBN hyperparameter

fine-tuning. Usually, the hyperparameters we are optimizing (i.e., learning rate, number

of hidden units, weight decay and momentum) do not lead to different reconstruction

errors under some small intervals, i.e., the fitness landscape figures some flat zones that

can trap optimization techniques.
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Table 5.5: Statistical analysis considering MNIST dataset.

IHS AIWPSO CS FA BSA JADE CoBiDE RS
IHS
AIWPSO =
CS 6= =
FA 6= = =
BSA 6= 6= = =
JADE = = = = =
CoBiDE = = = = = =
RS 6= = = = = = =

Table 5.6: Statistical analysis considering CalTech 101 Silhouettes dataset.

IHS AIWPSO CS FA BSA JADE CoBiDE RS
IHS
AIWPSO 6=
CS 6= 6=
FA 6= 6= =
BSA = = 6= 6=
JADE = = 6= 6= =
CoBiDE = = 6= 6= = =
RS 6= = 6= 6= = = =

Table 5.7: Statistical analysis considering Semeion dataset.

IHS AIWPSO CS FA BSA JADE CoBiDE RS
IHS
AIWPSO 6=
CS 6= 6=
FA 6= 6= =
BSA 6= = 6= 6=
JADE = = 6= 6= =
CoBiDE 6= = 6= 6= = =
RS 6= = 6= 6= = 6= 6=
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Regarding the relatively good results obtained using the Random Search, one may

question the contribution of employing metaheuristic techniques for DBM hyperparame-

ter optimization. Despite the statistical similarity among optimization techniques, the

random search did not obtain the best results for any dataset.

5.4.3 Time Analisys

Tables 5.8, 5.9, and 5.10 present an analysis of the computational load required by the

optimization tasks regarding MNINST, CalTech 101 Silhouettes, and Semeion datasets,

respectively. The results in bold stand for the fastest aproaches for each model.

Table 5.8: Computational load (in hours) considering MNIST dataset.

1L 2L 3L
DBN DBM DBN DBM DBN DBM

CD PCD CD PCD CD PCD CD PCD CD PCD CD PCD
IHS 0.35 0.25 0.45 0.46 0.60 0.52 0.57 0.55 0.54 0.56 0.82 0.53

AIWPSO 2.21 2.28 2.64 2.41 3.39 2.68 3.89 3.62 4.31 4.73 5.67 4.28
CS 0.30 0.45 0.53 0.56 0.49 0.45 0.44 0.80 0.47 0.29 0.84 0.97
FA 0.75 1.49 1.81 1.06 1.37 1.30 1.95 2.41 2.23 2.22 2.52 1.29

BSA 1.28 1.31 0.98 1.21 1.12 0.71 2.67 1.61 1.48 1.43 2.65 3.74
JADE 1.00 1.63 0.79 0.88 1.93 1.76 2.12 1.81 1.34 1.69 3.17 2.34

CoBiDE 1.25 1.29 1.11 1.11 1.50 1.67 2.13 2.22 2.29 1.60 2.92 2.26

One can notice that, in general, IHS has been the fastest technique, followed by CS,

which is somehow expected due to their updating mechanism. IHS evaluates a single

solution each iteration, while CS evaluates a reduced number of solutions, given by the

probability parameter p.

Table 5.9: Computational load (in hours) considering CalTech 101 Silhouettes da-
taset.

1L 2L 3L
DBN DBM DBN DBM DBN DBM

CD PCD CD PCD CD PCD CD PCD CD PCD CD PCD
IHS 1.64 1.47 1.81 1.62 1.28 1.37 1.84 2.26 1.13 1.06 1.98 1.58

AIWPSO 8.87 9.44 10.54 11.50 9.41 7.79 12.30 12.34 11.17 7.95 13.50 13.82
CS 1.55 1.01 1.86 1.63 0.93 1.76 2.45 2.17 1.46 1.35 2.00 0.80
FA 3.38 5.27 6.03 3.00 6.25 3.27 7.26 2.62 3.58 8.08 6.55 8.83

BSA 6.40 5.08 6.55 8.30 6.04 5.60 9.19 8.42 4.23 4.53 7.95 9.90
JADE 8.24 4.31 9.22 7.90 7.71 4.10 11.15 7.40 8.25 4.57 9.43 8.29

CoBiDE 5.64 5.28 7.48 7.02 5.64 5.36 7.52 7.61 4.47 5.38 6.63 8.70
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Likewise, one can expect that BSA, JADE, and CoBiDE to behave similarly regarding

the computational load, since they are evolutionary-based techniques and the number of

new solutions (the ones that employ mutation and crossover operations) to be evaluated

depends upon a probability.

Table 5.10: Computational load (in hours) considering Semeion Handwritten Digit
dataset.

1L 2L 3L
DBN DBM DBN DBM DBN DBM

CD PCD CD PCD CD PCD CD PCD CD PCD CD PCD
IHS 0.16 0.19 0.22 0.25 0.23 0.20 0.22 0.31 0.28 0.28 0.35 0.38

AIWPSO 1.14 1.00 1.49 1.44 1.61 1.41 2.04 1.98 2.15 1.80 2.51 2.45
CS 0.26 0.18 0.31 0.26 0.26 0.24 0.31 0.20 0.28 0.23 0.40 0.38
FA 0.49 0.74 0.82 0.42 0.62 0.98 0.82 0.53 0.84 1.14 0.90 0.76

BSA 0.68 0.65 0.57 0.88 0.54 0.44 0.57 1.16 0.83 0.92 1.30 1.51
JADE 0.54 0.22 0.92 1.18 0.25 0.80 0.92 1.60 0.37 1.29 1.91 2.09

CoBiDE 0.71 0.58 0.74 0.91 0.49 0.89 0.96 1.03 0.68 1.01 1.52 1.30

One shortcoming of FA and AIWPSO concerns their computational burden since every

agent in the swarm generates a new solution to be evaluated at each iteration. In fact, they

are expected to present a slower convergence than IHS, which creates a single solution

instead (i.e., it evaluates the fitness function only once per iteration). Such behavior

makes them much faster than swarm-based techniques, but having a slower convergence

as well.

5.5 Conclusions

In this work, we dealt with the problem of fine-tuning Deep Boltzmann Machines by

means of meta-heuristic-driven optimization techniques to reconstruct binary images. The

experimental results over three public datasets showed the validity in using such techni-

ques to optimize DBMs when compared against a random search. Also, we showed DBMs

can learn more accurate models than DBNs considering two out of three datasets. More-

over, we provided a detailed analysis of the similarity among each optimization technique

using the Wilcoxon signed-rank test, as well the trade-off between the computational load

demanded by each metaheuristic and its effectiveness.

Even though all techniques have obtained close results, we observed that evolutionary-

and memory-based approaches might be more suitable for DBM/DBN fine-tuning hyper-

parameters. Since we are coping with hyperparameters that, under small intervals, do
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not influence the learning step (i.e., the reconstruction error), evolutionary operators and

the process of creating new harmonies seem to introduce some sort of perturbation that

moves possible solutions far apart from each other. In regard to future works, we aim to

validate the proposed approach to reconstruct and also classify gray-scale images.



Chapter 6
Fine-Tuning Infinity Restricted Boltzmann

Machines

The idea developed in Chapter 5 is now applied in the infinity Restricted Boltzmann

Machine domain. This work was published in the 30th Conference on Graphics, Patterns,

and Images (PASSOS; PAPA, 2017a).

6.1 Introduction

Restricted Boltzmann Machines are two-layered undirected graphical models that use

a layer of hidden units to model the distribution over a set of inputs, thus compounding

a generative stochastic neural network (LAROCHELLE et al., 2012; SCHMIDHUBER, 2015).

RBMs have been highlighted in the scientific community over the last years, as well as

some variants concerning deep learning models, e.g., Deep Belief Networks (HINTON; OSIN-

DERO; TEH, 2006a) and Deep Boltzmann Machines (SALAKHUTDINOV; HINTON, 2012b),

due to their outstanding results in a number of domains, such as human motion (TAYLOR;

HINTON; ROWEIS, 2006), classification (LAROCHELLE et al., 2012), spam (SILVA et al., 2016)

and anomaly detection (FIORE et al., 2013b), and collaborative filtering (SALAKHUTDINOV;

MNIH; HINTON, 2007), just to cite a few.

However, one of the main concerns related to RBMs is associated with the number of

hidden units, which is application-dependent and has a great impact in the final results.

Montufar and Ay (MONTUFAR; AY, 2011) showed that an RBM with 2m−1− 1 hidden

units is a universal approximator, where m stands for the number of visible (input) units.

Moreover, such a big representation may not be efficient in practice, which motivated

researchers to study models that can automatically increase their capacity during learning.
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Cotê and Larochelle (CÔTÉ; LAROCHELLE, 2016) proposed an extension of the RBM

that does not require specifying the number of hidden units, and it can increase its capacity

(i.e., number of hidden units) during training, hereinafter called infinite RBM. In this

work, they also presented an extension of the RBM that is sensitive to the position of

each unit in the hidden layer, named ordered Restricted Boltzmann Machines (oRBM),

which can be interpreted as a special case of an implicit mixture of RBMs (NAIR; HINTON,

2009). This is achieved by adding new units in the hidden layer, where each one is trained

gradually from left to right. Effectively, the model is growing in capacity during training

until it reaches the maximum capacity defined previously.

Based on the aforementioned assumption, it turns out to be possible to devise a model

where the number of hidden units increases automatically to a capacity that is similar

to the universal approximator (i.e., when the number of hidden units tends to infinite),

though being much smaller. Such model is possible due to the following assumptions: (i)

that a finite number of hidden units has non-zero weights and biases, and (ii) the parame-

trization of the per-unit energy penalty (β ) ensures the infinite sums during probability

computation will converge. Since the role of this energy penalty is to ensure the iRBM

is properly defined only, the penalty imposed in the energy function can be compensated

by the learned parameters (weight decay). Therefore, we can remove one of the RBM

hyper-parameters from its project, i.e., the number of hidden units.

Despite dropping out the number of hidden units that is usually required beforehand,

the iRBM still demands the selection of the remaining hyper-parameters, such as the lear-

ning rate, momentum and weight decay. Furthermore, its formulation incorporates the β

hyper-parameter, which is less sensitive than the number of hidden units, but still requires

its fine-tuning. In this chapter, we propose to find suitable hyper-parameters concerning

the iRBM model by means of meta-heuristic optimization techniques, such as the Par-

ticle Swarm Optimization (PSO) (RODRIGUES et al., 2015), Bat Algorithm (BA) (YANG;

GANDOMI, 2012), Cuckoo Search (CS), and the Firefly Algorithm (FA) (YANG, 2010).

Although one can use any other optimization technique, we opted to use these ones mainly

because they are well recognized in the literature, and they do not require computing de-

rivatives as usually demanded by standard optimization techniques.

Recently, Papa et al. (PAPA et al., 2015b, 2015d; PAPA; SCHEIRER; COX, 2016a), Rosa

et al. (ROSA et al., 2016b, 2015) and Rodrigues et al. (RODRIGUES; YANG; PAPA, 2016)

demonstrated the robustness of these algorithms to the optimization of RBMs and DBNs,

but to the best of our knowledge, we have not observed any work that dealt with the
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problem of iRBM fine-tuning by means of meta-heuristic techniques to date. Therefore,

the main contributions of this chapter are twofold: (i) to foster the scientific literature

concerning iRBMs, and (ii) to deal with the problem of iRBM hyper-parameter optimi-

zation. Additionally, we also considered both standard RBMs and oRBM for comparison

purposes concerning the task of binary image reconstruction over two public datasets. The

remainder of this chapter is organized as follows. Sections 6.2 and 6.3 present theoretical

details about the iRBM and the proposed fine-tuning process, respectively. Section 6.4

discusses the methodology and Section 6.5 presents the experimental results. Finally,

Section 6.6 states conclusions and future works.

6.2 Theoretical Background

The Theoretical Background regarding the Ordered Restricted Boltzmann Machines

and Infinity Boltzmann machines are presented in Sections 2.4 and 2.5, respectively.

6.3 Infinity RBM Fine-Tuning as an Optimization

Problem

The proposed approach requires the optimization of three hyper-parameters for both

RBM and iRBM, and four parameters for the oRBM, as follows:

� RBM: the learning rate η , the L1 regularization parameter, and the number of

hidden units n;

� oRBM: the learning rate η , the L1 regularization parameter, the number of hidden

units n, and the energy penalty parameter βββ ∈ℜn for each hidden unit; and

� iRBM: the learning rate η , the L1 regularization parameter, and the energy penalty

parameter βββ ∈ℜn for each hidden unit.

Notice the regular learning rate (i.e., η ∈ ℜ) is used to update the RBM, and the

ADAGRAD stochastic gradient technique is used for both oRBM and iRBM (DUCHI;

HAZAN; SINGER, 2011). In this case, we have a per-dimension learning rate method, i.e.,

ηηη ∈ ℜn, with ε = 10−6 (CÔTÉ; LAROCHELLE, 2016). This latter parameter stands for a

small number to avoid numerical instabilities. Cotê and Larochelle (CÔTÉ; LAROCHELLE,
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2016) claims that one can throw away the parameter n, thus replacing the RBM model

by the iRBM one. However, βββ is still a hyper-parameter to be optimized1.

Figure 7.3 depicts the proposed approach to optimize the RBM, oRBM and iRBM

models. Roughly speaking, the idea is to initialize all decision variables techniques at

random, and then the optimization algorithm takes place. In this work, we used the

following ranges concerning the parameters: n ∈ [5,500], ηηη ∈ [0.01,0.5], βββ ∈ [0.01,1.5]

and L1 ∈ [0.00001,0.01].

Figure 6.1: Proposed approach to model the fine-tuning problem as an optimization
task.

In order to fulfill the requirements of any optimization technique, one shall design

a fitness function to guide the search into the best solutions. In this chapter, we used

the average negative log-likelihood (NLL) over the training set considering the task of

binary image reconstruction as the fitness function. Therefore, we adopted the very

same methodology used by (CÔTÉ; LAROCHELLE, 2016), but presenting the mean results

obtained over 20 runs in order to provide a statistical comparison2.

In short, the optimization technique selects the set of hyper-parameters that minimize

the NLL over the training set considering a dataset of binary images as an input to the

model. After learning the hyper-parameters, one can proceed to the reconstruction step

concerning the testing images, whose effectiveness is assessed by the NLL method.

1Notice the regularization parameter βββ is way less sensitive than the number of hidden units n
2Notice the work by Cotê and Larochelle (CÔTÉ; LAROCHELLE, 2016) presents the best result over all

runs only.
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6.4 Methodology

In this section, we present the methodology employed to evaluate the proposed ap-

proach, optimization techniques, datasets, and the experimental setup.

6.4.1 Optimization Techniques

This work employs four metaheuristic techniques to the task of iRBM fine-tuning, i.e.,

PSO, BA, CS, and FA, presented in Section 2.8.1.

Table 6.1 presents the parameters used for each aforementioned optimization techni-

que, where five agents (initial solutions) were used for all optimization techniques during

20 iterations for convergence purposes3. In regard to PSO, w stands for the inertia weight,

and c1 and c2 control the step size towards the best local and global solutions, respectively.

With respect to BA, fmin and fmax bound the minimum and maximum frequency values,

and A and r denote the the loudness and pulse rate values, respectively. Parameters ϕ and

τ are used to avoid the technique getting trapped from local optima. FA uses µ and γ ,

which stand for a random perturbation and the light absorption coefficient, respectively.

Variable ς denotes the attractiveness of each firefly. Finally, CS uses Γ to compute the

Lévy distribution, ζ for the switch probability (i.e., the probability of replacing the worst

nests by new ones), and s for the step size.

Table 6.1: Parameter configuration for each optimization technique.

Technique Parameters

PSO c1 = 1.7, c2 = 1.7, w = 0.7
BA ϕ = 0.9, τ = 0.9

fmin = 0, fmax = 100
A = 1.5, r = 0.5

CS Γ = 1.5, ζ = 0.25, s = 0.8
FA γ = 1, ς = 1, µ = 0.2

6.4.2 Datasets

We propose to evaluate the behavior of different optimization techniques to fine-

tune RBM/oRBM/iRBM in the context of binary image reconstruction using two public

datasets, i.e., MNIST and CalTech 101 Silhouettes Data Set, as described in Section 2.9.

3Notice these parameters were set empirically.
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6.4.3 Experimental Setup

This work employs a cross-validation procedure with 20 runs in order to provide a sta-

tistical analysis by means of the Wilcoxon signed-rank test with significance of 0.05 (WIL-

COXON, 1945). The training step is conducted with 5,000 epochs, with an Annealed

Importance Sampling (AIS) evaluation every 1,000 epochs to keep the best NLL appro-

ximation (SALAKHUTDINOV; MURRAY, 2008).

For the learning procedure, we used ten Gibbs sampling steps with mini-batches of

size 64. In addition, we also considered two learning algorithms: Contrastive Divergence

(CD) (HINTON, 2002) and Persistent Contrastive Divergence (PCD) (TIELEMAN, 2008a).

Furthermore, all NLL results were obtained by estimating the log-partition function using

AIS with 100,000 intermediate distributions and 5,000 chains.

Finally, the codes used to reproduce the experiments of the chapter are available on

GitHub45. The experiments were conducted using a Ubuntu 16.04 Linux machine with

16Gb of RAM running an Intel Core�i7− 4790 with a frequency of 3.60 GHz and a

GPU GeForce® GTX970 with 4GB. The source-codes run on top of Python with The-

ano (BASTIEN et al., 2012) and C for the RBM/oRBM/iRBM and optimization approaches,

respectively.

6.5 Experimental Results

In this section, we present the experimental results concerning iRBM, oRBM and RBM

hyper-parameter optimization in the task of binary image reconstruction. Additionally, all

techniques are compared using two different learning algorithms, i.e., Contrastive Diver-

gence and Persistent Contrastive Divergence. In order to validate the proposed approach,

we also considered a random search (RS) as a baseline for hyper-parameter optimization.

Table 6.2 presents the averaged NLL results concerning the MNIST dataset, being

the values in bold the best results considering the Wilcoxon signed-rank. Although RBM

achieved the best results using PSO, both iRBM and the oRBM obtained similar results

according to the Wilcoxon signed-rank test, using BA and FA techniques, respectively.

This behavior is expected as it matches the results obtained in (CÔTÉ; LAROCHELLE,

2016), which concluded that RBMs are still more accurate, but at the price of having a

more sensitive parameter to be set (i.e., the number of hidden units). Also, one can clearly

4iRBM: http://github.com/MarcCote/iRBM
5LibOPT (PAPA et al., 2017b): https://github.com/jppbsi/LibOPT
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observe the meta-heuristic techniques are able to achieve much more accurate results than

the baseline provided by the random search.

Table 6.2: Average NLL values considering MNIST dataset.

RBM oRBM iRBM
CD PCD CD PCD CD PCD

RS 192.84±24.31 195.25±18.61 163.80±28.44 153.16±16.39 160.94±20.54 153.91±18.53

BA 188.07±66.12 220.75±24.35 179.15±37.24 166.13±46.36 184.18±42.05 165.83±85.07
CS 154.35±20.82 178.21±20.13 161.33±18.96 156.39±20.71 149.40±8.34 150.71±23.32
FA 125.39±39.59 243.55±42.11 156.50±23.11 133.82±40.26 206.24±18.78 171.92±153.11

PSO 124.60±44.96 216.94±41.43 171.24±40.32 164.13±41.18 208.10±37.19 179.25±72.79

It is worth mentioning that PCD has provided better results only for oRBM and

iRBM. As a matter of fact, it is arguable that PCD may provide more accurate results

than CD, since it does not restart the Markov chain when a new training sample is

presented to the network, but it uses the last sampled data from the previous training

sample to initiate the chain. However, such behavior was not observed for RBMs, and it

quite reasonable to assume that PCD learning can really work well for iRBM and oRBM,

since such models may not achieve results so accurate than standard RBMs due to their

smaller hidden layers, which means they may have a poorer capacity for learning.

Figure 6.2 depicts some testing images reconstructed by RBM, oRBM and iRBM.

One can observe the images are better reconstructed by RBM, with less noise as well,

thus confirming the numerical results presented in Table 6.2. Additionally, one can refer

to the network’s weights, as displayed in Figure 6.3, in which a more variety of filters can

be observed for standard RBM. Such behavior evidences a greater capacity for learning,

which can also be observed for oRBM as well.

Finally, we also considered the computational load of each technique for comparison

purposes, as presented in Table 6.3. The fastest optimization technique has been the Cuc-

koo Search for RBM, oRBM and iRBM, being RBM the fastest of all since its formulation

is less complex than oRBM and iRBM.

Table 6.4 presents the average NLL results concerning Caltech 101 Silhouettes dataset.

In this case, iRBM achieved the best results with all meta-heuristic techniques using CD

for learning, except for CS. Additionally, oRBM obtained the best results with the FA

algorithm. Actually, iRBM trained with CD and optimized by FA achieved the best

result so far. Such results are pretty much interesting, since Caltech dataset poses a

greater challenge than MNIST (greater NLL values). Although oRBM and iRBM were
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(a) (b)

(c) (d)

Figure 6.2: Random (a) MNIST testing images reconstructed by (b) RBM fine-
tuned with FA and trained with CD, (c) oRBM fine-tuned with FA and trained
with PCD, and (d) iRBM fine-tuned with CS and trained with CD.

(a) (b)

(c)

Figure 6.3: “The network’s mind”considering MNIST dataset: comparing the filters
obtained by (a) RBM fine-tuned with FA and trained with CD, (b) oRBM fine-tuned
with FA and trained with PCD, and (c) iRBM fine-tuned with CS and trained with
CD.

not proposed to outperform RBM, one can observe that more accurate models can be

obtained by avoiding complex architectures. As a matter of fact, RBMs may be more



6.5 Experimental Results 77

Table 6.3: Average time (minutes) for learning hyper-parameters considering
MNIST dataset.

RBM oRBM iRBM
CD PCD CD PCD CD PCD

RS 13.07 14.10 20.26 19.72 16.64 19.01

BA 68.34 65.73 121.36 122.48 111.00 300.96
CS 49.49 50.29 92.36 92.84 100.56 349.06
FA 63.37 64.97 126.24 120.36 120.03 411.30

PSO 68.40 68.80 108.67 127.56 143.02 234.91

prone to overfit when one does not choose the number of hidden units properly.

Table 6.4: Average NLL values considering Caltech 101 Silhouettes dataset.

RBM oRBM iRBM
CD PCD CD PCD CD PCD

RS 384.30±29.94 432.38±140.15 267.42±28.39 386.03±94.26 274.36±33.99 424.30±187.62

BA 292.08±77.24 609.27±170.72 243.72±24.93 458.95±216.99 229.32±32.14 593.33±229.98
CS 349.60±47.13 455.83±104.28 267.82±29.60 448.20±126.03 255.15±18.67 579.29±254.97
FA 279.88±57.13 629.06±170.37 237.85±23.63 420.77±163.16 218.36±28.54 486.86±110.73

PSO 315.42±85.29 599.11±140.47 240.40±26.29 411.74±66.69 237.83±37.83 554.60±254.15

Figure 6.4 depicts some testing images reconstructed by RBM, oRBM and iRBM

concerning Caltech 101 Silhouettes dataset. In this case, it is difficult to visualize a

clear difference among the techniques. Also, Caltech dataset has much more classes than

MNIST, thus resulting in poorer reconstructed images. The weights of the networks are

displayed in Figure 6.5, in which a richer representation in the iRBM’s weights can be

observed. One can notice a considerable number of full-gray patches, which means they

did not learn so much information from the training step.

Table 6.5 presents the average computational load concerning Caltech 101 Silhouettes

dataset. Considering the worst case, iRBM was around 14.75 times slower than RBM,

which showed to be the fastest approach once again. As a matter of fact, both oRBM and

iRBM tend to be faster than RBMs for the reconstruction step, since one has less hidden

units for computation purposes.
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(a) (b)

(c) (d)

Figure 6.4: Random (a) Caltech 101 Silhouettes testing images reconstructed by
(b) RBM fine-tuned with FA and trained with CD, (c) oRBM fine-tuned with FA
and trained with CD, and (d) iRBM fine-tuned with CS and trained with CD.

(a) (b)

(c)

Figure 6.5: “The network’s mind”considering Caltech 101 Silhouettes dataset: com-
paring the filters obtained by (a) RBM fine-tuned with FA and trained with CD,
(b) oRBM fine-tuned with FA and trained with CD, and (c) iRBM fine-tuned with
FA and trained with CD.

6.6 Conclusions and Future Works

This chapter addressed the problem of iRBM fine-tuning by means of meta-heuristic

techniques. Ordered and Infinity RBMs are very recent models that avoid choosing the
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Table 6.5: Average time (minutes) for learning hyper-parameters considering Cal-
tech 101 Silhouettes dataset.

RBM oRBM iRBM
CD PCD CD PCD CD PCD

RS 13.29 14.10 19.07 20.18 14.81 18.54

BA 20.20 17.68 74.44 54.45 108.00 128.25
CS 16.35 15.61 51.49 40.71 67.51 66.61
FA 18.52 17.71 72.42 56.66 133.48 128.63

PSO 19.05 18.66 74.50 50.61 97.79 230.21

number of hidden units, but at the price of introducing one more variable related to the

penalty in adding one more hidden unit to the learning process. However, such parameter

is way less sensitive to the number of hidden units, thus requiring less effort by the user

and setting up the model.

Experiments over two public datasets concerning the task of binary image reconstruc-

tion using four meta-heuristic techniques showed they are suitable for hyper-parameter

fine-tuning, being the Cuckoo Search the fastest technique, and FA one of the most accu-

rate.

In regard to future works, we intend to investigate the suitability of deep versions of

both oRBMs and iRBMs, as well as their fine-tuning by means of meta-heuristic techni-

ques.



Chapter 7
Barrett’s Esophagus Analysis Using Infinity

Restricted Boltzmann Machines

This chapter presents the paper entitled Barrett’s Esophagus Analysis Using Infinity

Restricted Boltzmann Machines, submitted under an invitation from the Journal of Vi-

sual Communication and Image Representation as an extension from the idea presented

in (PASSOS; PAPA, 2017a) applied to medical issues.

7.1 Introduction

The incidence of adenocarcinoma in patients with Barrett’s esophagus (BE) faced a

major increase in western populations in the last 10 years, explained by risk factors such

as obesity and smoking (LAGERGREN; LAGERGREN, 2010; DENT, 2011; LEPAGE; RACHET;

JOOSTE, 2008), and an expectation to rise in the next years. The bad prognosis of patients

suffering from esophageal adenocarcinoma is related to its late diagnosis. Despite the dan-

gerousness of the disease, when detected at the early stages the dysplastic tissue can be

treated achieving very high rates of the disease remission (93% after 10 years, still presen-

ting 5% of morbidity and 0% of mortality) (DENT, 2011; SHARMA et al., 2016; PHOA et al.,

2016). Endoscopic resection (mucosal resection and submucosal dissection) and ablation

techniques (radiofrequency ablation and cryoablation) appear to be promising methods

developed for the management of BE, with the potential to reduce the adenocarcinoma

risk in patients with dysplasia. However, limitations in the current methods for moni-

toring and evaluating the BE level highlighted the necessity to the design of additional

tools to improve the detection of dysplasia (SHAHEEN et al., 2009; JOHNSON et al., 2005;

OVERHOLT; PANJEHPOUR; HALBERG, 2003).
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Many efforts were considered in the last years regarding machine learning and computer-

aided diagnosis. Van der Sommen (SOMMEN et al., 2016), for instance, designed a system

capable of automatically extract features for detecting and delineating early neoplastic

lesions in Barrett’s esophagus. Other works (JR. et al., 2017b; HASSAN; HAQUE, 2015)

aimed to use features extracted from endoscopic images for the classification of Barrett’s

esophagus and adenocarcinoma. Furthermore, Mendel et al. (MENDEL et al., 2017) pro-

posed a deep learning approach based on Convolutional Neural Networks in the context

of BE analysis. Recently, Souza et al. (JR. et al., 2017a) conducted a study in which

two approaches were introduced to distinguish between BE and adenocarcinoma: (i) the

Optimum-Path Forest (OPF) (PAPA; FALCÃO; SUZUKI, 2009; PAPA et al., 2012) classifier;

and (ii) the use of Bag-of-Visual-Words (BoVW) (CSURKA et al., 2004; PENG et al., 2016)

using points-of-interest (PoIs) extracted from endoscopic images using Speed-Up Ro-

bust Features (SURF) (BAY et al., 2008) and Scale Invariant Feature Transform (SIFT)

(LOWE, 2004) techniques (JR. et al., 2018) for the feature vector extraction.

Restricted Boltzmann Machines (RBMs) are nondeterministic neural networks com-

posed of two layers of neurons, i.e., visible and hidden, whose main idea is to produce

a probabilistic representation of a given input data in the hidden layer, such that the

network is capable of reconstructing the data in the visible layer (LAROCHELLE et al.,

2012; SCHMIDHUBER, 2015). The process is conducted using the minimization of the sys-

tem’s energy, analogous to the Maxwell-Boltzmann distribution law of thermodynamics.

RBMs have been highlighted in the scientific community over the last years, as well as

some variants concerning deep learning models, e.g., Deep Belief Networks (DBNs) (HIN-

TON; OSINDERO; TEH, 2006a) and Deep Boltzmann Machines (DBMs) (SALAKHUTDINOV;

HINTON, 2012b), due to their outstanding results in a number of domains, such as hu-

man motion (TAYLOR; HINTON; ROWEIS, 2006), classification (LAROCHELLE et al., 2012),

spam (SILVA et al., 2016), anomaly detection (FIORE et al., 2013b), and collaborative filte-

ring (SALAKHUTDINOV; MNIH; HINTON, 2007), just to cite a few.

However, one of the main concerns related to RBMs is associated with the number of

hidden units, which is application-dependent and has a great impact on the final results.

Montufar and Ay (MONTUFAR; AY, 2011) showed that an RBM with 2m−1− 1 hidden

units is a universal approximator, where m stands for the number of visible (input) units.

Moreover, such a large scale representation may not be efficient in practice, which moti-

vated researchers to study models that can automatically increase their capacity during

learning.
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Cotê and Larochelle (CÔTÉ; LAROCHELLE, 2016) proposed an extension of the RBM

that does not require specifying the number of hidden units, and it can increase its capacity

(i.e., number of hidden units) during training, hereinafter called infinite RBM (iRBM).

The learning achieved by adding new units in the hidden layer, where each one is trained

gradually from left to right. Effectively, the number of hidden units increases automati-

cally to a capacity that is similar to the universal approximator (i.e., when the number of

hidden units tends to infinite), though being much smaller. Such model is possible due to

the following assumptions: (i) that a finite number of hidden units has non-zero weights

and biases, and (ii) the parametrization of the per-unit energy penalty (β ) ensures the

infinite sums during probability computation will converge. Since the role of this energy

penalty is only to ensure the iRBM is properly defined, the penalty imposed in the energy

function can be compensated by the learned parameters (i.e., weight decay). Therefore,

we can remove one hyper-parameter from the project with the cost of introduction of a

less sensible one, i.e., the number of hidden units is removed and an extra parameter is

introduced in the model.

Despite the advantage that iRBM brought by removing the need to properly select

the number of hidden neurons, it also came up with a shortcoming related to the slow

convergence. Peng et al. (PENG; GAO; LI, 2017) attribute the problem to the initial corre-

lation that is given by the ordering effect present in the iRBM, and proposed a solution

by adding a probability of flipping the position of some neurons in the hidden layer while

training, avoiding the dependency among each other. Additionally, they also proposed a

mechanism to use the iRBM not only for binary image reconstruction but also for discri-

minative tasks, employing a “one-hot”vector representation of the sample’s label together

with the feature vector while training the model for further classification of the test set.

Regardless dropping out the hidden units that are usually required beforehand, iRBM

still demands the selection of the remaining hyper-parameters, such as the learning rate,

the weight decay, and the β hyper-parameter, which despite less sensitive than the num-

ber of hidden units, still requires a proper fine-tuning. To deal with this problem, Passos

et al. (PASSOS; PAPA, 2017a) proposed to employ meta-heuristic optimization techniques

to fine-tune the aforementioned hyper-parameters regarding binary image reconstruction

since it has provided suitable results (PAPA et al., 2015b, 2015d; PAPA; SCHEIRER; COX,

2016a; ROSA et al., 2016b, 2015; RODRIGUES; YANG; PAPA, 2016). However, as far as we

know, such techniques were never used to fine-tune iRBMs regarding classification tasks.

In this paper, we propose to find suitable hyper-parameters concerning the discrimina-

tive iRBM model using eight meta-heuristic techniques: Particle Swarm Optimization
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(PSO) (RODRIGUES et al., 2015), Bat Algorithm (BA) (YANG; GANDOMI, 2012), Cuckoo

Search (CS) (YANG; DEB, 2010), Brain Storm Optimization (SHI, 2011), Firefly Algorithm

(FA) (YANG, 2010), and the Harmony Search (HS) (GEEM, 2009). Although one can use

any other optimization technique, we opted to use these mainly because they are well

recognized in the literature, and they do not require computing derivatives as usually

demanded by standard optimization techniques.

In this paper, we also introduce the infinity Restricted Boltzmann Machines in the

context of automatic classification of Barrett’s esophagus using information extracted

with SURF and SIFT techniques in the “MICCAI 2015 Endovis Challenge”dataset. The

experiments performed a comparison of the aforementioned meta-heuristic optimization

techniques regarding iRBM meta-parameter fine-tuning to the task of Barrett’s esophagus

classification. Additionally, we also considered both linear and Radial Basis Function

(RBF) Support Vector Machines (SVM) for comparison purposes.

Therefore, the main contributions of this paper are fourfold: (i) to introduce iRBM

in the context of Barrett’s esophagus recognition, (ii) to promote the scientific literature

concerning iRBMs, (iii) to foster the scientific literature concerning Barrett’s esophagus,

and (iv) to deal with the problem of iRBM hyper-parameter optimization concerning

discriminative tasks. The remainder of this paper is organized as follows. Sections 7.2

and 7.3 present theoretical background and the proposed fine-tuning process, respectively.

Section 7.4 discusses the methodology and Section 7.5 presents the experimental results.

Finally, Section 7.6 states conclusions and future works.

7.2 Theoretical Background

In this section, we briefly explain the theoretical background related to the discrimi-

native Infinity Restricted Boltzmann Machines and the dinamic training strategy.

7.2.1 Discriminative Infinity Restricted Boltzmann Machines

Larochelle and Bengio introduced a discriminative version of the RBM (LAROCHELLE;

BENGIO, 2008) to the task of classification, and Peng et al. (PENG; GAO; LI, 2017) adapted

the idea to the iRBM domain. In order to couple the labels in the formulation, the energy

function is redefined as follows:
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where d is the bias of the label vector, ey =
(
1y=1

)C
i=1 stands for the so-called “one-
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having P(vi = 1|h,z) defined exactly the same as in Equation 2.19. Figure 7.1 depicts the

Discriminative iRBM.

Figure 7.1: Discriminative iRBM. Both visible (v) and label (ey) layers are employed
for training the model. A new hidden unit hz+1 is introduced in the model for
learning purposes.

7.2.2 Dynamic Training Strategy

Despite the advantages achieved using iRBM, such as the absence of a hyper-parameter

to be fine-tuned, i.e., the number of units in the hidden layer, it presents a shortcoming

related to a slow convergence while training the network. The explanation concerns the
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time required by the filters to diverge from each other given an initial correlation imposed

by the ordering effect intrinsic to iRBMs, where each newly added hidden unit suffers

from the influence of the previously added ones, learning the features jointly and not by

itself.

To cope with the issue, Peng et al. (PENG; GAO; LI, 2017) proposed to use the appro-

ximated gradient descent algorithm together with the dynamic training strategy, which

assumes that changing the order of the hidden units at each gradient descent step and

jointly training iRBMs with all possible orders it is possible to alleviate the bias inherited

from the ordering effect. The model employs a variable Qt , which controls the propor-

tion of units regrouped at step t. Additionaly, õ stands for the vector of indexes to be

permuted given a probability distribution. The process is illustrated in Figure 7.2.

Figure 7.2: Dynamic training strategy proposed by Peng et al. (PENG; GAO; LI,
2017), where Qt Hidden units are permuted at time step t accordingly to the indexes
defined in õ.

7.3 Infinity RBM Fine-Tuning as an Optimization

Problem

The proposed approach requires the optimization of three hyper-parameters of the

iRBM: (i) the learning rate η , (ii) the weight decay λ regularization parameter, and (iii)

the β parameter. Notice the ADAGRAD stochastic gradient technique (DUCHI; HAZAN;

SINGER, 2011) is employed as the learning rate. In this case, we have a per-dimension

learning rate method, i.e., ηηη ∈ ℜn, with ε = 10−6 (CÔTÉ; LAROCHELLE, 2016). In a

nutshell, meta-parameters η and β can be interpreted as an n-sized vector, where n stands

for the current number of hidden units. This latter parameter stands for a small number

to avoid numerical instabilities. Cotê and Larochelle (CÔTÉ; LAROCHELLE, 2016) claim

that one can throw away the parameter n, thus replacing the RBM model by the iRBM
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one. However, βββ is still a hyper-parameter to be optimized. Notice the regularization

parameter βββ is way less sensitive than the number of hidden units n.

Figure 7.3 depicts the proposed approach to optimize the iRBM model, where the

idea is to initialize all decision variables at random, and then the optimization algorithm

takes place. In this work, we used the following ranges concerning the parameters: ηηη ∈
[0,0001,0,5], βββ ∈ [0,01,1,5] and λ ∈ [0,00001,0,01].

Figure 7.3: Proposed approach to model the iRBM fine-tuning problem as an op-
timization task.

In order to fulfill the requirements of any optimization technique, one shall design a

fitness function to guide the search into for best solutions. In this paper, we used the

average accuracy of the training set considering the task of classification as the fitness

function. Furthermore, we present the mean results obtained over 20 runs to provide a

statistical comparison.

In short, the optimization technique selects the set of hyper-parameters that maximi-

zes the classification accuracy over the training set considering a set of features extracted

from endoscopic images using BoVW over SIFT and SURF features as an input to the

model. After learning the hyper-parameters, one can proceed to the classification step

concerning the testing samples. Regarding this work, the following approaches are conduc-

ted: (i) the set of meta-parameters that best fits the model is selected using the validation

set over a reduced number of 150 epochs for convergence purposes, and (ii) afterwards,

the selected set of best meta-parameters are used to train the network using 1,500 epochs

and to perform the classification over the test set.
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7.4 Methodology

In this section, we present the methodology employed to evaluate the optimization

techniques, the dataset, and the experimental setup.

7.4.1 Optimization Techniques

This work employs six metaheuristic techniques to the task of iRBM fine-tuning, i.e.,

PSO, BA, CS, BSO, HS, and FA, presented in Section 2.8.1.

Table 7.1 presents the parameters used for each aforementioned optimization techni-

que, where five agents (initial solutions) were used for all optimization techniques during

10 iterations for convergence purposes. Notice these parameters were set empirically. In

regard to PSO, w stands for the inertia weight, and c1 and c2 control the step size towards

the best local and global solutions, respectively. With respect to BA, fmin and fmax bound

the minimum and maximum frequency values, and A and r denote the loudness and pulse

rate values, respectively. Regarding BSO, pgen defines a probability whether a new solu-

tion will be generated by one or two other individuals, k stands for the number of clusters

composed of similar ideas, and poneCluster and ptwoCluster stand for the probability of cre-

ating a new solution based on only one or two clusters, respectively. Parameters ϕ and

τ are used to avoid the technique getting trapped from local optima. FA uses µ and γ ,

which stand for a random perturbation and the light absorption coefficient, respectively.

Variable ς denotes the attractiveness of each firefly. Furthermore, Harmony Memory Con-

sidering Rate (HMRC) and Pitch Adjusting Rate (PAR) are used by HS for responsible

creating new solutions based on previous experience of the music player and applying

some disruption to the created solution in order to avoid local optima, respectively. Fi-

nally, CS uses Γ to compute the Lévy distribution, ζ for the switching probability (i.e.,

the probability of replacing the worst nests by new ones), and s for the step size.

7.4.2 Datasets

The information (i.e., features) were extracted from a dataset of images from Bar-

rett’s esophagus and adenocarcinoma called “MICCAI 2015”, which was provided at the

“MICCAI 2015 EndoVis Challenge”1. Such dataset is composed of 100 endoscopic images

of the lower esophagus from 39 individuals, 22 presenting esophageal adenocarcinoma and

1https://endovissub-barrett.grand-challenge.org/



7.4 Methodology 88

Table 7.1: Parameter configuration for each optimization technique.

Technique Parameters

BA r = 0.5, A = 1.5
fmin = 0, fmax = 100
ϕ = 0.9, τ = 0.9

BSO pgen = 0.4, k = 2
poneCluster = 0.8, ptwoCluster = 0.5

CS Γ = 1.5, ζ = 0.25, s = 0.8
FA γ = 1, ς = 1, µ = 0.2
HS HMCR = 0.7, ρ = 10, PAR = 0.7

PSO c1 = 1.7, c2 = 1.7, w = 0.7

17 diagnosed with early-stage Barrett’s esophagus. For each patient, several endoscopic

images were made available, ranging from one to eight. A total of 50 images showing

cancerous tissue areas and 50 images showing dysplasia without cancer compose the da-

taset. The injured tissue observed in the cancerous images have been delineated by five

different endoscopy experts. Figure 7.4 shows some dataset samples and their respective

delineation performed by the experts.

Figure 7.4: Some samples from the Barrett’s Endovis 2015 Challenge (JR. et al.,
2017b).

7.4.3 Experimental Setup

This work employs a cross-validation procedure with 20 runs to provide a statisti-

cal analysis using the Wilcoxon signed-rank test with a significance of 0.05 (WILCOXON,

1945). Regarding the task of meta-parameter optimization, we conducted the experiments

over 150 epochs to find the meta-parameters that lead to the best classification accura-

cies regarding the validation set. Finally, the network was trained once again over 1,500

epochs using the best parameters found by each meta-heuristic technique to classify the

testing set. The learning procedure was conducted using Persistent Contrastive Diver-

gence (PCD) (TIELEMAN, 2008a) using three Gibbs sampling steps with mini-batches of

size 5.
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Finally, the codes used to reproduce the experiments are available on GitHub2,3. The

experiments were conducted using an Ubuntu 16.04 Linux machine with 8Gb of RAM

running an Intel Core�i5−2410M with a frequency of 2.30 GHz and a GPU GeForce®

GT540M with 2GB. The source-codes run on top of Matlab and C for the iRBM and

optimization approaches, respectively.

7.5 Experiments

This section describes the experiments as follows: Section 7.5.1 presents the image

feature extraction using points-of-interest together with a Bag-of-Visual-Words schema,

and Section 7.5.2 discusses the optimization steps as well as the time consumption re-

garding the role optimization process. Sections 7.5.3 and 7.5.4 present the procedures

adopted while training and testing the model, respectively.

7.5.1 Feature Extraction

The points-of-interest were calculated using the Speed-Up Robust Features and the

Scale-Invariant Feature Transform techniques, and then the feature vectors were calculated

using Bag-of-Visual-Words. The SURF technique ensures scale and spatial invariance,

seeking for maxima of the determinant of the Hessian matrix, demarcating specific key

points which are explored in their local neighborhood resulting in a feature vector of

size 64. The SIFT algorithm operates on image regions calculating features that are

invariant to scaling and rotation. It seeks for the scale-space extrema detection evaluating

the image scales (difference-of-Gaussian function) providing feature vectors of size 128.

Finally, the BoVW technique uses points-of-interest from a set of reference images to

generate a visual dictionary that is employed in the training and testing phases. For this

work, we considered dictionaries with two different sizes: 500 and 1,000 (JR. et al., 2017a).

In order to compose such dictionaries, two well-known techniques were considered: (i)

k-means and (ii) random selection. Figure 7.5 illustrates the feature vector calculation for

the experiments.

2iRBM: https://github.com/Boltzxuann/RP-iRBM
3LibOPT (PAPA et al., 2017b): https://github.com/jppbsi/LibOPT
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Figure 7.5: Descriptor calculation for the experiments using SURF, SIFT and
BoWV techniques (adapted from (JR. et al., 2017a)).

7.5.2 Optimization

Six meta-heuristic optimization techniques, i.e., BA, BSO, CS, FA, HS, and the PSO,

were employed in this work to fine-tune the iRBM meta-parameters: learning rate η ,

weight decay λ , and the beta β . All techniques were initialized with five agents and

executed during 10 iterations over 150 epochs. Additionally, we started the model using

random variables and executed the iRBM for 15 runs over 150 epochs, hereinafter called

Random Search (RS) for comparison purposes.

Figures 7.6 and 7.7 present the results obtained while fine-tuning the model over

the validation sets regarding 500 and 1,000 visual words, respectively. The most accurate

iterations were selected for each technique for visualization purposes. Notice that iteration

zero stands for the average of the five initial agents for the optimization techniques, as

well as the first five runs for RS.

Despite the oscillatory behavior, one can notice that FA obtained the highest results

for both SIFT and SURF techniques over 500 visual words, reaching 75% of accuracy

during a few iterations (Figure 7.6). It also reached the best results at the end of the

optimization steps, which reflects the best values obtained over the testing set.

Regarding 1,000 visual words, Figure 7.7 depicts a behavior similar to Figure 7.6,

with considerable oscillation and FA obtaining the best results, which once again reflects

on the results of the test set, presented in Table 7.5. The Harmony Search and the Bat

Algorithm behave similarly to FA, also achieving 75% over a few iterations. Additionally,

the random search also obtained results statistically similar to the ones found by FA,
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Figure 7.6: Classification accuracies over the validation set during the meta-
parameter optimization process concerning 500 visual words for SIFT (a) and SURF
(b).
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Figure 7.7: Classification accuracies over the validation set during the meta-
parameter optimization process concerning 1,000 visual words for SIFT (a) and
SURF (b).

which can be explained by the short number of agents and iterations employed for the

optimization convergence, i.e., 5 and 10, respectively. Furthermore, the random search

presents an even more oscillatory behavior, as shown in Figure 7.7(b).

Tables 7.2 and 7.3 present the average execution time regarding 20 executions con-

cerning 500 and 1,000 visual words, respectively. Clearly, HS and RS obtained the lowest

execution time for both configurations. Since HS (and also RS) updates a single agent for

each iteration and the remaining techniques update all the agents for each iteration, it is

expected that HS to be faster. In a nutshell, for the configuration employed in this work

with 5 agents over 10 iterations, HS and RS evaluate the fitness function 15 times, while

the others evaluate 5 times (initialize each agent) and then update each one for 10 times,

ending up in 55 executions. Notice CS also presents a small execution time, due to the
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solutions discarded without evaluation (eggs abandoned by the host bird).

BA BSO CS FA HS PSO RS

k-means
SIFT 49.55 50.08 22.81 45.12 14.28 49.92 14.29
SURF 49.96 51.01 23.42 46.38 14.17 50.44 14.50

Random
SIFT 44.93 51.97 24.05 45.29 14.45 51.19 14.99
SURF 48.74 52.33 25.08 45.31 14.37 50.48 15.27

Table 7.2: Mean computational load (in minutes) of each technique applied to the
BE and adenocarcinoma problem using 500 visual words for the feature vector
calculation.

BA BSO CS FA HS PSO RS

k-means
SIFT 50.45 53.27 23.84 47.17 14.10 48.76 14.34
SURF 49.75 52.15 23.20 45.45 14.29 50.12 14.45

Random
SIFT 49.94 50.98 23.27 46.92 14.25 48.63 14.45
SURF 49.99 51.64 24.12 45.15 14.29 50.73 14.38

Table 7.3: Mean computational load (in minutes) of each technique applied to the
BE and adenocarcinoma problem using 1000 visual words for the feature vector
calculation.

7.5.3 Training

The experiments presented in this section employ the best meta-parameters obtained

in Section 7.5.2 for each meta-heuristic optimization technique, i.e., the combination of

learning rate, weight decay, and β that provided the best accuracies over the validation

set during 150 epochs. The iRBM was trained once again, however using 1,500 epochs.

Figure 7.8 depicts the learning steps concerning SIFT and SURF features over the

500-sized dictionary. Despite the oscillatory behavior, which probably can be attributed

to the dynamic training strategy (PENG; GAO; LI, 2017) described in Section 7.2.2, one can

notice that FA, BSO, and BA interchanged the highest results regarding Figure 7.8(a),

while the random search obtained the less accurate results. Concerning SURF, FA also

presented the best results, as depicted in Figure 7.8(b). Furthermore, FA appears more

inclined to a slight growth behavior than the others techniques, regardless the oscillations.

A similar behavior is observed in Figure 7.9, which concerns SIFT and SURF with

a dictionary of size 1,000. However, FA interchanges the top results with BA, HS, PSO

and even the random search. In spite of such exchange, FA seems to stand for the best

optimization technique overall.
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Figure 7.8: Classification accuracies during the training convergence process con-
cerning a dictionary composed of 500 visual words for SIFT (a) and SURF (b).
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Figure 7.9: Classification accuracies during the training convergence process con-
cerning a dictionary composed of 1,000 visual words for SIFT (a) and SURF (b).

7.5.4 Classification Step

The experiments conducted in this section are divided according to the feature extrac-

tion technique and visual dictionary sizes. Tables 7.4 and 7.5 present the mean accuracy

and the standard deviation concerning the classification over the test set during 1,500

training epochs using 500 and 1,000 visual words, respectively. The training employs the

combination of meta-parameters that provided the best accuracies over the validation set

during the fine-tuning step, presented in Section 7.5.2. Additionally, results are compared

against two versions of Support Vector Machines with RBF and linear kernels, as well

as the well-known Bayes classifier. Moreover, the experiments were executed for 20 runs

for statistical analysis using Wilcoxon signed-rank test (WILCOXON, 1945) with 0.05 of

significance, being the most accurate results in bold.

Regarding Table 7.4, one can notice that iRBM fine-tuning with FA outperformed
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SIFT SURF
k-means Random k-means Random

iRBM-BA 63.50±10.6184 55.65±6.1846 61.60±7.0183 57.40±9.1311
iRBM-BSO 64.85±9.3770 51.85±2.9924 62.70±8.5032 54.65±3.2247
iRBM-CS 61.40±8.6628 57.45±7.7751 60.97±4.3011 55.90±3.7381
iRBM-FA 66.15±11.5023 49.95±2.0504 66.35±4.7022 58.80±4.1389
iRBM-HS 59.95±6.2954 55.75±8.1319 65.35±6.4570 56.00±5.2749

iRBM-PSO 65.55±6.5370 52.50±1.5003 64.80±6.0156 51.20±2.7254
iRBM-RS 58.45±5.0028 56.90±3.7025 60.20±6.45883 59.15±7.5520
SVM-RBF 65.50±9.8467 65.60±10.4255 64.80±8.2496 63.40±11.2731

SVM-Linear 56.80±4.5527 54.50±6.8608 58.60±6.5392 57.60±4.4458
Bayes 59.98±3.449 53.00±3.5192 56.86±3.1080 53.52±4.6362

Table 7.4: Best accuracy values for the “MICCAI 2015 Endovis Challenge”Dataset
using 500 visual words.

all the other techniques, obtaining the most accurate classification results. Additionally,

iRBM optimized with all meta-heuristic techniques, except CS and the random search,

achieved similar results concerning the Wilcoxon test, as well as SVM-RBF. Such results

may lead to two assumptions: (i) meta-heuristic optimization techniques are suitable for

fine-tuning iRBM meta-parameters concerning classification tasks, as well as for recons-

truction tasks (PASSOS; PAPA, 2017a), since the results obtained using such techniques

outperformed the ones obtained with a random initialization of the weights, and (ii)

iRBM is appropriate for classification tasks since it outperformed the results obtained by

some well-established classifiers, such as SVM and Bayes.

SIFT SURF
k-means Random k-means Random

iRBM-BA 60.81±7.4686 60.01±7.2947 65.38±7.6846 60.04±7.4913
iRBM-BSO 58.40±8.8101 60.61±6.7935 60.41±8.6898 58.79±7.5418
iRBM-CS 59.57±10.4727 59.43±9.2710 62.09±7.9337 58.71±8.9159
iRBM-FA 66.01±9.6896 62.21±6.3956 67.00±8.1187 60.4±9.2183
iRBM-HS 61.32±6.7106 61.08±11.1132 65.38±6.4580 59.46±7.1040

iRBM-PSO 62.84±6.8391 60.60±8.0681 59.80±7.8694 58.10±10.0872
iRBM-RS 65.10±6.0221 63.79±6.1503 66.30 ±9.3325 61.71±6.2307
SVM-RBF 64.10±8.0761 63.70±7.0523 62.60±7.2304 62.10±6.3215

SVM-Linear 67.30±9.8649 52.70±3.5027 62.80±4.9553 56.50±4.0050
Bayes 60.70±3.7278 54.37±3.0303 57.43±4.2186 56.86±6.2625

Table 7.5: Best accuracy values for the “MICCAI 2015 Endovis Challenge”Dataset
using 1,000 visual words.

Concerning the results presented in Table 7.5, the most accurate results were obtai-
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ned by SVM-Linear and once again the iRBM fine-tuned using the FA technique, which

suggests the idea that FA is the most effective meta-heuristic optimization technique with

respect to classification tasks using iRBM. Furthermore, similar results were obtained by

SVM-RBF, as well as the iRBM using the HS, BA, and the RS as parameters fine-tuning.

The explanation for finding competitive accuracies concerning a random initialization of

the meta-parameters may be due to the short number of agents and iterations employed

for meta-heuristic optimization techniques. Moreover, one can notice that the configura-

tion using k-means obtained the best results regarding both SIFT and SURF, as well as in

with both 500 and 1,000 words, which suggests that dictionaries composed by employing

k-means generate better features.

Considering the very best results obtained for all the techniques, i.e., iRBM, SVM-

RBF, SVM-Linear, and Bayes, Tables 7.6 and 7.7 present the sensitivity (SE) and the

specificity (SP) results concerning the configuration over 500 and 1,000 words, respecti-

vely. Notice the best values are in bold.

Accuracy Sensitivity Specificity
iRBM-FA 66.35% 0.644 0.687
SVM-RBF 65.60% 0.612 0.706

SVM-Linear 58.60% 0.582 0.593
Bayes 59.98% 0.593 0.605

Table 7.6: Mean SE and SP values for the selected best results obtained using
dictionaries of 500 words.

Accuracy Sensitivity Specificity
iRBM-FA 67.00% 0.655 0.692
SVM-RBF 64.10% 0.632 0.686

SVM-Linear 67.30% 0.583 0.767
Bayes 60.70% 0.581 0.638

Table 7.7: Mean SE and SP values for the selected best results obtained using
dictionaries of 1,000 words.

One can observe that iRBM obtained the best Sensitivity for both configurations,

which indicates a higher rate of true positives correctly identified. Such outcome is parti-

cularly interesting for medical issues, since a correct identification of some illness, specially

in early stages, may prevent the progress of the disease. Additionally, it can be also ob-

served that using either configurations, i.e., dictionaries of 500 and 1,000 words, does not

impact in the final classification accuracy since both scenarios achieved similar results.
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7.6 Conclusions and Future works

This work dealt with the problem of automatic Barrett’s esophagus identification using

infinity Restricted Boltzmann Machines for classification purposes. The approach employs

SURF and SIFT techniques to extract the points-of-interest, which are used to build

structural patterns in endoscopy images in association with a BoVW. Such descriptors

were calculated over a set of images previously annotated by five experts, making the

identification of malignant lesions available for classification. Additionally, experiments

were conducted over two different dictionary configurations, i.e., 500 and 1,000 words.

From the experiments, we can conclude that: (i) infinity Restricted Boltzmann Ma-

chines are convenient for Barrett’s esophagus identification task, since it outperformed

SVM-Linear and SVM-RBF, as well as the Bayes classifier in one of the configurations,

and achieved similar results concerning the other; (ii) meta-heuristic optimization te-

chniques are suitable for iRBM meta-parameter optimization, since they outperformed

a random search over an equal number of executions; (iii) the identification of Barrett’s

esophagus is not a trivial task, once all techniques obtained results under 70% of accuracy.

Based on the last assumption, we can also conclude that Barrett’s esophagus identifi-

cation requires more study and RBM-based approaches may offer an interesting direction

in such context, once they are the base blocks for deeper architectures, i.e., Deep Belief

Networks and Deep Boltzmann Machines, which are able of extracting deeper characte-

ristics and correlations from data.

Considering future works, we intend to investigate the identification of Barrett’s

esophagus using RBM-based deeper architectures, as well as other deep learning tech-

niques. Furthermore, we aim to consider the suitability of deeper versions of the iRBM.



Chapter 8
Conclusions

The present thesis was organized into eight chapters, described as follows: the intro-

duction exposed the context of the research, as well as the motivation and main contribu-

tion to the proposed subject, while Chapter 2 briefly presented the theoretical background

regarding the objective of the research. Chapters 3 and 4 presented a work published in the

journal Neural Processing Letters (NPL) (PASSOS; PAPA, 2017c) entitled Temperature-

Based Deep Boltzmann Machines, as well as the paper Deep Boltzmann Machines Using

Adaptive Temperatures, presented at the 17th International Conference on Computer

Analysis of Images and Patterns (CAIP) (PASSOS; COSTA; PAPA, 2017), respectively.

The former introduced the temperature parameter into the DBM formulation, while the

latter proposed to use the previously mentioned parameter in an adaptive fashion.

Chapter 5 presented the work submitted to the journal Applied Soft Computing

(ASoC), which introduced the concepts of meta-heuristic parameters optimization into

the DBM domain. Similarly, Chapter 6 employed the idea to the Infinity Restricted Boltz-

mann Machine(iRBM) context on a paper presented at the 30th Conference on Graphics,

Patterns and Images (SIBGRAPI) (PASSOS; PAPA, 2017a). Moreover, Chapter 7 applied

iRBM for Barret’s Esophagus lesions detection. The latter was submitted to the Journal

of Visual Communication and Image Representation (JVCIR) as an invited extension

from (PASSOS; PAPA, 2017a).

The results obtained in the aforementioned chapters confirm the hypothesis of this

works, evincing that both the application of meta-heuristic optimization algorithms to

fine-tune the hyper-parameters, as well as the introduction of the temperature parameter

into the RBM-based formulation, are suitable strategies concerning the enhancement of

RBM-based models training process.
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8.1 Works developed during the study period

Table 8.1 presents the works produced during the study period.

Name Type Qualis Year Status

Learning Parameters in Deep Belief Networks Through Firefly Conference B2 2016 Published

Algorithm (ROSA et al., 2016b)

Deep Boltzmann Machines Using Adaptive Conference B1 2017 Published

Temperatures (PASSOS; COSTA; PAPA, 2017)

Parkinson’s Disease Identification Using Restricted Boltzmann Conference B1 2017 Published

Machines (PEREIRA et al., 2017)

Fine-Tuning Infinity Restricted Boltzmann Conference B1 2017 Published

Machines (PASSOS; PAPA, 2017a)

A Metaheuristic-Driven Approach to Fine-Tune Journal A1 2017 Submitted

Deep Boltzmann Machines

Temperature-based Deep Boltzmann Journal A2 2018 Published

Machines (PASSOS; PAPA, 2017c)

Parkinson Disease Identification Using Residual Networks and Conference B1 2018 Published

Optimum-Path Forest (PASSOS et al., 2018)

Enhancing Brain Storm Optimization Through Optimum-Path Conference B1 2018 Published

Forest (AFONSO; PASSOS; PAPA, 2018)

Fine Tuning Deep Boltzmann Machines Through Conference B1 2018 Published

Meta-Heuristic Approaches (PASSOS; RODRIGUES; PAPA, 2018)

Intelligent Network Security Monitoring based Journal A1 2018 Published

on Optimum-Path Forest Clustering (GUIMARAES et al., 2018)

Adaptive Improved Flower Pollination Algorithm for Book Chapter - 2018 Accepted

Global Optimization

Barrett’s Esophagus Analysis Using Infinity Restricted Journal A2 2018 Submitted

Boltzmann Machines

Exudate Detection in Fundus Images Using Deeply-learnable Journal A2 2018 Published

Features (KHOJASTEH et al., 2019)

Quaternion-Based Backtracking Search Optimization Algorithm Conference A1 2019 Submitted

Kaniadakis-Based Restricted Boltzmann Machines Conference A1 2019 Submitted

Table 8.1: Works developed during the study period
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