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“He who knows others is clever;

He who knows himself has discernment.

He who overcomes others has force;

He who overcomes himself is strong.

He who knows contentment is rich;

He who perseveres is a man of purpose;

He who does not lose his station will endure;

He who lives out his days has had a long life.”

(Lao Tzu)





RESUMO

CONSOLE, R. C. C. Uma abordagem bayesiana não paramétrica para o problema de duas
amostras. 2018. 51 p. Dissertação (Mestrado em Estatística – Programa Interinstitucional de
Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas e de Computação, Universi-
dade de São Paulo, São Carlos – SP, 2018.

Neste trabalho, discutimos o problema conhecido como problema de duas amostras PEARSON;
NEYMAN utilizando uma abordagem bayesiana não-paramétrica. Considere X1, . . . ,Xn and
Y1, . . . ,Ym duas amostras independentes, geradas por P1 e P2, respectivamente, o problema de
duas amostras consiste em decidir se P1 e P2 são iguais. Assumindo uma priori não-paramétrica,
propomos um índice de evidência para a hipótese nula H0 : P1 = P2 baseado na distribuição a
posteriori da distância d(P1,P2) entre P1 e P2. O índice de evidência é de fácil implementação,
tem uma interpretação intuitiva e também pode ser justificada no contexto da teoria da decisão
bayesiana. Além disso, em um estudo de simulação de Monte Carlo, nosso método apresentou
bom desempenho quando comparado com o teste de Kolmogorov-Smirnov, com o teste de
Wilcoxon e com o método de Holmes. Finalmente, aplicamos nosso método em um conjunto
de dados sobre medidas de escala de três grupos diferentes de pacientes submetidos a um
questionário para diagnóstico de doença de Alzheimer.

Palavras-chave: Bayesiano Não-paramétrico, Processo de Dirichlet, Teste de Hipótese, Pro-
blema de Duas Amostras.





ABSTRACT

CONSOLE, R. C. C. A Bayesian nonparametric approach for the two-sample problem.
2018. 51 p. Dissertação (Mestrado em Estatística – Programa Interinstitucional de Pós-
Graduação em Estatística) – Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo, São Carlos – SP, 2018.

In this work, we discuss the so-called two-sample problem (PEARSON; NEYMAN, 1930)
assuming a nonparametric Bayesian approach. Considering X1, . . . ,Xn and Y1, . . . ,Ym two inde-
pendent i.i.d samples generated from P1 and P2, respectively, the two-sample problem consists
in deciding if P1 and P2 are equal. Assuming a nonparametric prior, we propose an evidence
index for the null hypothesis H0 : P1 = P2 based on the posterior distribution of the distance
d(P1,P2) between P1 and P2. This evidence index has easy computation, intuitive interpretation
and can also be justified in the Bayesian decision-theoretic context. Further, in a Monte Carlo
simulation study, our method presented good performance when compared to the well known
Kolmogorov-Smirnov test, the Wilcoxon test as well as a recent testing procedure based on
Polya tree process proposed by Holmes (HOLMES et al., 2015). Finally, we applied our method
to a data set about scale measurements of three different groups of patients submitted to a
questionnaire for Alzheimer’s disease diagnostic.

Keywords: Bayesian Nonparametrics, Dirichlet Process Prior, Hypothesis Testing, Two-sample
problem.
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CHAPTER

1
INTRODUCTION

One basic interest in statistics is to test the difference between groups, e. g., testing the
difference between a group of patients that received a drug and a group that received placebo.
Besides the pharmaceutical examples, according to Borgwardt and Ghahramani (2009), the
problem of comparing two groups is surprisingly common in practice and appears in several
research fields. In the literature this problem is known as the “two-sample problem” Pearson
and Neyman (1930) and consists in deciding whether two samples are drawn from the same
population.

The first researchers on this subject were Behrens (1929) and Fisher (1935). The method
developed by Behrens and Fisher consists in comparing the means of the characteristic of interest
that is measured on two samples from different populations assumed normally distributed.
Nowadays, the approach based on the normality assumption and considering equal variance to
the populations are the well known t-test. Welch (1947) considered how to extend such test for the
setting where the variances of the two populations are different, and Cressie and Whitford (1986)
discussed the problems of the t-test for two samples when the assumptions of independence,
homogeneity and normality do not hold. A detailed study on the t-test was presented by Neyman
and Pearson (1967), showing its main particularities and properties.

Kolmogorov (1933) and Smirnov (1939) presented a nonparametric test for deciding
whether two samples are generated from the same distribution. Their approach consists in
measuring the distance between the two empirical distributions. Wilcoxon (1945), Mann and
Whitney (1947) presented an alternative approach to the t-test without the need of such restrictive
assumptions such as assuming normal distribution. The Wilcoxon-Mann-Whitney test is a
nonparametric test that uses the ranks of the samples to conclude on the equality of the medians.
Halperin (1960) generalized the Wilcoxon-Mann-Whitney test for the setting where the samples
are censored at a fixed point.

The classic Bayesian parametric formulation to this problem is in terms of the Bayes
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factor, introduced by Kass and Raftery (1995). Baldi and Long (2001) proposed a Bayesian
two-sample test tailored to microarray data analysis and, to general cases, Gönen et al. (2005)
presented the Bayesian two-sample t-test. In their paper, they present a prior that provides a
closed form for the Bayes factor, which can then be written in terms of the distribution of the t
statistics of the two samples on the null and alternative hypothesis, respectively. For a review of
several Bayesian approaches to the problem see Bernardo and Smith (2001).

Unfortunately, there are very few attempts of attacking this problem from a Bayesian
nonparametric perspective. The only exceptions that we are aware of are Basu and Chib (2003),
which use Bayes factors for Dirichlet process-based models; Borgwardt and Ghahramani (2009),
which discuss two-sample tests based on Dirichlet process mixture models and derived a formula
to compute the Bayes factor in this case; Ma and Wong (2011), which propose to allow the
two random distributions under the alternative to randomly couple on different parts of the
sample space, thereby achieving transference of information; Labadi, Masuadi and Zarepour
(2014), which propose a Bayesian method for comparing two-samples based on the Kolmogorov
distance; and Holmes et al. (2015), who developed a Bayesian nonparametric procedure for the
problem considering a Polya tree process prior.

In this dissertation, we propose a test for the equality of the two populations by means of
a nonparametric Bayesian evidence index, which is given by a posterior weighted mean of the
distance between P1 and P2, the probability distributions associated with each population. We
call this evidence index WIKS (weight integrated Kolmogorov-Smirnov). The WIKS, is easy
to compute, has intuitive interpretation and can be justified in the Bayesian decision-theoretic
framework. We show that WIKS achieves greater power when compared with the Kolmogorov-
Smirnov and Wilcoxon in a wide variety of simulation scenarios. When compared with Holmes’
method, the WIKS present better performance in some settings. Finally, we apply our method
to a data set about scale measurements of three different groups of patients submitted to a
questionnaire used to diagnostic Alzheimer’s disease.

In Chapter 2 we motivate the WIKS and present a simulation study designed to compare
our proposal with the Kolmogorov-Smirnov test, the Wilcoxon-Mann-Whitney test and with the
Holmes test and in chapter 3, we present the final considerations.
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CHAPTER

2
BAYESIAN NONPARAMETRIC INDEX

This chapter is organized as follows. In Section 2.1 we present our evidence index and
a decision theoretical justification for it. In section 2.2 we specify the necessary procedures
to the computational study of the index. We investigate the WIKS invariance in section 2.3
and in section 2.4 we present a simulation study designed to compare our proposal with the
Kolmogorov-Smirnov test, the Wilcoxon-Mann-Whitney test and the Holmes test. In Section 2.5
we apply our method to a data-set of scale measurements for Alzheimer disease.

2.1 The nonparametric Bayesian WIKS index

Assume that two independent samples X1, · · · ,Xn and Y1, · · · ,Ym are drawn from P1

and P2, respectively. Our aim is to test the null hypothesis H0 : P1 = P2 against the alternative
H1 : P1 6= P2. Assuming a suitable metric d between probability measures1, we can express the
magnitude of the difference between the two populations P1 and P2 by d(P1,P2). Using this
metric, our problem can be reformulated as testing H0 : d(P1,P2) = 0 against H1 : d(P1,P2)> 0.
In the following, we shall assume that the metric d is bounded above.

2.1.1 Index Definition

Considering a given nonparametric prior for (P1,P2), let us assume that Px,y is the
posterior distribution for (P1,P2) given the observed samples x = (x1, . . . ,xn) and y= (y1, . . . ,ym).
The WIKS index is defined as follows.

Definition 1. The WIKS index against hypothesis H0 is defined by

WIKS(Dn,m) =
∫ M

0
w(ε) Px,y(d(P1,P2)> ε

)
dε, (2.1)

1 Common choices for this metric are the Kolmogorov-Smirnov metric, the L2 metric and Lévy metric.
For a survey of metrics between probability measures see Rachev et al. (2013).
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where Dn,m = {x,y} denotes the two observed samples of sizes n and m, w : [0,M)−→ (0,∞]

(the weight function) is a probability density function over [0,M) and M = supP1,P2
d(P1,P2) is

the maximum value (possibly being +∞) of the distance d.

The idea behind this index is to express a discrepancy between the posterior distribution
of d(P1,P2) and 0 and to facilitate the index understanding, a geometric interpretation of WIKS
is displayed in Figure 1.

Figure 1 – Geometric interpretation of the WIKS index.

In Figure 1, we disregard the weight function and we look at only to the posterior survival
distribution of the d(P1,P2). The area under the curve correspond to the expression:

∫ M

0
Px,y(d(P1,P2)> ε

)
dε. (2.2)

For example, assume that d(P1,P2) = M almost sure. So the expression 2.2 is equal to M, the
highest possible value. Alternatively, if d(P1,P2) = 0 almost sure (the two populations are equal
almost sure), then the expression 2.2 is equal to 0. Then, the bigger the area, greater is the
evidence against the null hypothesis. The only difference between the expression 2.2 and the
expression 2.1 is the weight function w, thus the same reasoning apply. Therefore, the bigger the
value of the WIKS, greater is the evidence against the null hypothesis.
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Furthermore, WIKS can be thought of as a compromise between different evidence
indexes against the null H0. More specifically, a naive evidence index against the null is
Px,y(d(P1,P2) > ε) for a fixed ε > 0, where larger values indicate greater evidence against
the null. Thus, one can decide to reject the null whenever that probability exceeds a given thresh-
old δ (e.g., 0.5)2. However, choosing an appropriate ε value is typically not easy, especially in
a nonparametric framework. Moreover, it can also lead to inconsistent decisions: for instance,
suppose that the actual distance between P1 and P2 is ε ′ in (0,ε), then Px,y(d(P1,P2)> ε) con-
verges to 0 as the sample sizes increase (since the posterior of d(P1,P2) converges to ε ′) leading
one to wrongly accept the null. Instead of fixing an ε value, WIKS combines all the evidences
Px,y(d(P1,P2) > ε) for different ε using the weighted average given in (2.1). Notice that, by
choosing a constant weight function w, WIKS index (2.1) is proportional to the area below the
survival curve of d(P1,P2), which is the posterior expected value of d(P1,P2). Different choices
of the weight function can be considered depending on the specifics of the problem at hand. At
last, the naive approach is a particular case when we consider the weight function as a degenerate
weight function.

Next we investigate some properties of the index.

Theorem 1. Let Ex,y denote the expectation with respect to Px,y. Then,

WIKS(Dn,m) = Ex,y[W (d(P1,P2)
]
, (2.3)

where W is the cumulative distribution function corresponding to the probability density function
w.

Proof of Theorem. Let Pd be the probability distribution of d(P1,P2) assuming that (P1,P2) is
distributed according to Px,y. Thus,

WIKS(Dn,m) =
∫ M

0
w(ε)Pd

(
(ε,M]

)
=
∫ M

0

∫ M

0
w(ε)I(ε,M](z)dPd(z)dε,

which implies by the Fubini theorem, that

WIKS(Dn,m) =
∫ M

0

∫ M

0
w(ε)I(ε,M](z)dεdPd(z),

=
∫ M

0

∫ z

0
w(ε)dεdPd(z)

=
∫ M

0
W (z)dPd(z)

= Ex,y[W (d(P1,P2))],

where IA(z) denotes the indicator function assuming 1 if z ∈ A and 0 otherwise.

2 This approach was suggested by e.g. Swartz (1999) in a Bayesian nonparametric goodness-of-fit
context.
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Theorem 1 shows that WIKS can be expressed as the expected value of W (d(P1,P2))

with respect to the posterior distribution. This implies that a Monte Carlo approximation for
WIKS is readily available from posterior simulations of (P1,P2), what is very useful in practice.
A description of such procedure is given in Algorithm 1.

Algorithm 1 – WIKS computation

Require: samples x and y of sizes n and m; posterior distribution Px,y(P1,P2);
cumulative weight function W ; number of Monte Carlo simulations S

Ensure: WIKS(Dn,m)

1: Sample (P1,1,P2,1), . . . ,(P1,S,P2,S) independently from the posterior distribution Px,y;
2: Approximate WIKS index by

WIKS(Dn,m)≈
1
S

S

∑
s=1

W (d(P1,s,P2,s))

In Algorithm 1, we show one way to estimate the WIKS by Monte Carlo.

Straight from the definition, the index has the following properties.

Theorem 2. 1. 0≤WIKS(Dn,m)≤ 1 for any observed sample Dn,m;

2. WIKS(Dn,m) = 0 if, and only if, d(P1,P2) = 0 almost surely;

3. WIKS(Dn,m) = 1 if, and only if, d(P1,P2) = M almost surely;

4. WIKS(Dn,m) is increasing3 with respect to d(P1,P2).

Proof of Theorem. 1. It follows directly from Theorem 1 and the fact that W assumes values
in [0,1];

2. Since the random variable W (d(P1,P2)) is non negative, its expected value is zero if and
only if it assumes zero almost surely;

3. The same argument of (2) applied to the non negative random variable 1−W (d(P1,P2));

4. Consider D1 and D2 two random variables representing two posterior distributions for
d(P1,P2) such that D2 is stochastically greater than D1, i.e., P(D1 ≥ x)≤ P(D2 ≥ x) for
all x > 0. Since E[Di] =

∫
∞

0 P(Di ≥ x)dx, we have that E[D1]≤ E[D2].

3 Increasing in the sense of stochasticaly order, for more details see chapter one of Shaked and Shan-
thikumar (2007)
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2.1.2 Decision-theoretic formulation

The WIKS index can also be motivated in the Bayesian decision framework (DeGroot
(2005)). Let D = {a,ac} be the decision space, where a stands for accepting H0 and ac for
rejecting H0. Let us consider the following loss function for our decision problem:

L
(
(P1,P2),d

)
=

{
c0W (d(P1,P2)), if d = a,

c1[1−W (d(P1,P2))], if d = ac,
(2.4)

where c0 and c1 are positive real numbers representing the maximum loss when accepting and
rejecting H0, respectively. Observe that, if we decide to accept H0, the loss function is zero
if d(P1,P2) = 0 and increases with the value of d(P1,P2). On the other hand, if we decide to
reject H0, then the function decreases with the value of the distance d(P1,P2) and vanishes if
d(P1,P2) = M.

For a decision δ (x,y) ∈ D, the posterior expected loss is given by

Ex,y[L((P1,P2),δ (x,y)
)]

=

{
c0Ex,y[W (d(P1,P2))], if δ (x,y) = a,

c1
[
1−Ex,y[W (d(P1,P2))]

]
, if δ (x,y) = ac.

Theorem 3. The Bayes rule for the loss function (2.4) is given by rejecting H0 if

WIKS(Dn,m)> c, (2.5)

where c = c1/(c1 + c0).

Proof of Theorem. Our decision is ac, in others words reject H0, if

c0Ex,y[W (d(P1,P2))]> c1
[
1−Ex,y[W (d(P1,P2))]

]
= c1− c1Ex,y[W (d(P1,P2))]

simplifying
c0Ex,y[W (d(P1,P2))]+ c1[Ex,y[W (d(P1,P2))]> c1

that is equivalent to
WIKS(Dn,m)>

c1

c1 + c0
(2.6)

2.2 Prior Specification and Decision Procedure
Our approach to solve the two-sample problem is fairly general. Basically, if we can

draw samples from the posterior, we can compute the index. Thus, the index can be applied to
any prior distribution, such as Pólya trees and the Beta processes. In this thesis, however, we
focus on one of the most used methods to perform Bayesian nonparametric inference, which is
the Dirichlet process prior (Ferguson (1973)).
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In order to proceed to test the hypothesis P1 = P2 using our index, we need to specify
the prior distribution for P1 and P2, choose a metric d and a weight function w. The prior for P1

and P2 is specified as two independent Dirichlet process with the same base probability G and
concentration parameter K. The concentration parameter K is set to 1 because the initial idea
is to verify the behavior of the index without “changing” the variation of the Dirichlet process,
that is, increase variation with K < 1 or decrease variation with K > 1. The base probability G

is chosen accordingly to the known support of the data: for observations taking values on the
real line, we choose the standard Gaussian distribution N(0,1); for observations taking values
in the nonnegative real line, we choose the standard lognormal distribution LN(0,1) and for
observations taking values in the [0,1] interval, we choose the uniform distribution U(0,1). In
the Appendix A, we discuss the Sethuraman’s approach to sample from the Dirichlet process.
The metric d considered is the Kolmogorov metric defined by d(P1,P2) = supx |P1((−∞,x])−
P2((−∞,x])| and, since the maximum of the Kolmogorov distance is 1, the weight function
w is taken to be a Beta(1,λ ) density (λ ≥ 1), which has cumulative weight function Wλ (t) =

1−(1− t)λ , t ∈ [0,1]. We choose this probability density function to the weight function because
they are asymmetric to the left and as we have in mind especially medical and pharmaceutical
applications, we want to prioritize small distances due to the critically involved in these fields.
For example, for W4(t) = 1− (1− t)4 approximately 60% of the total weight is attributed up to
0.2 of the distance.

Now, it only remains to decide how to choose the threshold value c for the decision
criterion in (2.5). At this point, we follow the philosophical approach suggested in Good (1992)
and adopt a Bayesian / non-Bayesian compromise to select the threshold. The idea is to select
the value c that controls the type I error, that is, given that the hypothesis H0 is true, we declare it
false with probability less than α , e.g., α = 0.05.

We compute the quantiles in the following way. The first step consists in simulate two
samples with sizes n and m from the null distribution 4. The second steps consists in applying
the Algorithm 1 with all parameters laid down above to simulate one value of the WIKS. We
repeat the latter procedure a thousand times and take c as the 0.95 sample quantile of the index
values. Table 1 presents the obtained threshold c considering the three different settings for the
population support and λ = 1,2,3,4. Thus, the H0 hypothesis should be rejected if the index
calculated for a given value of λ exceeds the correspondent c value given in Table 1.

In Table 1 we have the decision procedure for samples with sizes n = m = 50. So, if
for example we have two samples with sizes 50 taking values in the real line and set λ = 1,
we compare the WIKS index with the threshold c = 0.2848. If the WIKS index is greater than
0.2848 we reject the null hypothesis. Otherwise we declare the null hypothesis true.

4 This null distribution is defined to be N(0,1), LN(0,1) or U(0,1), in the same way as the base measure,
accordingly to the known support of data.
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Table 1 – Threshold c values (0.95 sample quantiles of the index) for different support distributions and λ

values considering n = m = 50.

Distributions
λ N(0,1) LN(0,1) U([0,1])
1 0.2848 0.2927 0.2826
2 0.4755 0.4875 0.4844
3 0.6218 0.6349 0.6241
4 0.7272 0.7232 0.7215

2.3 Invariance of WIKS sampling distribution under H0

Our index reminds the Kolmogorov-Smirnov statistics, which is invariant under H0

(the distribution of the statistics depends only on the sample sizes). This motivates us to find
out if the index exhibits similar behavior. In this section we present some results obtained
during the invariance investigation. We studied some descriptive statistics of the index, as the
quantiles and the mean, changing the distribution. To this study we set as prior two independent
Dirichlet process with concentration parameter K = 1 and same base probability N(0,1). The
distance employed was the Kolmogorov metric d(P1,P2) = supx |P1((−∞,x])−P2((−∞,x])| and
the weight function was W4(t) = 1− (1− t)4. Below we present the procedure used to describe
the sampling distribution of the WIKS index under the null.

1. Simulate two samples x and y independently with respectives sizes n and m under the null
hypothesis.

2. Compute the WIKS(Dn,m) index by means of Algorithm 1 with S = 1000.

3. Repeat the steps 1 and 2 a thousand times.

4. Compute the quantiles and the mean of the simulated values.

In Table 2, we consider 4 scenarios under the null hypothesis: Exponential(1), Beta(5,5),
Skew Normal(1.5) and Uniform(50,50) with n = 10 and m = 20 and for each scenario we
calculate the quantiles and the mean following the above algorithm.

Table 2 – Quantiles 0.05, 0.25, 0.5, 0.75, 0.95 and mean of WIKS index simulated from different popula-
tions P (under H0) with n = 10 and m = 20

Exponential(1) Beta(5,5) Skew_Normal(1,5) Uniform(50,50)
5% 0,7651 0,7659 0,7626 0,7658

25% 0,7909 0,7922 0,7903 0,7917
50% 0,8187 0,8195 0,8204 0,8230
75% 0,8546 0,8512 0,8574 0,8602
95% 0,9155 0,9096 0,9149 0,9208
mean 0,8269 0,8257 0,8272 0,8298
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In Table 3, we consider the scenarios Exponential(10), Beta(10,10), Skew Normal(1) and
Uniform(100,100) with sample sizes n = 20 and m = 30.

Table 3 – Quantiles 0.05, 0.25, 0.5, 0.75, 0.95 and mean of WIKS index simulated from different popula-
tions P (under H0) with n = 20 and m = 30

Exponential(10) Beta(10,10) Skew_Normal(1) Uniform(100,100)
5% 0,6747 0,6739 0,6771 0,6773

25% 0,7035 0,7056 0,7046 0,7068
50% 0,7353 0,7360 0,7344 0,7374
75% 0,7727 0,7720 0,7719 0,7755
95% 0,8439 0,8445 0,8452 0,8461
mean 0,7424 0,7432 0,7444 0,7452

In Table 4, we considered Exponential(1), Beta(1,1), Skew Normal(0.5) and Uniform(100,100)
with sample sizes n = 30 and m = 10.

Table 4 – Quantiles 0.05, 0.25, 0.5, 0.75, 0.95 and mean of WIKS index simulated from different popula-
tions P (under H0) with n = 30 and m = 10

Exponential(1) Beta(1,1) Skew_Normal(0.5) Uniform(10,10)
5% 0,7468 0,7458 0,7455 0,7462
25% 0,7734 0,7739 0,7719 0,7740
50% 0,8018 0,8012 0,7960 0,8028
75% 0,8392 0,8405 0,8354 0,8438
95% 0,8996 0,8989 0,9010 0,9064
mean 0,8100 0,8102 0,8067 0,8123

Note that changing the scenario under the null hypothesis, apparently there is no differ-
ence between the quantiles and the mean, providing an evidence that the sampling distribution of
the WIKS index is invariant under the null hypothesis.

2.4 Simulation Study
In this section, we present a simulation study to compare our decision criteria with the

Kolmogorov-Smirnov test, the Wilcoxon test and the Holmes test. For a detailed explanation of
the Wilcoxon and the Kolmogorov-Smirnov test, we cite Wilcoxon (1945), Kolmogorov (1933)
and Smirnov (1939). Before we start the simulation study. in the subsection below we describe
in few lines the Holmes’s method (HOLMES et al., 2015).

2.4.1 Holmes’s method

Assume that P1 and P2 are two populations and that x = (x1, · · · ,xn) and y = (y1, · · · ,ym)

are samples from P1 and P2 respectively. Holmes presented a procedure to test the hypothesis

H0 : P1 = P2

H1 : P1 6= P2.
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The idea of Holmes is to quantify the evidence in favor of the null hypothesis H0 by
means of the probability P(H0|(x,y)) where (x,y) represent the pooled data.

To proceed with the test, Holmes consider as prior the Pólya tree5 centered on some
distribution G. Under the null, he considered that the pooled date came from a Pólya tree F1,2

and under the alternative hypothesis P1 ∼ F1 and P2 ∼ F2 are modelled as independent Pólya
tree priors.

As Holmes argues, in such a way the test procedure could be faced as a model comparison
problem. From Bayes theorem

P(H0|(x,y)) = P((x,y)|H0)P(H0),

therefore the posterior odds is equal to

P(H0|(x,y))
P(H1|x,y)

=
P((x,y)|H0)

P(x,y|H1)

P(H0)

P(H1)
. (2.7)

Holmes found an explicit expression to the Bayes factor

P((x,y)|H0)

P(x,y|H1)

2.4.2 Power Simulation

To compare the power functions, just as Holmes presented in his article (HOLMES et

al., 2015), we consider 8 scenarios representing different departures from the null

1. Beta symmetry: X∼ Beta(1,1) and Y∼ Beta(θ ,θ), θ = [1,6]

2. Gamma shape: X∼ Gamma(3,2) and Y∼ Gamma(θ ,2), θ = [3,6]

3. Lognormal mean shift: logX∼ N(0,1) and logY∼ N(θ ,1), θ = [0,3]

4. Lognormal variance shift: logX∼ N(0,1) and logY∼ N(0,θ), θ = [1,5]

5. Normal mean shift: X∼ N(0,1) and Y∼ N(θ ,1), θ = [0,3]

6. Normal mixtures: X∼ N(0,1) and Y∼ 1
2N(−θ ,1)+ 1

2N(θ ,1), θ = [0,3]

7. Fat tails: X∼ N(0,1) and Y∼ t(θ−1), θ = [10−3,10].

8. Normal variance shift: X∼ N(0,1) and Y∼ N(0,θ), θ = [1,4]

The comparison is made in terms of the “power to detect the alternative”. That is, we
compare the power functions of the different decision rules at level 5%. The power function is
calculated in according to Algorithm 2.
5 The Pólya tree is a nonparametric prior proposed by Lavine et al. (1992)
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Algorithm 2 – Power Function
1: Fix a value for θ on the grid
2: Draw X and Y with sample sizes n = m = 50 from the respective distribution determined by

θ

3: Decide to reject or not the null hypothesis
4: Repeat this procedure 1000 times
5: Compute the proportion of times that the null hypothesis was rejected
6: Repeat steps 1 to 5 for a new value of θ

Figure 2 presents the power function for the different methods considered under the
above scenarios.
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Figure 2 – Power function comparison for different settings

Note that the Wilcoxon test is able to detect changes in the location parameter and
gamma shape parameter (scenarios (2), (3) and (5)), but shows extremely low power in detecting
the alternative for all other scenarios. The Kolmogorov-Smirnov test presents a medium power
performance over all scenarios. The Holmes test present low power in detecting the variance
shift in lognormal distribution. The WIKS overperfomed its competitor in 1 scenarios ((4)).
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Compared with the another Bayesian nonparametric test (Holmes method), our index presentd
better performance in the location parameter, the gamma shape parameter and the lognormal
variance shift (scenarios (2), (3), (4) and (5)). Besides, the Kolmogorov metric does not work
well with differences in distribution tails, so changing the metric in this scenarios could improve
the results of our approach.

Another interesting point in Figure 2, is that the Holmes method does not control the
type one error. While we study the Holmes’s routines, that is worth mentioning was in Octave,
we observe that for each point under the null hypothesis he established a criterion, that is, for
each scenario he determined the cutoff point to proceed with the test and this is not clear in his
article. Therefore, for Holmes test, for each distribution and sample size a cut-off point must be
specified. In the power function for Holmes method, we defined the cutoff point for all scenarios
as the one with the maximum 5% of error of type one.

Additionally, we also investigate the consistency of the proposed method, that is, we
study the power function under the alternative for increasing sample sizes. In order to do so, we
consider the scenarious:

1. Beta symmetry: X∼ Beta(1,1) and Y∼ Beta(3,3)

2. Gamma shape: X∼ Gamma(3,2) and Y∼ Gamma(4,2)

3. Lognormal mean shift: logX∼ N(0,1) and logY∼ N(1,1)

4. Lognormal variance shift: logX∼ N(0,1) and logY∼ N(0,3)

5. Normal mean shift: X∼ N(0,1) and Y∼ N(1,1)

6. Normal mixtures: X∼ N(0,1) and Y∼ 1
2N(−1,1)+ 1

2N(1,1)

7. Fat tails: X∼ N(0,1) and Y∼ t(1.25−1)

8. Normal variance shift: X∼ N(0,1) and Y∼ N(0,3)

The results are reported in Figure 3 for n = m = 10,20,30 · · · ,100. In all scenarios we
can observe the expected behavior, increasing the sample size increases the power. Again, the
WIKS overperfomed the Holmes method in the scenarios ((2), (3), (4) and (5)).

2.5 Application

We apply our methods to a data set of three groups of patients (CG: the control group,
MCD: with mild cognitive decline and AD: with Alzheimer’s disease) submitted to a question-
naire for Alzheimer’s disease diagnostic (CAMCOG) with respective sample sizes 39, 45 and
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Figure 3 – Power for different settings changing the sample size

50. More details on this dataset can be obtained in (Cecato et al. (2016)). The main idea is to
quantify the differences between the groups using our methods.

Figure 4 shows that all groups present different behavior with respect the score obtained
from CAMCOG. The group with Alzheimer’s disease (AD) has the lowest CAMCOG scores and
the control group (CG) the highest ones. The group with mild cognitive decline (MCD) has score
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values in-between the other two groups. Thus, it is expected that the WIKS index will be greater
when comparing AD and CG groups than for the other comparisons. In fact, for AD vs CG, CG
vs MCD and MCD vs AD the WIKS index are 0.9993,0.9629,0.9312 with respective thresholds
0.7558, 0.7681 and 0.7314, leading to the rejection of null for all pairwise comparisons. The
index was computed with concentration parameter K = 1, base probability G∼ N(0,1), weight
function W (t) = 1− (1− t)4 and the Kolmogorov metric. From this analysis, we conclude that
CAMCOG is an useful tool for initial diagnostic of Alzheimer disease, being able to properly
distinguish between the three groups.
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Figure 4 – Boxplot of CAMCOG scores for the groups MCD, AD and CG.
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CHAPTER

3
FINAL REMARKS AND FUTURE WORKS

We propose a method to compare two populations P1 and P2 that relies on a Bayesian
nonparametric discrepancy index (WIKS) defined as a weighted average of the posterior survival
function of the Kolmogorov distance d(P1,P2). The WIKS index can also be expressed as the
posterior expectation in terms of d(P1,P2), which makes it easier to compute its value using
samples of the posterior distribution. The WIKS definition can be seen as an aggregated evidence
against the null and the proposed decision procedure is the Bayes rule under a suitable loss
function.

In a power function simulation study, WIKS presents better performance than the well-
established Wilcoxon and Kolmogorov-Smirnov tests. When compared to the method proposed
by Holmes et al. (2015), WIKS shows similar performance in many settings and is superior
when the support of data are restricted to the positive real numbers or the unitary interval. For a
data-set on questionaire scores used for Alzheimer diagnose applied to 3 groups, WIKS could
correctly indentify the difference between the groups.

We conclude that WIKS is a powerful and flexible method to compare populations with
low computational cost. Even thought we have chosen the Dirichlet Process as our prior, any
other nonparametric (e.g, the Polya tree or the Beta processes) or even parametric prior could be
used without the need of adjustments: WIKS computation only requires a sampling algorithm
for posterior simulation. Further investigation is needed to assess the effect of the choices of the
metric d and the weight function w on the performance of the method. Future research directions
are extending the methods presented here to goodness-of-fit problems and investigating the
performance in high-dimensional settings.
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APPENDIX

A
STICK-BREAKING REPRESENTATION

Sethuraman (1994) presented a simple constructive definition of the Dirichlet process.
Its representation simplify the way to approximate a sample from the Dirichlet process.

Let Y1,Y2, · · · independent and identically random variables with distribution β . Let
p1, p2, · · · probabilities from a discrete distribution over the integers with discrete failure rate
θ1,θ2 · · · which are independent and identically distributed with a Beta distribution B(1,K), with
K a constant. Define

P(θ ,Y,B) = P(B) =
∞

∑
n=1

pnδYn(B) (A.1)

P is the random probability that put weights pn at the degenerated measure δYn . Next we present
the algorithm to approximate a sample from de Dirichlet process.

Algorithm 3 – Dirichlet Process Simulation with base probability β and concentration parameter
k

1: procedure SAMPLE PATH OF DIRICHLET PROCESS(β ,k)
2: Sample y1,y2, · · · ,yn from the base probability
3: Sample b1,b2, · · · ,bn from the beta distribution B(1,k)
4: p1← b1
5: i← 1
6: while i≤ n−1 do
7: pi+1← bi+1 ∗∏

i−1
j=1(1−b j)

8: i← i+1
9: end while

10: For each sample yi assign the weight pi
11: return {(y1, p1),(y2, p2), · · · ,(yn, pn)}
12: end procedure

We use the algorithm 3 to sample paths from the Dirichlet Process in all simulations in
this dissertation.
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ANNEX

A
R SCRIPTS

Source code 1 – Functions employed in the simulation

1:

2: # rdirichlet : returns a sample from Dirichlet distribution

3: rdirichlet <- function (alpha) {

4: z <- rgamma ( length (alpha), alpha)

5: return (z/sum(z))

6: } # end - function

7:

8: # Returns one realization from the posterior DP

9: post.dp <- function (data , alpha0 , r.G0 , K = 500)

10: {

11: # data: vector of data values

12: # alpha0 : concentration parameter (prior)

13: # r.G0: function that draws from the base probability (prior)

14: # K: truncation number of simulations for the stick - breaking

process

15:

16: # Draw values from the base probability G ( posterior ) ->

theta

17: n <- length (data)

18: theta <- rbinom (K, 1, alpha0 /( alpha0 + n)) # indicator values

to simulate from G0

19: k <- sum(theta)

20: theta.prior <- r.G0(k)

21: theta.data <- sample (data , K - k, replace = TRUE)

22: theta[theta == 1] <- theta.prior

23: theta[theta == 0] <- theta.data
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24:

25: # Draw values for the weights associated to the theta values

26: betas <- rbeta(K , 1, alpha0 + n)

27: w <- c(1, cumprod (1 - betas))[1:K]* betas

28:

29: # Remove ties from theta

30: w.new <- tapply (w, theta , sum)

31: theta.new <- sort( unique (theta))

32: return (list(theta = theta.new , w = w.new))

33: } # end - function

34:

35: # dist: returns the Kolmogorov distance between 2 discrete

distribution functions

36: dist <- function (x, y, f = rep (1/ length (x), length (x)), g = rep

(1/ length (y), length (y))) {

37: # (x, f): values and weights for sample 1 (x ordered

increasingly )

38: # (y, g): values and weights for sample 2 (y ordered

increasingly )

39: Fx <- ewcdf(x, f)

40: Gy <- ewcdf(y, g)

41: z <- c(x, y)

42: max(abs(Fx(z) - Gy(z)))

43: } # end - function

44:

45: # weight : returns the weight function for a given lambda

parameter

46: weight <- function (x, lambda ) {1-(1-x)^ lambda }

47:

48: # index: returns a Monte Carlo aproximation for the index

49: index <- function (lambda , data , alpha0 , r.G0 , K = 500, S =

1000){

50: # lambda : parameter of the weight function

51: # data: list with the 2 data sets

52: # alpha0 : concentration parameter for the DP (prior)

53: # r.G0: function that draws from the base probability (prior)

54: # K: truncation number for the stick - breaking process

55: # S: number of Monte Carlo simulations

56: d <- numeric (S)

57: for (i in 1:S){

58: v1 <- post.dp(data [[1]] , alpha0 , r.G0 , K)

59: v2 <- post.dp(data [[2]] , alpha0 , r.G0 , K)



51

60: d[i] <- dist(v1 [[1]] , v2 [[1]] , v1 [[2]] , v2 [[2]])

61: } # end -for

62: mean( weight (d, lambda ))

63: } # end - function


