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Resumo

Neste trabalho, revisamos a dinâmica de um-qubit e oferecemos uma interpretação uni�-

cadora das dinâmicas de Landau-Zener e de Rabi, indicando os elementos físicos respon-

sáveis pela manifestação de um fenômeno ou de outro, sem a necessidade de de�ni-los

como fenômenos separados. Além disso, demonstramos a possibilidade de implementar

portas quânticas de alta �delidade em duas plataformas diferentes de pontos quânticos,

com a assistência do método numérico da teoria de controle ótimo quântico �two-point

boundary-value quantum control paradigm� (TBQCP) [126]. Na primeira plataforma que

consiste de um ponto quântico duplo (DQD) incorporado em um nano�o, otimizamos pul-

sos elétricos correspondentes a três portas quânticas de um-qubit com �delidade maior

que 0,99. Também comparamos a e�ciência da dinâmica com o pulso otimizado obtida

através do TBQCP em relação aos outros mecanismos dinâmicos (Rabi e Landau-Zener);

e descobrimos que o TBQCP pode fornecer pulsos capazes de executar tarefas em tempos

mais curtos. Para a segunda plataforma que consiste de um DQD eletrostático, imple-

mentamos o algoritmo de permutação quântica (QPA) [121], o que requer a superposição

quântica de estados com fases relativas bem de�nidas. Devido à necessidade de usar

pelo menos um sistema de três níveis nesse algoritmo, usamos qubits híbridos em vez de

spin qubits. Para encontrar os campos elétricos AC ideais que implementam as portas

quânticas necessárias, aplicamos o método TBQCP. Empregando esse método, fomos ca-

pazes de determinar pulsos elétricos ideais que executam as portas quânticas com uma

alta �delidade e em tempos mais rápidos do que os tempos de decoerência e relaxamento.

Os nossos resultados demonstram a possibilidade de realizar portas quânticas universais

totalmente elétricas em DQDs por meio do controle ótimo quântico.

Palavras chaves: Controle quântico ótimo, Informação quântica, pontos quânticos.



Abstract

In the present study, we review the one-qubit dynamics and we o�er a new unifying

interpretation of the Landau-Zenner and the Rabi dynamics, by indicating the physical

elements responsible for the manifestation of one phenomenon or the other, without the

need to de�ne them as separate phenomena. Furthermore, we demonstrate the possibility

of electrically implementing quantum gates with high �delity in two di�erent platforms

of quantum dots, with the assistance of the two-point boundary-value quantum control

paradigm (TBQCP) [126]. In the �rst platform consisting of a double quantum dot (DQD)

embedded in a nanowire, we optimized single qubit pulses corresponding to three quantum

gates assuring a �delity for every gate higher than 0,99. Also we compare the dynamical

e�ciency of the optimized pulses via the TBQCP method, respect to the other dynamical

mechanisms (Rabi and Landau-Zener); and we found that TBQCP can provide pulses that

can perform tasks in shorter times. For the second platform consisting of an electrostatical

DQD, we implement the quantum permutation algorithm (QPA) [121], which requires

the quantum superposition of states with well-de�ned relative phases. Because of the

necessity of using at least a three level system in this algorithm, we use hybrid qubits

instead of spin qubits. In order to �nd the optimal AC electric �elds that implement the

required quantum gates, we apply the TBQCP method. By employing such method, we

were able to determine optimal electric pulses that perform the quantum gates with high

�delity and in times faster than decoherence and relaxation time. Our results demonstrate

the possibility of achieving all-electrical universal quantum gates in DQDs by means of

optimal quantum control.

Keywords: Optimal quantum control, Quantum information, Quantum dots.
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Chapter 1

Introduction

The potential of quantum computation was envisaged for the �rst time by Feynman

in 1982 [1], when he recognized that the complexity of a quantum system yields a remark-

able di�culty, in order to simulate its temporal evolution via a classical computer. With

this challenge in mind, Feynman proposed that an hypothetical quantum computer could

simulate the evolution of a quantum system e�ciently. A decade later, the Grover [2]

and Shor [3] algorithms, showed that quantum algorithms can outperform the e�ciency

of classical algorithms in various tasks. Quantum protocols employ resources like the

entanglement or the quantum superposition, (phenomena with no equivalents in classi-

cal physics), e.g. the quantum cryptography protocol BB84 in [4]. In order to harness

the advantages of these new resources, new areas emerged like quantum information and

quantum computation. Currently, the BB84 protocol constitutes the �rst commercial

application in quantum information, and there are other few commercial applications in

quantum information [5]. The �rst experimental implementations of a quantum algorithm

(in the year of 1998, for the algorithm of Deutsch-Jozsa and in 2001 for the algorithm

of Shor) were made in the platform of Nuclear Magnetic Resonance (NMR) [6, 7], ma-

terializing the quantum information processing in a physical system corresponding to a

quantum computer with two qubits.

Despite the fact that currently, the interest to materialize this practical applications

of quantum phenomena is higher than ever, there is a disparity between most of the

theoretical advances of quantum information and computation and their experimental

realizations. This situation represents a technological void that needs to be �lled, given

that only some basic protocols or algorithms have been implemented. At the moment,

the power of the existing quantum devices to process information falls short compared to

those that do not exploit quantum phenomena.

Most of the disparity between the progress in theory and experiments comes from

technical di�culties involved in the development of quantum devices. For this reason, the

scienti�c community as well as the technological industries are in an active exploration for
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the best physical systems that could materialize the theoretical quantum information ap-

plications into experimental devices. A signi�cant incentive rise from the higher e�ciency

in the computation time provided by quantum algorithms, compared to the classical ones,

when we try to perform the same task. With the purpose to reduce this void between

theory and experiment, di�erent platforms are being explored. Let us review brie�y some

of the most relevant.

1.1 Physical platforms for the qubit

The �rst quantum systems to be studied and manipulated were physical systems o�ering

two possible states, which o�er natural qubits. These platforms were proposed mainly

from the �elds of atomic physics and quantum optics [8, 9], with natural qubits like the

electronic or the nuclear spin e.g. Rydberg atoms [10], trapped ions in ultra-cold atoms

[17], the nitrogen-vacancy centers [11], where the �rst controlled-NOT (CNOT) quantum

gate was experimentally implemented in 1995 [12], or the nuclear magnetic resonance

(NMR), where the Shor algorithm was experimentally realized for the �rst time [7]. Also

the polarization degrees of freedom in light (e.g. quantum electrodynamic cavities [13]),

or an interplay of both (light and spins) in atomic ensembles [14]. Given that light and

atoms are being studied since the very foundations of quantum mechanics, there was a vast

knowledge acquiered for these systems, and it was precisely these platforms that became

the �rst testbeds for developing quantum control methods and experimental applications

of quantum information processing.

A common feature of these platforms is the fact that they are relatively more iso-

lated from the surrounding environment than other platforms and therefore have better

protection from decoherence. For example, atomic hyper�ne ground states or metastable

states serve as quantum memories to store quantum information because of their long

decoherence time. But such isolation is also the origin of a serious de�ciency, since it

limits the coupling and thus its interaction with other systems, di�culting its scalability.

On the other hand there are platforms that o�er arti�cial qubits, like the supercon-

ducting circuits [15], the phosphorus donors in silicon [16, 23], or the di�erent platforms

used to host quantum dots. These platforms o�er faster mechanisms for their manipu-

lation, o�ering higher speeds for information processing compared to the natural qubit

platforms. Also they have the promising possibility of miniaturization and large-scale

integration by applying the knowledge in techniques and production acquired in the semi-

conductor industry. A shortcoming from this platforms is that they are usually more

susceptible to decoherence, but fortunately the information processing is not required to

be perfect [18], (not even the current classical computation is), and some strategies can

compensate the trade o� between speed processing and errors, with the schemes of error

detection and correction [20], or the fault-tolerant computation, for which a threshold
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value in the error below 3% is acceptable [21].

Currently there are a lot of proposals of physical platforms for a quantum processor,

with di�erent strengths and limitations; which are actively used for experimental imple-

mentations. A possible way to consider the most feasibles in the short and long term,

was thought in the year 2000, by DiVincenzo, who stated the characteristics required in

a physical system to be a candidate for a real quantum information platform [18].

DiVincenzo criteria for quantum processors

1. A scalable physical system with well-characterized qubits.

2. The ability to initialize the qubits to a reference state such as |00...0〉.

3. Long relevant decoherence times that are much longer than gate operation times.

4. A �universal� set of quantum gates.

5. The ability to measure speci�c qubits.

6. Interconversion between stationary and ��ying� qubits.

7. Faithful transmission of �ying qubits.

From these requirements, the �rst �ve are related with the information processing, while

the last two refers to the reliable transmission of such information. The �rst, the scala-

bility is a particularly important requirement which means that a linear increase in the

capacity of processing must not imply a corresponding exponential increase in the phys-

ical resources. Such requisite curbs the practical limit in the capacity that a quantum

processor based in a determined platform can achieve. Most of the proposed platforms for

quantum information processing satis�es the other conditions related to the information

processing (conditions 2 to 5), and have advantages and limitations respect to each other.

But in the long term, the �rst requirement determines the practical viability of a platform

in the future, as implementations will require the processing of higher volumes of infor-

mation, these platforms will also require a greater number of coupled qubits to perform

e�ciently the required tasks, and at the end the most e�cient platform will dominate the

production of such devices, as occurred in the past with the technologies of vacuum tubes

and the transistor in the classical computer.

Currently, the research in the platforms that o�er natural qubits is still active as they

have served as trial platforms and have already made possible the implementation of some

quantum information protocols and some quantum algorithms. The study of such plat-

forms fosters the development of new experimental techniques and devices to manipulate

quantum physical systems; also provides a feedback to the models implemented in quan-

tum control theories specially in problems with many degrees of freedom, like the mutual

6
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Figure 1.1: As more and more qubits are required to process higher volumes of informa-
tion, the addressability of individual qubits becomes primordial for its scalability. Some
platforms like the electrostatic quantum dots, allow the addressing of every electron indi-
vidually, enabling its control and scalability for various qubits. An example can be seen
in the �gure representing an array of lateral QDs, where the electrons and their spin can
be manipulated in every quantum dot of the device via electrical gates. (image from C.
Kloe�el, D. Loss, [27]).

interacting nuclear spins of complex molecules in the NMR platform [69], or to test the

schemes that deals with decoherence, that is still present. Thus these platforms constitute

an ideal testbed for the models that attempt to describe the interaction of the system with

the environment and of course for quantum information realizations. However, as more

and more qubits are required to process higher volumes of information, the addressability

of individual qubits becomes primordial for its scalability, to name an example, in the

case of NMR the qubit is encoded in the nuclear spin of ensembles of various molecules,

and they are manipulated via radio-frequency pulse techniques, also the equipment used

for cooling and trapping these ensembles limit their scalability [19]. On the other hand

semiconductor based platforms o�er the possibility to address one by one the physical

elements where the qubits are encoded, e.g. in an array of electrostatic quantum dots

like the one in �gure 1.1, where the electrons and their spin can be manipulated in every

quantum dot of the device via electrical gates (a kind of electrical contacts with high preci-

sion). Also the superconducting circuit qubits represent a promising system for quantum

computing realizations [22], where the von Neumann architecture (the structure design of

a computer), has already been experimentally implemented. Also with the improvement

of technology and quantum control, it is expected to suppress or mitigate the adverse

e�ects of decoherence in these platforms, as has been shown in the last decades [23, 24].

In our study we will focus in the platform of quantum dots, thus let us review the types

of quantum dots that exist.

7



1.2 Quantum Dots

Quantum dots QDs were theorized in the 1970s and initially created in the early 1980s,

they are semiconductor devices able to con�ne electrons in space, allowing the manipula-

tion of the electrons, and have had a long trajectory since its �rst proposal as a platform

for a quantum gate in 1998 by Loss-DiVincenzo in [30]. Also QDs are among the platforms

with promising scalability [29], supported by the fact that some of their platforms allow

to address every electron individually [27]. Thus it is in principle a platform that satis�es

the DiVicenzo requirements. Furthermore, the realization of a controlled-NOT (CNOT)

gate has been experimentally realized for an optical quantum dot [25], and numerically

found to be feasible in a nanowire quantum dot [91]. Also, a numerical exploration shows

the enhancing of entanglement of two electrons in a double quantum dot, via electric

�elds and spin-orbit coupling [92]. Being entanglement a useful resource used in various

quantum information protocols like quantum teleporting and dense coding [59].

In QDs, the information can be encoded in the electron spin degree of freedom and

are known as spin qubits, but also in the discrete spectra of the electronic levels known

as charge qubits. Currently, the quantum dot spin qubits is the most developed option

and the implementation of single and two qubit gates in this platform allows to perform

universal quantum computing [31]. The main strength of this platform comes from the fact

that spins are relatively isolated from the environment, which provides longer lifetimes

and lower decoherence in�uence. But this isolation also makes it di�cult to control

such system, requiring long manipulation times. On the other hand, devices based on

charge qubits have short manipulation times of the order of picoseconds, providing fast

information processing but shorter decoherence times [32, 31]. A new platform called

hybrid qubit emerged in recent years [33], which combine both spin and charge qubits in

double quantum dots (DQDs) to achieve fast manipulation and long decoherence time [33]-

[39].

1.2.1 Physical platforms for the quantum dots

Physically there are various types of quantum dots, each with di�erent mechanism of

control, decoherence and relaxation times. Here we brie�y present their characteristics.

Electrostatically de�ned quantum dots : Also called lateral quantum dots, they are

implemented in semiconductor heterostructures (an intercalation of various semiconductor

layers) that o�er con�nement in one direction. Reducing the free space of the electrons to

a plane, where they e�ectively behave like a two-dimensional electron gas (2DEG). Then

Ohmic contacts are soldered on the top of the heterostructure, these contacts are used

to apply electrical potentials that depletes the electrons in the 2DEG, except in some

regions of interest where the electrons remain con�ned and ready to be manipulated by
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electrical gates. The whole device can be seen in �gure 1.2 a), where it is also indicated the

con�nement region corresponding to two QDs. Manipulation of the spin and the electronic

states can be applied via magnetic resonance or a combination of electric �elds and a

position-dependent e�ective magnetic �eld with the methods of electric spin resonance

(ESR) or electric dipole spin resonance (EDSR) [112], treated with more detail in chapter

4. They operate at temperatures of > 1 K, and o�er encoding of the qubits in the states

of one electron (in the individual spin | ↑〉, | ↓〉), two electron states (o�ering 4 possible

states in the singlet and triplet states), or three electron states (in a direct product of

the �rst two, o�ering 8 di�erent states) [27, 39]. The proposal of Loss-DiVincenzo in ref.

[30], to use quantum dots as a platform for quantum computing was done for this kind

of QDs, which can also be set in an array as shown in �gure 1.1, representing an scalable

proposal to couple as many qubits as possible by the state of the art technology. The

decoherence time for this platform in the case of singlet-triplet states is 276 µs , and the

relaxation time is up to 5 ms, as reported in [116].

Figure 1.2: a) Electrostatically de�ned quantum dots, the size of this device is of the
order of a few µm. b) Self-assembled quantum dot, the scale bar is ∼ 5 nm. (image from
T. D. Ladd, et. al., [19]).

Self-assembled quantum dots: They are constructed through precise semiconductor

deposition techniques as molecular beam epitaxy (MBE), where the layers of semiconduc-

tors are growth by vaporized materials over a larger �lm of a di�erent semiconductor. In

the picture of �gure 1.2 b), we can see an small islands of semiconductor material such as

indium gallium arsenide (InGaAs) grown within a matrix of a semiconductor with a larger

bandgap, such as GaAs. This di�erence of bandgap con�ne charge carriers in the island,

which due to its geometry and dimensions, provides con�nement in the 3 dimensions.

Electrical gates can be added to regulate the number of carriers in this QD. The spin of

the carriers are manipulated optically through lasers. They operate at temperatures of

∼ 4 K. The decoherence time for this platform is 3 µs , and the relaxation time 20 ms, as

reported in ref. [116].

9



Gated nanowire quantum dots: Consisting of a thin semiconductor wire, whose

cylindrical geometry o�ers con�nement in the transversal direction of the nanowire, while

electrical potentials con�ne the electrons in the axial direction. Thus o�ering the char-

acteristic 3 dimensional con�nement of a quantum dot. The electrical potentials are

provided by an static electric �eld applied through electric gates soldered at the extremes

of the nanowire as shown in picture 1.3, such that the e�ective potential of the static �eld

in the axial direction correspond to a one-dimensional quantum well. It is possible to

create multiple QDs by soldering more electrical gates in the middle of the nanowire, and

these additional gates provide e�ective potentials, in the axial direction of e.g. a double or

triple (or more) quantum wells depending on the con�guration. The quantity of electrons

inside every QD is also regulate by the electrical gates. The qubit can be encoded in the

electronic levels of the quantum wells and the electronic spin (for materials with spin-

orbit coupling). The manipulation of these states is realized via time dependent electrical

pulses applied through the electrical gates and ESR or EDSR. For quantum computation

purposes, they operate at temperatures of∼ 4 K. The decoherence time for this platform

is 0.16 µs , and the relaxation time is up to 1 µs, as reported in ref. [116].

Figure 1.3: Gated Nanowire quantum dot. (image from Peter Grünberg Institute, Ger-
many).

1.3 Quantum control theory

The precise control of quantum phenomena is a long-standing dream, specially when it is

related to the implementation of quantum information protocols. Quantum control theory

o�ers a set of tools, that allows to control the physical systems as quantum devices, and
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has succeeded in various platforms, where due to the use of optimal control pulses, it is

noticeable the improvement in the performance of these devices at their respective tasks.

For example, in spin qubits of nitrogen-vacancy centers in ref. [117], there is a remarkable

di�erence in the �delities of the output states when optimal pulses are used, compared

to the standard pulses. There are also other examples in the superconducting circuits

platform like the ref. [120] where a CNOT gate was experimentally realized with the

assistance of an experimental approach of quantum control theory.

The bridge between quantum information theory and their real applications in the

physical platforms requires the assistance of the quantum control theory, which involves

the manipulation of physical and chemical processes at the atomic and molecular scale.

From the numerical quantum control approaches, the most versatile is QOCT (Quantum

optimal control theory). Since most of the interactions in quantum mechanics are medi-

ated via electromagnetic �elds, thus the tailoring of optimal �elds through optimization

methods is one of the main goals of QOCT.

The optimization methods of QOCT represent a powerful tool which o�ers shortcuts

in the dynamical evolutions and allow us to perform any transformation from an initial

state to a desired �nal target state by tailoring an optimal driving �eld that induce the

right evolution that connects the initial and �nal states. The QOCT methods recursively

propagate the dynamical equations, and modulate the driving �eld in every iteration,

avoiding undesired paths in the evolution, until the method identi�es an optimized �eld

able to reach the target state with a required precision.

The other numerical approach of quantum control theory is coherent control, which

mainly exploits interferometry of a physical parameter (e.g. the phase between two lasers),

and make use of harmonic non-modulated pulses. However this approach is still suitable

and enough for processes involving few degrees of freedom like molecular photodissocia-

tion. Usually the optimized pulses perform the same task in shorter time than coherent

control. However the versatility of QOCT comes at the trade o� of complex pro�les in the

optimized pulses, since these methods usually yield non-harmonic and modulated pulses,

which require a more sophisticated experimental equipment to be precisely generated.

Quantum control theory has prove to be a useful tool for

� Control of chemical reactions [71, 74, 77].

� Quantum computing in various physical platforms [91, 119].

� Transport in semiconductors [94, 95].

� Quantum dynamics [61, 64].

In this study we explore numerically the feasibility of quantum gates in two di�erent

platforms of quantum dots, with the assistance of a QOCT method, and we also compare
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its dynamical e�ciency with respect to other dynamical mechanisms (Rabi and Landau-

Zener).

1.4 Thesis Outline

In chapter 2, we examine the dynamical evolution of a qubit (a two-level system) under

the action of an oscillating and linear driving �eld for di�erent parameter regimes. For

low amplitudes (weak regime), the temporal evolution manifest Rabi oscillations, and for

high amplitudes (strong regime) the Landau-Zener e�ect takes place. But the shifting

from one dynamics to the other it is not as simple as to apply a more or less intense

driving �eld. Thus, we also discuss what are the determinant factors that allow the

observation of one dynamics or the other. In chapter 3 we present a brief review of

the theory of quantum optimal control theory (QOCT), its origins and state of the art,

we also discuss its strength and limitations compared with the other quantum control

theory strategies. Then we present the quantum optimal control method, the two-point

boundary-value quantum control paradigm (TBQCP), that we applied to identify the

optimal �elds that induce a temporal evolution from an initial state to an speci�c target

state. Such optimization method is an alternative and powerful tool which o�ers shortcuts

in the dynamical evolutions, and allow us to perform any transformation of a pure state.

Also we explain how to apply this method for the implementation of quantum gates. In

chapter 4, we begin by introducing the physics of the nanowire quantum dot platform,

and the interactions that can be exploited for its manipulation. Then we characterize the

level structure and the presence of the di�erent dynamics (Rabi and Landau-Zener) in the

setups for an electron in a single and a double quantum dot systems. Later, we implement

the TBQCP method to tailor optimal �elds corresponding to three di�erent one-qubit

quantum gates, and we compare its e�ciency with the dynamical mechanisms previously

analyzed. At the end we decompose the optimized �elds and reconstruct them with Fourier

analysis in order to determine how many Fourier coe�cients are enough to reconstruct

a pulse that perform the same task of the optimal �elds with a satisfactory precision.

A problem relevant for the experimental generation of optimal �elds and for quantum

metrology. In chapter 5, we use the TBQCP method, but this time to assess the physical

implementation of a quantum algorithm in the platform of gated lithographic double

quantum dots. We describe the quantum algorithm and the quantum gates involved

in its execution. Although such quantum algorithm requires the optimization of eight

electrical pulses corresponding to the di�erent quantum gates, its execution requires the

application of three of these quantum gates in sequential order. The electric pulses are

optimized with the aid of the TBQCP method in the quantum speed limit, guaranteeing

successful transformations (with high �delity) for any of the implemented quantum gates.

At the end of the chapter we compare the total time required by an hypothetical execution

12



of this algorithm with the decoherence and relaxation times of the physical platform, and

we also evaluate the performance of such execution under a noisy environment. Finally

in chapter 6, we discuss the results and conclusions o�ered by this thesis, and give some

future perspectives to be explored in the problems here studied.
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Chapter 2

One qubit dynamic

In this chapter, �rst we review the de�nition and mathematical formulation of the qubit,

then we examine the dynamical evolution of a two-level system under the action of an os-

cillating and linear driving �eld for di�erent parameter regimes, which give rise to di�erent

temporal evolutions, depending on the amplitude of the �eld compared to the separation

of the levels. For low amplitudes (weak regime), the temporal evolution manifest Rabi

oscillations, and for high amplitudes (strong regime) the Landau-Zener phenomenon leads

the temporal evolution of the states. But to go from one dynamics to the other it is not

a mere matter of the �eld strength, therefore we explain the speci�c elements required to

observe one dynamics or the other.

2.1 The quantum bit

A bit is an information unit of two possible states and the qubit is its quantum version.

Novel physical resources that allow new ways to process and communicate information

appear in the quantum case because the possibility of superposition of the two states and

entanglement between di�erent qubits. The qubit is mathematically represented as an

unitary vector in the complex bidimensional vectorial space, for which it is de�ned the

two dimensional basis in the Hilbert space:

|0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
, (2.1)

known as the computational basis, in analogy to the classical computation, which only

allows the states of 0 or 1. On the other hand, due to the quantum superposition, a

general state can be written as

|ψ〉 = a|0〉+ b|1〉, (2.2)
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with a and b complex numbers, satisfying |a|2 + |b|2 = 1. Hence it is possible to establish

a geometrical representation where the state |ψ〉 corresponds to a point on the surface

of unitary sphere for pure states, called the Bloch sphere. The equation (2.2) can be

rewritten up to a global phase factor as [48]

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉,

where the values between 0 ≤ θ ≤ π and 0 ≤ φ < 2π de�ne the point in the Bloch sphere

corresponding to the state vector |ψ〉 (see �gure 2.1).
Ideally, the qubit is realized in two-level quantum systems and, in this chapter, we

review some relevant features of their dynamics.

x
 

y

z

φ

θ

 
ψ

Figure 2.1: Bloch sphere representation of a qubit in the state |ψ〉.

2.2 Rabi Model

One of the simplest quantum dynamics can be seen in the two-level quantum system

interacting with an oscillating driving �eld. Despite its simplicity, this problem does

not always have an analytical solution. In Ref. [49] it is studied the case of a rotating

magnetic �eld, which has an exact solution for the probability occupation of the two

levels. The system consist of a spin 1/2 particle precessing under the action of a rotating

�eld, described by the Hamiltonian:

H(t) = ωL}Sz + ω1} [Sx cosωt+ Sy sinωt] , (2.3)

with ωL, the Larmor precession frequency associated to a constant magnetic �eld along ẑ

direction, ω1 the amplitude of a second time-dependent magnetic �eld rotating in the xy

plane, and ω the angular frequency of this rotating magnetic �eld.
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By solving the time dependent Schrödinger equation for this Hamiltonian, represented

in the basis of Ŝz (usually associated to the same states of the computational basis |0〉
and |1〉), the probability occupation of |1〉 is given by:

P1 = |〈1|ψ(t)〉|2 =
ω2

1

ω2
1 + (δω)2

sin2

[√
ω2

1 + (δω)2
t

2

]
, (2.4)

with δω = ω−ωL, a detuning between the rotating driving �eld and the Larmor precession

frequency of the constant magnetic �eld.

The physics of the Rabi model exhibits a characteristic dynamics where the probability

occupation oscillates between both states as the numerical solution1 shown in the orange

plot of �gure 2.2), this phenomenon is known as �Rabi oscillations�.

On the other hand, for the non-analytic two-level quantum systems, it is possible to

approximate its time dependent Schrödinger equations, to a Rabi like problem with an

analytical solution. This method, is known as the Rotating Wave Approximation method

(RWA), in which the driving �eld is rewritten as a rotating �eld, by neglecting high

frequency terms, allowing the exact resolution of the problem.

As an illustrative example, we study a two-level system under the action of a sinusoidal

driving �eld described by the Hamiltonian (we take ~ = 1 for this example)

HR =
∆

2
σz +

ε(t)

2
σx, (2.5)

with system energies E1 = −∆/2 and E2 = ∆/2, associated to the |0〉 and |1〉 states
respectively, and ∆ a parameter that determines the energy separation of both levels.

The time-dependent �eld is de�ned as

ε(t) = Asin(ω0t). (2.6)

We start by appliying the RWA in our Hamiltonian of eq. (2.5), under the action of

the oscillating pulse in eq. (2.6). But �rst, let us de�ne the time-dependent state |ψ(t)〉
at any time. Expressed in terms of the computational basis in eq. (2.1)

|ψ(t)〉 = c1(t)|0〉+ c2(t)|1〉. (2.7)

With such state in the time dependent Schrödinger equation we have,

i
∂

∂t
c1(t) = E1c1(t) +

A

2
sin(ω0t)c2(t), (2.8)

i
∂

∂t
c2(t) = E2c2(t) +

A

2
sin(ω0t)c1(t). (2.9)

This di�erential equation system has no analytical solution, but an approximate solu-

1All the numerical solutions in this chapter were implemented with an exponential propagator.
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Figure 2.2: The temporal evolution for weak driving �elds is characterized by Rabi oscilla-
tions. Here the parameters are ∆ = 3, ω0 = 3, A = 1 and ε0 = 0 for our Hamiltonian with
a sinusoidal �eld (blue) and for the Hamiltonian with exact solution (orange). Rabi os-
cillations are characteristic of a regime of parameters that satis�es A/∆ > 1 and ω0 ≈ ∆.
Temporal evolution represented in the Sz basis.

tion can be found as shown in appendix A, by applying the RWA method, which yields

the following equation system

i
∂

∂t
b1(t) = ωub1(t)− iA

4
b2(t), (2.10)

i
∂

∂t
b2(t) = (ωd − ω0) b2(t) +

iA

4
b1(t), (2.11)

with b1(t) = c1(t), and b2(t) = c2(t) exp(iω0t). If we solve this equation system with an

initial condition of |ψ(0)〉 = |0〉, then the probability P1(t) of �nding the state |1〉 is (see
appendix A):

P1(t) = |〈1|ψ(t)〉|2 =
A2

A2 + 4(ω0 −∆)2
sin2

[√
A2 + 4(ω0 −∆)2

t

4

]
, (2.12)

which share a similar form with eq. (2.4).

For the particular case of weak driving �elds (i.e. with amplitude A . ∆) and close

to resonance (ω0 ≈ ∆), the problem of eq. (2.5) (with the sinusoidal �eld) and the exact

solution (obtained via RWA) are pretty similar as we can see in �gure 2.2, where the

dynamics of the system is characterized by Rabi oscillations, with the RWA solution as

an envelope function of the numerical simulation. In general, the RWA can be used for
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driving �elds close to resonance, satisfying |ω0 −∆| � |ω0 + ∆| [46], since the net input
of high frequency terms like ω0 + ∆ are null in average, therefore they can be neglected.
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Figure 2.3: For an intermediate driving �eld, in this case with ∆ = 3, ω0 = 3, A = 12 and
ε0 = 0, the temporal evolution departs notably from the dynamics of Rabi oscillations, as
we compare the numerical solution (in blue) to the RWA (in orange).

On the other hand, for intermediate or strong driving �elds (i.e. of the amplitude

A > ∆), the RWA does not give a good resemblance of the numerical solution (even in

the resonance) for the sinusoidal �eld (see �gure 2.3), as other phenomena could come

to play a signi�cant role, e.g. adiabatic transitions, or in atomic physics, the multiphoton

phenomenon to name some examples [47].

2.3 Landau-Zener

Let us think, without loss of generality, in the simplest case of a two-level system with

two non-degenerate energy states coupled by an interaction. When an external parameter

associated with the coupling variates the system energy (e.g. by an external �eld) in a

rapid way (diabatic) by multiple passages (or even a single one) through the anticrossing

region, the �eld induce a transition in the probability occupation, known as Landau-Zener

transition. This transition is dynamically di�erent and, depending on the parameters, can

be faster than Rabi's population inversion. Thus, it constitutes an alternative mechanism

to manipulate the state occupation of a physical system.

This problem was �rst studied in 1932 by Landau [51] and Zener [50]. They arrived

independently to an approximated model with the exact solution of a one-dimensional
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semi-classical model for nonadiabatic transitions. It was also studied at that time by

Majorana [52] and Stückelberg [53] with di�erent approaches [54], but since the exact

solution of the �rst two authors applies approximately for many cases, the Landau-Zener

model is the one better known. Our revision of the Landau-Zener physics is based on the

review of Ref. [55].

Figure 2.4: Energy level structure for the Hamiltonian in (2.13) with ∆ = 3, and ε(t) =
ε0. This energy structure presents two energy curves and an anticrossing, and there
is a swapping in the state con�gurations in every energy curve of the system. This is
represented by the di�erent colors that change from one into the other from the beginning
to the end of both branch of energy. In green, we depict a linear pulse applied to pass
once through the anticrossing and generate a Landau-Zener transition.

We want to study the probability transitions of a two-level system under the action of

a constant �eld in the x̂ direction and a time-dependent �eld in the ẑ direction, described

by the Hamiltonian

HLZ = −ε(t)
2
σz +

∆

2
σx, (2.13)

with a time-dependent �eld ε(t) de�ned as the oscillating pulse

ε(t) = ε0 + Asin(ω0t), (2.14)

where ε0 is an static �eld added to the driving force.

This apparently simple problem has no analytical solution, however for some regime
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of parameters it is valid to do a linearization of the driving �eld in eq. (2.14),

ε(t) = ε0 + Aω0t, (2.15)

where the factor κ = Aω0, corresponds to a velocity in this linear pulse. Such linearization

turns the Hamiltonian of eq. (2.13) into a new solvable system with solutions that are

consistent with numerical simulations and experimental realizations.

The dynamics of this system depends of the regime of operation, the amplitude must

be A > ∆ (strong regime). Di�erently from the Rabi regime, the static �eld ε0 is not

restricted to zero, and it is important that the pulse (whether oscillating or linear) must

pass through the anticrossing, thus the amplitude must be always greater than the static

�eld, i.e. A ≥ ε0.

The passages through the anticrossing can be slow or fast depending on the frequency

of the pulse. The Landau-Zener e�ect occurs when the pulse is fast. But in order to

better understand it, let us �rst analize what occurs when the pulse is slow.

Slow passage
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Figure 2.5: Adiabatic evolution due to the slow passage of a linear pulse which pass once
trough the anticrossing region with an initial condition of |ψ(0)〉 = |0〉 (represented in the
Sz basis). For a level separation of ∆ = 3 and a linear pulse with A = 50, ω0 = 0.04,
ε0 = −200 (all parameters are adimensional). In this case the evolution never gets out of
the inferior energy curve in �gure 2.4.

For a slow passage of the the linear pulse in eq. (2.15) (which physically corresponds to

ω0 � ∆), the action of the pulse is weak and the state occupation will tend to match with
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the instantaneous eigenstates determined by the static �eld ε0. Thus the state evolution

will follow the energy curve, where the initial state was set, whether the top or the inferior

energy curve in the level structure of �gure 2.4. Hence after passing the anticrossing under

the action of an slow driving �eld as illustrated by the black arrow in �gure 2.4, there will

be a transition in the state con�guration between |0〉 and |1〉 in order to keep the system

in the initial state. This swap in the state con�guration is illustrated by the di�erent

colors that change gradually from state |0〉 (in red) to |1〉 (in blue). This dynamics is

expected according to the Adiabatic theorem [56], and its respective temporal evolution

can be seen in �gure 2.5, for the parameters A = 50, ω0 = 0.04, ε0 = −200.

Fast passage

For a fast ω0 > ∆ or intermediate ω0 ≥ 0.1∆ passage of the �eld, and the intermediate

�eld regime of the amplitude, i.e. A > ∆, the relevant quantities in the Hamiltonian of

eq. (2.13) will be the terms A and ω0 of the pulse. First, let us review the analytical

solution of the problem by applying the linearized pulse in eq. (2.15) and considering a

single swept in the intensity of the pulse from −∞ to ∞, as Zener did in his paper [50].

The time-dependent Schrödinger equation is2

i
∂

∂t

(
C0

C1

)
=

(
−Aω0t

2
∆
2

∆
2

Aω0t
2

)(
C0

C1

)
. (2.16)

This di�erential equation system can be decoupled by derivating the �rst equation

and then replacing the �rst and second equation on itself. This let us with the equation

(remembering that v = Aω0)

C̈0(t) +

[
(Aω0)2

4
t²− iv

2
+

∆2

4

]
C0(t) = 0. (2.17)

The solution to this second-order di�erential equation can be found in [57], corre-

sponding to the parabolic cylinder functions, which resolve the Weber equation. Taking

this solution and the second equation of (2.16), it is possible to �nd C1(t) from

C1(t) = iĊ0(t) +
v

2
C0(t).

It is also neccesary to apply asymptotic expansions on the solutions of the parabolic

cylinder functions for the limit when t −→ ∞, which can be found in [50]. If our initial

condition is C0(0) = 1, by following the mentioned steps, we arrive at the Landau�Zener

probability:

PLZ = exp

(
−2π

∆2

4v

)
, (2.18)

2For the analitical solution with a pulse starting at −∞, the constant ε0 can be neglected.
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which predicts the �nal occupation P0 = |C0|2 of the system after the linear swept.
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Figure 2.6: Landau-Zener e�ect for a linear pulse which pass once trough the anticrossing
region and an initial condition of |ψ(0)〉 = |0〉 (represented in the Sz basis). For a level
separation of ∆ = 3 and a linear pulse with A = 55, ω0 = 0.15, ε0 = −123.75 (all
parameters are adimensional).

As an illustrative example, we solve numerically the time dependent Schrödinger

equation with the Hamiltonian of eq. (2.13). If we start with an initial condition of

|ψ(0)〉 = |0〉, i.e. C0(0) = 1, by considering one swept through the anticrossing region

under the action of the linear pulse in eq. (2.15) (with ε0 �nite but large for practical

purposes like the green arrow in �gure 2.4). We obtain the numerical simulation in �gure

2.6, with parameters in the linear pulse of A = 55, ω0 = 0.15, ε0 = −123.75, and a level

separation of ∆ = 3. The occupation of the state |0〉 is correctly predicted by the Lan-

dau�Zener formula (2.18) with an occupation of PLZ = 0.18 from the initial occupation

P0(0) = 1, to the �nal occupation of P0(30) = 0.18 as can be seen in the blue plot of �gure

2.6. For these parameters, the Landau�Zener formula predicts a superposed state where

both energy curves of the level structure in �gure 2.4 are populated. This is con�rmed by

our numerical results, where the occupation for the state |0〉 (in blue) at the �nal time

T = 30 a.u. is not completely zero (as occurred in the adiabatic case of �gure 2.5, where

the state remained in one energy curve). This happens because the fast pulse induce a

transition to a mixed state a|0〉+ b|1〉, involving both energy curves in the level structure

depicted in �gure 2.4. If we look carefully at the temporal evolution in �gure 2.6, we see

that before passing the anticrossing, before T = 14 a.u., the state |0〉 (in blue) was fully

populated. But once the anticrossing is passed, the population of the state |0〉 is not fully
transferred to the other state (as happened in the adiabatic case �gure 2.5 for the slow
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pulse). Instead both states end up partially populated, implying a partial occupation of

both energy curves shown in �gure 2.4.

2.3.1 Multiple passage
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Figure 2.7: Constructive (blue) and destructive (orange) interference of the Landau-Zener
transitions after multiple passage through the anticrossing region with a sinusoidal pulse
de�ned as ε(t) = ε0 + Asin(ω0t), and an initial condition of |ψ(0)〉 = |0〉. Parameters:
∆ = 3 and a pulse with A = 40, ε0 = 5, for both plots and ω0 = 4.8 for constructive and
ω0 = 7.5 for destructive interference. Temporal evolutions represented in the Sz basis.

The temporal evolution dynamics becomes more interesting by repeatedly driving the

system through the avoided crossing with a sinusoidal pulse, which leads the temporal

evolution under the in�uence of multiple passages through the anticrossing, back and for-

ward. Repeating several times the transition described in the previous section, introduces

additional e�ects in the dynamics since the multiple passage can generate constructive or

destructive interference, depending on the parameters of the pulse. Particularly relevant

is the case of constructive interference, since the multiple transitions can achieve an in-

version population faster than a Rabi oscillation. Therefore, if a physical system has an

anticrossing (and its regime parameters are experimentally feasible), the Landau-Zener

transition can constitute a more versatile process to control the state occupation of a

physical system than Rabi oscillations.

There are analytical methods, like the Stückelberg interferometry [55], that allow

to identify the parameters of A, ε0 and ω0 for a �xed value of the energy separation ∆

leading to a constructive or destructive interference, but they are out of the scope of this
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study. Nevertheless with the assistance of numerical methods, like the grid search, we are

able to identify such parameters, as can be seen in �gure 2.7, where we have constructive

interference (blue plot) for ∆ = 3 and a pulse with A = 40, ε0 = 5 and ω0 = 4.8; and

destructive interference (orange plot) for ∆ = 3 and a pulse with A = 40, ε0 = 5 and

ω0 = 7.5. These parameter sets were found with the mentioned grid search method on the

amplitude and frequency of the harmonic pulse; where a grid with these two parameters

is created, and then with the values of such grid, the temporal evolution is evaluated for

a �xed time. For every temporal evolution, the area below the curve for the occupation

of state |1〉 is calculated. In the case of constructive interference, we selected the set of

parameters where such area is maximum, while for destructive interference, we selected

the set of parameters where such area is minimum.

2.4 Rabi and Landau-Zener, two sides of the same coin

The main di�erence between the Hamiltonians of equations (2.5) and (2.13) is that the

�rst has the time-dependent matrix elements out of the diagonal, while the second has

them in the diagonal. Also, the temporal evolutions (for Rabi and Landau-Zener with

multiple passages), when a sinusoidal pulse is applied, as illustrated in �gures 2.2 and

2.7, are pretty di�erent. But despite these di�erences there are connections between

the Hamiltonians of both phenomena. A common feature for both Hamiltonians (2.5)

and (2.13) is that the level structure is exactly the same, and they are separated at the

anticrossing by an energy of ∆ as in �gure 2.4. Both Hamiltonians can be transformed

into each other by means of a rotation in the two dimensional Hilbert space of the qubit.

Any rotation along the Cartesian axes of the Bloch sphere can be performed by the

unitary operator

Rj(θ) = exp(−iθ/2σj), j = x, y, z, (2.19)

with σj as one of the Pauli's Matrices and θ the rotation angle [59].

The Rabi Hamiltonian HR and the Landau-Zener Hamiltonian HLZ are connected by

a rotation of Ry(π/2) around the y-axis of the Bloch sphere3, such that

HLZ = Ry(π/2)HRR
†
y(π/2). (2.20)

However, an uinitary transformation does not change the dynamics of the system.

One could be tempted to think that the main link between both phenomena lies in

such transformation, which can interchanges the position of the time-dependent matrix

elements out or into the diagonal of the Hamiltonians. However, this is not the case. The

3Must be an angle of −π/2 or π/2, (in our simulations we choose the latter) otherwise the matrix
elements will be a mixture of the ε(t) and ∆ terms.
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physics of both phenomena lies in the regime parameter and the chosing of the correct

measurement basis, which is indispensable to observe them. In order to arrive to such

conclusion, let us analyse the implications of every regime for the evolution of the systems

described by the Hamiltonians (2.5) and (2.13). For the seek of simplicity, let us restrain

(without loss of generality) to initial conditions which correspond to enigenstates of either

Sz and Sx. Being the eigenstates of Sz

|0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
,

and the eigenstates of Sx

|+〉 =
1√
2

(
1

1

)
, |−〉 =

1√
2

(
1

−1

)
.

From a mathematical perspective, the main di�erence between both Hamiltonians are

the time-independent (let us denote by H0 the matrix de�ned by these elements) and

time-dependent elements (let us denote by Hi the matrix de�ned by these elements) in

them. For the case of Rabi,

H0 =
∆

2
σz, Hi =

ε(t)

2
σx, (2.21)

and in the case of Landau-Zener,

H0 =
∆

2
σx, Hi = −ε(t)

2
σz. (2.22)

As we saw in the �rst two sections, the Rabi dynamics is pretty susceptible and it only

manifest clearly for a weak driving �eld with speci�c characteristics; on the other hand the

pulse in the Landau-Zener has less restrictions, but must be an strong (or intermediate)

driving �eld. In the following table, we summarize the features of the parameters for a

pulse like the one of eq. 2.14

A ω0 ε0
Rabi A > ∆ ω0 ≈ ∆ ε0 ≈ 0

Landau-Zener A > ∆ ω0 ? ∆ −A ≤ ε0 ≤ A

Table 2.1: Parameter regimes for both dynamics Rabi and Landau-Zener. (Initial condi-
tions supposing we are transforming Rabi into Landau-Zener).

From table 2.1, we see that the pulse required to observe the Rabi dynamics (at the

center of the anticrossing) is basically a weak sinusoidal pulse in the resonance and no

static �eld. Thus, in a graph of energy vs static �eld (with the system level structure),

it would look like the blue pulse in �gure 2.8. For this reason, this is known as the

weak regime and, in this case, the time-independent part (the H0) of both Hamiltonians
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(2.5) and (2.13) is more relevant, since at any time, the in�uence of the parameter ∆

will be higher or at least equal to the e�ect of the pulse amplitude A. The only detail

to take in account is to pick the right basis to observe the Rabi dynamics. To get a

hint of what measurement basis to use for every Hamiltonian, we can look at equations

(2.21) and (2.22), and observe which matrix goes with the relevant factor in this regime

(being ∆ in this case) which suggest what eigenstates to use. Therefore, for the Rabi

Hamiltonian we have the σz matrix, which has the associated eigenstates |0〉 and |1〉
for the eq in (2.21), and for the Landau Zener Hamiltonian the matrix σx, which has

the associated eigenstates |+〉 and |−〉 for the Hamiltonian of eq. (2.22). These states

constitute the best choice to clearly observe a temporal evolution similar to the Rabi

dynamics, the initial condition could be any of the respective eigenstates of H0 indicated

for every Hamiltonian. But the initial condition is not really that relevant, it only changes

the starting point of the evolution but not the shape of the temporal evolution i.e. its

dynamics. The aforementioned implies that it is possible to reproduce the �gure 2.2

(obtained with Rabi), but with the Landau-Zener Hamiltonian, by preserving the same

parameters (which guaranties the weak regime), and changing the initial condition and

the measurement basis to the corresponding eigenstates of σx.

The shift from the weak to the strong regime is gradual (represented in �gure 2.8

by the evanescent green area). Thus, it is not easy to perceive as a transition from one

phenomenon to the other, in part due to the di�erent basis where both phenomena can be

observed. What actually can be perceived for an oscillating �eld (even in the resonance)

is that, for an amplitude of A = 4∆, there is a departure of the temporal evolution from

the RWA model as illustrated in �gure 2.3. Thus, probably contributions from both Rabi

and Landau-Zener are manifested in this regime.

For the strong regime A > ∆, where the Landau-Zener is observed, the pulse (2.14),

has less restrictions for the parameters (e.g. ω0 can take any value below or over the

resonance frequency), and if we consider a pulse with any arbitrary static �eld (in the

interval ε0 ≤ |A| to guarantee the passage of the pulse through the anticrossing), the

closest extreme of the pulse to the center of the anticrossing is A − |ε0|. If this extreme

is far away from the in�uence area of H0, then the driving �eld leads the system to stay

longer outside this area, where Hi dominates (since the parameters of the pulse A, and ε0

are larger than ∆), as we can get an idea by looking at the red pulse in �gure 2.8. In this

case, we can look at the matrix Hi of the Hamiltonians in equations (2.21) and (2.22) to

get a hint of the best measurement to observe the Landau-Zener dynamics. Hence for the

Rabi Hamiltonian we have the matrix σx, which has the corresponding eigenstates |+〉
and |−〉 and for the Landau Zener Hamiltonian the matrix σz, whit their corresponding

eigenstates |0〉 and |1〉.
The previous statements suggest that it is possible to observe the Landau-Zener phe-

nomenon but using the Rabi Hamiltonian, by preserving the same parameters (which
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Figure 2.8: Regimes of the driving �elds weak for Rabi (blue), and strong for Landau-
Zener (red). The green shadow corresponds to an estimation of the interval in the static
�eld where the weak regime leads the temporal evolution and a pulse (in the resonance)
inside this region will give rise to a Rabi dynamics similarr to the RWA model inasmuch
as the colored region is intense. This region is approximately not much wider than the
interval (−2∆, 2∆).

guarantees the strong regime), and changing the initial condition and the measurement

basis to the corresponding eigenstates of σx. This is feasible, as we explored various sim-

ulations that supports our hypothesis, e.g. for the strong regime, the Rabi Hamiltonian

in eq. (2.5), and measuring in an orthogonal basis di�erent from the eigenstates of the

time independent Hamiltonian H0 (i.e. using instead the eigenstates of Hi or σx in this

case), it is possible to observe the Landau-Zener phenomenon, therefore it is possible to

obtain exactly the same temporal evolution as the one in �gure 2.6, or even to realize

constructive and destructive interference as shown in �gure 2.9, where we have construc-

tive interference (blue plot) for ∆ = 3 and a pulse with A = 40, ε0 = 11 and ω0 = 5.4; and

destructive interference (orange plot) for ∆ = 3 and a pulse with A = 40, ε0 = 11 and

ω0 = 8.1. In the case of constructive interference we can observe an inversion population

faster than Rabi. It is important to remark that, if the parameters were the same as the

ones used in �gure 2.7, the temporal evolution would have beeen an exact replica of such

�gure but this time using the Hamiltonian in (2.5) (usually associated with Rabi), not

the Hamiltonian in eq. (2.13). The association of one kind of temporal evolution (Rabi or
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Landau-Zener) with one Hamiltonian or the other is a misconception, since it is possible

to obtain both kinds of temporal evolutions with any of both Hamiltonians, as long as we

pick the right parameter regime and the right measurement basis.
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Figure 2.9: Even for the Rabi Hamiltonian in eq. (2.5), with the right parameter regime,
and meassuring in a basis di�erent from the eigenstates of the time independent Hamil-
tonian H0, it is possible to observe the Landau-Zener phenomenon. In this plot we can
observe constructive (blue) and destructive (orange) interference of the Landau-Zener
transitions after multiple passage trough the anticrossing region with a sinusoidal pulse
de�ned as ε(t) = ε0 + Asin(ω0t), and an initial condition of |ψ(0)〉 = |−〉. Parameters:
∆ = 3 and a pulse with A = 40, ε0 = 11, for both plots and ω0 = 5.4 for constructive and
ω0 = 8.1 for destructive interference. Temporal evolutions represented in the Sx basis (all
parameters are adimensional).

In order to emphasize the importance of choosing the right measurement basis, let

us see what happens e.g. for two temporal evolutions with the same parameters in the

strong regime, using the Rabi Hamiltonian of eq. (2.5) and the same initial condition

|ψ(0)〉 = |0〉, but with di�erent measurement basis. These temporal evolutions are plotted

in �gure 2.10. We can see that the choosing of di�erent measurement basis can lead to

temporal evolutions, which according to our analysis is in the right regime to observe the

Landau-Zener phenomenon, only the �gure 2.10 a) resemblance such dynamics looking

like the composition of various individual passages (like the one in 2.6) throuhg the

anticrossing. On the other hand, for the evolution in �gure 2.10 b), although numerically

correct, it is not clear what is the physics behind such strong oscillations and its familiarity

with the Landau-Zener dynamics.

Another point to remark comes from the fact that the initial condition does not de-

termine the observation of one phenomenon or the other. Since, as mentioned before, it
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(a) Using the eigenstates of σx as the measuring basis.
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(b) With the eigenstates of σz as the measuring basis.

Figure 2.10: Temporal evolutions with the same parameters in the strong regime (where
Landau-Zener is manifested), using the Rabi Hamiltonian of eq. 2.5 and the same initial
condition |ψ(0)〉 = |0〉, but with di�erent measurement basis provided by a rotation of
the Rabi Hamiltonian. Both with the same parameters corresponding to a LZ dynamics:
∆ = 3, ω = 2.1, ε0 = 20 and A = 25 (all parameters are adimensional).

only changes the starting point. This can be seen in �gure 2.10 a), where the initial

condition is |ψ(0)〉 = |0〉, which does not belong to the eigenstates of the measuring basis

σx. Thus whether starting with an initial condition in its eigenstates |+〉 and |−〉 or in a

superposed stated, is not primordial to observe Landau-Zener nor Rabi.

In summary, we can conclude that for the two-level system we can have two really

di�erent dynamics, but such di�erence in both phenomena does not come from the distinct

Hamiltonians, but rather from the regime of parameters which is really a physical (not

mathematical) factor. And the observation of both phenomena depends on the choice

of the measuring basis related to the time independent (for Rabi oscillations) or time-

dependent (for Landau-Zener) matrix factors of both Hamiltonians.

2.5 One qubit quantum gates

If we consider an arbitrary qubit represented e.g. in the eigenstates of Sz, with components

a and b as the state |ψ〉 of equation (2.2), then, as mentioned in the �rst section, it

is possible represent any such state in the surface of the Bloch sphere. In quantum

computing, a unitary operator acting on a single qubit is called 1-qubit quantum gate. A

1-qubit quantum gate can be thought as a rotation in the Bloch sphere, from the initial

state |ψ〉 to a �nal state U |ψ〉. A general unitary matrix is given by
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U =

[
α β

−eiφβ∗ eiφα∗

]
, with |α|2 + |β|2 = 1, (2.23)

and its transformation is depicted in �gure 2.11. Since unitary operators preserve the

norm of the states, i.e. ||ψ〉|2 = |U |ψ〉| ² = 1, this preservation and the de�nition of

unitarity UU † = I implies that these operators are reversible. Physically, this is possible

if the unitary transformation describes the evolution of the state in a closed system.

Figure 2.11: Transformation of an arbitrary state |ψ〉 by a general 1-qubit gate. The box
corresponds to the representation of the one-qubit gate in the quantum circuit model.

One-qubit quantum gates are represented here in the graphical representation known

as quantum circuit model, sketched by the box of �gure 2.11. Attached to the box,

we have a left line which leads the input state |ψ〉 to the gate (the time direction goes

from left to right) and a right line which connect the gate with the new transformed

output state U |ψ〉. Some important gates of this kind are illustrated in �gure 2.12. The

Hadamard gate that corresponds to a 180 degree rotation around the diagonal X+Z axis

of the Bloch sphere, and also coincides with the Fourier transform on the group with two

elements (binary bits). The Phase shift Rφ is a rotation around the Z-axis of the Bloch

sphere by φ radians.

Figure 2.12: Hadamard and Phase shift gates.
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Other relevant 1-qubit gates are the Pauli gates, depicted in �gure 2.13, with trans-

formations on an arbitrary qubit |ψ〉 = a|0〉+ b|1〉, such as:

X

(
a

b

)
=

(
b

a

)
, Y

(
a

b

)
=

(
−ib
ia

)
, Z

(
a

b

)
=

(
a

−b

)
. (2.24)

The X gate swaps the canonical basis of Sz on the 1-qubit space; the Y gate also swaps

the canonical basis but with a change of phase; and the Z gate changes the phase of the

canonical vector basis.

Figure 2.13: Pauli gates.

Quantum gates transform the components of a given input state into an output state,

in practice this transformation is realized via a temporal evolutions. Rabi leads to pop-

ulation inversions (which it is equivalent to take an state from one pole to its opposite

in the Bloch sphere), and Landau-Zener can lead to mixed state. On the other hand, as

seen in this section, most quantum gates have complex outputs with phases, and a generic

quantum gate must be able to take a determined initial state to any point in the surface

of the Bloch sphere. How a temporal evolution can be designed in order to connect the

input state with the output speci�ed by a quantum gate is the topic of the next chapter.
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Chapter 3

Optimal quantum control

A reliable control over physical systems is essential for science and engineering. Therefore,

the e�orts to �nd robust schemes that can achieve high precision at measurement and

manipulation will be always relevant in a technological society. The principal objective

of control theory is to �nd a method to transform a system in order to attain a desired

behavior from it. This is usually done by interacting with the system in a controlled

way and employing their internal mechanisms to manipulate externally their accessible

physical variables.

The challenge to manipulate quantum systems is increasingly relevant to harness the

advantage o�ered by quantum phenomena. The methods o�ered by quantum control

theory have shown to be important tools to approach such challenge. In this chapter we

review the theory of quantum control, its origins, their di�erent approaches and current

applications. In particular, we will focus on the strategies of quantum optimal control

theory (QOCT) and we discuss its advantages and limitations with respect to other strate-

gies of quantum control. Then, we focus on a particular method of QOCT that we used

to optimize the driving �elds to implement quantum gates with high �delity. The steps

necessary to create these quantum gates are also speci�ed at the end of this chapter.

3.1 Control at the quantum level

Despite the control theory was originally thought to solve classical problems, the advances

of molecular and atomic physics and the emerging �eld of quantum optics provided the

�rst experimental situations where manipulation at the nanoscale was required. This was

the case in the 1960s with the initial attempts to use the �rst lasers as a mean to induce

chemical reactions like the selective breaking of bonds in molecules [69]. At �rst, it was

though to be a simple task since the laser could excite an speci�c frequency mode and

the transfer of enough energy could generate a selective bond breakage. However, if the

energy is deposited in a single mode, then such energy is dissipated due to redistribu-

tions in the other intramolecular vibrational modes and often ends up in the breaking
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of other weakest bonds. It was only until the late 1980s that this problem was solved

by Brumer and Shapiro [70], who proposed a scheme involving the application of two

simultaneous lasers, and the control over their relative phases and amplitudes. Later on,

it was necessary additional advances, like femtosecond lasers and an improvement of the

pulse shaping capabilities in lasers (since these optimized pulse were not possible to be

generated experimentally at that time), so that it was not until the year of 1998 when the

�rst experimental realization of molecular photodissociation was achieved [71]. About the

same time when the solution to the photodissociation problem was proposed, other manip-

ulation schemes emerged in di�erent problems of atomic physics and quantum optics for

the combined action of two lasers, which are used to induce population inversions between

the states, such as the STIRAP (stimulated Raman adiabatic passage) [72], wave-packet

interferometry [73], among others. Despite initially these techniques were thought to be

fundamentally di�erent, the mechanism underneath these control schemes is the quantum

interference between the �elds induced by the lasers. Currently these techniques are clas-

si�ed as schemes of coherent control. These are simple schemes that involve the control

of a single parameter, like the phase (or the time delay between two lasers), which can

be suitable for relatively simple systems (i.e. for physical dynamics with few degrees of

freedom). They are still relevant in current studies or implementations of the dynamical

evolution of molecular physics, like the opposite problem of breaking bonds in molecules

i.e. the problem of ultracold molecular photoassociation with lasers [74, 75, 76, 77]. Other

coherence control schemes are also important, like the STIRAP which is still used in quan-

tum optics [78], solid state qubits [79], population transfer in Bose-Einstein condensates

[80], or quantum gates [81, 82].

However, for more complex problems like some quantum information implementations

in NMR, which requires the manipulation of spin ensembles (with tens or hundreds of

nuclei), demanding the control over a higher number of parameters with a greater inde-

pendence between them, it is required the implementation of more versatile methods.

3.1.1 Quantum optimal control theory

At the end of the 1980s, Rabitz and others [83]-[87] proposed the tailoring of control

�elds in order to induce the evolution from an initial predetermined state to a prescribed

target state with a required accuracy. This idea constitutes the fundamental strategy of

most of the quantum optimal control theory (QOCT) methods. The �rst simulations of

this foundational papers used tailored �elds via Lagrange multipliers, and such optimized

�elds [85] replicated the results obtained with the previous less complex control schemes

[70]. Also, other optimized �elds via QOCT were applied to manipulate molecular states

for photodissociation, selective excitation of vibrational or rotational modes as can be

seen in the early review of Ref. [88].

33



Strenghts and limitations

The strength of these kind of optimizing methods comes from the fact that in a physical

system, for which the dynamics is lead by various phenomena and constrains, an optimized

pulse o�ers the possibility to exploit dynamical shortcuts, providing faster and more

precise temporal evolutions. These shortcuts are di�cult or impossible to be forecasted

by analytical methods, since the tailoring of the optimal �eld is realized by favoring,

in every iteration, those temporal evolutions where the interplay between the pulse and

the di�erent interactions cooperate to lead the system to �nal states closer to the target

state at the end of every iteration. For example, in a multivariable system, QOCT can

help to obtain an interference pattern susceptible to multiple factors, for which the net

contributions are challenging or impractical to be solved analytically in terms of the

e�ects of the individual interactions. This was explored by the �rst time in Ref. [83],

where the calculation of the optimal control �elds shown that the amplitudes of the

involved vibrational modes of a laser-driven molecule could interfere constructively in a

given bond. Of course, the versatility o�ered by the optimized �elds comes at the cost

of pulses with more complex pro�les in the power spectrum and amplitude modulations

(for which Fourier series can help to reconstruct these numerical pulses). That can be

challenging for experimental implementations and depends on the stage of ultrashort pulse

technology.

Another positive feature is that the optimized pulses are not unique, i.e. there are

di�erent �elds (like a di�erent combination of shortcuts) that can lead the initial states

to a desired result, and this allows to pick between di�erent solutions that can be more

suitable to the experimental implementations. This is useful for situations where physical

constrains must be included to the control �eld.

On the other hand, there are some limitations for realistic applications of the optimized

pulses via QOCT, since for most of the cases the mathematical representation is not

exact, and it its di�cult to describe all the interactions involved in the dynamics of a

physical system. This is particularly problematic for open quantum systems where the

physical system interacts with a high number of degrees of freedom due to the environment

interaction; and the theoretical approach is based on approximated models of decoherence.

Although there are QOCT formulations [89] and implementations [90] for problems dealing

with decoherence, as mentioned in [69] �it is essential to know the details of the system-

environment interaction�. For this reason, it is more practical the use of QOCT as an

approach to grasp an insight of new quantum phenomena in relatively simple models.

For example, in situations where the controlled subsystem has characteristic frequencies

far away from other energy levels that could generate undesired transitions, and thus the

relevant physics happens in this rather isolated subset of levels. This situation can be

found in atomic systems or in quantum dots, where the relative isolation of a subset of

34



discrete levels from the other levels has associated a low probability of any transition to

levels outside the subset of interest. Thus, preventing any leakage of the state population

and easing the precise manipulation with the control methods. Another situation where

QOCT constitutes a reliable tool takes place when the decoherence time is larger than

the manipulation and response times of a physical system. This is a relevant feature in

quantum information processing, since it allows a robust control of the states where the

information is encoded; such is the case of the platforms studied in chapters 4 and 5.

Yet in the presence of decoherence, QOCT methods can be coupled to a bath to emulate

the e�ects of the interaction with environment and still can be useful as a �rst step to

evaluate the feasibility and to identify robust control mechanisms, since basic features of

the dynamics can be manifested even in approximate models.

Nevertheless, most of the realistic physical experiments must deal with decoherence

problems and, in such cases, other control strategies can be more suitable, like the adapta-

tive feedback control (AFC) or the real-time feedback control (RTFC). Although, some of

them can be more or less noisy and introduce more decoherence e�ects, e.g. in the RTFC

strategy due to required measurements (inevitably needed to acquire a feedback and lead

the temporal evolution of the system). Therefore, the implementation of one strategy

or the other actually requires a careful pondering of the advantages and limitations that

every strategy can o�er for a determined physical problem. Since these strategies end

up being complementary, it is important to think how they can contribute to achieve the

ultimate goal which is, its experimental realization.

State of the art

Although QOCT was initially proposed for molecular manipulation, in the last decades

numerical experiments on a variety of platforms and protocols have been simulated, and

its application has proven to be a useful tool to assest the feasibility of experimental

realizations in various platforms for quantum information processing for diverse platforms

like quantum dots [91, 92], superconducting qubits [120], and electronic transport in

semiconductors or in Bose-Einstein condensates [93, 94, 95, 96]. Also important are the

contributions that QOCT has made to the theoretical study of quantum dynamics [61], for

a relevant concept in both �elds, that is the quantum speed limit (QSL) [62] (a quantity

related with the minimum time required to achieve a transformation from an initial state

to a �nal desired state). In Ref. [64], it was found that the minimum time to perform a

transformation, for the Krotov algorithm (a QOCT method see ref. [65]) coincides with the

QSL. Their tests were made in the Landau-Zener model and in the transfer of information

along a chain of coupled spins with Heisenberg interactions; and these relation were also

extended to open quantum systems in Ref. [66]. Proving that the QOCT methods can

be reliable schemes to �nd optimal �elds that could realize experimental implementations
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with e�ciencies close or equal to the QSL. Besides, such study established the QSL as an

appropriated standard to de�ne optimality in the proper theory of quantum control [61].

Furthermore, the QOCT has been used to simulate the e�cient charge of a quantum

battery [67], with a time close to the QSL bounds that were determined in Ref. [68].

Being the quantum battery a relevant element in the �eld of quantum thermodynamics,

these studies open the possibility to approach other implementations via QOCT strategies

in this �eld of research, where a �gure of merit is the e�ciency of cycles.

Currently, most of the studies of QOCT are numerical explorations, and there are

many proposals for experimental realizations, but there is a delay in these experimental

implementations. The main factor that have delayed the implementation of these pro-

posals is the technological limitation in the generation of experimental ultrashort pulses,

which duration must be comparable to the characteristic dynamical times of the manip-

ulated physical systems (which are di�erent, depending on what platform is used). This

yields three shortcomings. First, in order to exploit the internal mechanisms that interact

with the external pulse, the pulse duration must be at the same time scale of the physical

response time of the system. Second, the bandwidth of the pulse depends of the pulse du-

ration, the shorter its time, the wider the frequency bandwidth. Third, the technological

pulse shaping capabilities must be able to operate at such scale time in order to e�ectively

apply the amplitude modulations and the set of frequencies involved in an optimized pulse

[97]. Also, platforms with decoherence can limitate even more the assistance of QOCT for

experimental realizations, as an optimal pulse tailored from an imprecise model reduce

its e�ectiveness in experimental implementations. Due in part to the aforementioned lim-

itations, specially in open quantum systems, experimental realizations of the numerical

explorations done via QOCT methods are (at the moment) not as diverse, even though

there are a lot of proposals for di�erent problems in various platforms.

However, as the ultrashort pulse technology and the shaping capabilities are improved,

more physical platforms become available to test these numerical proposals. A good ex-

ample can be seen in the platform of NMR, which has provided a lot of experimental

implementations due to the fact that the characteristic time of this platform is of the

order of nanoseconds, therefore the technology available to test the experimental imple-

mentations in this platform was available almost two decades ago. This explain why

NMR became one of the �rst testbeds for developing control methods for applications

in quantum information, where the �rst quantum algorithms were implemented [6, 7].

Currently, the use of optimized pulses via the GRAPE method [98] is common in the ex-

perimental realizations of quantum information in the NMR platform, like quantum logic

gate implementations, generation of long life quantum states, fault-tolerant computation

[99, 101, 102, 100], etc.

Even so, experimental realizations have been implemented in other platforms, like su-

perconducting circuits or spin-based quantum computing in nitrogen vacancies, among
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others [120, 104, 103, 105]. The level of experimental control achieved in the NMR plat-

form, thanks to the QOCT and the coherent control schemes, and the present develop-

ments of ultrashort pulse technology1 reinforce the promise of new improvements in the

manipulation of other platforms worthy of study, e. g. semiconductor based platforms

[106, 107, 108, 109, 110], in which the dynamics can be faster than atomic or molecular

systems.

3.2 TBQCP method

As already mentioned, the basic goal of optimal control consists of �nding time-dependent

control �elds that drives an initial state |ψ(0)〉 to maximize the average value of an

observable at the end of the time evolution 〈O(T )〉. In this study, we implement the

numerical method TBQCP [126], which is an iterative monotonic method able to �nd an

optimal �eld Eopt(t) that maximizes the expectation value of a physical observable 〈O(t)〉
at the �nal time T . This method starts with the de�nition of the boundary conditions,

the initial state |ψ(0)〉 and the desired physical observable 〈O(T )〉, associated with |ψi(0)〉
and |ψtarget〉 respectively in �gure 3.1. The physical observable is evolved backwards (from
the �nal time T to the initial time t = 0) through the following equation

i~
∂O(n)(t)

∂t
=
[
O(n)(t), H0 − µE(n)(t)

]
, O(T )→ O(0), (3.1)

where H0 is the time-independent Hamiltonian of the system, µ is the dipole operator,

and E(n)(t) is the �eld in the nth iteration. The initial state |ψ(0)〉 is evolved forward

with the time-dependent Schrödinger equation

i~
∂|ψ(n+1)(t)〉

∂t
=
(
H0 − µE(n+1)(t)

)
|ψ(n+1)(t)〉, (3.2)

where E(n+1)(t) is the (n+1)th iteration �eld, which is calculated through the following

expression

E(n+1)(t) = E(n)(t) + s(t)ηf (n+1)
µ (t). (3.3)

In Eq. (3.3), η is a positive constant (to be calibrated depending on the performance

of the code), s(t) is a positive enveloping function2 and the �eld correction is written as

f (n+1)
µ (t) = −2

~
Im
{
〈ψ(n+1)(t)|O(n)(t)µ|ψ(n+1)(t)〉

}
. (3.4)

Equations (3.1-3.2) are solved in a self-consistent way, starting with the trial �eld

E(0)(t) and the control �eld is tailored in every iteration with equations (3.3-3.4), such

1At the moment the shortest pulse are of the order of femtoseconds.
2 which is smooth and variates going to zero at the initial and �nal pulse time, in order to avoid any

transient e�ects in the implementation.
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that the expected value of the observable at the �nal time 〈O(T )〉 = 〈ψ(T )|O(T )|ψ(T )〉
increases monotonically, see more details in Ref. [126]. Particularly, if one is interested in

maximizing the evolution to an speci�c target state |ψtarget〉, the operator that descbribes
the observable becomes the projector onto this state O(T ) = |ψtarget〉〈ψtarget|. A detailed

deduction of this equations and the physics behind the TBQCP method can be seen in

appendix B.

The e�ect of the TBQCP method on the temporal evolutions is depicted in �gure 3.1,

which starts at |ψi(0)〉 and |ψtarget〉 for the forward and backward evolutions, respectively.

At the �rst iteration, the starting and �nal states of both trajectories are di�erent. But

with every iteration, corrections in the control �eld are implemented, such that these two

evolutions (forward and backward) go from dissimilar evolution paths to a more common

evolution, where the starting state of one trajectory is where the other trajectory ends

and viceversa.

Figure 3.1: The successive improvements of the temporal evolutions via the TBQCP
method, which tailors an optimal control �eld that leads from an initial state |ψi(0)〉 to a
�nal one close or equal to a target state |ψn+1

f (T )〉 h |ψtarget〉.

3.3 Implementation of Quantum Gates

Quantum gates are the quantum analogue of logic gates in classical computers. Such gates

are reversible in time and are represented by unitary matrices U . Since the implementation

of a quantum gate implies a transformation on any state, as described in eq. (2.23), then

it requires the optimization of a control �eld that induce the desired evolution of multiple
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states. The optimal quantum control scheme can be employed to implement quantum

gates [127, 128]. Such implementation can be performed by �nding the optimal �eld that

steers a set of initial k-states |ψk(0)〉 to a speci�c set of �nal target k-states |ψtargetk 〉. The
set of initial k-states can be given by the basis eigenvectors of a chosen operator {|j〉}
where j = 1, . . . , k plus the initial superposed state

∑k
j=1 |j〉/

√
k, which avoids errors

due to undesirable relative phases [127, 128]. The set of �nal target k-states |ψtargetk 〉 is
given by {U|j〉, U∑k

j=1 |j〉/
√
k}.

In this study, we de�ne the mean �delity to characterize the quantum gate e�ciency.

For a closed system, the �delity is de�ned as F = |〈ψ(T )|ψtarget〉|2, where |ψ(T )〉 is the
time evolved state and |ψtarget〉 is the desired state under the action of the quantum gate.

The mean �delity is given by the following equation

F̄ =
1

N + 1

N+1∑
j=1

|〈ψtargetk |ψk(T )〉|2, (3.5)

where |ψk(T )〉 are the time evolved k-states from the initial k-states |ψk(0)〉.

3.3.1 Quantum gates in the TBQCP method

The implementation of a quantum gate requires the optimization of a control �eld that

induce the desired evolution of multiple states, which transform the set of initial conditions

|ψk(0)〉, into the set of �nal target k-states |ψtargetk 〉, with a required precision. Thus, an

small modi�cation must be implemented in eq. 3.4, to correct the reference �eld in every

iteration. In a multitarget gate, the correction term in eq. 3.4 is calculated separately

in the evolution of every state (which is performed exactly the same, as explained before

for a single target), and then the individual contributions are added to correct the �eld

of the next iteration. Therefore eq. (3.3) must be modi�ed and takes the new form

E(n+1)(t) = E(n)(t) + s(t)η
∑
k

f (n+1)
µk

(t), (3.6)

where f
(n+1)
µk (t) corresponds to the correction of the k-state, and the new reference �eld

E(n+1)(t), is e�ectively corrected with contributions of every propagated state, at every

time t in the simulation.

39



Chapter 4

One-qubit in Nanowire Quantum Dots

After reviewing the dynamics of a qubit and the theory of quantum optimal control, we

are ready to simulate its implementation in some physical platforms. In this chapter,

we do that for the system of nanowire quantum dots. At the beginning of this chapter,

we study the physics of this platform and the interactions with external electromagnetic

�elds. Then, we analyze the level structures and temporal evolutions for two setups of

this system. The �rst, consisting of a single quantum dot and the second of two quantum

dots in the nanowire. Then, we study the temporal evolutions present in each setup of

this platform for di�erent regime parameters under harmonic driving �eld. The evolution

basis corresponds to the �rst four energy levels, and the qubit is encoded in the �rst two

levels. In these temporal evolutions, we identify sets of parameters where the dynamics

correspond to those discussed in chapter 2, Rabi or Landau-Zener. For the appropriated

parameter sets, these two dynamics constitute a reliable mechanism to achieve population

inversions for our qubit with negligible leak to the upper levels. But since we are interested

in a higher degree of control, then in the �nal section we implement more complex task

with the aid of the TBQCP method. We explore numerically the feasibility of three

quantum gates, and we determine a setup where the e�ciency increase in one order of

magnitude, with respect to the temporal evolutions provided by the phenomena explored

in the previous sections. At the end of the section, we address a problem relevant for the

experimental generation of the optimized electrical pulses and quantum metrology. For

this reason, we decompose the optimized �elds with the Fourier transform and then we

reconstruct them with Fourier series, in order to determine how many Fourier coe�cients

are enough to reconstruct a new pulse that perform the same task of the original optimized

�elds with a satisfactory precision.

4.1 Nanowire Quantum Dot

Quantum dots are structures that provide three dimensional con�nement of few electrons

or even a single one. Among various semiconductor devices that satisfy this property,
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there are electrostatic quantum dots, where electrical potentials applied through electrical

contacts are responsible for con�ning electrons. Among the di�erent electrostatic quantum

dots, a possible realization are the gated nanowires, whose cylindrical geometry o�ers

con�nement in the transversal direction of the nanowire, and the electrical potentials

con�ne the electrons in the axial direction. This kind of quantum dots are described by

the Hamiltonian

H0 = − ~2

2m∗
∇2 + V (y, z) + Vw(x), (4.1)

where the con�nement in the yz plane can be modeled as the harmonic oscillator potential

V (y, z) =
1

2
k(y2 + z2),

where k = ω2
0m
∗ is analogous to a restorative constant (isotropic in the yz plane), m∗ is

the electron e�ective mass and ω0 is the oscillation frequency. The con�nement along the

x̂ direction is represented by Vw(x), usually described as the potential of one or multiple

quantum wells; this con�nement is provided by an static electric �eld applied through the

gates of the nanowire, such that the e�ective potential of the static �eld corresponds to a

one-dimensional square quantum well Vw(x) in the x̂ direction.

If we apply variable separation in the time-independent Schrödinger equation asso-

ciated to the Hamiltonian in eq. (4.1), the solution can be expanded in the following

way:

Ψnx,ny ,nz(x, y, z) =
∑

nx,ny ,nz

Xnx(x)√
πR0

exp

[
−
(
y² + z²

2R2
0

)]
Hny(y)Hnz(z). (4.2)

This solution is proportional to the Hermite polynomials, with R0 =
√

~
m∗ω0

, related

to the one of the diameter of the nanowire R0 ≈ Ly, Lz. Furthermore, for the particular

case of Vw(x) describing a one-dimensional quantum well, the solution in the x̂ direction,

Xnx(x), corresponds to the solution of a �nite one-dimensional square quantum well;

which has a transcendental solution and can be found in Ref. [49].

For quantum wells the separation between the energy levels is inversely proportional

to the dimensions of the system. If we have a width of the quantum well Lx (or the

total length of the quantum wells whenever more than one is considered) bigger than the

nanowire diameter, see �gure 4.1, then we will have a distribution of the energy levels

like the one in �gure 4.2. In such distribution, the energy levels variate faster for a

change in the quantum number nx associated to the x̂ direction, than for changes in the

other quantum numbers (ny and nZ associated to directions ŷ and ẑ respectively). If any

further interactions to be considered only involve the �rst energy levels, then the quantum

numbers ny and nZ can be considered to be frozen in their respective ground states in

the temporal evolutions. Thus, the wave function in (4.2) takes the form
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Nanowire

QDot

Figure 4.1: Pictorial �gure describing a quantum dot in a gated nanowire with Lx �
Ly, Lz. The electrons are con�ned in the x̂ direction by an static electric �eld and their
states are controlled by the action of a local time-dependent electric �eld (red). Both
�elds are applied to the quantum dot by electric gates on the nanowire .

Ψnx,1,1(x, y, z) =
Xnx(x)√
πR0

exp

[
−
(
y² + z²

2R2
0

)]
. (4.3)

If the physical parameters of the nanowire (strong lateral con�nement due to the

nanowire diameter) provide such situation, then the motion in the YZ plane is frozen

with a Gaussian wavefunction and our energy levels only di�er by nx. In such case, we

can simplify our Hamiltonian in (4.1) to a one-dimensional Hamiltonian in terms of the x

coordinate. Therefore, the quantum dot can be represented like a one-dimensional �nite

quantum well as sketched in �gure 4.1.

Higher Energy

Lower Energy

Ny = 2, Nz = 1
constants

Ny = 1, Nz = 1
constants

Figure 4.2: Level distribution for a quantum dot with Lx � Ly, Lz.

Taking in account the one-dimensional approximation, considering the presence of an

42



static magnetic �eld in the x̂ direction (described by the Zeeman term), and the presence

of a constant electric �eld ε0 applied in the x̂ direction (described by the dipole operator

by the term eε0x). Then, the time-independent Hamiltonian of our system is

H0 = − ~2

2m∗
d2

dx2
+ Vw(x) + eε0x+

1

2
gµBBxσx. (4.4)

In order to manipulate the electronic states associated to the spin, we need to include

interactions involving such states. With such objective, we can employ the results from

[112], where it was found that the combined action of an static magnetic �eld, an electric

oscillating �eld, and spin-orbit interaction allows the control of the electronic spin by an

e�ective time dependent magnetic �eld h(t). In our case, we will consider the Rashba

interaction which is given by:

HSO =
α

~
(pyσx − pxσy) . (4.5)

For small values of Bx and the strong con�nement of the nanowire in the transver-

sal direction, we can ignore any orbital e�ects of the magnetic �eld Ref. [113] and the

canonical momentum ~P can be approximated as [112]

~P ∼ −i~∇.

In order to manipulate the system, we apply an external oscillating electric �eld de-

scribed by

ε(t) = Asin(ωt), (4.6)

where A is the amplitude. The interaction of this oscillating electric �eld with the system

is mediated by the dipole operator, thus its contribution to the Hamiltonian of the system

is described by the term V (x, t) = eεpx+ exAsin(ωt).

Considering the time-independent Hamiltonian H0, the spin-orbit interaction of eq.

(4.5), the action of an static �eld in the x̂ direction as in eq. (4.4), and the oscillating

electric �eld in eq. (4.6), the complete Hamiltonian is

H = − ~2

2m∗
d2

dx2
+ Vw(x) +

1

2
gµBBxσx +HSO + eε0x+ V (x, t). (4.7)

Thanks to the dipole, magnetic �eld, and spin orbit interactions we are now able to

manipulate not only the electronic states associated to the quantum number nx, but also

the spin. It was shown in Ref. [112] that, an oscillating electric �eld induces periodic

oscillations in the position of the charge distribution. This periodic movement of the

charge distribution generates an oscillating e�ective magnetic �eld that interacs with the

spin via the spin-orbit coupling HSO [114]. In turn it produces spin oscillations driven

with the e�ective �eld Heff generated in our case by the electric-dipole spin resonance
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(EDSR). This e�ective �eld can be estimated using perturbation theory [112], which yields

the following formula for the e�ective time dependent magnetic �eld Heff

Heff =
1

2
~h(t).~σ,

with our parameters:

~h(t) = 2gµBBx
eε(t)

mω2
QD

αm

~
ẑ, (4.8)

where ωQD is the quantum dot frequency. From this expression we can see the linear

dependence with the magnetic �eld B, the Rashba constant α and the amplitude of the

pulse A. In the case of the well width L, the proportionality relation is L4 v 1
ω2
QD

.

As part of a systematic study to characterize this system, we simulated the Rabi os-

cillations for the di�erent parameters involved in the Hamiltonian of eq. (4.7), variating

the parameters corresponding to the magnetic �eld B, the Rashba constant α, the well

width L, and the amplitude of the pulse A; which were plotted against the Rabi frequency

of ΩR respectively in �gures 4.3, 4.4, 4.5, and 4.6. In these �gures, the green dots cor-

respond to the actual points that were simulated, while the discontinuous lines in black

correspond to a linear interpolation over those points, except for �gure 4.5, where the

scale is logarithmic, and thus the interpolation is exponential.

10 15 20 25 30 35 40 45 50
B (mT )
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1.0

1.5
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Ω
R

(n
s−

1
)

Figure 4.3: Rabi frequency vs the static magnetic �eld. Green dots represent the simu-
lated temporal evolution and the black line correspond to its linear interpolation. With
parameters α = 50 meV.nm, L = 200 nm, and a pulse with A = 100 V/cm.
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Figure 4.4: Rabi frequency vs the spin-orbit coupling factor. Green dots represent the
simulated temporal evolution and the black line correspond to its linear interpolation.
With parameters B = 25 mT, L = 200 nm, and a pulse with A = 100 V/cm. The
simulated Rabi frequency begins to depart signi�cantly from the simulated values at
α = 50 meV.nm.
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Figure 4.5: Rabi frequency vs the length of the square well. Green dots represent the
simulated temporal evolution and the black line correspond to a exponential interpolation.
With parameters B = 25 mT, α = 50 meV.nm, and a pulse with A = 100 V/cm.

From the results in �gures 4.3, 4.4, 4.5, and 4.6, we can conclude that at least for the

values in (or close to) the interpolations (where the perturbation theory is valid), we can
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Figure 4.6: Rabi frequency vs the amplitud of the driving �eld. With parameters B = 25
mT, α = 50 meV.nm and L = 200 nm.

expect a direct relation between the e�ective �eld in eq. (4.8) and the oscillations of the

spin. Since the simulated points obey the same proportionality relations with the four

variated parameters, then such e�ective �eld induce Rabi oscillations with a frequency

given by

ΩR =
Heff

~
� BAαL4.

Of course, this relation can not be guaranteed for the values of A, α and L, where the

simulated points deviate from the perturbation theory. This happen for the amplitude

for values A > 250 mV/cm, for the Rashba constant if α > 40 nm.meV and for the width

of the quantum well when L� 200 nm.

A gated nanowire can be the host for one or multiple electrostatic quantum dots. Next,

we inspect the platforms of one electron in a single and double quantum dots with the

objective to test which con�guration is more advantageous to be used as a qubit platform.

Both setups are simulated with a set of common parameters corresponding to a

nanowire of InSb, which have an e�ective electron mass of m∗ = 0.014m0, magnetic

moment of 0.05788 meV/T, and a gyromagnetic factor of g = −51. All the temporal

evolutions were run and expanded with an evolution base corresponding to the �rst four

eigenstates of the time independent Hamiltonian in equation (4.4). Energy levels superior

to the fourth one are at least an order of magnitude higher in both setups, therefore the

temporal evolutions are well approximated considering only four energy states.
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4.2 One electron in a single QD

Figure 4.7: Level splitting for the ground state due to the interaction of the spin with an
external static magnetic �eld.

This �rst setup corresponds to the Hamiltonian of eq. (4.7) with the term Vw(x)

describing a �nite square well; which parameters were �xed for a wide of 200 nm and a

height of 200 meV. To begin the study of this system, we set the electric �eld bias ε0 = 0

and the oscillating pulse to ε(t) = 0 (which turns o� the time-dependent interactions and

the pulse bias εp)
1. Then we discretize the space with the Chebyshev grid method [115] to

rewrite the di�erent terms of the Hamiltoninan in eq. (4.7). Furthermore, we numerically

diagonalize these Hamiltonian matrix, to obtain the eigenstates and eigenvalues of the

time independent Hamiltonian H0 of the system composed by the eq. in (4.4) and the

Spin-orbit interacion in eq. (4.5). This process is repeated for di�erent values of the static

magnetic �eld Bx to calculate the associated energies. Due to the interaction of the spin

with this magnetic �eld, there is a break in the degeneracy of the energy levels, which is

illustrated in �gure 4.7. The ground state splits in two new energy levels with spin up

and down, which separation is described by the Zeeman interaction in eq. (4.7).

Since we are interested in exploiting the spin degree of freedom (via the spin-orbit

interaction), we need a non-zero value for the magnetic �eld in order to di�erentiate the

energy levels associated to the states with spin up and down. For this reason, we set

the magnetic �eld to B = 25 mT, and then proceed to study the level structure when

variating the electric �eld bias ε0 (in an interval for realizable experimental values of

this bias). The corresponding level structure is shown in �gure 4.8, where we can see

1The system bias ε0 and the pulse bias εp can be varied, but they will be relevant in the next setup
of two quantum dots in the nanowire.
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Figure 4.8: Level structure for a single quantum dot with a wide of 200 nm and an static
magnetic �eld of B = 25 mT. In this interval that covers high experimental values of the
electric �eld bias ε0, there is no anticrossing between any energy levels.

that there is no anticrossing between the energy levels. Therefore, for a level structure

like the one in �gure 2.4, there is no Landau-Zener phenomenon for this setup. In this

case, the interchanges of state populations are driven by the Rabi dynamics (which as

seen in chapter 2, are usually slower), if we consider a regime of parameters accessible

in the experiments. Moreover, it is pointless to apply optimal quantum control in this

case, since we did it and the optimized pulses converge to pulses with a power spectrum

showing peaks for the resonance frequencies of the system; indicating that the di�erent

transitions are only possible through Rabi oscillations, (or a combination of them i.e.

via Rabi oscillations between various levels). This limits the possibility to tailor faster

temporal evolutions with optimal quantum control.

The temporal evolutions in this setup is lead by the Rabi dynamics. We set the

parameters to A = 100 V/cm and ω = 70.372 GHz (frequency in the resonance of the

�rst two levels). The temporal evolution under the action of such sinusoidal electric �eld

is illustrated in �gure 4.9. We can observe Rabi oscillations with a period of 0.63 ns

between the �rst two levels, and a Rabi frequency of ΩR = 1.59 ns−1. Since no dissipation

is considered in this platform, all the temporal evolutions in this chapter were implemented

numerically by solving the time dependent Schrödinger in eq. (4.7), with a exponential

propagator.
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Figure 4.9: Rabi oscillations for the �rst two levels in a single quantum dot with a Rashba
constant of α = 50 meV.nm, and for a pulse with A = 100 V/cm and ω = 70.372 GHz
(in the resonance).

4.3 One electron in a double QD

The second setup corresponds to the Hamiltonian of eq. (4.7) with the term Vw(x)

describing a quantum double �nite symmetric square well, separated with a barrier; whose

parameters are illustrated in �gure 4.10, being Ww the width of both quantum wells, WH

the height of the well (characterized by the height of the lateral barriers), Bw the width

of both quantum wells, and BH the height of the inner barrier. For this setup, we did

a systematic study where we variated these parameters to see their e�ects. The heights

of the wells WH only shift the energy levels. For such reason, this parameter was �xed

to WH = 50 meV. The width of the quantum wells has the same e�ect in the energy

levels. Nonetheless it was variated. The observed variation of the energy levels with

these two parameters is expected, since they modify the con�nement of the electron in

space. The parameters that changes the level structure more drastically (with changes in

the distribution of the anticrossings) are the width of the separation barrier Bw and the

height of the barrier BH , which modi�es the coupling and thus the tunneling between the

quantum dots. We focused on variations of the barrier width Bw, therefore the height

of the barrier was �xed to the values of BH = 35 meV. Similar e�ects were observed by

variating this parameter as well.
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Figure 4.10: Our double quantum dot setup is described by a quantum double �nite
symmetric square well. In order to simulate a more reallistic potential, the mathematical
function that represents it allows soft corners (as depicted in this �gure).
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(a) With a barrier width of Bw = 30 nm, and quan-
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(b) With a barrier width of Bw = 40 nm, and quan-
tum �nite square wells of width Ww = 55 nm each.

Figure 4.11: Level structure for a double quantum dot for di�erent potential barriers
separating two �nite quantum square wells of width Ww. The level structure su�ers a
reshaping in the location of the anticrossings. Shifting from one anticrossing as observed
in these two �gures to the anticrossing distribution depicted in �gure 4.12, where four
anticrossings involve di�erent pairs of levels independently.

Changes on the distribution of the anticrossings due to the barrier width Bw are

illustrated in �gures 4.11 and 4.12; where we considered a �xed total width of the system

of 150 nm in every arrangement (i.e. summing up the width of both quantum dots and
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the barrier 2Ww +Bw = 150 nm), and varied the width of the barrier and the symmetric

quantum wells. In all the following arranges, the Rashba constant was �xed to α = 50

meV.nm.

In these level structures we observe an alteration in the distribution of the anticross-

ings, starting with a large anticrossing (for the four levels) in �gure 4.11 a) for a separation

barrier of Bw = 30 nm, passing to an intermediate distribution for Bw = 40 nm in �g-

ure 4.11 b), where the second and third level begin to repel each other (as the two inferior

and the two upper levels come closer); and �nally changing to the anticrossing distri-

bution of �gure 4.12, for a separation barrier of Bw = 70 nm, where a higher repulsion

between the levels and a shift from the former single anticrossing (in �gure 4.11 a) ) to

four anticrossings involving di�erent pairs of energy levels 1-2, 2-3 and 3-4 in �gure 4.12.

In order to induce transitions between these energy levels, we apply an external oscil-

lating electric �eld described by eq. (4.6), uniformly along the whole length of the system

(square wells and barrier included). This oscillating �eld drives the temporal evolutions

shown in the rest of this chapter.

4.3.1 Landau-Zener

From the three mentioned level structures the one more appropriate to compare the Rabi

and Landau-Zener dynamics (in the present platform involving 4 levels), is the one with

separation barrier Bw = 70 nm in �gure 4.12, since its anticrossings involve only two levels

separately. Allowing us to encode a qubit, study its temporal evolutions and then establish

as much as possible a comparison with the dynamics of the ideal qubit studied in chapter

2. In �gure 4.12 we illustrate the enegy levels and the physical con�guration of their

states. Also the physical con�guration is depicted in such �gure, where the occupation

and spin of the electron in the DQD changes due to the tunneling and the spin-orbit

interactions. Starting for a negative static electric �eld and a positive static magnetic

�eld with a charge occupation (0, 1) for the ground |1〉 and �rst excited state |2〉 (with
spin up and down respectively), and a charge occupation (1, 0) for the levels |3〉 and |4〉
(with spin up and down respectively). This physical con�guration change for the levels

|2〉 and |3〉, when the static electric �eld is still negative but beyond the �rst anticrossing.

This change is due to the static electric �eld which swaps the occupation and the spin

component in the energy level |2〉 to end up with the occupation (1, 0) and spin up; and

swaps the components of the energy level |3〉 to the occupation (0, 1) and spin down.

A second changes occurs when the static electric �eld becomes positive but before the

third anticrossing. In this case the four energy levels undergo a swap in the occupation of

the dots. The last change in the physical con�guration happens when the static electric

�eld is positive and beyond the third anticrossing, which introduces a swapping for the

occupation and the spin component in the energy levels |2〉 and |3〉. Transforming the
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con�guration of the energy level |2〉 from a charge occupation (0, 1) with spin up to the

con�guration (1, 0) with spin down. In the case of the energy level |3〉 the change occurs
from a charge occupation (1, 0) with spin down to the con�guration (0, 1) with spin up.

Since the ground state is experimentally the simplest to prepare, our qubit will be

encoded in the �rst and second energy levels, and to �nd temporal evolutions resembling

the Landau-Zener dynamics, we will focus in the anticrossing involving this pair of levels;

which is located at the center of �gure 4.12.

Figure 4.12: Level structure for a double quantum dot with a separation barrier ofBw = 70
nm, separating two quantum �nite square wells of width Ww = 40 nm each. The lines
shows the di�erent system bias to simulate a �ip operation between the �rst two levels,
via di�erent mechanisms; εR = 15 V/cm for Rabi, and ε′0 = 2.5 V/cm for Landau-Zener.

The best way to establish the presence of the Landau-Zener phenomenon would be by

applying a large linear swept as proposed in the original references [51] and [50]. Unfortu-

nately, the level structure in �gure 4.12 has a major shortcoming, since the anticrossings

are poorly isolated from the dynamical in�uence of each other, and for this reason it is

impossible to apply a long swept without expecting leaks from the two state qubit popula-

tion to the upper levels. Therefore, if we want to study the presence of such phenomenon

as clearer as possible, we must restrict the parameters of the oscillating pulses in eq. (4.6)

such that the state of the system remains under the in�uence of a single anticrossing (in

our case the central one at the bottom in �gure 4.12). Thus the farthest value of the pulse

from the center (which depends of the addition of the system bias ε0 and the amplitude A)

must not pass the neighboring anticrossings. Mathematically, this is equivalent to satisfy

the following condition |ε0| + |A| < 8 V/cm (since the two neighboring anticrossings are

located at −8 and 8 V/cm in this case).

Given the aforementioned restrictions that do not allow the driving �eld to go beyond
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any of the two neighboring anticrossings, there is the possibility that it could compromise

the observation of the Landau-Zener e�ect, since we could be out of the strong regime.

However our results suggest di�erently, and we obtained Landau-Zener interferences de-

spite the limited range in the pulse amplitude. Before presenting a possible way out to

circumvent this obstacles, lets remember the conditions required to �nd the Landau-Zener

dynamics. In chapter 2, we concluded that the two relevant factors necessary to observe

the Landau-Zener phenomenon, are:

1. To have a set of parameters of the driving force in the strong regime of the system.

2. Measure the temporal evolution in an orthogonal basis di�erent from the eigenstates

of the time-independent Hamiltonian H0.

In order to ful�ll the second condition, we must alter the correspondance between the

measurement basis states and the eigenstates of the independent Hamiltonian H0 (which

normally are the same set of states), this can be done in two ways.

First, by changing the measurement basis with respect to the eigenstates of H0. For

example, in chapter 2 this is exactly what was done in the temporal evolution shown in

�gure 2.9, where we used the time-independent part of the Hamiltonian in eq. 2.5 as

the H0 (which eigenstates are the same of σz), but as the measurement basis we used

the eigenstates of σx. We observed the Landau-Zener dynamics despite using the Rabi

Hamiltonian.

Second, by keeping the measurement basis as the eigenstates of H0, but modifying

somehow the time-independent part of the Hamiltonian. In chapter 2, we saw this is

possible for a two-level system by applying a rotation of Ry(π/2). But in the case of our

platform, we can break the correspondence between the measurement basis states and the

eigenstates of H0 by introducing an additional bias (an static electric �eld) in the pulseεp

to eq. (4.6). Thus the pulse for this case is

ε(t) = εp + Asin(ωt).

To see how the addition of this pulse bias is equivalent to the second strategy, we can

visualize the e�ect of theεp in the following way.

Let us call H0 the time independent part of the Hamiltonian without the pulse bias εp

in eq. (4.7), and the time dependent part as Hi = eεpx + exAsin(ωt). After solving the

eigenvalue problem for H0, we have the set of eigenstates {|n〉} used as our measurement

basis. As well as in chapter 2, the initial condition can be any state expanded in the {|n〉}
basis, by simplicity let us choose |ψ(0)〉 = |1〉 (as done in most temporal evolutions shown

in this section). Let us also call

H0(ε0 = 0) = − ~2

2m∗
d2

dx2
+ Vw(x) +

1

2
gµBBxσx +HSO,
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corresponding to our H0 with a zero system bias ε0 = 0. Therefore

H0 +Hi = H0(ε0 = 0) + eε0x+ eεpx+ exAsin(ωt).

In terms of the e�ective system bias ε′0 = ε0 + εp, we have

H0 +Hi = H0(ε0 = 0) + eε′0x+ exAsin(ωt),

which can be rewritten in terms of H ′0 = H0(ε0 = 0) + eε′0x, and H
′
i = exAsin(ωt). In

any evolution of the states (whether performed with H0 + Hi or with H
′
0 + H ′i) we keep

the measurement basis in the eigenstates of H0 (this ful�lls the aforementioned second

requirement to observe the Landau-Zener phenomenon).

Mathematically, the temporal evolutions with both sets of Hamiltonians is the same

and it is true that H0 +Hi = H ′0 +H ′i, but the measurement basis for H ′0 +H ′i is no the

basis constituted by the eigenstates of H ′0.

The aforementioned implies that to perform an evolution with the eigenstates of H0

and a pulse with an additional bias, and then measure in their eigenstates, is equivalent

to perform an evolution with a Hamiltonian H ′0 with the e�ective bias ε′0 and a pulse with

No additional bias, and then measure in the eigenstates of the original H0.

With this second strategy it is possible to observe the usual Landau-Zener interfer-

ences, found with the grid search method applied on the amplitude and frequency of the

harmonic electric pulse, in the same way as done in chapter 2. The constructive inter-

ference can be appreciated in �gure 4.13 and the destructive interference is illustrated in

�gure 4.14.

The fact that we can obtain the population inversion with the constructive interference,

despite being out of the resonance frequency (nor harmonics of such frequency) and with

an additional bias in the pulse i.e. with εp 6= 02, rules out the possibility that such

population invertion is achieved thanks to the Rabi dynamics. This fact suggest that we

are in the strong regime (or at least in the intermediate) in the amplitude A of the driving

�eld, where the Landau-Zener phenomenon leads the temporal evolutions.

2precisely the opposite of the two requirements for Rabi, as seen in the �rst section fo chapter 2, and
in table 2.1.
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Figure 4.13: Constructive interference of the Landau-Zener transitions after multiple
passage trough the central anticrossing region in �gure 4.12 with a sinusoidal pulse de�ned
as in eq. (4.6). With parameters: A = 3.0 V/cm and ω = 111.92 GHz (out of the
resonance). The basis correspond to a system bias of ε0 = 1.5 V/cm, and the pulse bias is
εp = 1.0 V/cm, therefore the e�ective bias is ε′0 = 2.5 V/cm, where the evolution happens.
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Figure 4.14: Destructive interference of the Landau-Zener transitions after multiple pas-
sage trough the central anticrossing region with a sinusoidal pulse de�ned as in eq. (4.6).
With parameters: A = 4.03 V/cm and ω = 410.15 GHz. The basis correspond to a
system bias of ε0 = 1.5 V/cm, and the pulse bias is εp = 1.5 V/cm, therefore the e�ective
bias is ε′0 = 3.0 V/cm.
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4.3.2 Rabi oscillations

In order to observe Rabi oscillations and avoid undesired Landau-Zener transitions, we

choose an electric bias away from the anticrossings at εR = 15 V/cm, and apply an electric

pulse with the same amplitude of the pulse applied in the constructive interference in

�gure 4.13, but this time the pulse frequency is set in the resonance of the two qubit

states (the characteristic trait of Rabi). As we can see apart from the �rst two levels,

there is practically no participation of the superior levels. This temporal evolution can be

seen in �gure 4.15, where the inversion of population of the qubit states takes a little more

than 120 ns, a time notably longer than the T h 0.7 ns that takes in the constructive

interference of Landau-Zener.
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Figure 4.15: Rabi oscillation for the �rst two levels in a double quantum dot. For a
sinusoidal pulse with A = 2.5909 V/cm, ω = 358.36 GHz (in the resonance). The basis
correspond to a Bias of ε0 = εR = 15 V/cm, as depicted in �gure 4.12.

4.4 Quantum gates in the double QD

With the assistance of quantum optimal control (in this case with the TBQCP method

introduced in chapter 3) we can take a step further and perform more sophisticated

operations than a mere population inversion as shown in the last section with the Rabi

and Landau-Zener dynamics. Here, we tailor the pulse associated with three common

one-qubit quantum gates introduced in chapter 2. We start with the universal quantum

gate X, which transformation can be described by the matrix
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X =

[
0 1

1 0

]
. (4.9)

For this gate we optimized an electric pulse, see �gure 4.16, which can achieve a �delity

of 99% with respect to the ideal target. The temporal evolution induced by this pulse on

our system is shown in �gure 4.17 with a duration of T = 0.5 ns, which is slightly faster

than the time of the constructive Landau-Zener in �gure 4.13 with T h 0.7 ns. This can

be caused by the fact that our X gate is universal (a more complex operation requiring

the optimization of three state temporal evolutions), and it can transform any state as

the transformation in eq. (4.9) (di�erently from the speci�c transformation of the state

|ψ(0)〉 = |1〉 realized with Rabi and Landau-Zener). Also the coupling element in the

dipole matrix that connects the states |1〉 and |2〉 is relatively low compared with the one

of other arrangements for di�erent barrier widths.
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Figure 4.16: Optimized pulse for the universal X gate, with a system bias of ε0 = 1.5
V/cm, in the arrangement with a barrier width of BW = 70 nm. This pulse guarantees a
�delity of 99%, and required 257 iterations with the TBQCP method.
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Figure 4.17: Temporal evolution of the occupation states for a system bias of ε0 = 1.5
V/cm, in the arrangement with a barrier width of BW = 70 nm, with the initial condition
|ψ(0)〉 = |1〉 and under the action of the optimized pulse in �gure 4.16. Ideally this
operation must transform our initial condition as |1〉 −→ |2〉, (according to our notation
of the levels).

The improvement in e�ciency when we apply quantum optimal control on the ar-

rangement with a barrier width of Bw = 70 nm, is not really that much if we compare the

X gate with the constructive Landau-Zener in �gure 4.13. However, there is a faster way

if we take in account that as the width of the barrier decreases, the coupling increases sig-

ni�cantly (as can be seen from the matrix elements of the dipole matrix), this is expected

since a wider separation restricts the tunneling between the quantum wells. Therefore,

a better arrangement in this platform corresponds to the system with higher couplings,

for example in an arrangement with a separation of Bw = 30 nm (even though the level

structure change to have a single anticrossing in the four levels, for the optimal quantum

control, this is irrelevant).

For this arrangement, besides the X gate, we also implemented the following two

quantum gates [44, 45]

H =
1√
2

[
1 1

1 −1

]
, (4.10)

Rπ/8 =

[
1 0

0 eiπ/8

]
. (4.11)

Representing eq. (4.10) is the Hadamard gate (which corresponds to a 180 degree

rotation around the X axis, followed by a rotation of 90 degree rotation around the Y axis
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of the Bloch sphere), and eq. (4.11) is the π/8 gate (it equates to a rotation around the Z-

axis of the Bloch sphere by π/8 radians). These electric pulses and their respective power

spectrum are illustrated in �gures 4.18, 4.20, 4.22. As expected from optimized pulses via

a quantum optimal control method, these pulse pro�les are notably more complex than

the sinusoidal pulse of eq. (4.6) (used in the Rabi and Landau-Zener mechanisms), as can

be seen in the modulation of amplitude and the power spectrum that reveals a variety of

frequencies involved in these pulses.

As explained in chapter 3, the quantum gates require the optimization of the TBQCP

method on k + 1-states, with k = 2 for a qubit (e.g. the two states of the canonical basis

|0〉 and |1〉), and the third state corresponds to an arbitrary superposed state. For the

case of the X gate any initial state in the Bloch sphere

|ψ(0)〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉, (4.12)

is transformed respectively, to a �nal state given by

|ψ(T )〉 = X|ψ(0)〉 = eiφ sin
θ

2
|0〉+ cos

θ

2
|1〉. (4.13)

In order to certify that the optimized pulse of our X gate e�ectively connects any

initial qubit with its respective �nal state given by eq. (4.13), then we simulated the

temporal evolution of 1012 uniformly distributed initial states around the Bloch sphere,

transformed with the optimized pulse of the X gate illustrated in �gure 4.18 (the same

veri�cation can be applied for the pulses of the other gates). The results of such simulation

can be appreciated in �gure 4.19, where we calculated the �delity between the ideal state

of eq. (4.13) and the state at the �nal time |ψ(T )〉 that was evolved under the action of

the pulse. In �gure 4.19 we can observe that the �delity for the di�erent states is close

to 1 (being 0.984 the worse result), with small variations for the �delity of the evaluated

states. Results that veri�y the correspondence between the optimized pulses and the

unitary transformations associated to every gate.

In the three �gures of 4.18, 4.20, and 4.22; the power spectrum shows that the relevant

frequencies range from 0 to 400 GHz, but a notably di�erence is that the main contribution

of frequencies for the π/8 gate lies in frequencies below 180 GHz, while the power spectrum

of the X and Hadamard gates are broader and the main contributions occur for frequencies

below 360 GHZ.
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Figure 4.18: On the top plot, we have the original X universal gate optimized pulse (blue),
and its reconstructed version (orange) retailored with 20 Fourier coe�cients. The plot
below is the power spectrum of the original pulse. The basis correspond to a system bias
of ε0 = −30 V/cm, in the arrangement with a barrier width of BW = 30 nm. The original
pulse guarantees a �delity of 99%, and required 1658 iterations.
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Figure 4.19: Fidelity of 1012 uniformly distributed initial states around the Bloch sphere,
transformed with the optimized pulse of the X gate in �gure 4.18.
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Figure 4.20: On the top plot, we have the original Hadamard universal gate optimized
pulse (blue) and its reconstructed version (orange) retailored with 20 Fourier coe�cients.
The plot below is the power spectrum of the original pulse. The basis correspond to a
system bias of ε0 = −30 V/cm, in the arrangement with a barrier width of BW = 30 nm.
The original pulse guarantees a �delity of 99%, and required 5447 iterations.

With the pulses of �gures 4.18, 4.20, and 4.22 we can achieve a �delity of 99% (or

�elds with higher �delity could be tailored depending on the iteration number) in only

0.08 ns. This is an order of magnitude faster than the previous temporal evolutions; it

is an important improvement if we take in account that the decoherence time for this

platform is 0.16 µs, and that the relaxation time does not a�ect coherent evolution on

timescales up to 1 µs, as reported in ref. [116]. It suggest that it is possible to perform

various operations reliably before losing the quality of the information. To illustrate

the transformation performed by one of this pulses in this arrangement, we choose one

of the three temporal evolutions optimized for the Hadamard gate, starting with the

initial condition |ψ(0)〉 = |2〉 (the second state of our qubit). Ideally this operation must

transform our initial condition as |2〉 −→ (|1〉 − |2〉) /
√

2, (according to our notation of the

levels) which was reasonably approximated by our pulse, as can be seen in the temporal

evolution of �gure 4.21.

4.4.1 Fourier reconstructions of the optimized pulses vs the �-

delity

The original pulses can achieve �delities of 99%, but since they are tailored via optimiza-

tion methods, there is not an analytic function that describe them but the numerical
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Figure 4.21: Temporal evolution of the occupation states for a system bias of ε0 = 1.5
V/cm, in the arrangement with a barrier width of BW = 30 nm, with the initial condition
|ψ(0)〉 = |2〉 (the second state of our qubit) and under the action of the optimized pulse
of the Hadamard gate in �gure 4.20. Ideally this operation must transform our initial
condition as |2〉 −→ (|1〉 − |2〉) /

√
2, (according to our notation of the levels).
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Figure 4.22: On the top plot, we have the original π/8 rotation universal gate optimized
pulse (blue), and its reconstructed version (orange) retailored with 20 Fourier coe�cients.
The plot below is the power spectrum of the original pulse. The basis correspond to a
system bias of ε0 = −30 V/cm, in the arrangement with a barrier width of BW = 30 nm.
The original pulse guarantees a �delity of 99%, and required 18260 iterations.
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optimized �eld. Thus, in order to facilitate the experimental generation of these pulses,

we compute the power spectrum from the data of the pulse pro�les and then we recon-

struct the pulse with Fourier series, which harmonic functions are simpler to generate.

But what constitutes an acceptable reconstruction of these new pulses?

This is a relevant problem in the area of quantum metrology, where it is important

to determine the highest precision possible, given a set of limited resources. In this

case, what is relevant to be preserved is the quality of the transformation, which can be

quanti�ed with the �delity of the gate. For this reason we reconstructed the pulses of

our three quantum gates with di�erent number of Fourier coe�cients (considering those

frequencies wj with higher modulus in the discrete Fourier transform
∣∣∣f̃wj

∣∣∣). It is known
that the greater the number of these Fourier coe�cients, the better the reconstruction of

the pulse. How many are good enough to reproduce a pulse that guarantees a minimum

required �delity?. This can be seen in �gures 4.23, 4.24, 4.25, where we can see that for

a number below 28 coe�cients, the �delity can �uctuate signi�cantly from one number

of coe�cients to the next. This suggests that at least 28 coe�cients, is desireble. Also,

below such number, the �delity falls below 90% (except for the π/8 gate which �delity rise

faster and even with 14 coe�cients stays over 90%). For higher number of coe�cients,

this variation stops and the �delity stabilizes in a plateau (where the �delity does not fall

below 98%).

For the X and Hadamard gates in �gures 4.24, 4.25 the trend for a low number of

Fourier coe�cients (lower than 20) is an slower increase in the �delity, compared to the

fast rise in the �delity for the same number of Fourier coe�cients in the π/8 gate in

�gure 4.23. This disparity in the improvement of the �delity is related to the di�erence

in the peaks and valleys of the power spectrum, which it is more pronounced in the π/8

gate. Thus, even with a few coe�cients, let us say, 15 or 16 Fourier coe�cients in the π/8

gate, the most relevant frequencies are included and the �delity is higher as 90%. While

a bigger number of Fourier coe�cients are required in the case of the X and Hadamard

gates, to include the frequencies that contribute the most and yield a �delity of 90%.
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Figure 4.23: Fidelity vs number of coe�cients, used to retailor the π/8 rotation universal
gate optimized pulse in �gure 4.13. A good performance in the reconstructed pulses of
this gate can be guaranteed for a number of coe�cients higher than 28. With a �delity
higher than 98%.
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Figure 4.24: Fidelity vs number of coe�cients, used to retailor the X universal gate
optimized pulse in �gure 4.13. A good performance in the reconstructed pulses of this
gate can be guaranteed for a number of coe�cients higher than 28. With a �delity higher
than 98%.
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Figure 4.25: Fidelity vs number of coe�cients, used to retailor the Hadamard universal
gate optimized pulse in �gure 4.13. A good performance in the reconstructed pulses of
this gate can be guaranteed for a number of coe�cients higher than 28. With a �delity
higher than 98%.
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Chapter 5

Hybrid qubit

As a step further in our platform explorations, here we simulate the physical realization

of a quantum algorithm of qutrits (a unit of quantum information consisting of three

quantum states) in the platform of gated lithographic double quantum dots (DQDs). We

begin this chapter describing the quantum permutation algorithm (QPA) [121] and the

quantum gates involved in its execution. Although the algorithm requires the optimization

of eight electrical pulses corresponding to the di�erent one-qutrit quantum gates, the

execution of the algorithm requires the application of three of these quantum gates in

sequential order. We show the optimized electric pulses that were tailored with the aid

of the TBQCP method in the quantum speed limit, i.e. the minimum time required to

achieve the respective transformation of every gate, that assures a �delity higher than

0.9997. Furthermore, we compare the total time required by an hypothetical execution

of the quantum algorithm, with the decoherence and relaxation times of the physical

platform. We also evaluate the performance of such execution under a noisy environment

with a charge noise model. At the end of the chapter we discuss the results and conclusions

corresponding to this numerical experiment.

5.1 Quantum Permutation Algorithm

Consider a set with three elements {1, 2, 3}. For this set there are six possible permuta-

tions, three with even parity (1, 2, 3), (3, 1, 2), (2, 3, 1); and three with odd parity (3, 2, 1),

(2, 1, 3), (1, 3, 2). The objective of the QPA [121] is to determine the parity of the permu-

tations, and its protocol can be illustrated by associating the permutation to a function

f(x) on the set x ∈ {1, 2, 3}. Classically, one must evaluate f(x) for two di�erent values

of x, while the QPA can determine the parity with a single evaluation of f(x) [121].

In order to show how the QPA works, we use the qutrit as unit of quantum information

to encode the three elements of the set, which can be written as
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|1〉 =

1

0

0

 , |2〉 =

0

1

0

 , |3〉 =

0

0

1

 . (5.1)

The determination of the parity of a permutation is equivalent to the determination

of the parity of six permutation functions, which we represent with six unitary operators

constructed with the base in eq. (5.1). Three of this operators are associated to the even

permutations Π1, Π2 and Π3 which map the set of states (1, 2, 3) to the sets of states

(1, 2, 3), (3, 1, 2), and (2, 3, 1), respectively. The even permutations operators are cast as

Π1 =

1 0 0

0 1 0

0 0 1

 , Π2 =

0 1 0

0 0 1

1 0 0

 , Π3 =

0 0 1

1 0 0

0 1 0

 . (5.2)

The three operators associated to the odd permutations Π4, Π5 and Π6 are those that

respectively map from the set of states (1, 2, 3) to the sets of states (3, 2, 1), (2, 1, 3), and

(1, 3, 2). They are

Π4 =

0 0 1

0 1 0

1 0 0

 , Π5 =

0 1 0

1 0 0

0 0 1

 , Π6 =

1 0 0

0 0 1

0 1 0

 . (5.3)

In order to implement the QPA, the system must be initialized in state |2〉, then the

quantum Fourier transform (QFT) of a qutrit is applied to this initial state. This, is given

by

UFT =
1√
3

 1 1 1

1 exp(i2π/3) exp(−i2π/3)

1 exp(−i2π/3) exp(i2π/3)

 . (5.4)

The obtained state is the following superposition of the three states

|ψ1〉 = UFT |2〉 =
|1〉+ exp(i2π/3)|2〉+ exp(−i2π/3)|3〉√

3
. (5.5)

In Fig. 5.1 we show a quantum circuit that represents the QPA. The second gate in

Fig. 5.1 encodes one of the six possible permutations operators Πk, with k = 1, 2, .., 6.

The resulting state is |ψk〉 = Πk|ψ1〉. To determine the parity of the permutation, one

must apply the gate U †FT and measure the system to check the six possible outcomes,

which are described by the following states
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Even Odd

U †FT |ψ1〉 = |2〉 U †FT |ψ4〉 = e−2πi/3|3〉
U †FT |ψ2〉 = e2πi/3|2〉 U †FT |ψ5〉 = e2πi/3|3〉
U †FT |ψ3〉 = e−2πi/3|2〉 U †FT |ψ6〉 = |3〉

(5.6)

Discarding a gloval phase, if the measured state is |2〉 (|3〉), the parity of the applied

permutation was even (odd). In such a way, only one evaluation of f(x) is necessary in

contrast with the classical algorithm, where two evaluations of f(x) are required. An

interesting feature of this algorithm is the fact that entanglement is not necessary and

only a superposition with well-de�ned relative phases is needed.

Figure 5.1: Schematic quantum circuit for the quantum permutation algorithm (QPA).
The quantum Fourier transform UFT is applied to the initial state |2〉. Afterward, a
permutation Πk acts on the resulting state |ψ1〉 = UFT |2〉. Subsequently, the gate U †FT
is applied to the state Πk|ψ1〉 and a measure is performed. If the system is found in the
state |2〉 (|3〉), the parity Πk is even (odd).

5.2 Results and Analysis

As a platform for implementing the QPA, we use the Hamiltonian of the hybrid qubit

system extracted from Ref. [32], which is given by

H(ε) =


ε/2 0 ~∆1 −~∆2

0 ε/2 + ~δEL −~∆3 ~∆4

~∆1 −~∆3 −ε/2 0

−~∆2 ~∆4 0 −ε/2 + ~δER

 , (5.7)

where ∆1/2π = 2.62 GHz, ∆2/2π = 3.5 GHz, ∆3/2π = 4.6 GHz, ∆4/2π = 1.65 GHz,

δEL/2π = 52.7 GHz, δER/2π = 9.2 GHz, and ε is the detuning. The detuning ε is essen-

tially the energy di�erence between DQDs that breaks the system symmetry and allows

assessing the system states. It is used for state preparation and readout and is controlled

by applied gate voltages. The various ∆'s represent the tunneling couplings determined

by the e�ective height and width of the potential barriers between the DQDs. In turn,

the energy separation between single particle states, δE's, are de�ned by the e�ective
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con�nement. All the values used in our simulations were �tted from transconductance

measurements as reported in Ref. [32] for gated lithographic DQDs.
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Figure 5.2: The ground |2〉 (solid curve), �rst |1〉 (dotted curve), second |3〉 (dashed
curve), and third |4〉 (dash-dotted curve) excited states are shown as a function of the
detuning.

Figure 5.3: Physical con�guration of the evolution basis states in the DQD for ε0 = 50µeV.
The four states indicated with the occupation (in the right and left quantum dots (2,1)
for the �rst two states and (1,2) for the other two states), correspond to three electron
states consisting of the direct product of a single electron | ↓〉 and two-electron states (the
singlet |S〉 and the triplets |T−〉 and |T0〉).

The Hamiltonian of Eq. (5.7) can be diagonalized for each value of detuning and the

resulting energy levels are shown in Fig. 5.2. In the system for the reference detuning of
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ε0 = 50µeV, the four states of the evolution basis correspond to quantum states of three

electrons in two quantum dots, the ground |2〉 and �rst excited state |1〉 of the dot in

the (1,2) charge occupation, and the corresponding ground |3〉 and �rst excited state |4〉
of the dot in the (2,1) charge occupation. A qutrit requires only three quantum levels,

but we take into account four states as our basis of states to probe leakage e�ects. The

ground state is labeled as |2〉, while the �rst excited state is labeled as |1〉. Such a change

is due to the QPA, which is initialized in the state |2〉 and we choose the initial state as

the ground state of the system.

The physical con�guration of the four states in the DQD is depicted in Fig. 5.3, where

the four states of the system correspond to three electron states. The three electron

states correspond to the direct product of a single electron | ↓〉 and two-electron states

the singlet |S〉 and the triplets |Ti〉, with

|S〉 =(| ↑↓〉 − | ↓↑〉)/
√

2

|T+〉 =| ↑↑〉,
|T−〉 =| ↓↓〉, (5.8)

|T0〉 =(| ↓↑〉+ | ↑↓〉)/
√

2.

The time evolution of the system is given by

∂|ψ(t)〉
∂t

=
1

i~
(H0 − µE(t)) |ψ(t)〉, (5.9)

where H0 = Z−1H(ε0)Z is the diagonalized Hamiltonian for a reference detuning ε0 that

provides a basis for the time evolution of the system. Each column of the Z matrix is given

by the components of each eigenvector of H(ε0). The dipole type matrix is obtained by

µ = Z−1HDZ, where HD is a matrix composed by only the diagonal elements of H(ε = 1)

that are proportional to ε and E(t) = ε(t)−ε0. The optimized �eld can be obtained using

the TBQCP method [126], described in chapter 3 .

The power spectrum of the optimized pulses (Fig. 5.4) are shown in Fig. 5.5. We note

that all gates have a nontrivial power spectrum in the range of 0 and 20 GHz, which is in

agreement with the eigenenergies scale of the hybrid qubit (see Fig. 5.2). Note that the

main frequencies lie below 20 GHz and microwave sources exceeding the 20 GHz threshold

have already been used for controlling the inter-dot coupling as reported in Ref. [129].

Also, the technology for producing arbitrary waveform low-noise synthesizers has been

systematically evolving as described in Ref. [130].

In Fig. 5.6, we plot the evolution of the state occupation in the four-state basis, for the

reference detuning ε0 = 50 µeV, for the conversion of the initial state |2〉 by the UFT gate

into the target state |ψ1〉. In such evolution, we note that there is a very small leakage
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Figure 5.4: Optimized pulses as a function of time, considering the reference detuning
ε0 = 50 µeV. The initial pulse, in each panel, corresponds to the UFT (dark solid curve)
gate and the �nal pulse corresponds to the U †FT gate (dash-dotted curve). The six di�erent
pulses in the middle correspond to three even permutations (top panel) and to three odd
permutations (bottom panel). The gates Π1 (dashed curve), Π3 (dash-dotted curve), Π4

(dashed curve) and Π6 (dash-dotted curve) are shown with an o�set to better view, but
their real reference detuning is ε0 = 50µeV, such as for the other gates Π2 (dotted curve)
and Π5 (dotted curve).

outside the �rst three states (the qutrit basis), and the optimal pulse drives the dynamics

to yield the target with high �delity at the �nal time (see inset of Fig. 5.6). In the inset of

Fig. 5.6, we plot the �delity for the UFT gate as a function of the number of iterations of

the TBQCP. For all gates, the leakage to the fourth level was not signi�cant and the �delity

is bigger than 0.9997 for T=1.3 ns. The �delity depends on the time duration of the pulse,

which de�nes some restrictions for the maximum achieved �delity. Such dependence is

related to the quantum speed limit, which is connected to the minimum time to perform a

T (ns) UFT Π1 Π2 Π3 Π4 Π5 Π6 U †FT
1.0 261.5 1.6 90.2 916.5 65.9 1414.7 750.4 533.6
1.3 3.9 6.5 3.3 26.8 3.9 26.0 5.3 4.6

Table 5.1: In�delity for all quantum gates necessary to implement the QPA considering
di�erent pulse durations (T=1.0, and 1.3 ns). The in�delity for each case must be multi-
plied by 10−5 to get its real value, e.g., for the UFT the in�delity is 3.9×10−5 at T=1.3 ns,
which corresponds to a �delity of 0.999961. The number of iterations for each quantum
gate is di�erent for each case, ranging from a minimum of 654 iterations for the UFT gate
with T = 1.3 ns and a maximum of 15425 iterations for the Π2 gate with T = 1.0 ns.
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Figure 5.5: Power spectrum of the electric pulses corresponding to the gates (a) UFT (dark
solid curve), (b) Π1 (dashed curve), (c) Π2 (dotted curve), (d) Π3 (dash-dotted curve),
(e) U †FT gate (dash-dotted curve), (f) Π4 (dashed curve), (g) Π5 (dotted curve), and (h)
Π6 (dash-dotted curve).

transition between two states [62, 131]. Moreover, the connection between quantum speed

limit and optimal quantum control has already been investigated [131, 64]. In Ref. [64],

the quantum speed limit was related to the in�delity I = 1−|〈ψ(T )|ψtarget〉|2 considering
the Krotov-algorithm [65]. In table I, we present results for the in�delity I for all quantum
gates required by the QPA considering two di�erent pulse durations (T=1.0 and 1.3 ns).

The in�delity in table I must be multiplied by 10−5 to get its real value, i.e., for the UFT

the in�delity is 3.9×10−5 at T=1.3 ns, which corresponds to a �delity of 0.999961. The

worst case shown in table I is for the Π5 gate considering a pulse of T = 1 ns, which has

the in�delity I = 1414.7 × 10−5 (F = 0.985853) and we attribute such a result to the

approach of the quantum speed limit. In general, the in�delity in table I decreases with

the increasing of the pulse duration. Only for Π1 the in�delity is bigger for T=1.3 ns than

for T=1.0 ns. Such a result is due to numerical calculations and the convergence criteria,

which was set to stop the TBQCP iterations when the in�delity starts to �uctuate within

20 iterations, i.e., achieves a larger value of in�delity when compared to the in�delity

evaluated 20 iterations before.
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Figure 5.6: State occupations Pi = |〈ψ(t)|i〉|2 for i=1,2,3,4 as a function of time con-
sidering the action of the UFT gate on the initial state |2〉 that converts it to the state

1√
3
(|1〉 + exp(i2π/3)|2〉 + exp(−i2π/3)|3〉). The inset shows the �delity, which increases

with the number of iterations in the TBQCP method.

5.2.1 Performance under a noisy environment

Relaxation and decoherence sources are always present and are responsible for reducing

coherence and �delity of a quantum gate. To probe the in�uence of those e�ects on

optimal �elds, we model the charge noise as errors in the reference detuning over many

cycles of measurements, which constitutes the �nal averaged measurement. We assume

that these changes in the detuning follows a Gaussian distribution centered in ε0 = 50

µeV. Thus, we consider an average over many cycles of the time evolution given by the

non-optimal �eld E(t) = εopt(t)− ε0− εR, where εopt(t) is the optimal pulse and εR is the

error in the reference detuning. We plot the mean �delity for the Π3 gate as a function

of the Gaussian width σ in Fig. (5.7), which shows that if there is a Gaussian spread of

50% on the detuning the mean �delity decays 40%, but the �delity is bigger than 0.95 if

the spread is around 10%. Such results demonstrate that the optimal �elds can achieve a

good �delity even though there is some intrinsic error in the experimental implementation

of such �elds. Our results are also very robust when dealing with changes in the values of

∆'s in Eq. (5.7), for example, the �delity decreases only 1% when there is an error of 10%

in the value of ∆1. The �delity is even less a�ected by considering variations on other

∆'s values.
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Figure 5.7: Mean �delity of the Π3 gate as a function of the Gaussian width. The
inset shows schematically how the charge noise was considered, i.e., as an average over a
Gaussian distribution of the reference detuning ε0.

5.3 Conclusions

In this chapter, we propose a physical realization of the quantum permutation algorithm

(QPA) by using the platform of hybrid qubit in DQDs. We employ the TBQCP method

to optimize electric pulses that drives the states of the system to the desired set of target

states required by the QPA. These pulses perform the quantum gates of the QPA with a

�delity higher than 0.9997, when noise is not considered. Moreover, the short duration

of our pulses (1.3 ns) compared to the decoherence time (20 ns) reported in ref. [37],

support the idea that noise would not have signi�cant e�ects on the performance of our

implementation. We show that the high �delity achieved in our simulation occurs when

the pulse duration is above the quantum speed limit. Furthermore, the charge noise is

modelled by considering an average over the optimal �eld centred at di�erent values of

the reference detuning, which follows a Gaussian distribution. The mean �delity is still

higher than 0.95 if the Gaussian spread is of the order of 5µeV , which shows that the

optimal �eld is robust if the error caused by the charge noise is small than such a value.

The analysis and results of this chapter were published in the article [132].
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Chapter 6

Conclusions and future perspectives

In this study, �rst we reviewed the one-qubit dynamics and o�ered a new unifying in-

terpretation of the Landau-Zenner and the Rabi dynamics, by indicating the physical

elements responsible for the manifestation of one phenomenon or the other, without the

need to de�ne them as separate phenomena.

Furthermore, we explore numerically the feasibility of quantum gates in two di�er-

ent platforms of quantum dots, with the assistance of the the two-point boundary-value

quantum control paradigm (TBQCP) [126] (a numerical method of the optimal quantum

control theory). In the �rst platform, consisting of a DQD embedded in a nanowire, we

optimized single qubit pulses corresponding to three quantum gates assuring a �delity for

every gate higher than 0.99. We also compared the dynamical e�ciency of the TBQCP

respect to other dynamical mechanisms (Rabi and Landau-Zener); and we found that

TBQCP can provide optimized pulses that can perform di�erent tasks in a time as fast

as possible. In the second platform of electrostatical DQD, we implemented a quantum

algorithm the quantum permutation algorithm (QPA) [121], which requires quantum su-

perposition of states with well-de�ned relative phases. Because of the necessity of using

at least a three level system in this algorithm, we employed hybrid qubits instead of

spin qubits. The implementation of the QPA required the optimization of eight electrical

pulses corresponding to the di�erent quantum gates, but the algorithm execution requires

the application of three of these quantum gates in sequential order. In this case the

�delity of every gate is assured to be higher than 0.9997, at the quantum speed limit,

and its performance was proven to be robust under reasonable noisy conditions as well.

The duration of the optimized pulses for both platforms were signi�catively below the

decoherence and relaxation times of the respective platforms.

Our results open the possibility of achieving all-electrical quantum gates in DQDs by

means of optimal quantum control. Next we propose some future routes of our study.
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Perspectives

Given that our numerical results con�rm the feasibility of quantum gates in the platforms

that we have studied, and the fact that the duration of the optimized pulses for both cases

were below the decoherence and relaxation times; then an experimental implementation

could be realized. Furthermore, it would be interesting to include the interaction with a

system of many degrees of freedom to our models, in order to study the performance in

the optimizations of the TBQCP method under the e�ects of decoherence.

It is known from ref. [137] that to the use of information units higher than the qubit

simpli�es the quantum circuits associated to the same quantum algorithm. Thus it would

be interesting to rewrite the quantum circuits of known algorithms for qubits, to an

equivalent in qutrits (or even qudit states), and then explore numerically its feasibility

in any of the both platforms that we considered. This proposal is also relevant since the

reduction in the number of operations, also reduce the adverse e�ects of computational

errors or decoherence. A �rst step in this direction could be the simulation of a To�oli

gate for qutrits, since the combined action of the To�oli and Hadamard gates allows the

implementation of quantum universal computing.
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Appendix A

Rotating Wave Approximation

In this appendix we specify the mathematical steps behind the rotating wave approxima-

tion (RWA), applied in chapter 2.

The hamiltonian of a two-level system under a driving �eld can be described as (we

take ~ = 1 for this example)

H =
∆

2
σZ +

ε(t)

2
σX , (A.1)

with a time-dependent �eld described by ε(t) = Asin(ω0t), and system energies E1 =

−∆/2 and E2 = ∆/2 associated to the |0〉 and |1〉 states, respectively. With these states

we can expand the time-dependent state |ψ(t)〉 at any time.

|ψ(t)〉 = c1(t)|0〉+ c2(t)|1〉. (A.2)

With such state in the time-dependent Schrödinger equation we have,

i
∂

∂t
c1(t) = E1c1(t) +

A

2
sin(ω0t)c2(t), (A.3)

i
∂

∂t
c2(t) = E2c2(t) +

A

2
sin(ω0t)c1(t). (A.4)

This di�erential equation system has no analytical solution, but an aproximate solution

can be found by implementing two mathematical substitutions,

b1 = c1, (A.5)

b2 = c2 exp(iω0t).

Also, remembering that

sin(ω0t) =
exp(iω0t)− exp(−iω0t)

2i
=

exp(2iω0t)− 1

2i exp(iω0t)
,
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and appliying this identity in eq. A.3, we obtain,

i
∂

∂t
b1(t) = E1b1(t) +

A

2
sin(ω0t)b2(t) exp(−iω0t),

i
∂

∂t
b1(t) = E1b1(t) +

A

2

exp(2iω0t)− 1

2i exp(iω0t)
b2(t) exp(−iω0t) = E1b1(t) +

A

4i

exp(2iω0t)− 1

exp(2iω0t)
b2(t),

i
∂

∂t
b1(t) = E1b1(t)− iA

4
(1− exp(−2iω0t)) b2(t).

Neglecting 2ω0 terms, and with ωu = E1 the frequency of the |0〉 state.

i
∂

∂t
b1(t) = ωub1(t)− iA

4
b2(t). (A.6)

For eq. A.4 and keeping in mind that ċ2(t) = ḃ2(t) exp(−iω0t) − iω0b2(t) exp(−iω0t),

we have:

i~
(
∂

∂t
b2(t)− iω0b2(t)

)
exp(−iω0t) = E2b2(t) exp(−iω0t) +

A

2

exp(2iω0t)− 1

2i exp(iω0t)
b1(t),

~
(
i
∂

∂t
b2(t) + ω0b2(t)

)
= E2b2(t) +

A

4i
(exp(2iω0t)− 1) b1(t),

with ωd = E2 as the frequency of the |1〉 state ωd = ∆/2,

i
∂

∂t
b2(t) = (ωd − ω0) b2(t) +

iA

4
(1− exp(−2iω0t)) b1(t).

Neglecting 2ω0 terms,

i
∂

∂t
b2(t) = (ωd − ω0) b2(t) +

iA

4~
b1(t). (A.7)

Equations A.6, and A.7 constitute the RWA for our system.

The di�erential equation system (equations A.6 and A.7) has time-independent coe�-

cients, therefore we can rewrite the equation system as the following eigenvalue problem:

i
∂

∂t
|ψ̃(t)〉 = H̃|ψ̃(t)〉, (A.8)

where

H̃ =

(
∆/2 − iA

4
iA
4

(∆/2− ω0)

)
,

describes the interaction of the spin with a �eld, that is static in the time-dependent

frame adapted when we applied the transformation in equations A.5.

After solving the eigenvalue problem, we get the eigenvalues of H̃
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Ẽ1 =
1

4

(
−2ω0 −

√
A2 + 4(ω0 −∆)2

)
,

Ẽ2 =
1

4

(
−2ω0 +

√
A2 + 4(ω0 −∆)2

)
,

and the eigenvectors

|φ̃1〉 =

 − i
(

2ω0+2∆−
√
A2+4(ω0−∆)2

)
A

1

 ,

|φ̃2〉 =

 − i
(

2ω0+2∆+
√
A2+4(ω0−∆)2

)
A

1

 .

If we solve the time-dependent Schrödinger equation for a Hamiltonian H̃, that does

not depent explicitly on time, then we can expand the state of the system at any time

|ψ(t)〉, in terms of these eigenvectors and eigenvalues, such that

|ψ̃(t)〉 = α1 exp
(
−iẼ1t

)
|φ̃1〉+ α2 exp

(
−iẼ2t

)
|φ̃2〉, (A.9)

with α1 and α2, to be determined using the initial condition |ψ̃(0)〉 for A.9.
For example, if our initial condition is |ψ(0)〉 = |0〉, represented in the basis of Sz,

then the transformation in A.5 gives the components in the new frame:

|ψ̃(0)〉 =

(
1

0

)
,

and replacing it in A.9,

|ψ̃(0)〉 = α1|φ̃1〉+ α2|φ̃2〉,

(
1

0

)
= α1|φ̃1〉+ α2|φ̃2〉,

which correspond to a two equation system of α1 and α2. By solving it and replacing

α1 and α2 back in A.9, we obtain the state in any time |ψ̃(t)〉. Finally, we can �nd the

probability P1(t) of �nding the state |1〉

P1(t) =
∣∣∣〈1|ψ̃(t)〉

∣∣∣2 =
A2

A2 + 4(ω0 −∆)2
sin2

[√
A2 + 4(ω0 −∆)2

t

4

]
.

From this expression, we can infer the Rabi frequency of our system, which correspond

to
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ΩR =
1

4

√
A2 + 4(ω0 −∆)2.
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Appendix B

Two-point Boundary-value Quantum

Control Paradigm

A relevant problem in the theory of optimal control involves the identi�cation of time-

dependent control �elds by iterative optimization methods. In quantum mechanics, one of

this methods is the TBQCP (two-point boundary-value quantum control paradigm), see

Ref. [126]. The purpose of this method is to tailor an optimal �eld in a quantum system

to induce a temporal evolution from an initial (prepared) state |ψ(0)〉 to a �nal state

|ψ(T )〉, which expected value coincides (with a required precision) with a predetermined

value of the expected value of an observable of our interest 〈O(T )〉. In other words, the

�nal state |ψ(T )〉, after the action of the optimized �eld, satis�es

〈O(T )〉 h 〈ψ(T ) |O(T )|ψ(T )〉 .

In this appendix, we show how this can be achieved with the TBQCP method, in-

troduced brie�y in chapter 3, and applied to optimize the electric �elds in the physical

platforms of chapters 4 and 5.

B.1 Formulation of the method

The temporal evolution of a quantum system represented by a wave function |ψf (t)〉 is
described by the time-dependent Schrödinger equation

∂

∂t
|ψf (t)〉 =

1

i~
{H0 − µE(t)} |ψ(t)〉. (B.1)

In our study, where interactions are mediated by the dipole operator, we can regard

H0 as the time-independent Hamiltonian free of time variable electric �eld; and µ as the

dipole momentum operator.

The evolution operator U is
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|ψf (t)〉 = U(t, 0)|ψf (0)〉. (B.2)

Equation (B.1) can be rewritten as the Schrödinger equation for the evolution operator

as [133]

∂

∂t
U(t, 0) =

1

i~
{H0 − µE(t)}U(t, 0), U(0, 0) = I. (B.3)

The expectation value is de�ned as

〈O(t)〉 ≡ 〈ψ(t) |O(t)|ψ(t)〉 , (B.4)

with O(t) a positive semi-de�nite explicitly time-dependent invariant, which implies that

〈O(t)〉 ≥ 0, dO(t)/dt = 0 and O†(t) = O(t) ∀t ∈[0, T ].

If we start from the initial state |ψf (0)〉, the evolution under a given �eld E(t) ends

at a given �nal state |ψf (T )〉.
Now if we de�ne an invariant with the desired value of an observable, and since it does

not change in time, then

dO(t)

dt
≡ ∂

∂t
O(t) +

1

i~
[
O(t), H0 − µE(0)(t)

]
= 0, and O(T ) = OT , (B.5)

with E(0) a reference �eld, and OT ≡ |ψt〉〈ψt| a projector on a target state |ψt〉 of our
interest, such that in eq. (B.5) the last condition O(T ) = OT , requires that the operator

O(T ) coincides at the �nal time t = T , with the projector OT of the target state. In order

to satisfy such invariance in the observable we suppose the existence of a reference �eld

E(0)(t) that guarantees such condition.

From eq. (B.5), the dynamical evolution of the observable and invariant O(t) can be

described as

O(t) = U0(t, T )OTU
†
0(t, T ), (B.6)

with U0(t, T ) corresponding to a backward propagator in time (which propagates the state

|ψb(T )〉 from the �nal time T to a time before it t), i.e.,

|ψ(0)(t)〉 = U0(t, T )|ψb(T )〉. (B.7)

Its respective time evolution Schrödinger equation is

∂

∂t
U0(t, T ) =

1

i~
{
H0 − µE(0)(t)

}
U0(t, T ), U0(T, T ) = I. (B.8)

Since these evolution operators are unitary, they satisfy U †0(t, T )U0(t, T ) = I, and it

is also true that

U0(T, T ) = U0(T, t)U0(t, T ) = I,
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therefore U †0(t, T ) = U0(T, t). From the de�nition in eq. (B.7) U †0(t, T )|ψ(0)(t)〉 =

U0(T, t)|ψ(0)
b (t)〉.

Now from the de�nition of expected value in eq. (B.4), the fact that |ψ(0)
b (t)〉 =

U0(t, 0)|ψb(0)〉, and applying the respective equivalents for the complex conjugate opera-

tors, we have that

〈
ψ

(0)
b (t)|O(t)|ψ(0)

b (t)
〉

=〈ψ(0)
b (t)|U0(t, T )OTUO(T, t)|ψ(0)

b (t)〉,

=〈ψb(0)|U †0(t, 0)U0(t, T )O(T )U †0(t, T )U0(t, 0)|ψb(0)〉,
=〈ψb(0)|U0(0, t)U0(t, T )O(T )U0(T, t)U0(t, 0)|ψb(0)〉,
=〈ψb(0)|U0(0, T )O(T )U0(T, 0)|ψb(0)〉,

and from eq. (B.6) with t = 0

=〈ψb(0)|U0(0, T )O(T )U †O(0, T )|ψb(0)〉,〈
ψ

(0)
b (t)|O(t)|ψ(0)

b (t)
〉

=〈ψb(0)|O(0))|ψb(0)〉. (B.9)

This means it is time independent, i.e.,

d

dt

〈
ψ

(0)
b (t) |O(t)|ψ(0)

b (t)
〉

= 0.

Derivating equation eq. (B.4) (for the forward evoluted states), we obtain the Heisen-

berg equation of motion

d

dt
〈O(t)〉 =

d

dt
(〈ψf (t) |O(t)|ψf (t)〉) , (B.10)

by the chain rule of derivation, this yield three terms

d

dt
〈O(t)〉 =

(
d

dt
〈ψf (t)|

)
O(T )|ψf (t)〉+〈ψf (t)|

(
d

dt
O(T )

)
|ψf (t)〉+〈ψf (t)|O(T )

(
d

dt
|ψf (t)〉

)
,

where the derivate in the last term is the eq. (B.1), and the derivate in the �rst corresponds

to the complex conjugate of the same eq. (B.1). Considering the complete expressions,

the �rst and third term cancel each other. On the other hand, the derivative of the second

term is similar to eq. (B.4), but with the control �eld E(t)

dO(t)

dt
=

∂

∂t
O(t) +

1

i~
{O(t)H0(t)−O(t)µE(t) + µE(t)O(t)−H0(t)O(t)} ,
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which can be expressed as the sum of two factored commutators. Then the derivate of

the expected value is

d 〈O(t)〉
dt

=

〈
ψf (t)

∣∣∣∣− 1

i~
[H0, O(t)] +

∂O(t)

∂t

∣∣∣∣ψf (t)〉+

〈
ψf (t)

∣∣∣∣ 1

i~
[µ, O(t)]

∣∣∣∣ψf (t)〉E(t).

(B.11)

If we calculate the expected value in the eq. (B.5), with |ψ(0)
b (t)〉, as it is zero from the

invariant in eq. (B.10), then we can subtract it from eq. (B.11), to obtain the following

expression

d 〈O(t)〉
dt

= fµ(t)
{
E(t)− E(0)(t)

}
, (B.12)

with

fµ(t) =

〈
ψf (t)

∣∣∣∣ 1

i~
[µ, O(t)]

∣∣∣∣ψf (t)〉 = −2

~
Im {〈ψf (t) |O(t)µ|ψf (t)〉} , (B.13)

which corresponds to a functional of the control �eld E(t) and the reference �eld E(0)(t).

Now the integration of eq. (B.11), yields

〈O(T )〉 − 〈O(0)〉 =

∫ T

0

fµ(t)
{
E(t)− E(0)(t)

}
dt, (B.14)

where 〈O(T )〉 = 〈ψf (T ) |O(T )|ψf (T )〉 = 〈ψf (0) |U(0, T )O(T )U(T, 0)|ψf (0)〉 is a func-

tional of the control �eld E(t) and 〈O(0)〉 = 〈ψf (0) |O(0)|ψf (0)〉
= 〈ψf (0) |U0(0, T )O(T )U0(T, 0)|ψf (0)〉 a functional of the reference �eld E(0)(t).

B.1.1 Iterative equations of the TBQCP method

Equations (B.1), (B.5) and (B.14) constitute the essence of the TBQCP method. In

order to compute the optimal �eld E(t), we use those three equations, an arbitrary initial

reference �eld E(0)(t), and two boundary conditions: |ψf (0)〉 representing an initial chosen
state at t = 0 which is propagated forward with eq. (B.1). The second initial condition

at the �nal time t = T corresponds to the target state |ψb(T )〉 = |ψt〉, and allow us

to construct the projector OT ≡ |ψt〉〈ψt|, which was stated in eq. (B.5), to coincide at

the �nal time with our observable O(T ) = OT , and it is propagated backwards with eq.

(B.5)1 With those propagated equations and the dipole matrix, it is possible to calculate

the term in eq. (B.13), at every time of the system evolution. At this point, the only

undetermined term in the integral equation (B.14) is the control �eld E(t). It can be

1OT corresponds to an initial condition in the Heisenberg picture.
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found by the following self-consistent solution for eq. (B.14)

E(n+1)(t) = E(n)(t) + ηs(t)f (n+1)
µ (t), (B.15)

with η, a positive constant (to be calibrated depending on the performance of the code)

and s(t), a positive function (usually an enveloping function of the �eld like a Gaussian

function)2. The eq. (B.15) starts at n = 0 with our initial reference �eld E(0)(t). The

di�erential equations (B.1), (B.5) and (B.13) can also be rewritten as iterative expressions

i~
∂O(n)(t)

∂t
=
[
O(n)(t), H0 − µE(n)(t)

]
, O(T )→ O(0),

for the observable, and

i~
∂|ψ(n+1)

f (t)〉
∂t

=
(
H0 − µE(n+1)(t)

)
|ψ(n+1)
f (t)〉,

for the state, where E(n+1)(t) is the (n+1)th iteration �eld, that can be found with eq.

(B.15). These equations are propagated at every iteration with the respective reference

�eld, in order to calculate the correction of the following (n+1)st iteration �eld fµ

f (n+1)
µ (t) = −2

~
Im
{
〈ψ(n+1)(t)|O(n)(t)µ|ψ(n+1)(t)〉

}
.

The stop criteria for the iterations is set by a required precision in the expected value

of our observable 〈O(T )〉 = 〈OT 〉 the �nal state evolved in the (n)th iteration |ψ(n)
f (T )〉,

compared to the target state,
〈
ψ

(n)
f (T )|ψt〉〈ψ(n)

t |ψf (T )
〉

= |〈ψ(n)(T )|ψt〉|2. This quantity
coincides with the de�nition of �delity

F (n) = |〈ψ(n)
f (T )|ψt〉|2.

The closer this quantity is to 1, the more similar is the �nal state with the target

state. The TBQCP is monotonic, then with every iteration, the �nal state gets closer

to the target state. Therefore, a tolerance value δ . 1 is set for the �delity in the (n)th

iteration and compared with a �delity some iterations before (e.g. 20 iterations in our

codes). Then, if it is satis�ed that F (n) −F (n−20) > δ, the code stops and we declare the

(n)th iteration �eld E(n)(t) as our control �eld E(t).

B.1.2 Fast-kick-o� numerical acelerator

The number of iterations necessary to satisfy the stop criteria of the TBQCP method is

undetermined and can vary notably (even for the same system) from one target state to

the other, taking hundreds of iterations or thousands of iterations in some cases. This

2As long as these two factors are positive, and since O(t) is a positive semi-de�nite invariant, then
the integral in eq. (B.14) is guaranteed to be always positive as demonstrated in [126].
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is expected since depending of the target state, the choosing of a poor (or a good) ini-

tial reference �eld E(0)(t) (a chose that is arbitrary in most of the cases), sets di�erent

conditions for the optimizer, requiring more or less iterations to be optimized. Also, the

complexity of the task can make the whole optimization high demanding in time (requir-

ing even more than a week of computation). For these cases, it is interesting to reduce

the required number of iterations necessary to satisfy the stop criteria. This can be done

by implementing a numerical accelerator that modules the correction term expressed in

eq. (B.13). A possible way to do this was published in Ref. [111], where they proposed

a small modi�cation of the anzats as

E(n+1)(t) = E(n)(t) + ηs(t)ε(n+1)
α (t), (B.16)

where the correction term of eq. (B.13), f
(n+1)
µ (t) was replaced by

ε(n+1)
α (t) = −2

~
Im

 〈ψ(n+1)
f (t)|ψ(n)

b (t)〉∣∣∣〈ψ(n+1)
f (t)|ψ(n)

b (t)〉
∣∣∣α 〈ψ(n)

b (t)|µ|ψ(n+1)
f (t)〉

 ,

with 0 ≤ α ≤ 1.
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Appendix C

TBQCP algorithm

In this appendix we show a brief guide of the algorithm of the TBQCP method applied

to closed systems under an unitary evolution. The evolution of states are implemented

via exponential propagator (but any other variation of this propagator can �t as well).

Comments of the pseudocode are marked by the # symbol.

C.1 Algorithm of the TBQCP method

1) Set the global variables and operators corresponding to:

T : the duration of the pulse.

n: number of time steps to discretize the pulse duration.

∆t: the time step, given by ∆t = T/n.

E(0)(t): De�ne the initial reference �eld.

η: positive constant that modulates the correction.

s(t): positive enveloping function as speci�ed in chapter 3.

|ψ0〉, |ψt〉: De�ne the initial conditions for the initial and �nal states.

Ftol: Tolerance value for the �delity, a number . 1.

H = H0 − µE(0)(t): The complete Hamiltonian of the system.

Fid: Fidelity of a certain iteration.

2)Implementaion of the optimization method.

#Set an initial value for Fid

F id = 0

#loop for the optimizer

loop While Fid < Ftol{

#Set the the initial conditions for the initial and �nal states for the backward and

forward evolutions
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|ψb(T )〉 = |ψt〉 and |ψf (0)〉 = |ψ0〉.
#loop for the backward propagation

loop For k = 0 to k = n{

#instant in this loop

tk = T − k ∗∆t

#backward exponential propagator

|ψb(tk −∆t)〉 = exp [iH∆t/~] |ψb(tk)〉
}

#end of the backward propagation loop

#loop for the forward propagation + �eld correction

loop For j = 0 to j = n{

#instant in this loop

tj = j ∗∆t

#forward exponential propagator

|ψf (tj + ∆t)〉 = exp [−iH∆t/~] |ψf (tj)〉
#Calculate the correction term fµ(t) from eq. (B.13)

fµ(tj) = −2
~Im {〈ψf (tj)|ψb(tj−1)〉〈ψb(tj−1)|µ|ψf (tj)〉}

#correction of the �eld for the next step1

E(0)(tj+1) = E(0)(tj+1) + ηs(t)fµ(tj)

}

#end of the forward propagation loop

#Calculate the �delity of the target state and the �nal state after the forward

propagation

Fid = |〈ψf (T )|ψt〉|2

#When the following condition is satis�ed, the code stops

Fid ≥ Ftol

}

#end of the optimizater loop

1This formula overwrites the reference �eld, to be used in the following time step of the the forward

evolution loop. At the end of the optimization it will end up with the pro�le of the optimal control �eld.
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