
Attilio Sbrana

N-BEATS-RNN: deep learning for time series
forecasting

Sorocaba, SP

February 2nd, 2021

Attilio Sbrana

N-BEATS-RNN: deep learning for time series forecasting

Dissertação de mestrado apresentada ao Pro-
grama de Pós-Graduação em Ciência da Com-
putação (PPGCC-So) da Universidade Fed-
eral de São Carlos como parte dos requisi-
tos exigidos para a obtenção do título de
Mestre em Ciência da Computação. Linha
de pesquisa: Inteligência Computacional.

Universidade Federal de São Carlos – UFSCar

Centro de Ciências em Gestão e Tecnologia – CCGT

Programa de Pós-Graduação em Ciência da Computação – PPGCC-So

Supervisor: Prof. Dr. Murilo Coelho Naldi
Co-supervisor: Prof. Dr. André Luis Debiaso Rossi

Sorocaba, SP
February 2nd, 2021

Sbrana,	Attilio

N-BEATS-RNN:	deep	learning	for	time	series	forecasting
/	Attilio	Sbrana	--	2021.
47f.

Dissertação	(Mestrado)	-	Universidade	Federal	de	São
Carlos,	campus	Sorocaba,	Sorocaba
Orientador	(a):	Murilo	Coelho	Naldi
Banca	Examinadora:	Gustavo	Enrique	de	Almeida	Prado
Alves	Batista,	Tiago	Agostinho	de	Almeida
Bibliografia

1.	Previsão	de	séries	temporais.	2.	Aprendizado	de
máquina.	3.	Aprendizado	profundo.	I.	Sbrana,	Attilio.	II.
Título.

Ficha	catalográfica	desenvolvida	pela	Secretaria	Geral	de	Informática
(SIn)

DADOS	FORNECIDOS	PELO	AUTOR

Bibliotecário	responsável:	Maria	Aparecida	de	Lourdes	Mariano	-
CRB/8	6979

UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências em Gestão e Tecnologia
Programa de Pós-Graduação em Ciência da Computação

Folha de Aprovação

Defesa de Dissertação de Mestrado do candidato Attilio Sbrana, realizada em 27/01/2021.

Comissão Julgadora:

Prof. Dr. Murilo Coelho Naldi (UFSCar)

Prof. Dr. Gustavo Enrique de Almeida Prado Alves Batista (UNSW)

Prof. Dr. Tiago Agostinho de Almeida (UFSCar)

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Código de Financiamento 001.
O Relatório de Defesa assinado pelos membros da Comissão Julgadora encontra-se arquivado junto ao Programa de
Pós-Graduação em Ciência da Computação.

To my parents,

who will never read this,

but supported me to pursue yet another masters degree.

To all my family members and close friends,

who will not read this either.

Acknowledgements

I would like to express my deep gratitude to Prof. Dr. Murilo Coelho Naldi, my research
supervisor, and Prof. Dr. André Luis Debiaso Rossi, my co-supervisor, for their patient
guidance, enthusiastic encouragement and useful critiques of this research.

I would also like to thank Prof. Dr. Tiago Agostinho Almeida, Prof. Dr. Katti Facelli,
and Prof. Dr. Sahudy Montenegro González, for their support during my pursuit for this
masters degree.

My special thanks are extended to scholarship programs Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior – Brazil (CAPES – Finance Code 001) and Fundação de
Amparo a Pesquisa do Estado de São Paulo(FAPESP - Grant2019/09817-6 and 2013/07375-
0 - CEPID-CeMEAI) for their generosity in funding of my mastering degree.

“People respond well to those who are sure of what they want.”
(Anna Wintour)

Resumo
Este trabalho apresenta o N-BEATS-RNN, uma versão estendida de um conjunto de
redes neurais de aprendizagem profunda para previsão de séries temporais, N-BEATS.
Para tal, aplica-se uma busca de arquitetura neural estado-da-arte, baseada em uma
pesquisa de compartilhamento de peso rápida e eficiente, para solucionar uma arquitetura
de rede neural recorrente ideal a ser adicionada ao N-BEATS. Avalia-se a arquitetura
N-BEATS-RNN proposta no conjunto de dados amplamente conhecido da competição
M4, que contém 100.000 séries temporais de uma variedade de fontes. O N-BEATS-RNN
alcança resultados comparáveis ao N-BEATS e ao vencedor da competição M4, empregando
apenas 108 modelos, em comparação com os 2.160 modelos originais empregados pelo
N-BEATS. Assim, a maior contribuição do N-BEATS-RNN está na redução do tempo de
treinamento, que é da ordem de 9 vezes em comparação com os conjuntos originais do
N-BEATS.

Palavras-chaves: previsão de séries temporais, competição M4, aprendizado profundo,
pesquisa de arquitetura neural, divisão de peso

Abstract
This work presents N-BEATS-RNN, an extended version of an ensemble of deep learn-
ing networks for time series forecasting, N-BEATS. We apply a state-of-the-art Neural
Architecture Search, based on a fast and efficient weight-sharing search, to solve for an
ideal Recurrent Neural Network architecture to be added to N-BEATS. We evaluated the
proposed N-BEATS-RNN architecture in the widely-known M4 competition dataset, which
contains 100,000 time series from a variety of sources. N-BEATS-RNN achieves comparable
results to N-BEATS and the M4 competition winner while employing solely 108 models,
as compared to the original 2,160 models employed by N-BEATS, when composing its
final ensemble of forecasts. Thus, N-BEATS-RNN’s biggest contribution is in its training
time reduction, which is in the order of 9 times compared with the original ensembles in
N-BEATS.

Key-words: Time series forecasting, M4 competition, deep learning, neural architecture
search, weight sharing

List of Figures

Figure 1 – Architecture of the proposed N-BEATS-RNN. The blue blocks and blue
arrows indicate the framework of N-BEATS. The red arrows and the
red RNN block indicate the additions made in N-BEATS-RNN. Every
block outputs a partial forecast output and a partial reconstruction
of the time series, that is, the backcast. All the blue arrows represent
these outputs from each block. In the case of the forecasts, the outputs
are summed up to form the new forecast, whereby, in the case of the
backcast, they are subtracted from the input to produce a residual. . . 26

Figure 2 – RNN cell search space via parameter sharing. On the left, the graph
represents the whole grid of possible node connections of the DAG that
represents the RNN. On the right, a single possible RNN architecture
is illustrated as a subgraph. 29

Figure 3 – Each neural net represents a model. In total, 6 ensembles were created,
one for each frequency type. Each ensemble contained 18 models, one
for each lookback horizon and each loss criteria. Finally, the ensemble
forecast is based on the median forecast value of the 18 models. All
mdoels are trained from random initialization. 34

Figure 4 – Smoothed sMAPEvMASE Validation Loss across the 292 attempts of
the search. Smoothing is done through convolutional-smoothing. 37

Figure 5 – Smoothed OWA Test Loss across the 292 attempts of the search. Smooth-
ing is done through convolutional-smoothing. 37

Figure 6 – The final elected RNN-cell architecture during the three rounds of NAS.
This architecture was incorporated to be part of N-BEATS-RNN. . . . 38

Figure 7 – The graph shows the OWA test set performance of all the seasonalities,
as well for the largest three seasonalities, standalone, vs. the size of
each ensemble. Incrementing N-BEATS-RNN with more models has
had positive effect across the board, but it proved to be limited after 8
models. 41

Figure 8 – The graph shows the OWA test set performance of N-BEATS-RNN vs.
N-BEATS on the Quarterly frequency. 42

List of Tables

Table 1 – The benchmarks and standards for comparison of the M4 Competition
(MAKRIDAKIS; SPILIOTIS; ASSIMAKOPOULOS, 2019b). 20

Table 2 – Performance of selected entries and benchmarks in the M4 Competition. 20
Table 3 – Comparison of different RNN search methods on the PTB benchmark in

terms of Test Perplexity and GPU-days. Lower values are better. 23
Table 4 – Composition of the M4 dataset: number of time series, sampling frequency,

types and length statistics. 31
Table 5 – Performance on the M4 test set sMAPE. Lower values are better. 38
Table 6 – Performance on the M4 test set, OWA and M4 rank. Lower values are

better. 39

List of abbreviations and acronyms

ARIMA Autoregressive Integrated Moving Average

BO Bayesian Optimization

CNN Convolutional Neural Network

DAG Directed Acyclic Graph

DARTS Differentiable Architecture Search

DL Deep Learning

ENAS Efficient Neural Architecture Search

ES Exponential Smoothing

ES-RNN Exponential Smoothing Recurrent Neural Network

ETS Error, Trend, Seasonality Decomposition

LSTM Long Short-Term Memory

MASE Mean Absolute Scaled Error

ML Machine Learning

MLP Multi-layered Perceptron

NAO Neural Architecture Optimization

NAS Neural Architecture Search

NLP Natural Language Processing

OWA Overall Weighted Average

RL NAS Reinforcement Learning Neural Architecture Search

RL Reinforcement Learning

RNN Recurrent Neural Network

RS NAS Random Search Neural Architecture Search

sMAPE Symmetric Mean Absolute Percentage Error

List of symbols

H Horizon, in Days

T History Length, in Days

m Seasonal Period

y Observable Values in a given Time Series

ŷ Forecast Values in a given Time Series

N Number Of Nodes in a Dag

θ Weight Matrix of a Neural Network

Contents

1 INTRODUCTION . 14
1.1 Purpose and Problem Definition . 15
1.2 Goals and Limitations . 16
1.3 Hypotheses . 17
1.4 General Approach . 17
1.5 Success Criteria . 17
1.6 Structure . 18

2 LITERATURE REVIEW & BACKGROUND 19
2.1 Deep Learning as State-of-the-Art in Forecasting 19
2.2 Neural Architecture Search . 21

3 METHODS . 25
3.1 N-BEATS-RNN . 25
3.1.1 Decomposition through N-BEATS . 25
3.1.2 Residual processing . 26
3.1.3 Ensembling . 27
3.2 Designing RNNs through Weight Sharing 27

4 EXPERIMENTS . 30
4.1 Datasets . 30
4.2 Evaluation Criteria . 30
4.3 RNN Architecture Search . 32
4.4 Ensemble Training . 33
4.5 Computational Resources . 34

5 RESULTS . 36
5.1 RNN Architecture Search . 36
5.2 N-BEATS-RNN Ensemble Results . 37
5.2.1 Overall Ensemble Results . 37
5.2.2 Ensemble Sensitivity . 39
5.2.3 Computational Cost . 39

Conclusion . 43

Bibliography . 45

14

1 Introduction

Forecasting is the process of modeling a data generation process by observing
a sequence of its past states, and predicting the next few. Forecasting techniques are
commonly applied to a range of fields in which estimates of future conditions can be
advantageous, such as prediction of weather and natural phenomena, control engineering,
energy management, stock market, human activity, among others (AFOLABI et al., 2017).

There are several challenges associated with modeling data series, and forecasting
techniques are often confronted in open forecasting competitions. Forecasting competitions
have become popular for their emphasis on large-scare empirical validations of different
forecasting methods and for allowing for a fairer comparison of state-of-the-art methods
and newly proposed solutions (MAKRIDAKIS; SPILIOTIS; ASSIMAKOPOULOS, 2019b).
Through such forecasting competitions, methods such as Exponential Smoothing (ES)
(GARDNER, 2006) and the Theta method (ASSIMAKOPOULOS; NIKOLOPOULOS,
2000) rose to prominence as state-of-the-art models in the forecasting world. Further,
the competitions’ datasets are designed to represent reality as closely as possible, and
often become important testbeds that enable direct benchmarking of new studies against
past studies (SPILIOTIS et al., 2019). These datasets also allow for easier reproducibility,
since the entire code of the submissions is usually made available by the competitions’
organizers.

Historically, time series forecasting has been dominated by statistical approaches
where model parameters are estimated per individual time series. This has been evidenced
in the forecasting competitions organized by Prof. Dr. Spyros Makridakis, the Makridakis
competitions, or, abbreviated, the M-competitions. In the three initial M-competitions, all
Machine Learning (ML)-based algorithms significantly underperformed simpler statistical
local models (MAKRIDAKIS; SPILIOTIS; ASSIMAKOPOULOS, 2019b). In fact, for over
half a century, in spite of the technological and methodological advances, the academic world
observed limited progress in our ability to forecast the future accurately (GILLILAND,
2019).

The M4 competition, which was the fourth M-competition and which was held in
2018, marked a turning point, as for the first time a ML method with radically different
properties emerged as the winner. Based on the mix of a statistical model and a Recurrent
Neural Network (RNN) model, the winning submission of Smyl (2019) employs a single
global model over an entire collection of time series. Not only the model is characterized
as ML, but also implements deep neural networks, that is, deep learning (DL) techniques
that have established themselves as top-performing methods in areas such as computer

Chapter 1. Introduction 15

vision and natural language processing (HE; ZHAO; CHU, 2019).

It was not long until Oreshkin et al. (2019) proposed N-BEATS, a “pure” DL
method without a priori hypotheses of time series’ theoretical properties. Although it
was submitted several months after the competition had ended, as a post-fact submission,
N-BEATS was shown to considerably outperform statistical models and their combinations
on the datasets of the M4 competition. N-BEATS achieved a performance improvement
of 11% over the competition’s Official Benchmark, that is, the official baseline forecast
produced by a combination of traditional statistical techniques. This figure compared
favorably against the winning entry, which achieved an improvement of 8.6% over the
Official Benchmark, and the best statistical model, which achieved a 4.1% improvement.
To attain such impressive results, however, Oreshkin et al. (2019) applied significant
computational resources, with a cost of nearly 90 GPU-days just for the training phase of
an ensemble of 2,160 models in total.

While the work of Oreshkin et al. (2019) achieved a remarkable accuracy improve-
ment from the competition winner, its DL architectural solution was largely independent
from the work of Smyl (2019), and did not employ RNNs to process the residuals of
the decomposed signal. As RNNs have been successful in applications such as energy
forecasting (WERON, 2014), where the series are large and multivariate, we would expect
RNNs to add value to the proposal in Oreshkin et al. (2019) by further capturing non-linear
trends and cross-learning across the multivariate residual signals produced by N-BEATS.

In this work, inspired by the successful use of RNNs in Smyl (2019), we aspire to
take the work of Oreshkin et al. (2019) a step further, exploring its DL architectural solution
by adding RNNs to its architecture while seeking to optimize it through state-of-the-art
Neural Architecture Search (NAS) methods. Therefore, we propose an extended version
of the model in Oreshkin et al. (2019), named herein N-BEATS-RNN, and compare its
performance on the same set of univariate time series represented by the M4 competition’s
dataset.

1.1 Purpose and Problem Definition
Deep Learning-based solutions have been recently found to be highly successful

when applied to the univariate time series forecasting problem, as illustrated by the
works of Smyl (2019) and Oreshkin et al. (2019), which both significantly outperformed
traditional statistics-based models in the large and varied datasets of the M4 competition.

While Oreshkin et al. (2019) applied a DL-based signal decomposition method,
Smyl (2019) applied an RNN-based neural network to the residuals of a statistical signal
decomposition method. Therefore, an opportunity presents itself to combine these two DL-
based methods, by applying the decomposition of Oreshkin et al. (2019) to the RNN-based

Chapter 1. Introduction 16

residual processing of Smyl (2019), in a structure that we named herein N-BEATS-RNN.

Further, recent advancements in NAS for RNNs have allowed for the efficient
discovery of superior RNN architectures that resulted in state-of-the-art performance in
Natural Language Processing (NLP) benchmarks (WISTUBA; RAWAT; PEDAPATI, 2019;
HE; ZHAO; CHU, 2019; ELSKEN; METZEN; HUTTER, 2019). As such, these methods
present an opportunity to apply a cost-effective search for better RNN architectures to
integrate the residual processing phase of the proposed forecasting model.

Therefore, this research proposes a new “pure” DL method which extends the model
presented in Oreshkin et al. (2019), by solving for an ideal Recurrent Neural Network
architecture to be incremented into the model for a residual processing of the signal
decomposition. Thus, we seek to extract the full forecasting potential of the N-BEATS
model while offering insights into the influence that the addition of RNNs and NAS can
have in its results.

1.2 Goals and Limitations
As demonstrated earlier and by its name, this work has the explicit objective of

improving the state-of-the-art model of Oreshkin et al. (2019) by implementing a newly
proposed RNN structure to it. Such improvement can be presented both in terms of
overall accuracy performance improvement or overall time reduction to reach the
same performance.

The forecasting performance of our proposed model will be compared not only
with the performance of the original N-BEATS, but also with the performance of some
of the most important entries in the M4 competition. These include, for example, the
winning submission, the best “pure” statistical method, the best ML-statistical combination
method, the competition’s Official Benchmark, and so forth. These methods will be better
described in the sections to come, but for the purposes of this chapter, we will refer to
them, collectively, as the M4 Entry Benchmarks.

It is important to note that this research does not possess the ample computational
resources of the private research group of Element-AI that enabled the impactful work in
Oreshkin et al. (2019). While the training phase of N-BEATS required nearly 90 GPU-days
distributed in several GPU-enabled servers, a likely larger undisclosed amount of GPU-days
were required for NAS and hyper-parameter tuning of N-BEATS, according to the authors.

The present work, however, will bear the limitations of training several N-BEATS-
RNN models sequentially, in a single computer, but with a comparably powerful GPU for
a GPU-days metric comparison. Therefore, this research’s efforts will be partially driven
by its computational resource limitations.

Chapter 1. Introduction 17

1.3 Hypotheses
Given these stated goals and limitations, we state the following two hypotheses:

Hypothesis 1. A pure-DL model ensemble can be constructed to outperform the
forecasting performance of the original N-BEATS ensemble and the M4 Entry Benchmarks
on the set of univariate time-series problems presented by the M4 competition.

Hypothesis 2. A pure-DL model ensemble can be constructed to be more compu-
tationally cost-effective than the original N-BEATS ensemble on the set of univariate
time-series problems presented by the M4 competition, without a significant loss of predictive
performance.

1.4 General Approach
In order to test these two hypotheses, this research’s experimentation phase is done

in two parts:

1. A RNN NAS phase: in which a NAS is conducted to find the ideal RNN archi-
tecture for the N-BEATS-RNN model; and

2. An N-BEATS-RNN ensembling phase: in which several models are trained to
compose a single final forecast for the univariate problems presented by the M4
competition.

Finally, the final output of the experimentation phase will provide the two metrics
that will enable us to evaluate the two hypotheses tested herein: (i) the overall forecasting
performance of the N-BEATS-RNN ensemble in the M4 problems and (ii) the overall
computational cost for its training.

The performance evaluation criteria will be the same of those used in ranking criteria
of the M4 Competition, which are thoroughly explained in Chapter 3. The computational
cost will be measured by GPU-days.

1.5 Success Criteria
This research will be measured in its success by:

• Partially or completely validating Hypothesis 1, that is, by outperforming some or
all of the M4 Entry Benchmarks; and/or

Chapter 1. Introduction 18

• Validating Hypothesis 2, that is, by proposing a solution that is comparably
cost-efficient when compared with both the performance and GPU-days cost of the
original N-BEATS ensemble, without a significant loss of predictive performance.

1.6 Structure
This work is devised as follows:

• In Chapter 2 - we cover the relevant literature surrounding both the application
of deep learning for time series forecasting, as well as Neural Architecture Search
(NAS) for RNNs;

• In Chapter 3 - we describe the methods necessary to implement an RNN for residual
processing into N-BEATS and propose a NAS strategy for such RNN;

• In Chapter 4 - we describe the aforementioned two-phase experiment;

• In Chapter 5 - we describe the results of the experiments.

• In Chapter 6 - we present our conclusions based on the results and analysis of the
experiment, and state the contributions and possible future work regarding this
study.

19

2 Literature Review & Background

Two main distinct areas of research are of interest to this work. The first concerns
the emergence of pure deep learning methods in the context of time series forecasting.
The second concerns the state-of-the-art in deep learning neural architecture search. Both
topics are separately accounted for in the subsections below.

2.1 Deep Learning as State-of-the-Art in Forecasting
The history of forecasting research is surrounded by controversies, and much of such

accounts have been thoroughly documented in Hyndman (2019). Forecasting competitions
emerged as a remedy to the historically heated dispute among academics on which model
more properly captured the data generation process in time series. Ever since the first
open forecasting competition, the Makridakis Competition (M1), in 1979, forecasters
have had the opportunity to empirically demonstrate their aptitude to the forecasting
task, regardless of the theoretical properties of their methods, and in a fair and objective
setting. These competitions have since played an important role in advancing the academic
knowledge and practice of time series analysis and forecasting (MAKRIDAKIS; SPILIOTIS;
ASSIMAKOPOULOS, 2018).

The most recent competition, the M4 Competition, ended in May, 2018, and
entailed predicting 100,000 time series from a range of sources (MAKRIDAKIS; SPILI-
OTIS; ASSIMAKOPOULOS, 2019b). The competition itself is a good reference for the
historically significant methods, as it chose to include them as performance benchmarks.
The organizers justified this decision given that these benchmarks have now well-known
properties and would serve as a great baseline for comparison against more complex meth-
ods (MAKRIDAKIS; SPILIOTIS; ASSIMAKOPOULOS, 2019b). These baselines include
traditional methods such as Error, Trend, Seasonality (ETS) (or Exponential Smoothing
(ES)) and Auto-Regressive Integrated Moving Average (ARIMA), naïve methods, as well
as ML methods such as the Multi-Layer Perceptron (MLP) and RNNs. These blaselines
are outlined in Table 1.

In the M4 competition, a total of 61 methods were ranked, whereby 49 belonged
to submissions, 10 were benchmarks, and 2 were standard methods for comparison (an
ARIMA standard and an ES standard). The submissions were officially categorized as
“purely” statistical, “purely” ML, a combination of statistical and ML methods, and the
winning submission was tagged as a “hybrid" statistical-ML method, which is a combination
of statistical and ML methods.

Chapter 2. Literature Review & Background 20

Table 1 – The benchmarks and standards for comparison of the M4 Competition (MAKRI-
DAKIS; SPILIOTIS; ASSIMAKOPOULOS, 2019b).

Benchmark type Methods Description
Statistical benchmarks Naïve 1 A random walk model, assuming that future values will be the same as that of the

last known observation.
Naïve S Forecasts are equal to the last known observation of the same period.
Naïve 2 Like Naïve 1 but the data are seasonally adjusted, if needed, by applying a classical

multiplicative decomposition. A 90% autocorrelation test is performed to decide
whether the data are seasonal.

SES Exponentially smoothing the data and extrapolating assuming no trend. Seasonal
adjustments are considered as per Naïve 2.

Holt Exponentially smoothing the data and extrapolating assuming a linear trend.
Seasonal adjustments are considered as per Naïve 2.

Damped Exponentially smoothing the data and extrapolating assuming a damped trend.
Seasonal adjustments are considered as per Naïve 2.

Theta As applied to the M3 Competition using two Theta lines, ϑ1 = 0 and ϑ2 = 2, with
the first one being extrapolated using linear regression and the second one using
SES. The forecasts are then combined using equal weights. Seasonal adjustments
are considered as per Naïve 2.

Comb The simple arithmetic average of SES, Holt and Damped exponential smoothing
(used as the single benchmark for evaluating all other methods).

ML benchmarks MLP A perceptron of a very basic architecture and parameterization. Some prepro-
cessing like detrending and deseasonalization is applied beforehand to facilitate
extrapolation.

RNN A recurrent network of a very basic architecture and parameterization. Some pre-
processing like detrending and deseasonalization is applied beforehand to facilitate
extrapolation.

Standards ETS Automatically provides the best exponential smoothing model, indicated through
information criteria.

ARIMA An automatic selection of possible ARIMA models is performed and the best one
is chosen using appropriate selection criteria.

Table 2 illustrates some of the most relevant entries and benchmarks in the M4
Competition. The competition’s Official Benchmark, Comb, is a combination of basic
statistical methods, and is used as the true baseline for the comparison of different methods.
The Theta method (ASSIMAKOPOULOS; NIKOLOPOULOS, 2000) was the winner of
the M3 Competition, held in 1998, and its performance was equivalent to that of the
Official Benchmark. The relatively strong performance of more complex and ML-driven
models led organizers to finally discard a decades old belief that complex models are no
better than simpler ones (MAKRIDAKIS; PETROPOULOS, 2019).

Table 2 – Performance of selected entries and benchmarks in the M4 Competition.

Method Entry Type sMAPE OWA OWA % improvement
over Official Benchmark Rank

M4 winner, DL-statiscal Entry 11.374 0.821 +8.6 1
Best ML-statistical Entry 11.720 0.838 +6.7 2
Best pure statistical Entry 11.986 0.861 +4.1 8
Theta Benchmark 12.309 0.897 +0.1 18
Comb Official Benchmark 12.555 0.898 0.0 19
ARIMA Benchmark 12.669 0.903 -0.6 20
ETS Benchmark 12.726 0.908 -1.1 23
Best pure ML Entry 12.894 0.915 -1.9 25
Naïve (repeats last entry) Benchmark 14.208 1.058 -17.8 41

While the competition provided supporting evidence to the use of more complex

Chapter 2. Literature Review & Background 21

ML in forecasting, the most striking results in favor of ML-based models, however,
were presented by the winning entry, which employed a DL-statistical method. Smyl
(2019) presented an application of a common Holt-Winters statistical pre-processing
method of level and seasonal decomposition mixed with stacks of RNNs. Yet, the method
introduced one significant innovation: the author applied an ES class where the seasonal
and smoothing components that normalize the series are fitted in the context of the RNN’s
learning through gradient descent and backpropagation. Since the ES class implies a
priori knowledge of time series modeling and the method entailed applying ML to learn
a statistical model’s parameters, it was thus labeled as a hybrid method. Impressively,
however, the competition winner performed 8.6% better than the Official Benchmark,
more than twice the performance of the best “pure” statistical method, and significantly
ahead of the second entry, which posted a 6.7% improvement.

While the competition winner succeeded by way of a hybrid of statistical and DL
method, all pure ML submissions failed to outperform the M4 competition’s baseline
statistical benchmark. The best pure ML method, a Convolutional Neural Network (CNN)
method, performed -1.9% worse than the Official Benchmark, and underperformed most
classic statistical benchmarks. The competition’s organizers highly regarded this as a
validation of their notion that pure ML methods, standalone, are not the way forward
in improving forecasting accuracy (MAKRIDAKIS; SPILIOTIS; ASSIMAKOPOULOS,
2019a).

As a direct response to the organizers’ statements, N-BEATS was proposed in
Oreshkin et al. (2019) several months after the end of the M4 competition in order to
challenge the notion that a pure ML/DL method could not outperform statistical models
and their combinations with ML on the univariate forecasting tasks in the M4 dataset.
The model proposed in Oreshkin et al. (2019) indicated state-of-the-art performance in the
M4 competition’s benchmarks through a proposed deep neural network architecture based
on backward and forward residual links and stacks of fully-connected layers. The method
uses no time series specific components and, instead, provides a hierarchical decomposition
of the input signal through the intermediate outputs of the architecture’s blocks of layers.
The work is the first to empirically provide a proof of concept for the use of pure DL in
time series forecasting by outperforming well-established statistical approaches and hybrid
ML approaches. On the M4 competition benchmarks, N-BEATS outperform the statistical
benchmark by 11%, the best statistical entry by 7%, and the competition winner by 3%.

2.2 Neural Architecture Search
The NAS surveys done in Wistuba, Rawat e Pedapati (2019), He, Zhao e Chu

(2019), and Elsken, Metzen e Hutter (2019) well document recent research efforts to

Chapter 2. Literature Review & Background 22

automate the search process of neural network architectures and, as a result, expand on
the current success of deep learning. While, historically, the search for neural network
architectures had already been explored through Evolutionary Algorithms and Bayesian
Optimization (ELSKEN; METZEN; HUTTER, 2019; WISTUBA; RAWAT; PEDAPATI,
2019), NAS became a mainstream research topic after the seminal works of Zoph e Le
(2017) and Baker et al. (2017) framed the search as a Reinforcement Learning (RL) problem
and identified newly automatically designed architectures that outperformed handcrafted
architectures in image classification and language model benchmarks, giving birth to RL
NAS.

Whilst early RL NAS methods demonstrated impressive results, those proved to
be too computationally expensive for any practical application. As an example, Zoph e
Le (2017) use 800 GPUs for 3-4 weeks to reach their final solution, and, if replicated in a
single GPU, the experiment would require over 50 years to completion. Based on these
early methods, NAS was limited to researchers with access to extraordinary computational
power. Naturally, a number of works followed in quick response seeking to democratize
NAS by promoting methods that could reduce the search’s computational costs while
maintaining or improving performance (ELSKEN; METZEN; HUTTER, 2019; HE; ZHAO;
CHU, 2019).

The perhaps most groundbreaking research emerged in the work of Pham et al.
(2018) through a method named therein Efficient Neural Architecture Search (ENAS). For
the authors, much of the computational bottleneck of early NAS research is attributable
to the training of each architecture attempt from random initialization to convergence,
only to measure its accuracy whilst throwing away all the trained weights. The authors,
then, propose a new search structure where all architecture attempts seek to reuse the
weights of the search’s previous attempts, aiming to eschew training each architecture
from scratch. The work is inspired in earlier works on transfer learning (ZOPH et al.,
2016) and multitask learning (LUONG et al., 2016) that indicated that parameters learned
for a particular task can be successfully reapplied to other models and tasks. Pham et
al. (2018) empirically demonstrate that sharing parameters among architecture leads to
radical efficiency, achieving state-of-the-art results in the CIFAR-10 and Penn Treebank
benchmarks in less than 16 hours while using a single GPU. The RL-based weight-sharing
method, ENAS, obtained a GPU-hour reduction in the order of more than 1000x when
compared to many of the early works in NAS.

Other compute time-efficient models based on ENAS’ weight-sharing training
method quickly succeeded while trying to propose an alternative to a RL-based search.
These include search methods based on:

• Gradient-based optimization, such as Differentiable Architecture Search (DARTS)
(LIU; SIMONYAN; YANG, 2019);

Chapter 2. Literature Review & Background 23

• Random Search, such as Random Search NAS (RS NAS) (LI; TALWALKAR, 2019;
LIU et al., 2017); and

• Surrogate models, such as Neural Architecture Optimization (NAO) (LUO et al.,
2018).

Table 3 illustrates some of the main search methods applied during RNN NAS.
All these methods were tested by Li e Talwalkar (2019) and Luo et al. (2018) on single
GPU resources, for comparison, and applied to the PTB dataset, which is a widely known
language modeling benchmark in the Natural Language Processing (NLP) field. These
methods where, thus compared in terms of Test Perplexity and GPU-days. Perplexity is
an entropy-based measure of information commonly used in NLP to indicate how well the
probability modeling of a language model predicts the distribution of entire sentences or
texts (BROWN et al., 1992), whereby the lower the value, the better the model predicts a
sample from such distribution. Equation 2.1 defines Perplexity as the inverse probability
of the test set, normalized by the number of words.

PP (W) = 2− 1
N

∑N

i=1 logp(si) (2.1)

It is necessary to note that the GPU used in Li e Talwalkar (2019), the NVIDIA
Tesla P100, has 30% fewer CUDA cores (3584 cores) when compared to the GPU used by
Luo et al. (2018), the NVIDIA Tesla V100 (5120 cores). Therefore, when comparing these
methods, the GPU-days metric is not directly comparable.

Table 3 – Comparison of different RNN search methods on the PTB benchmark in terms
of Test Perplexity and GPU-days. Lower values are better.

Method
Name

Method
Source

Reproduction
Source

GPU
Used

Weight
Sharing

Search
Method

Test
Perplexity

Cost
(GPU-days)

Vanilla LSTM Zaremba et al. (2014) Zaremba et al. (2014) K20 No None 78.4 N/A
RL NAS Zoph e Le (2017) Li e Talwalkar (2019) P100 No RL 64.0 10,000
ENAS Pham et al. (2018) Li e Talwalkar (2019) P100 Yes RL 56.4 0.50
DARTS Liu, Simonyan e Yang (2019) Li e Talwalkar (2019) P100 Yes Gradient 55.7 2.00
RS NAS Li e Talwalkar (2019) Li e Talwalkar (2019) P100 Yes Random 55.5 1.25
RS NAS Luo et al. (2018) Luo et al. (2018) V100 Yes Random 58.8 0.40
NAO Luo et al. (2018) Luo et al. (2018) V100 Yes Surrogate 56.6 0.40

As the table illustrates, the RNN NAS driven by Weight-Sharing promoted not
only a significant Test Perplexity improvements vs. the initial works of Zoph e Le (2017),
but also a drastic improvement in GPU-days from 10,000 days to at most 2 days.

Importantly, the table indicates that the two Random Search-based methods
demonstrated fairly comparable results with other search methods, and, in fact, the best
performance was achieved by a Random Search-based method. The independent works
of Yu et al. (2019), Li e Talwalkar (2019), and Adam e Lorraine (2019) reportedly found
that, under a weight-sharing search, the best empirical strategy for finding an optimal
RNN is through a simple Random Search. The authors in Adam e Lorraine (2019) more

Chapter 2. Literature Review & Background 24

carefully studied these findings, postulating that, most likely given the weight-recycling
nature of the weight-sharing training, none of the controllers proposed thus far, be it RL
or gradient descent-based, manage to learn meaningful links between a given architecture
and its performance during training.

25

3 Methods

In the methodology here proposed, a few principles must be observed. Firstly, we
maintain N-BEATS’ original objective of employing neither time series specific a priori
knowledge into the model, nor input normalization. Secondly, we also seek to maintain
N-BEATS’ objective of providing a single architecture solution for all different time series
modeling tasks. Further details of the methodology are described in the sections below.

3.1 N-BEATS-RNN
The model here proposed, N-BEATS-RNN, relies on a combination of three main

methods: (i) decomposition, (ii) residual processing, and (iii) ensembling.

The first method relies entirely on the neural architecture proposed in N-BEATS
(ORESHKIN et al., 2019), which provides a deep learning-based method for decomposing
the signal. The second method is inspired on the winning entry of the M4 competition,
ES-RNN (SMYL, 2019), and entails processing the residuals of the decomposition through
an RNN. Lastly, the ensembling method used is, once again, the same used by Oreshkin et
al. (2019) and used by most entries in the M4 competition. These methods are described
next.

3.1.1 Decomposition through N-BEATS

N-BEATS heavily relies on the well-established principle that passing residual
modifications of the input signal through stacks of layers provides clear advantages when
training deep neural network architectures (He et al., 2016). In N-BEATS, the authors
introduce the notion of backward forecasts, that is, “backcasts”, where the model attempts
to reconstruct the time series that it received as an input. Thus, the authors propose a
model where a residual branch of backcasts are subtracted from the output of the previous
fully-connected block (or the input signal in the case of the first block) and then passed to
the next block. A second branch of block outputs, the forecasts, is stored and summed up
to form the final predictions.

Figure 1 demonstrates N-BEATS’ block residual flows expressed by the blue arrows.
Each block is a 4-layer MLP that outputs its best reconstruction of the series as a backcast
and its best prediction of the future as a forecasts. Intuitively, N-BEATS is a model that
combines several simple MLP neural networks and applies them sequentially over the
residuals of the previous one. The method is akin to the traditional method of ETS, in
which the signal is decomposed in terms of error, trend and seasonality. Hence, the authors

Chapter 3. Methods 26

also label N-BEATS as a decomposition method. However, the advancement in N-BEATS is
that each MLP block is not bound to finding the preconceived theoretical concepts of trend
and a seasonality, and instead the neural network is free to model any pattern recognition
as it may see fit. Further, differently from ETS, the decomposition efforts of the MLP
blocks are not independent of each other, given the dynamics of backpropagation, which,
during training, introduce iterative interactions in the parameters among the different
layers.

Figure 1 – Architecture of the proposed N-BEATS-RNN. The blue blocks and blue arrows
indicate the framework of N-BEATS. The red arrows and the red RNN block
indicate the additions made in N-BEATS-RNN. Every block outputs a partial
forecast output and a partial reconstruction of the time series, that is, the
backcast. All the blue arrows represent these outputs from each block. In the
case of the forecasts, the outputs are summed up to form the new forecast,
whereby, in the case of the backcast, they are subtracted from the input to
produce a residual.

3.1.2 Residual processing

Inspired by ES-RNN, in which Smyl (2019) successfully applied RNNs to the
residuals of a ES statistical decomposition of the time series, an opportunity arises to
incorporate a RNN to the signal decomposition of the pure-deep learning N-BEATS model.
This structure would enable the RNN to capture time patterns in the residuals that were
not available through the decomposition. Figure 1 demonstrates the proposed modified
architecture as N-BEATS-RNN, with the additional flows being represented by red arrows.
Here, the RNN architecture acts as a terminal layer that recurrently modifies a multivariate

Chapter 3. Methods 27

input signal derived by the network’s intermediate residual outputs, outputting a final
residual forecast to be added to the network’s prediction.

By adding a new RNN layer for a combined residual processing, we are also
introducing new backpropagation dynamics. In the original N-BEATS, blocks are not
influenced by the modeling carried by the blocks preceding it. Let’s take the most extreme
examples, block 30 and block 1. In the original N-BEATS, block 30 only receives a weight
update limited to its portion of the output, since its backcast is discarded. At the same
time, block 1 receives updates not only through its own forecast, but also from all the
other blocks below it, which are also influenced by its backcast. By wrapping all backcasts
into a last RNN layer, now, block 30’s output also interacts with the outputs of block 1,
creating new interdependent backpropagation dynamics.

While, in ES-RNN, Smyl (2019) sought to handcraft the architectures of the model
through unique LSTM stack configurations and hyperparameters for each seasonal period,
this work takes a step further by employing a RNN design search strategy to avoid any
handcrafting. As such, a general architectural solution is automatically sought for the
RNN component of the N-BEATS-RNN, for all periods. The automatic search maintains
Oreshkin et al. (2019)’s original goal of proposing a pure deep learning solution whose
single architectural solution is reusable and generalizes well across time series of different
nature.

3.1.3 Ensembling

Finally, all top entries in the M4 competition sought to apply model ensembling
(MAKRIDAKIS; SPILIOTIS; ASSIMAKOPOULOS, 2019b), a technique that has been
prominently applied in forecasting for centuries (HYNDMAN, 2019). In line with this
notion, N-BEATS is no different, and its authors state that ensembling was found to be
much more powerful than any other regularization technique.

Therefore, we also apply model ensembling to be comparable. We apply a similar
technique to that of Oreshkin et al. (2019), in which several models, with slightly different
characteristics, such as lookback horizon and loss function, are combined to form a single
forecast composed by the median forecast point of the ensemble. This implementation is
covered in details in Chapter 4.

3.2 Designing RNNs through Weight Sharing
The weight sharing NAS strategy first proposed in Pham et al. (2018), and replicated

in Li e Talwalkar (2019) and Liu, Simonyan e Yang (2019), is based on a design search
where any Directed Acyclic Graph (DAG) architecture attempt is a subgraph of a larger
search graph. On Figure 2, the left graph represents the entire search space of a RNN

Chapter 3. Methods 28

DAG architecture where the number of nodes N = 12. Every node is a local computation
denoted by an activation function, and all edges constitute the information flow through a
weight matrix multiplication, indicated by θs. The subgraph on the right demonstrates
a possible model in the search space, making the left chart the superposition of all the
possible architecture attempts.

This design allows for the θ parameters to be shared among the architecture
attempts within the search grid, since the grid is never reinitiated, that is, the future
architecture attempts will start with a combination of the thetas left by the previous
searches. The overall search space is represented by an exponential number of configurations,
which, in the case of the here employed N = 12, is in the order of 1015.

In Pham et al. (2018), every subgraph and architecture is expressed as a list of
integers, which indicate a certain path within the grid and with four types of possible
activation functions (tanh, ReLU, identity and sigmoid). This list of integers can be
generated by an optimizer, as in Pham et al. (2018) and Liu, Simonyan e Yang (2019),
who apply a reinforcement learning and a gradient descent-based controller, respectively,
when searching for architectures through weight sharing. However, here, all architecture
attempts, represented by these lists, are chosen at random, including its activation functions.
This is in line with the work of Li e Talwalkar (2019), whose reproductions of the
different NAS methods indicated that all of the optimization-based search methods
actually underperformed a simple random search when compared under the same RNN
search space.

When the random search generates a new integer list, it decides: (i) which edges
should be active and (ii) which computations should be performed at each node in the
DAG of the architecture (PHAM et al., 2018). Finally, in the DAG, all leaves, that is,
loose ends, are averaged for the processing of the final output.

As this RNN design search, based on weight sharing, has resulted in performance
improvements over traditional RNN architectures, such as LSTM, in the natural language
processing domain (PHAM et al., 2018; LI; TALWALKAR, 2019; LIU; SIMONYAN; YANG,
2019), this work explores this method in the context of the proposed N-BEATS-RNN
architecture, applying NAS directly to the additional RNN component of the structure.

Chapter 3. Methods 29

Figure 2 – RNN cell search space via parameter sharing. On the left, the graph represents
the whole grid of possible node connections of the DAG that represents the
RNN. On the right, a single possible RNN architecture is illustrated as a
subgraph.

30

4 Experiments

In this section, we describe the dataset and the evaluation criteria of the experiment.
Then, we delineate the proposed N-BEATS-RNN methodology in two steps:

• Firstly, an RNN architecture had to be sought through the proposed weight-sharing
search. Only the architecture with the highest validation performance was selected
to be part of the final N-BEATS-RNN model.

• Secondly, the N-BEATS-RNNmodels would be trained, all from different initialization
points, in order to build an ensemble of final forecasts.

4.1 Datasets
Table 1 outlines the composition, across different domains, forecast horizons, and

frequencies, of the 100,000 time series in the M4 competition database. These datasets
aims at representing real world problems as much as possible (M4-TEAM, 2018a), and the
data come mainly from the Economic, Finance, Demographics and Industry areas, while
also including data from Tourism, Trade, Labor and Wage, Real Estate, Transportation,
Natural Resources and the Environment. Whereas the series represent a wide variety of
lengths, as indicated by the summary statistics, the forecast horizons are fixed for each
respective seasonal frequency. Further, all series have positive values at all time-steps.
The data are publicly available for download in the official repository of the competition
(M4-TEAM, 2018b).

4.2 Evaluation Criteria
The M4 competition ranking criteria is the Overall Weighted Average (OWA) (4.3)

of two normalized accuracy metrics: the Mean Absolute Scaled Error (MASE) (4.2) and
symmetric Mean Absolute Percentage Error (sMAPE) (4.1) (M4-TEAM, 2018a). The
sMAPE metric compares the error of a forecast normalized by the mean between the
forecast and the ground truth and it is, thus, a point-based error metric. The MASE
metric, instead, normalizes the forecast error with the most obvious seasonal guess, that
is, the last available seasonal datapoint, being a seasonality-based error metric.

A combination of sMAPE and MASE, named sMAPEvMASE (4.4), is also here
introduced by multiplying the resulting sMAPE and MASE losses, as a proxy of the
OWA minimization objective. Since OWA is the competition’s official ranking metric and

Chapter 4. Experiments 31

Table 4 – Composition of the M4 dataset: number of time series, sampling frequency, types
and length statistics.

Frequency / Horizon
Type Yrly Qtly Mthly Wkly Daily Hrly
Forecast
Window 6 8 18 13 14 48
Demog. 1,088 1,858 5,728 24 10 0
Finance 6,519 5,305 10,987 164 1,559 0
Industry 3,716 4,637 10,017 6 422 0
Macro 3,903 5,315 10,016 41 127 0
Micro 6,538 6,020 10,975 112 1,476 0
Other 1,236 865 277 12 633 414
Total 23,000 24,000 48,000 359 4,227 414
Min. Leng. 19 24 60 93 107 748
Max. Leng. 841 874 2,812 2,610 9,933 1,008
Mean Leng. 37.3 100.2 234.3 1035 2371.4 901.9
SD Length 24.5 51.1 137.4 707.1 1756.6 127.9

considers both sMAPE and MASE in its formula, we choose to introduce sMAPEvMASE
as an alternative loss function that needs to balance both point-based and seasonality-based
forecasts.

Given a forecast horizon length H, a series history length T , a seasonal period m, a
vector of historical values [y1, y2, ..., yT], a vector of future values [yT +1, yT +2, ..., yT +H], and
a vector of predictions [ŷT +1, ŷT +2, ..., ŷT +H], we can derive the accuracy metrics employed
herein as follows:

sMAPE = 1
H

H∑
i=1

2 |yT +i − ŷT +i|
|yT +i|+ |ŷT +i|

(4.1)

MASE = 1
H

H∑
i=1

|yT +i − ŷT +i|
1

T +H−m

∑T +H
j=m+1|yj − ŷj−m|

(4.2)

OWA = 1
2

[
sMAPE

sMAPEnaive2
+ MASE

MASEnaive2

]
(4.3)

sMAPEvMASE = sMAPE ∗MASE (4.4)

In MASE, its denominator is composed by the mean absolute error of a naïve
predictor that uses the actual value from the prior season as the forecast, whereby
ŷT +1 = yT +1−m. In the case of OWA, both sMAPE and MASE metrics are normalized by a
naïve forecast, named naïve2, which is seasonally-adjusted through a classical multiplicative
decomposition. The naïve2 series are static and are provided by the competition, together
with the training series, for the purposes of calculating the OWAmetric (M4-TEAM, 2018a).

Chapter 4. Experiments 32

Because OWA is reliant on the naïve2 forecasts, the sMAPE, MASE, and sMAPEvMASE
metrics are instead applied as loss functions during training. OWA is then only calculated
for the final test forecast evaluation for comparison and ranking of the models.

4.3 RNN Architecture Search
Since our search optimizer is random, we have chosen to apply a search by tourna-

ment. As such, we initially search for a large-enough number of 256 random architectures,
electing the top 1/8 (32) architectures for retraining and comparison. Finally, we retrain
the top 1/8 (4) architectures for a final winning architecture. With such tournament, the
winning architecture should be able to consistently outperform the other architectures in
three consecutive rounds, while initializing at three different states of the weigh-sharing
grid. Therefore, we expected this search to produce a reasonably robust architecture that
was unlikely to be a product of initialization chance.

Since the NAS would entail testing hundreds of architectures, we opted for a smaller
dataset for training and validation during the search. For that, the Quarterly frequency
was chosen, since the forecasting horizon of 8 steps was neither as short as the Yearly
horizon of 6 steps, nor as long as the Monthly horizon of 18 steps. Therefore, the Quarterly
frequency provided a dataset that was large enough, representing 25% of all the time series,
and in the middle ground of the forecasting horizons. We did not expand across different
frequencies because of computational resource limitations, since running the search on
individual frequencies would require the search to be done multiple times.

Moreover, the largest lookback window of 7H was also selected for the search.
Because the sampling procedure during training adds paddings of zeros if the sampled
window does not include all 7 horizons, the search would seek to solve for a more versatile
architecture in terms of lookback windows, since the architecture would be trained in a
mix of windows from only 1H of data up to 7H.

The training data was composed of batches of 1,000 random samples of the Quarterly
frequency, at random windowed intervals, for training each architecture attempt. The
validation set was determined as a separate, fixed, dataset of 48,000 random samples of the
Quarterly series, at random intervals, and it was used for validating the performance of the
attempts across the rounds and selecting the winners. The true test set of the submission
was also tested for comparison purposes, and it comprised all 24,000 forecasts of the
Quarterly frequency. However, none of the test information had influence over the search.
The training data was evaluated based on one of the three valuation criteria (sMAPE,
MAPE, sMAPEvMASE), which were randomized for each architecture during the
search, whereby the valuation set was measured by sMAPEvMASE and the test set was
measured by OWA.

Chapter 4. Experiments 33

The 256 random RNN architectures were trained with a validation early stopping
criteria of 1,000 batches. The validation was based on a randomly selected validation set
and measured by the sMAPEvMASE metric. We have chosen 1,000 batches by analysing
the typical pattern of the learning curve of the original N-BEATS. The authors of the
original model established that training for a total of 15,000 batches was optimal based
on cross-validation, and we observed that N-BEATS hardly ever surpassed 1,000 batches
without reaching a new trough. Therefore, 1,000 batches was assumed to provide enough
room for model convergence.

After the training of the 256 models, the top 32 performing architectures were
tested for an early stopping patience of another 4,000 batches. At this stage, we would
expect the weight sharing grid to be better calibrated when revisiting the top architectures.
Therefore, 4,000 batches should provide enough room for the top models to plateau on
training.

Finally, the final 4 architectures would be run for a total of 15,000 batches, just
like for the original N-BEATS, except that, in this case, the initialization was not random,
but was, instead, the last state of the weight sharing grid. Of those, the best performing
RNN architecture was then selected out of the 292 runs in the search.

4.4 Ensemble Training
In Oreshkin et al. (2019), N-BEATS is separately trained for each of the 6 seasonal

frequencies (daily, weekly, monthly, etc) available in the M4 dataset. For a forecast horizon
of length H, a lookback window comprehends a history of points of lengths 2H, 3H, ..., up
to 7H, which are multiples of the forecast horizon. On each seasonal frequency, a model
is trained for each of these 6 lookback windows, and for three different loss functions,
totalling 18 different models. This process is repeated 10 times, for two slightly different
architectures, for a total of 360 models, which constitute a final ensemble. Since each of
the seasonal frequencies demands one final ensemble, 2,160 different models are trained in
total to produce the final submission of the 100,000 time series.

Similarly to N-BEATS, an independent N-BEATS-RNN ensemble was trained
for each of the 6 seasonal frequencies. All models are trained from scratch. For each of
those 6 ensembles, an individual N-BEATS-RNN model was trained from scratch for each
of the 6 lookback window, and for each of three loss functions (sMAPE, MASE, and
sMAPEvMASE), totalling 18 models.

Combining all ensembles, 108 models were trained to compose the final forecasts,
which was based on the median forecast for each frequency type. Figure 3 depicts the
ensemble training and forecasting logic in a graphical manner.

Chapter 4. Experiments 34

Total ensemble models

Figure 3 – Each neural net represents a model. In total, 6 ensembles were created, one for
each frequency type. Each ensemble contained 18 models, one for each lookback
horizon and each loss criteria. Finally, the ensemble forecast is based on the
median forecast value of the 18 models. All mdoels are trained from random
initialization.

Differently from the original N-BEATS, this process was not repeated 10 times,
and each ensemble only contained 18 N-BEATS-RNN models, as opposed to 180.

Since these 18 models are trained each in different combinations of lookback horizon
and loss function, they have slightly different training targets, and, thus, promote a diversity
of biases when building the ensemble. For example, in Figure 3, in the Yearly ensemble, the
top left model is trained while having inputs that are two times the number of the forecast
horizon and while minimizing a point-based error metric, sMAPE. However, the bottom
right model of the Yearly ensemble observes 7 times the forecast horizon while minimizing
both sMAPE and MASE. Both models have different training and objectives, whereby
both will contribute to the final Yearly forecast together with the other 18 models.

4.5 Computational Resources
All models of the N-BEATS-RNN architecture search and final ensemble were

tested on a single machine, sequentially. The NAS search and the ensemble models were
implemented and trained in Pytorch, and the model training was parallelized in two
NVIDIA RTX 2080 Super graphics cards. The two cards, combined, amount to 6,144

Chapter 4. Experiments 35

CUDA cores, which is slightly higher to the 5,120 CUDA cores of the NVIDIA Tesla V100
used in the NAS experiments in Luo et al. (2018), and almost twice the 3,584 CUDA cores
of the NVIDIA Tesla P100 used in Li e Talwalkar (2019).

36

5 Results

Given that our experiments were accomplished in two different phases, one for the
architecture search and another for building the ensemble, we describe their respective
results in the next two sections.

5.1 RNN Architecture Search
The training of the 292 model runs of the RNN architecture search required about

4 full days in our computational resources. Figures 4 and 5 illustrate the entire evolution of
the validation and test losses, measured respectively by sMAPEvMASE and OWA, across
the different RNN architecture attempts, as described in Chapter 4. Note that we are not
here displaying the training loss of the entire NAS search for two main reasons: (i) the loss
function is changed randomly across the three evaluation criteria and (ii) the training loss
refers to randomly selected batch sizes of time series and is not as directly comparable
among the architectures. Thus, the training data did not offer as much information as the
validation and test losses.

Most of the early attempts of the architecture search can be interpreted as a
calibration of the weight sharing search grid, since any architecture attempt seems to have
helped improve both test and validation losses for most of the training. Only after circa
1.5 million training steps is that the performance of different architecture attempts started
to become more apparent, as both validation and the test losses diverged from a trend of
continuous improvement.

The final model elected by the search, based on the best validation loss, achieved a
sMAPE of 9.706% and OWA of 0.840. The median ensemble of all the 292 models from the
search led to a 2% improvement on each metric, to a sMAPE of 9.514% and OWA of 0.824,
and it is illustrated in Figure 6. Both the individual and ensemble results were superior to
the M4 competition winner’s performance in the “Quarterly” seasonal frequency, as the
winning submission achieved a sMAPE of 9.679% and a 0.847, but inferior to the results
achieved by N-BEATS of 9.213% and 0.800, respectively.

As we expected, the search itself can provide a strong solution to the problem,
as it generates several models that individually showcase a strong validation and test
performance. However, given these model attempts share weights across training, it
turns out that their forecasts are too correlated for a meaningful ensemble improvement.
Therefore, in the next session, we were able to generate stronger ensemble results by training
new models, which were based on the winning architecture, from random initialization.

Chapter 5. Results 37

NAS Validation Loss across attemps

Figure 4 – Smoothed sMAPEvMASE Validation Loss across the 292 attempts of the search.
Smoothing is done through convolutional-smoothing.

NAS Test Loss across attemps

Figure 5 – Smoothed OWA Test Loss across the 292 attempts of the search. Smoothing is
done through convolutional-smoothing.

5.2 N-BEATS-RNN Ensemble Results

5.2.1 Overall Ensemble Results

Table 5 illustrates the sMAPE and Table 6 illustrates the OWA of all the main
submissions of the competition, the N-BEATS best model, and our model, N-BEATS-RNN.
N-BEATS-RNN’s results were achieved with significantly fewer models than N-BEATS,
with ensembles of 18 models as opposed to 360 models, respectively, for each seasonal

Chapter 5. Results 38

NAS Elected Architecture

Figure 6 – The final elected RNN-cell architecture during the three rounds of NAS. This
architecture was incorporated to be part of N-BEATS-RNN.

frequency. Naturally, it was not easy to surpass the performance of such a large ensemble
of models. Therefore, N-BEATS-RNN’s overall performance was slightly lower than N-
BEATS’.

Nonetheless, the overall results were still superior to all other submission types
from the original competition. N-BEATS-RNN achieved a sMAPE and OWA results of
11.242% and 0.810, which were 1% and 1.8% higher than N-BEATS’ respective results,
and 2% and 1.3% lower than the M4 competition winner.

Not surprisingly, the only case where N-BEATS-RNN was superior to N-BEATS,
in the OWA category, was on the “Quarterly” time series, which was the specific data
chosen for the architecture optimization. This suggests that perhaps N-BEATS-RNN could
benefit from an architecture optimization search for each specific seasonal frequency, as
opposed to generalizing the architecture from search results across different sets.

Table 5 – Performance on the M4 test set sMAPE. Lower values are better.
Yearly Quarterly Monthly Others Avg.

Best pure ML 14.397 11.031 13.973 4.566 12.894
Best statistical 13.366 10.155 13.002 4.682 11.986
Best ML/TS 13.528 9.733 12.639 4.118 11.72
M4 winner (DL/TS) 13.176 9.679 12.126 4.014 11.374
N-BEATS 12.913 9.213 12.024 3.643 11.135
N-BEATS-RNN 13.134 9.214 12.140 3.646 11.242

Chapter 5. Results 39

Table 6 – Performance on the M4 test set, OWA and M4 rank. Lower values are better.
Yearly Quarterly Monthly Others Avg.

Best pure ML 0.859 0.939 0.941 0.991 0.915
Best statistical 0.788 0.898 0.905 0.989 0.861
Best ML/TS 0.799 0.847 0.858 0.914 0.838
M4 winner (DL/TS) 0.778 0.847 0.836 0.920 0.821
N-BEATS 0.758 0.800 0.819 0.840 0.795
N-BEATS-RNN 0.773 0.799 0.823 0.900 0.810

5.2.2 Ensemble Sensitivity

We have also observed the impact of incrementing the N-BEATS-RNN ensemble
with more models, which were all trained from different random initializations. As shown
by Figure 7, we have observed that increasing the ensemble size has a considerably
meaningfully effect for up to 8 models. Further improvements were generally observed,
but became rather limited. Therefore, we have opted not to pursue the strategy for more
than 18 models for each seasonal frequency.

Similarly, we tested N-BEATS-RNN vs. our own reproduction of N-BEATS for
the Quarterly frequency in terms of OWA. As illustrated by Figure 8, N-BEATS-RNN
consistently outperformed the original N-BEATS in that segment of the data for up to 18
models.

We have also combined the 18 models from N-BEATS-RNN and the 18 models
from N-BEATS for comparison purposes, and we managed to improve the forecasting
accuracy even further, posting an OWA performance of 0.794, a 0.75% improvement over
the original N-BEATS and a 0.63% improvement over our N-BEATS-RNN model.

5.2.3 Computational Cost

Each N-BEATS-RNN model required, on average, 2 hours and 20 minutes of
training. Therefore, the total training time of 108 models for the N-BEATS-RNN ensembles
amounted to about 10 full days. A sample of the original N-BEATS models was tested
in the same computational resources for comparison. Each original model architecture
took 30 minutes to 2 hours of training time, depending on the seasonal frequency, with
an average of one hour, in line with the reported time by the authors. If the original
N-BEATS models were trained in the same computational resources, circa 2,160 hours
would have been required, or 90 consecutive days.

The results illustrated in Figure 8 give an interesting insight about the computa-
tional cost of the models based on the validation and test curves of the NAS. To smooth
the validation and test curves, we applied a convolution function that takes the entire
signal against a desired linear window of 10 data points, thus, returning a moving average

Chapter 5. Results 40

box by convolution (HUI; GRATZL, 1996). Based on these charts, firstly, we can conclude
that the original N-BEATS can be used with fewer models, without compromising its
performance. Secondly, given that N-BEATS-RNN costs a little over double the amount
of time to train N-BEATS, we can see that, with an 8-model ensemble, N-BEATS-RNN
is able to match the results of an 18-model ensemble of N-BEATS. This is insightful
because the time to train each of those ensembles should be about the same, and, thus,
N-BEATS-RNN did not seem to be costlier vs. the original N-BEATS.

It is important to note that the NAS computational cost phase, which took about
4 days, is not being considered here for a fairer comparison with N-BEATS, as there is
little to no information on the architecture search and hyper-parameter tuning carried
in Oreshkin et al. (2019). Much like in the N-BEATS research, we solved for a single
architecture that is applied across the board for all types of time series.

C
hapter

5.
Results

41

Ensemble Size vs. Performance

Figure 7 – The graph shows the OWA test set performance of all the seasonalities, as well for the largest three seasonalities, standalone, vs.
the size of each ensemble. Incrementing N-BEATS-RNN with more models has had positive effect across the board, but it proved
to be limited after 8 models.

C
hapter

5.
Results

42

N-BEATS-RNN vs. N-BEATS on the Quarterly frequency

Figure 8 – The graph shows the OWA test set performance of N-BEATS-RNN vs. N-BEATS on the Quarterly frequency.

43

Conclusion

In this research, we have proposed an extension of N-BEATS by adding a Recurrent
Neural Network (RNN) to process its residual outputs, named N-BEATS-RNN. An ideal
RNN architecture was searched through a random optimization process based on a weight
sharing technique in which all architecture attempts were able to share weights with
previous attempts. We trained an ensemble of the best N-BEATS-RNN architecture
resulting from the search on the M4 competition dataset and achieved state-of-the-art
performance with comparable results to the competition winner and the original N-
BEATS model. N-BEATS-RNN achieved an improvement of 9.8% over the competition’s
benchmark, vs. 11% by N-BEATS and 8.6% by the competition winner.

Therefore, with regards to Hypothesis 1 we were able to partially validate it by
demonstrating that it was possible to build a N-BEATS-RNN model that outperforms all
official entries both in terms of sMAPE and OWA.

We were also able to build a model that outperformed the original N-BEATS and
all other models in at least one category, the Quarterly seasonality, in terms of OWA. The
Quarterly seasonal frequency was the one chosen for the architecture search to take place.
While it was possible to partially validate Hypothesis 1 in the experiments herein, the
results of N-BEATS-RNN in the Quarterly seasonality still leave room for the hypothesis
to be fully validated. In order to test such hypothesis further, the architecture search could
be extended to the other frequencies individually, seeking for results that are better to
those of the original N-BEATS on the individual frequencies, although this would come at
the expense of computation resources. An investigation of this phenomenon should be the
subject of future work.

On the other hand, we trained significantly fewer models, 108 as opposed to the
original 2,160 models, resulting in a reduced training time of 9 times when compared with
the original 2,160-model N-BEATS ensemble. Thus, we were able to validate Hypothesis
2, by offering a method that had state-of-the-art results, comparable to those of the
original N-BEATS, with a rather drastic time reduction, as measured by GPU-days and
the sheer number of models.

Finally, as measured by the Goals and Success Criteria established in Chapter 1,
this research has at least partially achieved its objectives of performance and cost-efficiency
improvements. Most essentially, this research has presented a more computationally efficient
method that could more favorably democratize “pure” DL solutions for the univariate
forcasting problem.

Conclusão 44

Publications
The following publication is a result from this work:

• SBRANA, A.; NALDI, M. C.; ROSSI, A. L. D. N-BEATS-RNN: deep learning for
time series forecasting, 19th IEEE International Conference On Machine Learning
And Applications, ICMLA 2020. Miami, USA. 2020.

45

Bibliography

ADAM, G.; LORRAINE, J. Understanding Neural Architecture Search Techniques.
Computing Research Repository, arXiv:1904.00438, p. 1–7, 2019. Disponível em:
<http://arxiv.org/abs/1904.00438>. Citado na página 23.

AFOLABI, D. et al. Hierarchical meta-learning in time series forecasting for improved
interference-less machine learning. Symmetry, v. 9, n. 11, p. 283, nov 2017. ISSN 20738994.
Disponível em: <http://www.mdpi.com/2073-8994/9/11/283>. Citado na página 14.

ASSIMAKOPOULOS, V.; NIKOLOPOULOS, K. The theta model: A decomposition
approach to forecasting. International Journal of Forecasting, v. 16, n. 4, p. 521–530, 2000.
ISSN 01692070. Citado 2 vezes nas páginas 14 and 20.

BAKER, B. et al. Designing neural network architectures using reinforcement learning.
5th International Conference on Learning Representations, ICLR 2017 - Conference Track
Proceedings, Toulon, France, p. 1–18, 2017. Citado na página 22.

BROWN, P. F. et al. An estimate of an upper bound for the entropy of english. Comput.
Linguistics, v. 18, n. 1, p. 31–40, 1992. Citado na página 23.

ELSKEN, T.; METZEN, J. H.; HUTTER, F. Neural Architecture Search: A
Survery. Journal of Machine Learning Research, v. 20, p. 63–77, 2019. Disponível em:
<http://jmlr.org/papers/v20/18-598.html.> Citado 3 vezes nas páginas 16, 21, and 22.

GARDNER, E. S. Exponential smoothing: The state of the art—part ii. International
Journal of Forecasting, v. 22, n. 4, p. 637 – 666, 2006. ISSN 0169-2070. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0169207006000392>. Citado na
página 14.

GILLILAND, M. The value added by machine learning approaches in forecasting.
International Journal of Forecasting, Elsevier B.V., v. 36, n. 1, p. 161–166, 2019. ISSN
01692070. Disponível em: <https://doi.org/10.1016/j.ijforecast.2019.04.016>. Citado na
página 14.

He, K. et al. Deep residual learning for image recognition. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: [s.n.], 2016. p.
770–778. Citado na página 25.

HE, X.; ZHAO, K.; CHU, X. AutoML: A Survey of the State-of-the-Art.
Computing Research Repository, arXiv:1908.00709, p. 1–17, aug 2019. Disponível em:
<http://arxiv.org/abs/1908.00709>. Citado 4 vezes nas páginas 15, 16, 21, and 22.

HUI, K. Y.; GRATZL, M. Anomalies of convolutional smoothing and differentiation.
Analytical Chemistry, v. 68, n. 6, p. 1054–1057, 1996. ISSN 00032700. Citado na página
40.

HYNDMAN, R. J. A brief history of forecasting competitions. International Journal
of Forecasting, Elsevier B.V., v. 36, n. 1, p. 7–14, 2019. ISSN 01692070. Disponível em:
<https://doi.org/10.1016/j.ijforecast.2019.03.015>. Citado 2 vezes nas páginas 19 and 27.

http://arxiv.org/abs/1904.00438
http://www.mdpi.com/2073-8994/9/11/283
http://jmlr.org/papers/v20/18-598.html.
http://www.sciencedirect.com/science/article/pii/S0169207006000392
https://doi.org/10.1016/j.ijforecast.2019.04.016
http://arxiv.org/abs/1908.00709
https://doi.org/10.1016/j.ijforecast.2019.03.015

Bibliography 46

LI, L.; TALWALKAR, A. Random Search and Reproducibility for Neural
Architecture Search. arXiv:1902.07638, p. 1–20, 2019. Disponível em: <http:
//arxiv.org/abs/1902.07638>. Citado 4 vezes nas páginas 23, 27, 28, and 35.

LIU, H. et al. Hierarchical Representations for Efficient Architecture Search.
Computing Research Repository, arXiv:1711.00436, p. 1–13, 2017. Disponível em:
<http://arxiv.org/abs/1711.00436>. Citado na página 23.

LIU, H.; SIMONYAN, K.; YANG, Y. DARTS: Differentiable architecture search. 7th
International Conference on Learning Representations, ICLR 2019, 2019. Disponível em:
<https://github.com/quark0/dartshttp://arxiv.org/abs/1806.09055>. Citado 4 vezes nas
páginas 22, 23, 27, and 28.

LUO, R. et al. Neural architecture optimization. In: Advances in Neural Information
Processing Systems. Montreal, Canada: [s.n.], 2018. v. 2018-Decem, p. 7816–7827. ISSN
10495258. Disponível em: <https://github.com/renqianluo/NAO.> Citado 2 vezes nas
páginas 23 and 35.

LUONG, M. T. et al. Multi-task sequence to sequence learning. 4th International
Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings, n. c,
p. 1–10, 2016. Citado na página 22.

M4-TEAM. M4 competitor’s guide: prizes and rules. 2018. URL www.m4.unic.ac.cy/
wp-content/uploads/2018/03/M4-CompetitorsGuide.pdf. Citado 2 vezes nas páginas 30
and 31.

M4-TEAM. M4 dataset. 2018. URL https://github.com/M4Competition/M4-
methods/tree/master/Dataset. Citado na página 30.

MAKRIDAKIS, S.; PETROPOULOS, F. The M4 competition: Conclusions. International
Journal of Forecasting, v. 36, p. 224–227, 2019. ISSN 01692070. Citado na página 20.

MAKRIDAKIS, S.; SPILIOTIS, E.; ASSIMAKOPOULOS, V. The M4 Competition:
Results, findings, conclusion and way forward. International Journal of Forecasting,
Elsevier B.V., v. 34, n. 4, p. 802–808, 2018. ISSN 01692070. Disponível em:
<https://doi.org/10.1016/j.ijforecast.2018.06.001>. Citado na página 19.

MAKRIDAKIS, S.; SPILIOTIS, E.; ASSIMAKOPOULOS, V. Predicting/hypothesizing
the findings of the M4 Competition. International Journal of Forecasting,
Elsevier B.V., v. 36, n. 1, p. 29–36, 2019. ISSN 01692070. Disponível em:
<https://doi.org/10.1016/j.ijforecast.2019.02.012>. Citado na página 21.

MAKRIDAKIS, S.; SPILIOTIS, E.; ASSIMAKOPOULOS, V. The M4 Competition:
100,000 time series and 61 forecasting methods. International Journal of Forecasting,
Elsevier B.V., v. 36, n. 1, p. 54–74, 2019. ISSN 01692070. Disponível em:
<https://doi.org/10.1016/j.ijforecast.2019.04.014>. Citado 5 vezes nas páginas 10, 14,
19, 20, and 27.

ORESHKIN, B. N. et al. N-BEATS: Neural basis expansion analysis for interpretable
time series forecasting. arXiv:1905.10437, p. 1–12, 2019. Disponível em: <http:
//arxiv.org/abs/1905.10437>. Citado 7 vezes nas páginas 15, 16, 21, 25, 27, 33, and 40.

http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1711.00436
https://github.com/quark0/darts http://arxiv.org/abs/1806.09055
https://github.com/renqianluo/NAO.
https://doi.org/10.1016/j.ijforecast.2018.06.001
https://doi.org/10.1016/j.ijforecast.2019.02.012
https://doi.org/10.1016/j.ijforecast.2019.04.014
http://arxiv.org/abs/1905.10437
http://arxiv.org/abs/1905.10437

Bibliography 47

PHAM, H. et al. Efficient Neural Architecture Search via parameter Sharing.
In: 35th International Conference on Machine Learning, ICML 2018. Stockholm,
Sweden: [s.n.], 2018. v. 9, p. 6522–6531. ISBN 9781510867963. Disponível em:
<https://arxiv.org/abs/1802.03268>. Citado 4 vezes nas páginas 22, 23, 27, and 28.

SMYL, S. A hybrid method of exponential smoothing and recurrent neural networks for time
series forecasting. International Journal of Forecasting, Elsevier B.V., v. 36, n. 1, p. 75–85,
2019. ISSN 01692070. Disponível em: <https://doi.org/10.1016/j.ijforecast.2019.03.017>.
Citado 7 vezes nas páginas 14, 15, 16, 21, 25, 26, and 27.

SPILIOTIS, E. et al. Are forecasting competitions data representative of the reality?
International Journal of Forecasting, Elsevier B.V., v. 36, n. 1, p. 37–53, 2019. ISSN
01692070. Disponível em: <https://doi.org/10.1016/j.ijforecast.2018.12.007>. Citado na
página 14.

WERON, R. Electricity price forecasting: A review of the state-of-the-art with a look into
the future. International Journal of Forecasting, v. 30, 10 2014. Citado na página 15.

WISTUBA, M.; RAWAT, A.; PEDAPATI, T. A Survey on Neural Architecture Search.
Computing Research Repository, arXiv:1905.01392, p. 1–53, 2019. Disponível em:
<http://arxiv.org/abs/1905.01392>. Citado 3 vezes nas páginas 16, 21, and 22.

YU, K. et al. Evaluating the Search Phase of Neural Architecture Search. p. 1–16, 2019.
Disponível em: <http://arxiv.org/abs/1902.08142>. Citado na página 23.

ZAREMBA, W. et al. Recurrent Neural Network Regularization. n. 2013, p. 1–8, 2014.
Disponível em: <http://arxiv.org/abs/1409.2329>. Citado na página 23.

ZOPH, B.; LE, Q. V. Neural architecture search with reinforcement learning. In: 5th
International Conference on Learning Representations, ICLR 2017 - Conference Track
Proceedings. Toulon, France: [s.n.], 2017. p. 1–16. ISBN 1611.01578v2. Citado 2 vezes nas
páginas 22 and 23.

ZOPH, B. et al. Transfer learning for low-resource neural machine translation. EMNLP
2016 - Conference on Empirical Methods in Natural Language Processing, Proceedings,
Austin, TX, USA, p. 1568–1575, 2016. Citado na página 22.

https://arxiv.org/abs/1802.03268
https://doi.org/10.1016/j.ijforecast.2019.03.017
https://doi.org/10.1016/j.ijforecast.2018.12.007
http://arxiv.org/abs/1905.01392
http://arxiv.org/abs/1902.08142
http://arxiv.org/abs/1409.2329

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Purpose and Problem Definition
	Goals and Limitations
	Hypotheses
	General Approach
	Success Criteria
	Structure

	Literature Review & Background
	Deep Learning as State-of-the-Art in Forecasting
	Neural Architecture Search

	Methods
	N-BEATS-RNN
	Decomposition through N-BEATS
	Residual processing
	Ensembling

	Designing RNNs through Weight Sharing

	Experiments
	Datasets
	Evaluation Criteria
	RNN Architecture Search
	Ensemble Training
	Computational Resources

	Results
	RNN Architecture Search
	N-BEATS-RNN Ensemble Results
	Overall Ensemble Results
	Ensemble Sensitivity
	Computational Cost

	Conclusion
	Bibliography

