UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA

DETERMINAÇÃO DA FORÇA DE ADESÃO ATRAVÉS DA TÉCNICA CENTRÍFUGA ENTRE PARTÍCULAS E MEMBRANAS FILTRANTES

ALCIONE FRANCISCO DE ALMEIDA

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Química da Universidade Federal de São Carlos como parte dos requisitos necessários à obtenção do título de Mestre em Engenharia Química, área de concentração em Pesquisa e Desenvolvimento de Processos Químicos.

Orientadora: Profa. Dra. Mônica Lopes Aguiar

São Carlos-SP 2013

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária da UFSCar

A447df	Almeida, Alcione Francisco de. Determinação da força de adesão através da técnica centrífuga entre partículas e membranas filtrantes / Alcione Francisco de Almeida São Carlos : UFSCar, 2013. 276 f.
	Dissertação (Mestrado) Universidade Federal de São Carlos, 2013.
	 Engenharia química. 2. Ar - poluição. 3. Van der Waals, Forças de. 4. Adesão. 5. Compressão e desprendimento de partículas. I. Título.
	CDD: 660 (20 ^a)

MEMBROS DA BANCA EXAMINADORA DA DISSERTAÇÃO DE MESTRADO DE ALCIONE FRANCISCO DE ALMEIDA APRESENTADA AO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA DA UNIVERSIDADE FEDERAL DE SÃO CARLOS, EM 23 DE MAIO DE 2013.

r.

BANCA EXAMINADORA:

Monica legres Aquiar.

Mônica Lopes Aguiar Orientadora, UFSCar

Ana Beatriz Neves Brito

UFES

andu Bemando

André Bernardo **UFSCar**

"Se tiver que escolher entre o mundo e o amor. Escolha o amor, pois com ele você conquistará o mundo."

Albert Einstein

AGRADECIMENTOS

Em primeiro lugar agradecer a Deus e ao plano espiritual pela proteção e boas intuições concedidas na realização deste trabalho e, por colocar pessoas amigas que me fortaleceram e me ampararam em muitos momentos.

À Profa. Dra. Mônica Lopes Aguiar por sua orientação, pela confiança e oportunidade de realizar este trabalho e por sua dedicação, paciência e consideração.

À minha família, em especial a minha mãe, que juntas sofremos e compartilhamos uma ajuda mutua evidenciando assim a conquista desta etapa.

Aos meus queridos amigos em especial Oscar e Evelyn que me apoiaram incondicionalmente com a valiosa amizade e companheirismo.

À Geni um agradecimento especial pelo carinho e apoio de todo o momento.

Aos Profs. Drs. José Teixeira Freire, Dermeval José Mazzini Sartori e Wu Hong Kwong pelo incentivo e força no seguimento dos estudos.

Aos Profs. Drs. Marco Giulietti e Luiz Fernando de Moura pela consideração e apoio de todo o momento.

Ao técnico Marcos Oishi pela paciência e ajuda na análise dos materiais particulados e na orientação de uso do analisador de imagens.

Ao aluno de Iniciação Científica André L.B. Monutti pela disposição em explicar a funcionamento de toda a técnica centrífuga nos primeiros passos deste trabalho.

Ao Ricardo pela disposição em ajudar na utilização do software Excel.

À Samirys pela ajuda e amizade.

À Luciana Mendonça Vaz "*in memoriam*" por todo carinho e simpatia que sempre teve para com todos.

À Profa. Dra. Vádila Giovana Guerra e ao Prof. Dr. André Bernardo pelas contribuições e sugestões no Exame de Qualificação.

Ao Prof. Dr. André Bernardo (DEQ/UFSCar) e à Profa. Dra. Ana Beatriz (DETEC/UFES) por aceitarem a responsabilidade de avaliar este trabalho e pela valiosa contribuição.

Ao Programa de Pós-Graduação em Engenharia Química e ao Departamento de Engenharia Química que possibilitaram a execução deste trabalho.

A todos que de alguma forma direta ou indiretamente contribuíram e me ajudaram a chegar nesta etapa da vida acadêmica.

Resumo	1
lista de figuras	1
LISTAS DE TABELAS	1
NOMENCLATURA	1
CAPITULO I	1
Introdução	1
CAPITULO II	3
Revisão Bibliográfica	3
 2.1. Definição de Adesão	$egin{array}{cccccccccccccccccccccccccccccccccccc$
Materiais e Métodos	29
 3.1. Material Particulado	
Resultados e Discussões	47
4.1. Análise dos Sistemas	47

SUMÁRIO

Resumo

O estudo da adesão de partículas micrométricas e nanométricas em superfícies têm se destacado em vários campos tecnológicos. A adesão tem um significante papel na indústria de produtos farmacêuticos, alimentos, no transporte pneumático de materiais, na fabricação de semicondutores, na formação de aerossol, na pintura, bem como na poluição ambiental e higiene industrial. Esses estudos avançam no sentido de obter um maior conhecimento sobre a força de adesão entre partículas e superfícies. O objetivo principal deste trabalho é de verificar a influência do tamanho das partículas do material particulado orgânico com a determinação da força de adesão entre essas partículas e um substrato de origem orgânica. Os substratos utilizados foram os meios filtrantes membranas de éster-celulose, variando as porosidades em 0,2µm, 0,4µm e 0,8µm. Sendo o material particulado: fuligem e carvão ativado, variando as faixas de diâmetros de 11,1-17 μm, 17,1-23 μm e 23,1-29μm. Para se obter o valor da força de adesão, utilizou-se a técnica centrífuga, na qual a força de adesão é igual em magnitude, mas com sinal oposto à força centrífuga requerida para desprender as partículas do substrato. Para obtenção dos dados experimentais através da técnica centrífuga variaram-se as velocidades angulares de compressão em: 1000, 2000 e 5000rpm para velocidades angulares de desprendimento: 1000, 3000, 5000, 7000, 9000, 11000, 13000 e 14000rpm, com a utilização de uma microcentrífuga (MA -860, Marconi Equipamentos) cuja velocidade máxima de rotação é de 14000rpm. A análise de cada sistema material particulado/membrana de éstercelulose foi feita através de um programa de análise de imagens (Image-Pro Plus 7.0), visando verificar o comportamento das partículas aderidas ao substrato, ou seja, o desprendimento dessas partículas após a aplicação das velocidades angulares de compressão e descompressão. Diante dos dados obtidos pela análise de imagens foi possível determinar a força de adesão entre as partículas e os substratos, sendo determinado um perfil de adesão log-normal de porcentagem de partículas aderidas em relação à força de adesão. Para todos os sistemas analisados material particulado/membrana de éter-celulose verificou-se a influência direta da variação da velocidade angular de compressão (press-on) na força de adesão, sendo possível observar que o diâmetro médio das partículas dos materiais particulados influencia no desprendimento da superfície das membranas e, ainda, que as porosidades da superfície das membranas de éster-celulose também influenciam na determinação da força de adesão. E, como consequência destas análises, foi possível fazer uma comparação entre os valores da força de adesão obtidos experimentalmente e os modelos de adesão obtidos da literatura.

ABSTRACT

The study of micrometric and nanometric particle adhesion to surfaces have excelled in various technological fields. The adhesion has a significant role in the pharmaceutical industry, food, in the pneumatic conveying of materials in the manufacture of semiconductors, in the formation of aerosol, in painting, as well as environmental pollution and industrial hygiene. These studies are progressing to get a greater insight into the adhesion force between particles and surfaces. The main objective of this work is to check the influence of particle size of organic particulate material with the determination of the force adhesion between these particles and a substrate of organic origin. The substrates used were the filters ester-cellulose membranes, varying the porosity in 0.2 µm, 0.4 µm and 0.8 µm. The particulate material: activated coal and soot, varying the diameter of 11.1 -17 µm, 17.1-23 µm and 23.1-29 µm. To get the value of the adhesion force, was used the centrifuge technique, in which the adhesion force is equal in magnitude, but with the opposite sign to the centrifugal force required to detach the particles of the substrate. To obtain experimental data by centrifugal technique varied angular speeds of compression: 1000, 2000 and 5000rpm for angular speeds of detachment: 1000, 3000, 5000, 7000, 9000, 11000, 13000 and 14000rpm, using a microcentrifugal (MA -860, Marconi equipment) whose maximum speed rotation is of 14000rpm. The analysis of each system particulate material/ ester-cellulose membrane was made using an image analysis program (Image-Pro Plus 7.0), in order to verify the behavior of the particles attached to the substrate, through of the detachment of these particles after application of angular speed of compression and detachment. On data obtained by image analysis it was possible to determine the adhesion force between particles and the substrates, apresenting a profile log-normal percentage of adhered particles on adhesion force. For each systems analyzed particulate material/ester-cellulose membrane was the direct influence of variation of angular speed of compression (press-on) on the strength of adhesion, being possible to observe that the average diameter of the particles of particulate materials influence on surface membranes and detachment that the porosity of the surface of ester-cellulose membranes also influence the determination of the adhesion force. And, as a result of these analyses, it was possible to make a comparison between the experimental data and models of literature.

LISTA DE FIGURAS

Figura 1. Diagrama Representativo da Força de Van der Waals
Figura 2.: Esquema representativo da força eletrostática atuando na transferência de partículas
em processos de xerografia8
Figura 3.: Força de adesão devido a um filme líquido9
Figura 4.: Estado de Saturação de Líquidos: (a) Estado Pendular; (b) Estado Funicular; (c)
Estado Capilar10
Figura 5.: - Ponte líquida entre uma esfera e uma superfície plana11
Figura 6.: Adesão pode ser definida como uma força F exigida para romper duas partículas. 12
Figura 7.: Microfotografia de uma esfera de poliestireno sobre um substrato de silicone
mostrando o instante de contato
Figura 8.: Microfotografia de uma partícula esférica de poliestireno em contato com um
substrato de silicone, mostrando a deformação da esfera18
Figura 9.: Contato entre partícula e superfície23
Figura 10.: (a) Desprendimento das partículas pela técnica centrífuga, (b) análises das
imagens das superfícies, no começo e depois de cada rotação27
Figura 3.1.: Imagens da fuligem obtidas no microscópio MEV-FEG – DEMA/UFSCar 29 Figura 3.2.: Imagens do carvão ativado obtidas no microscópio MEV-FEG – DEMA/UFSCar.
Figura 3.3.: Diâmetro médio definido pelo software Image-Pro Plus 7.0
Figura 3.4. Membrana de éster-celulose 0,2µm
Figura 3.5.: Membrana de éster-celulose 0,4µm
Figura 3.6.: Membrana de éster-celulose 0,8µm32
Figura 3.7.: Imagens topográficas da membrana 0,2µm obtidas no Microscópio de Força
Atômica (MFA-DEMA/UFSCar) com rugosidade 169nm
Figura 3.8.: Imagens topográficas da membrana 0,4 µm obtidas no Microscópio de Força
Atômica (MFA-DEMA/UFSCar) com rugosidade 194 nm
Figura 3.9.: Imagens topográficas da membrana 0,8 µm obtidas no Microscópio de Força
Atômica (MFA-DEMA/UFSCar) com rugosidade 334 nm
Figura 3.10.: Dispersor de Pó Galai PD – 10
Figura 3.11.: Microcentrífuga MA-860: (a) parte frontal da microcentrifuga, (b) parte interna
da microcentrífuga e (c) eixo de rotação da microcentrífuga com os adaptadores35

Figura 3.12.: Desenho esquemático do porta-amostra em formato de tubo construído em
alumínio
Figura 3.13.: Equipamentos utilizados para aquisição e análise das imagens
Figura 3.14.: Substrato marcado em quadrantes colado na superfície do disco de vidros 39
Figura 3.15.: (a e b).: (a) Esquema do Dispersor de Pó Galai e (b)Esquema mostrando a
dispersão de pós sobre o substrato40
Figura 3.16.: Disco de prova e tubo de alumínio para ser colocado na centrífuga para atuação
da velocidade centrífuga de compressão (press-on)40
Figura 3.17.: Distribuição granulométrica em (a) da fuligem e em (b) do carvão ativado
gerada pelo Malvern Mastersize do Laboratório de Controle Ambiental do DEQ/UFSCar41
Figura 3.18.: Disco de prova e tubo de alumínio para ser colocado na microcentrífuga para
atuação da velocidade centrífuga de descompressão (spin-off)42
Figura 3.19. (a, b, c e d).: Experimentos Fuligem – membrana 0,2 µm da região 0144
Figura 3.20. (a, b, c e d).: Experimentos carvão ativado – membrana 0,2µm da região 0344

Figura 4.1.: Porcentagem de partículas aderidas em função da velocidade angular de descompressão da fuligem para o substrato membrana de éster-celulose 0,2µm após a aplicação das velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm......48 Figura 4.2.: Porcentagem de partículas aderidas em função da velocidade angular de descompressão da fuligem para o substrato membrana de éster-celulose 0,4 µm após a aplicação das velocidades angulares de compressão: (a)1000,(b)2000 e (b)5000 rpm......49 Figura 4. 3.: Porcentagem de partículas aderidas em função da velocidade angular de descompressão da fuligem para o substrato membrana de éster-celulose 0,8µm após a aplicação das velocidades angulares de compressão: (a)1000,(b)2000 e (b)5000rpm......49 Figura 4.4.: Porcentagem de partículas aderidas no substrato em função da força de adesão do sistema fuligem/membrana de éster-celulose 0,2µm após a aplicação das velocidades Figura 4.5.: Porcentagem de partículas aderidas no substrato em função da força de adesão do sistema fuligem/membrana de éster-celulose 0,4µm após a aplicação das velocidades Figura 4.6.: Porcentagem de partículas aderidas no substrato em função da força de adesão do sistema fuligem/membrana de éster-celulose 0,8µm após a aplicação das velocidades

Figura 4.7.: Porcentagem de partículas de carvão ativado aderidas em função da velocidade angular de descompressão para o substrato membrana de éster-celulose 0,2µm após a Figura 4.8.: Porcentagem de partículas de carvão ativado aderidas em função da velocidade angular de descompressão para o substrato membrana de éster-celulose 0,4µm após a Figura 4.9.: Porcentagem de partículas de carvão ativado aderidas em função da velocidade angular de descompressão para o substrato membrana de éster-celulose 0,8µm após a Figura 4.10.: Porcentagem de partículas de carvão ativado aderidas na superfície do substrato em função da força de adesão do sistema carvão ativado/membrana de éster-celulose 0,2µm Figura 4.11.: Porcentagem de partículas de carvão ativado aderidas na superfície do substrato em função da força de adesão do sistema carvão ativado/membrana de éster-celulose 0,4µm Figura 4.12.: Porcentagem de partículas de carvão ativado aderidas na superfície do substrato em função da força de adesão do sistema carvão ativado/membrana de éster-celulose 0,8µm Figura 4.13.: Força de Adesão em função do diâmetro médio das partículas para os sistemas Figura 4.14.: Força de Adesão em função do diâmetro médio das partículas para os sistemas Figura 4.15.: Comparação da força de adesão em função do diâmetro médio das partículas para o sistema fuligem/membrana de éster-celulose para as porosidades: 0,2µm, 0,4µm e Figura 4.16.: Comparação da força de adesão em função do diâmetro médio das partículas para o sistema carvão ativado/membrana de éster-celulose para as porosidades: 0,2µm, 0,4µm e 0,8µm para cada velocidade angular de compressão aplicada:(a) 1000,(b) 2000 e (c)5000. 66 Figura 4.17.: Comparação entre os materiais particulados fuligem e carvão ativado para a velocidade angular de compressão de 1000rpm no substrato membrana de éster-celulose nas porosidades: (a) 0,2µm, (b) 04µm e (c) 0,8µm......68 Figura 4.18.:Comparação entre os materiais particulados fuligem e carvão ativado para a velocidade angular de compressão de 2000rpm no substrato membrana de éster-celulose nas porosidades: (a) 0,2µm, (b) 04µm e (c) 0,8µm......69

Figura 4.19.:Comparação entre os materiais particulados fuligem e carvão ativado para a velocidade angular de compressão de 5000rpm no substrato membrana de éster-celulose nas porosidades: (a) 0,2µm, (b) 04µm e (c) 0,8µm......69 Figura 4.20.: Força de adesão teórica com variação do trabalho de adesão para o sistema fuligem/membrana de éster-celulose 0,2µm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000......74 Figura 4.21.: Força de adesão teórica com variação do trabalho de adesão para o sistema fuligem/membrana de éster-celulose 0,4µm para as velocidades angulares de compressão: (a) Figura 4.22.: Força de adesão teórica com variação do trabalho de adesão para o sistema fuligem/membrana de éster-celulose 0,8µm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000......75 Figura 4.23.: Força de adesão teórica com variação do trabalho de adesão para o sistema carvão ativado/membrana de éster-celulose 0,2µm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000......77 Figura 4.24.: Força de adesão teórica com variação do trabalho de adesão para o sistema carvão ativado/membrana de éster-celulose 0,4µm para as velocidades angulares de Figura 4.25.: Força de adesão teórica com variação do trabalho de adesão para o sistema carvão ativado/membrana de éster-celulose 0,8µm para as velocidades angulares de Figura 4.26.: Força de Adesão Teórica com variação de Modelo Teóricos e Mecânicos da Força para sistema fuligem/membrana de éster-celulose 0,2µm para as velocidades angulares Figura 4.27.: Força de Adesão Teórica com variação de Modelo Teóricos e Mecânicos da Força para sistema fuligem/membrana de éster-celulose 0,4µm para as velocidades angulares Figura 4.28.: Força de Adesão Teórica com variação de Modelo Teóricos e Mecânicos da Força para sistema fuligem/membrana de éster-celulose 0,8µm para as velocidades angulares Figura 4.29.: Força de Adesão Teórica com variação de Modelo Teóricos e Mecânicos da Força para sistema carvão ativado/membrana de éster-celulose 0,2µm para as velocidades

Figura 4.30.: Força de Adesão Teórica com variação de Modelo Teóricos e Mecânicos da
Força para sistema carvão ativado/membrana de éster-celulose 0,4µm para as velocidades
angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm
Figura 4.31.: Força de Adesão Teórica com variação de Modelo Teóricos e Mecânicos da
Força para sistema fuligem/membrana de éster-celulose 0,8µm para as velocidades angulares
de compressão: (a) 1000, (b) 2000 e (c) 5000 rpm
Figura 4.32.: Força de adesão corrigida com a variação do modelo de força de adesão, para o
sistema fuligem/membrana de éster-celulose 0,2µm para as velocidades angulares de
compressão: (a) 1000, (b) 2000 e (c) 5000rpm
Figura 4.33.: Força de adesão corrigida com a variação do modelo de força de adesão, para o
sistema fuligem/membrana de éster-celulose 0,4µm para as velocidades angulares de
compressão: (a) 1000, (b) 2000 e (c) 5000 rpm
Figura 4.34.: Força de adesão corrigida com a variação do modelo de força de adesão, para o
sistema fuligem/membrana de éster-celulose 0,8µm para as velocidades angulares de
compressão: (a) 1000, (b) 2000 e (c) 5000 rpm
Figura 4.35.:Força de adesão corrigida com a variação do modelo de força de adesão, para o
sistema carvão ativado/membrana de éster-celulose 0,2µm para as velocidades angulares de
compressão: (a) 1000, (b) 2000 e (c) 5000rpm
Figura 4.36.: Força de adesão corrigida com a variação do modelo de força de adesão, para o
sistema carvão ativado/membrana de éster-celulose 0,4µm para as velocidades angulares de
compressão: (a) 1000, (b) 2000 e (c) 5000rpm
Figura 4.37.: Força de adesão corrigida com a variação do modelo de força de adesão, para o
sistema carvão ativado/membrana de éster-celulose 0,8µm para as velocidades angulares de
compressão: (a) 1000, (b) 2000 e (c) 5000 rpm

LISTAS DE TABELAS

Tabela 4.1.: Experimentos Realizados
Tabela 4.2.: Corridas experimentais
Tabela 4.3.: Massa média para a partícula de fuligem de acordo com o volume médio obtido
para cada faixa de diâmetro para o sistema fuligem/membranéster-celulose 0,2 µm após a
aplicação das velocidades angulares de compressão:
Tabela 4.4.: Massa média para a partícula de fuligem de acordo com o volume médio obtido
para cada faixa de diâmetro para o sistema fuligem/membranéster-celulose 0,4 µm após a
aplicação das velocidades angulares de compressão:53
Tabela 4.5.: Massa média para a partícula de fuligem de acordo com o volume médio obtido
para cada faixa de diâmetro para o sistema fuligem/membranéster-celulose 0,8 µm após a
aplicação das velocidades angulares de compressão:54
Tabela 4. 6.: Massa média para a partícula de carvão ativado de acordo com o volume médio
obtido para cada faixa de diâmetro para o sistema carvão ativado/membrana de éster-celulose
0,2 μm após a aplicação das velocidades angulares de compressão:
Tabela 4.7.: Massa média para a partícula de carvão ativado de acordo com o volume médio
obtido para cada faixa de diâmetro para o sistema carvão/membrana de éster-celulose 0,4µm
após a aplicação das velocidades angulares de compressão:55
Tabela 4. 8.: Massa média para a partícula de carvão ativado de acordo com o volume médio
obtido para cada faixa de diâmetro para o sistema carvão ativado/membrana de éster-celulose
0,8µm após a aplicação das velocidades angulares de compressão:
Tabela 4.9.: Mediana geométrica e desvio padrão sistema fuligem/membrana de éster-celulose
0,2µm61
Tabela 4.10.: Mediana geométrica e desvio padrão sistema fuligem/membrana de éster-
celulose 0,4µm61
Tabela 4.11.: Mediana geométrica e desvio padrão sistema fuligem/membrana de éster-
celulose 0,8µm62
Tabela 4.12.: Mediana geométrica e desvio padrão sistema carvão ativado/membrana de éster-
celulose 0,2µm
Tabela 4.13.: Mediana geométrica e desvio padrão sistema carvão ativado/membrana de éster-
celulose 0,4µm

Tabela 4.14.: Mediana geométrica e desvio padrão sistema carvão ativado/membrana de éster-
celulose 0,8µm63
Tabela 4.15.: Tensão superficial dos componentes da adesão71
Tabela 4. 16.: Tensão Interfacial71
Tabela 4. 17.: Trabalho de Adesão Calculado72
Tabela 4.18.: Força de Adesão Teórica com variação de calculo do Trabalho de adesão para
sistema fuligem/membrana de éster-celulose73
Tabela 4.19.: Força de Adesão Teórica com variação de calculo do Trabalho de adesão para
sistema carvão ativado/membrana de éster-celulose para as diferentes porosidades:76
Tabela 4.20.: Força de Adesão Teórica com variação de Modelo Teóricos da Força Adesão
para sistema fuligem/membrana de éster-celulose80
Tabela 4.21.: Força de Adesão Teórica com variação de Modelo Teóricos da Força Adesão
para sistema carvão ativado/membrana de éster-celulose83
Tabela 4.22.: Valores de k _t
Tabela 4.23.: Valores de k _c para sistema fuligem/membrana de éster celulose
Tabela 4.24.: Valores de k_c para o sistema carvão ativado/membrana de éster celulose89
Tabela 4.25. (a, b e c).: Força de adesão corrigida com a variação do modelo de força de
adesão, para o sistema fuligem/membrana de éster-celulose nas diferentes porosidades 0,2µm,
0,4μm e 0,8μm para as velocidades angulares de compressão:
Tabela 4.26.: (a, b e c).: Força de adesão corrigida com a variação do modelo de força de
adesão, para o sistema carvão ativado/membrana de éster-celulose nas diferentes porosidades
0,2µm, 0,4µm e 0,8µm para as velocidades angulares de compressão:1000, 2000 e 5000 rpm.
Tabela A.1.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o
sistema fuligem/membrana de éster-celulose 0,2µm, para velocidade angular de compressão
(<i>press-on</i>) de 1000rpm - 1ª corrida
Tabela A.2.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o
sistema fuligem/membrana de éster-celulose 0,2µm, para velocidade angular de compressão
(press-on) de 1000rpm – 2 ^a corrida
Tabela A.3.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o
sistema fuligem/membrana de éster-celulose 0,2µm, para velocidade angular de compressão
(<i>press-on</i>) de 1000rpm – 3 ^a corrida111

Tabela A.4.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,2µm, para velocidade angular de compressão (*press-on*) de 2000rpm – 1^a corrida 112..... Tabela A.5.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,2µm, para velocidade angular de compressão (*press-on*) de 2000rpm – 2ª corrida 114 Tabela A.6.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,2µm, para velocidade angular de compressão (*press-on*) de 2000rpm – 3ª corrida 115 Tabela A.7.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,2µm, para velocidade angular de compressão Tabela A.8.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,2µm, para velocidade angular de compressão (*press-on*) de 5000rpm – 2ª corrida 118 Tabela A.9.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,2µm, para velocidade angular de Tabela A.10.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,4µm, para velocidade angular de compressão Tabela A.11.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,4µm, para velocidade angular de compressão Tabela A.12.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,4µm, para velocidade angular de compressão Tabela A.13.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,4µm, para velocidade angular de Tabela A.14.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,4µm, para velocidade angular de

Tabela A.15.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,4µm, para velocidade angular de compressão (press-on) de 2000rpm - 3ª corrida..... 131 Tabela A.16.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,4µm, para velocidade angular de compressão (press-on) de 5000rpm - 1ª corrida...... 132 Tabela A.17.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,4µm, para velocidade angular de Tabela A.18.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,4µm, para velocidade angular de compressão (press-on) de 5000rpm - 3ª corrida...... 136 Tabela A.19.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,8µm, para velocidade angular de Tabela A.20.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,8µm, para velocidade angular de compressão Tabela A.21.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,8µm, para velocidade angular de compressão (press-on) de 1000rpm - 3ª corrida..... 142 Tabela A.22.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,8µm, para velocidade angular de compressão (press-on) de 2000rpm - 1ª corrida...... 144 Tabela A.23.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,8µm, para velocidade angular de compressão Tabela A.24.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,8µm, para velocidade angular de Tabela A.25.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,8µm, para velocidade angular de

Tabela A.26.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,8µm, para velocidade angular de compressão (press-on) de 5000rpm - 2ª corrida...... 152 Tabela A.27.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,8µm, para velocidade angular de Tabela A.28.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,2µm, para velocidade angular de compressão Tabela A.29.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,2µm, para velocidade angular de compressão Tabela A.30.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,2µm, para velocidade angular de compressão Tabela A.31.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,2µm, para velocidade angular de compressão Tabela A.32.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,2µm, para velocidade angular de compressão Tabela A.33.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,2µm, para velocidade angular de compressão Tabela A.34.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,2µm, para velocidade angular de compressão Tabela A.35.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,2µm, para velocidade angular de compressão Tabela A.36.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,2µm, para velocidade angular de compressão

Tabela A.37.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,4µm, para velocidade angular de compressão Tabela A.38.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,4µm, para velocidade angular de compressão Tabela A.39.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,4µm, para velocidade angular de compressão Tabela A.40.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,4µm, para velocidade angular de compressão Tabela A.41.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,4µm, para velocidade angular de compressão (press-on) de 2000rpm - 2ª corrida. 186 Tabela A.42.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,4µm, para velocidade angular de compressão Tabela A.43.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,4µm, para velocidade angular de compressão Tabela A.44.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,4µm, para velocidade angular de compressão Tabela A.45.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,4µm, para velocidade angular de compressão Tabela A.46.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,8µm, para velocidade angular de compressão Tabela A.47.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,8µm, para velocidade angular de compressão

Tabela A.48.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,8µm, para velocidade angular de compressão Tabela A.49.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,8µm, para velocidade angular de compressão Tabela A.50.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,8µm, para velocidade angular de compressão Tabela A.51.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,8µm, para velocidade angular de compressão Tabela A.52.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,8µm, para velocidade angular de compressão Tabela A.53.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,8µm, para velocidade angular de compressão Tabela A.54.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,8µm, para velocidade angular de compressão

Tabela B.7.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-Tabela B.8.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-Tabela B.9.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-Tabela B.10.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-Tabela B.11.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-Tabela B.12.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-Tabela B.13.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-Tabela B.14.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-Tabela B.15.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-Tabela B.16.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-Tabela B.17.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-Tabela B.18.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-Tabela B.19.: Análise das partículas aderidas para o sistema fuligem/membrana de éstercelulose 0,8µm, para velocidade angular de compressão 1000rpm.241 Tabela B.20.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-Tabela B.21.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-Tabela B.22.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-Tabela B.23.: Análise das partículas aderidas para o sistema fuligem/membrana de éstercelulose 0,8µm, para velocidade angular de compressão 2000rpm.245

Tabela B.24.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-Tabela B.25.: Análise das partículas aderidas para o sistema fuligem/membrana de éstercelulose 0,8µm, para velocidade angular de compressão 5000rpm.247 Tabela B.26.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-Tabela B.27.: Análise das partículas aderidas para o sistema fuligem/membrana de éstercelulose 0,8µm, para velocidade angular de compressão 5000rpm.249 Tabela B.28.: Análise das partículas aderidas para o sistema carvão/membrana de éstercelulose 0,2µm, para velocidade angular de compressão 1000rpm.250 Tabela B.29.: Análise das partículas aderidas para o sistema carvão/membrana de éster-Tabela B.30.: Análise das partículas aderidas para o sistema carvão/membrana de éstercelulose 0,2µm, para velocidade angular de compressão 1000rpm.252 Tabela B.31.: Análise das partículas aderidas para o sistema carvão/membrana de éstercelulose 0,2µm, para velocidade angular de compressão 2000rpm...... 253 Tabela B.32.: Análise das partículas aderidas para o sistema carvão/membrana de éster-Tabela B.33.: Análise das partículas aderidas para o sistema carvão/membrana de éster-Tabela B.34.: Análise das partículas aderidas para o sistema carvão/membrana de éster-Tabela B.35.: Análise das partículas aderidas para o sistema carvão/membrana de éstercelulose 0,2µm, para velocidade angular de compressão 5000rpm.257 Tabela B.36.: Análise das partículas aderidas para o sistema carvão/membrana de éstercelulose 0,2µm, para velocidade angular de compressão 5000rpm...... 258 Tabela B.37.: Análise das partículas aderidas para o sistema carvão/membrana de éster-Tabela B.38.: Análise das partículas aderidas para o sistema carvão/membrana de éster-Tabela B.39.: Análise das partículas aderidas para o sistema carvão/membrana de éstercelulose 0,4µm, para velocidade angular de compressão 1000rpm.261 Tabela B.40.: Análise das partículas aderidas para o sistema carvão/membrana de éster-

Tabela B. 41.: Análise das partículas aderidas para o sistema carvão/membrana de éster-Tabela B.42.: Análise das partículas aderidas para o sistema carvão/membrana de éster-Tabela B.43.: Análise das partículas aderidas para o sistema carvão/membrana de éster-Tabela B.44.: Análise das partículas aderidas para o sistema carvão/membrana de éster-Tabela B.45.: Análise das partículas aderidas para o sistema carvão/membrana de éstercelulose 0,4µm, para velocidade angular de compressão 5000rpm.267 Tabela B.46.: Análise das partículas aderidas para o sistema carvão/membrana de éster-Tabela B.47.: Análise das partículas aderidas para o sistema carvão/membrana de éstercelulose 0,8µm, para velocidade angular de compressão 1000rpm...... 269 Tabela B.48.: Análise das partículas aderidas para o sistema carvão/membrana de éstercelulose 0,8µm, para velocidade angular de compressão 1000rpm...... 270 Tabela B.49.: Análise das partículas aderidas para o sistema carvão/membrana de éster-Tabela B.50.: Análise das partículas aderidas para o sistema carvão/membrana de éster-Tabela B.51.: Análise das partículas aderidas para o sistema carvão/membrana de éster-Tabela B.52.: Análise das partículas aderidas para o sistema carvão/membrana de éster-Tabela B.53.: Análise das partículas aderidas para o sistema carvão/membrana de éster-Tabela B.54.: Análise das partículas aderidas para o sistema carvão/membrana de éster-

NOMENCLATURA

- A: área da partícula, $[L^2]$
- a_{0:} raio início do contato sem a deformação, [L]
- D: media harmônica dos diâmetros das duas esferas, [L]
- d₁ e d₂ : o diâmetro das esferas, [L]
- d_p : o diâmetro da partícula, [L]
- E_e , E_s : coeficiente de elasticidade da esfera, $[ML^{-1}t^{-2}]$
- F: força mecânica de adesão, $[MLt^{-2}]$
- F_{ad}: Força de adesão, [MLt⁻²]
- F_{ac:} Força de adesão corrigida, [MLt⁻²]
- Fc: Força de Capilaridade, [MLt⁻²]
- Fe: Força eletrostática, [MLt⁻²]
- F_{vdw} : Força de Van der Waals, [MLt⁻²]
- H: constante de Hamacker, $[ML^2t^{-2}]$
- K : o módulo de Young, $[ML^{-1}t^{-2}]$
- Kt: constante teórica dos modelos teóricos, [-]
- K_c: constante de correção da equação 34, [-]
- m : a relação da região anular e o raio de contato, [-]
- m: massa das partículas, [M]
- RH: umidade relativa do ar, [-]
- r_p: raio da partícula, [L]
- r: distância entre a superfície do substrato e o eixo de rotação, [L]
- s: área da deformação entre duas esferas em contato, $[L^2]$
- V_p : volume da partícula, $[L^3]$

W: o trabalho de adesão no contato das superfícies, [Mt⁻²]

- W_a: Relação de Antonow's, [MLt⁻²]
- Wg: Média Geométrica, [MLt⁻²]
- W_h: Média Harmônica, [MLt⁻²]
- x: distância do centro do círculo, [L]
- z₀: distância de separação entre as duas superfícies, [L]

 δ : deformação na esfera, [L]

- Φ : valor de circularidade da partícula, [-]
- v, v_i: coeficientes de Poisson da superfície plana, [-]
- ρ_p : densidade da partícula, [ML⁻³]
- $\sigma_{g:}$ desvio padrão geométrico, [-]
- σ : desvio padrão, [-]
- ω : velocidade angular da centrífuga, [T⁻¹]
- γ : tensão superficial do líquido, [MT⁻²]
- γ^{d} : tensão superficial de dispersão, [MT⁻²]
- γ^{p} : tensão superficial de polarização, [MT⁻²]
- γ_{12} : tensão interfacial dos meios, [MT⁻²]
- γ_{s1} : energia livre interfacial sólido-líquido, [MT⁻²]

CAPITULO I

INTRODUÇÃO

A adesão de partículas micrométricas e nanométricas em superfícies vem ganhando destaque em vários segmentos científicos e tecnológicos. Segundo Lee Jaffe et al (1988) citado por Banda et al (2007), a adesão entre superfícies e pós desempenha um papel importante em várias áreas de processos, como nas operações de secagem de colagem, fluidificação de partículas finas, microencapsulamento, xerografia e impressão, na indústria alimentícia e nos processos farmacêuticos, no comportamento da poluição ambiental (Corn, 1961 e Zimon, 1982), na indústria de produtos de higiene (Kordecki, 1960 citado por Banda et al, 2007), na área de informática, entre outras isso leva cada vez mais a entrar no campo das investigações deste fenômeno.

Com isso, compreender a adesão de partículas e sua remoção de superfícies é de extrema importância para analisar as diferenças entre partículas regulares e irregulares, superfícies lisas e ou rugosas para poder auxiliar na geração de dispositivos eletrônicos eficientes e econômicos, porque a adesão de partículas com diâmetros muito pequenos pode contaminar os dispositivos eletrônicos de uma placa, contribuindo assim para um mau desempenho do funcionamento dos dispositivos eletrônicos afirmam Rimai e Busnaina, (1995) em seus estudos.

Há várias técnicas experimentais e métodos diferenciados que foram desenvolvidos para medir a força de adesão entre partículas e superfícies como aplicado por Corn (1961), Böehme et al (1962) e Rumpf (1977). Entre os métodos investigados têm-se: Microscopia de Força Atômica e Separação por Campo Elétrico (Kendall, 1994, Zimmermann, 2000, Attard e Gillies, 2001, Götzinger e Peuker, 2003) e a Técnica Centrífuga (Böehme et al, 1962, Mizes et al, 2000, Zimon, 1982, Lam e Newton, 1991, Podczeck e Newton, 1995, Takeuchi, 2006, Banda et al, 2007, Felicetti et al, 2009, Nguyen et al, 2010).

Uma vez que o fenômeno da adesão envolve forças atrativas, intermoleculares e forças de superfícies, a força de adesão entre partículas e superfícies é o principal objeto de interesse neste trabalho.

Dada a importância da adesão, em vários processos, fica evidente a necessidade da realização de estudos mais detalhados com o objetivo de determinar a magnitude da força de adesão entre partículas e superfícies. Esse estudo visa utilizar a técnica centrífuga para determinar a força de adesão entre partículas de formas e tamanhos irregulares, bem como em superfícies porosas, com a finalidade de analisar o comportamento de várias partículas aderidas ao mesmo tempo.

CAPITULO II

REVISÃO BIBLIOGRÁFICA

A adesão de partículas em superfícies, tanto planas como rugosas, é de evidente importância para estudos científicos e tecnológicos, bem como para indústrias e laboratórios farmacêuticos. A adesão pode ser compreendida como atração entre corpos com superfícies de contato comuns através de forças intermoleculares atrativas de ação a curta distância.

Neste capítulo será apresentada uma breve análise dos estudos mais importantes encontrados na literatura a respeito de força de adesão. Serão evidenciados os conceitos de adesão; forças que compõe a força de adesão; modelos teóricos e mecânicos da força de adesão; métodos utilizados para medir a força de adesão e as características e propriedades que influenciam na adesão entre dois corpos.

2.1. Definição de Adesão

A adesão significa que dois corpos em contato aderem a uma superfície comum entre eles, através de uma deformação nestes corpos. Nesta aderência atuam forças atrativas que podem ser intermoleculares, moleculares ou mecânicas, predominantes entre os corpos e a superfície, que dependem da deformação provocada pelas forças que estão agindo nesta aderência, bem como da morfologia dos corpos. Várias definições para a adesão foram apresentadas perante alguns estudos como: Good (1976), Zimon (1982), Kendall (1994), Podzeck e Newton (1995), Felicetti (2008), mas nenhuma é propriamente dita concreta ou aceita universalmente.

Wu (1982) citado por Banda (2002) apresenta ainda definições sobre a adesão termodinâmica, adesão química e a adesão mecânica. A adesão termodinâmica refere-se ao equilíbrio interfacial de forças ou energias associadas com processos reversíveis, tais como a força adesiva ideal e a energia ou trabalho de adesão. A adesão química refere-se à adesão que envolve ligações químicas na interface. A adesão mecânica provém de microscópicas uniões sobre algumas frações de interface.

Greenwood e Johnson (1998) apresentam a seguinte definição para o conceito de adesão:

"Adesão entre corpos e superfícies pode ser entendida como a deformação de corpos em contato com uma superfície plana ou rugosa sendo regidos por forças de superfícies. Estas forças de superfícies atuam na deformação dos corpos para se fixarem à superfície".

Como pode ser verificado, em todas as definições sobre o conceito de adesão apresentadas envolvem forças: de superfícies, atrativas, intermoleculares e de adesão.

Assim é necessário distinguir as forças envolvidas nestes processos, principalmente forças na adesão de partículas e meios filtrantes.

2.2. Força de Adesão

A determinação da força de adesão entre partículas e superfícies é de grande interesse para um vasto campo industrial como: na filtração, no revestimento de superfícies, na indústria alimentícia e na farmacêutica. Na indústria farmacêutica, aderências indesejáveis podem favorecer o acúmulo de resíduos na superfície das pastilhas, afetando seriamente o desempenho dos equipamentos (FELICETTI et al, 2005).

Em todos estes processos estão envolvidas forças atrativas que são responsáveis pela formação de aglomerados que podem ser desejados ou não, que se formam eventualmente no processo (AGUIAR, 1995 citado por FELICETTI, 2004).

Estas forças tanto podem ser forças mecânicas ou forças interfaciais que provocam o contato entre corpos ou entre partículas que de certa forma influenciam na adesão. Tem-se como exemplo as forças que determinam o número de partículas aderidas, as propriedades do meio, as alterações das partículas no transcorrer do desprendimento e a direção da força de desprendimento (BANDA, 2002).

Segundo Wu (1982), a força mecânica pode ser gerada por propriedades mecânicas da região interfacial e das massas dos corpos distintos, cuja força aplicada no sentido de unir dois corpos pode causar aprisionamento mecânico em suas superfícies e originar a adesão mecânica.

As forças interfaciais podem decorrer da força de Van der Waals, das reações químicas nas interfaces, ou da atração eletrostática. Quando há um equilíbrio de energia nas interfaces pode ser proveniente de força adesiva ideal, do trabalho de adesão ou do calor de umedecimento.

2.3. Forças que compõem a Força de Adesão

Rumpf (1977) e Zimon (1982), em seus estudos, verificaram que a força de adesão entre corpos contíguos é proveniente das forças de Van der Waals, eletrostática e de capilaridade. Sendo que o domínio de uma ou mais força depende das condições ambientais durante a fase de experimento, bem como das características físico-químico dos materiais envolvidos.

Todas estas forças, em tese, são afetadas pelo material, aspereza da superfície, tamanho da partícula, umidade relativa do ar, duração de contato e velocidade inicial de contato, afirma Felicetti (2004).

Ainda Gotzinger e Peukert (2003) mencionaram, em suas pesquisas, que a aderência entre partículas pode ser controlada por forças dispersivas (Van der Waals), ligações químicas, atrações capilares e ainda podem surgir efeitos eletrostáticos.

Para Kendall e Stainton (2001) a aderência entre partículas é proveniente das forças de Van der Waals, que são forças de curto alcance provenientes de forças intermoleculares.

Assim, a força de adesão total é admitida como o somatório dessas três forças (STEWART, 1986):

$$F_{ad} = F_{vdw} + F_{es} + F_c \tag{1}$$

na qual F_{ad} é a força de adesão, F_{vdw} é a força de Van der Waals, F_{es} é a força eletrostática e F_c é a força de capilaridade.

Segundo Podczeck et al (1996) as propriedades físicas e químicas dos materiais e as condições operacionais durante os processos podem influenciar para que uma ou mais destas forças atuem com maior efeito no resultado da força de adesão.

2.3.1. Forças de Van der Waals

Diante de todas as forças envolvidas na força de adesão, a força de Van der Waals é considerada, em todos esses estudos, a força mais importante no processo de adesão

(HAMAKER, 1937, RUMPF, 1977, KENDALL e STATION, 2001 e GOTZINGER e PEULERT, 2003).

Rumpf (1977) afirma que a força de Van der Waals surge quando o movimento aleatório dos elétrons, em qualquer material forma áreas transitórias de cargas concentradas conhecidas como dipolos. Estes dipolos, a qualquer instante, induzem novos dipolos no material adjacente, gerando forças atrativas como mostrado na Figura 1. A força de Van der Waals diminui rapidamente com a distância de separação entre as superfícies, consequentemente, esta influência estende-se apenas por alguns diâmetros moleculares longe da superfície (KRUPP, 1967).

Fonte: Faustino (2010)

O efeito líquido da força de Van der Waals é determinado integrando as forças entre todos os pares de moléculas de uma partícula esférica perto de uma superfície plana. A força de adesão resultante entre a partícula e uma superfície plana é dada pela equação proposta por Corn (1961):

$$F_{vdw} = \frac{H.D}{12.z_0^2}$$
(2)

em que H a constante de Hamaker, que depende dos materiais envolvidos e estende-se de 6×10^{-20} até 150×10^{-20} J para materiais comuns, z_0 é distância de separação efetiva entre as superfícies e D é a média harmônica dos diâmetros das esferas expresso pela equação:

$$D = \frac{d_1 \cdot d_2}{d_1 + d_2}$$
(3)

A equação (2) é aplicada para materiais duros com achatamento desprezível na área de contato. Depois do contato inicial da partícula, a força de Van der Waals e a força eletrostática, ambas, deformam gradualmente a superfície para reduzir a distância de separação e aumentar a área de contato até que as forças atrativas equilibrem as forças que resistem à deformação. A dureza dos materiais envolvidos delimita o tamanho da área de contato final e, portanto, a intensidade da força de adesão. O achatamento pode aumentar a força de adesão por até quinze vezes mais em metais leves e cem vezes mais em plásticos (TSAI et al, 1991).

2.3.2. Força Eletrostática

Durante os processos operacionais a agitação entre as partículas pode provocar atritos ou choques entre elas. Isso faz com que surjam cargas elétricas nessas partículas resultando em forças eletrostáticas, como afirma Derjaguin et al (1975). A força eletrostática pode surgir também pela aplicação de um campo elétrico externo ao sistema. São menores para materiais não condutores e maiores para materiais condutores. A maioria das partículas de 0,1 μ m ou maiores carregam pequena carga resultante *q*, que induzem uma carga, mas de sentido contrario ao da superfície, resultando em uma força eletrostática atrativa expressa pela equação proposta por Hinds (1998):

$$F_{e} = \frac{K_{E}q^{2}}{x_{q}^{2}}$$
(4)

sendo K_E a constante de proporcionalidade que depende do sistema de unidades usado e x_q a distância de separação de carga contrárias, que pode ser diferente da distância de separação das superfícies.

A adesão de partículas carregadas aparece geralmente em processos de xerografia e são dominadas por forças eletrostáticas. Sendo que este processo de xerografia depende, sobretudo do controle da adesão das partículas eletricamente carregadas na superfície também carregada.

O esquema representado pela Figura 2 mostra a transferência de partículas que ocorre em um processo de xerografia com atuação da força eletrostática. Uma vez que, variações na dinâmica da partícula e a superfície podem impedir sua remoção com um campo elétrico.

Figura 2.: Esquema representativo da força eletrostática atuando na transferência de partículas em processos de xerografia.

(a) Antes da aplicação do campo elétrico

(b) Após a aplicação do campo elétrico

Fonte: Mizes (1994)

Conforme o esquema da Figura 2 as partículas carregadas vão de (a) para (b). Como apresentado na Figura 2. (b), a primeira partícula permanece devido a uma área de contato auto-adesiva na superfície, a segunda partícula devido ao seu tamanho ser menor que a de atuação da força eletrostática e a terceira porque ela se encaixa em uma irregularidade da superfície, aumentando a atuação da força atrativa de Van der Waals.

2.3.3. Força de Capilaridade

Uma força de atração entre uma partícula e uma superfície é criada pela tensão superficial do líquido no espaço capilar no ponto de contato, como mostra a Figura 1.

Fonte: Hinds (1998)

Para umidades relativas maiores que 90% e superfícies lisas, esta força é representada pela equação proposta por Corn (1961):

$$F_{\rm C} = 2\pi\gamma d_{\rm p} \tag{5}$$

sendo que γ é a tensão superficial do líquido por unidade de área, d_p é o diâmetro da partícula. Para baixas umidades relativas do ar, a força depende da curvatura da rugosidade da superfície nos pontos de contato e não do diâmetro de partícula. Esta curvatura varia de partícula para partícula e origina uma distribuição da força de adesão em função do tamanho da partícula.

Medidas experimentais de forças de adesão são feitas determinando a força exigida para separar uma partícula de uma superfície. Estas podem ser medidas diretamente através de uma força centrífuga. Para materiais duros e superfícies limpas uma expressão empírica útil para a força de adesão, baseada em medidas diretas em partículas de vidro e quartzo (> 20 mm) a 25 °C (CORN, 1961), é representada pela equação:

$$F_{ad} = 0.063d_{p}[1 + 0.009 \ (\% RH)] \tag{6}$$

sendo que a força de adesão, F_{ad} , é dada em Newton, o diâmetro da partícula, dp é dado em metro, e a umidade relativa do ar, %RH, em percentagem.

Materiais porosos e que absorvem água com significante facilidade mantém a umidade inserida em seus poros nos quais também são formadas pontes líquidas.

As pontes líquidas resultam principalmente da tensão superficial do líquido, e apresentam diferentes estados que dependem da quantidade de líquido presente na ligação.

Existem três estados de ponte líquida que são: o pendular, o capilar e o funicular, apresentados na Figura 1.

Figura 4.: Estado de Saturação de Líquidos: (a) Estado Pendular; (b) Estado Funicular; (c) Estado Capilar

Fonte: Banda (2002)

O esquema da Figura 4 ilustra os estados de pontes líquidas. Quando existe a presença de uma pequena quantidade de líquido originam-se pontes líquidas entre as partículas, Figura 4 (a), denominado estado pendular. Aumentando-se a quantidade de líquido formam-se além de pontes líquidas, o preenchimento dos poros com este líquido, Figura 4 (b), chamado estado funicular e aumentando-se ainda mais a quantidade de líquido obtém-se o estado capilar, em que há preenchimento total de todos os poros, como pode ser visto na Figura 4 (c).

A diminuição da umidade relativa do ar provoca a diminuição do efeito das forças de capilaridade, sendo que quando a umidade relativa do ar é inferior a 50%, tal efeito de força pode ser até mesmo anulado (ZIMON, 1982).

Rennie et al (1998) afirmaram que em superfícies lisas a força de capilaridade pode ser até 50 vezes maior que as Força de Van der Waals e em superfícies rugosas o efeito é reduzido chegando a ser até mesmo eliminado.

O'Brien e Hermanm (1973) desenvolveram uma equação para calcular as forças de capilaridade, apresentada pela equação:

$$F_{c} = 2\pi r_{p} \gamma (\cos \theta_{1} + \cos \theta_{2})$$
⁽⁷⁾

na qual F_c é a força de capilaridade, r_p é o raio da partícula, γ é a tensão superficial do líquido condensado e θ_1 e θ_2 são os ângulos de contato entre os dois corpos em contato e o líquido.
Posteriormente Fischer e Israelachvili (1981), propuseram uma outra equação para calcular a força de capilaridade que leva em consideração a energia livre interfacial sólidolíquido, apresentada pela equação:

$$F_{c} = 4\pi\gamma\cos\theta + 4\pi r_{p}\gamma_{s1} \tag{8}$$

em que θ é o ângulo de contato entre a partícula aderida e o líquido, r_p é o raio da partícula e γ_{s1} é a energia livre interfacial sólido-líquido, representada pela Figura 5.

Figura 5.: - Ponte líquida entre uma esfera e uma superfície plana.

Fonte: Danheke (1972) citado por Felicetti, 2008

2.3.4. A Contribuição de cada uma das Forças para a Força de Adesão

A força eletrostática é dez vezes menor que a força de Van der Waals (RUMPF, 1977). O papel da força eletrostática na adesão é contribuir na sedimentação e na aglomeração das partículas (VISSER, 1995). Em um ambiente seco, a força eletrostática surge durante o contato de superfícies, mas é constante no contato entre dois materiais definidos (ZIMON, 1982). A relação entre força de Van der Waals e a força eletrostática é dado por quinze vezes a força de Van der Waals. Assim, forças eletrostáticas são muito pequenas para influenciar significativamente as forças de adesão medidas após a aplicação de uma força externa (PODCZECK et al, 1996).

A força capilar surge da umidade entre os corpos contíguos. Materiais porosos mais hidrofílicos contêm frequentemente umidade inserida nos poros que podem construir pontes líquidas nas superfícies aderidas (SCHUBERT, 1981). Uma segunda fonte de força capilar é a umidade que se condensa na abertura entre os corpos contíguos. Tal condensação começa a ocorrer numa umidade relativa do ar acima de 50%. Abaixo deste valor não existe nenhuma força capilar. Com umidades relativas do ar de 65-75%, a força capilar domina a força de adesão (ZIMON, 1982). A extensão da força capilar devido à condensação de umidade depende da geometria da abertura entre os corpos contíguos e das propriedades dos materiais em contato como: superfície, energia livre e aspereza de superfície (MAUGIS, 1996).

2.4. Modelos para determinar a Força de Adesão

A seguir serão apresentados alguns modelos encontrados na literatura para calcular a força de adesão.

2.4.1. Modelos Teóricos da Força de Adesão

Kendal e Stainton (2001) citado por Felicetti (2002 e 2008), consideraram o termo adesão como sendo uma força F exigida para separar duas partículas idênticas, como mostradas na Figura 6.

Figura 6.: Adesão pode ser definida como uma força F exigida para romper duas partículas.

Fonte: Kendall e Stainton (2001)

Bradley (1932) criou uma teoria de adesão para partículas esféricas rígidas somando a força de Van der Waals para todas as moléculas nas duas partículas, chegando a conclusão que a força de adesão deveria ser proporcional ao diâmetro da partícula (d_p) e ao trabalho de adesão (W) por unidade de área, expressa pela equação:

$$F_{ad} = \frac{\pi W d_p}{2}$$
(9)

A energia mencionada nos estudos de Bradley (1932), é denominada energia de adesão, sendo definida como a energia livre, ou trabalho reversível realizado para separar áreas unitárias de dois meios 1 e 2, desde o seu contato inicial até o infinito no vácuo. Sendo estes dois meios iguais, denomina-se essa energia como trabalho de coesão W_{11} . Quando esses dois meios são diferentes, esta energia de adesão é dita como trabalho de adesão W_{12} , que pode ser calculado pela equação:

$$W_{12} = \gamma_1 + \gamma_2 - \gamma_{12} \tag{10}$$

sendo que: W_{12} é o trabalho de adesão por unidade de área entre os meios 1 e 2; γ_1 é a tensão superficial do meio 1; γ_2 é a tensão superficial do meio 2; γ_{12} é a tensão superficial da interface dos meios 1 e 2.

A tensão superficial da interface pode ser calculada utilizando-se a regra de Antonow's descrita por Adamson (1990), conforme mostra a equação.

$$\gamma_{12} = |\gamma_1 - \gamma_2| \tag{11}$$

Segundo estudos realizados por Wu (1985) o trabalho de adesão será a redução da Energia Livre de Gibbs por unidade de área, quando uma interface for formada entre duas superfícies individuais.

Sendo que para sólidos, γ_1 é representado por γ_S é dimensionada em unidade de energia por unidade de área: Jm⁻². Para líquidos, γ_2 é representado por γ_L e dimensionada em unidade de tensão superficial ou energia superficial: Nm⁻¹ (ISRAELACHVILI, 1991).

Outras duas equações para a tensão interfacial são propostas por Brandrup (1989), as quais relacionam a tensão interfacial com as tensões superficiais de cada meio ($\gamma_1 e \gamma_2$) e suas respectivas componentes de dispersão ($\gamma_1^d e \gamma_2^d$) e de polarização ($\gamma_1^p e \gamma_2^p$).

$$\gamma_{12} = \gamma_1 + \gamma_2 - \frac{4\gamma_2^{d}}{\gamma_1^{d} + \gamma_2^{d}} - \frac{4\gamma_1^{p}\gamma_2^{p}}{\gamma_1^{p} + \gamma_2^{p}}$$
(12)

$$\gamma_{12} = \gamma_1 + \gamma_2 - 2(\gamma_1^d \gamma_2^d)^{1/2} - 2(\gamma_1^p \gamma_2^p)^{1/2}$$
(13)

A tensão superficial de um componente (γ_1) é a soma de sua componente de dispersão com sua componente de polarização, como mostra a equação:

$$\gamma_1 = \gamma_1^{\ d} + \gamma_1^{\ p} \tag{14}$$

2.4.2. Modelos Mecânicos da Força de Adesão

Os principais modelos mecânicos que tentam explicar o contato entre esferas assim como a adesão entre partículas e superfícies são os modelos de Hertz (1881), de Derjaguim-Muller-Toporov (DMT, 1975), de Johnson-Kendall-Roberts (JKR, 1971) e de Maugis (1996). Estes modelos desprezam o contato plástico e assumem somente o contato elástico, ou seja, são modelos para corpos elásticos. Estudam a interação entre uma esfera perfeita e uma superfície plana, totalmente lisa, e ainda, o contato entre duas esferas elásticas. Sendo estes modelos descritos a seguir.

2.4.2.1. Modelo de Hertz

Em 1881, Hertz desenvolveu uma teoria que considera que não há existência de deformação, quando ocorre o contato entre uma esfera elástica e uma superfície lisa e rígida sem a influência de energia ou força de compressão que atue entre as mesmas. O contato ocorre somente na superfície da esfera. Contudo, havendo a influência de uma força de compressão (F) atuando sobre uma esfera contra uma superfície plana, surgirá uma deformação (δ) na esfera. Portanto, seguindo este modelo, as equações são válidas para o cálculo da força de adesão (F_{ad}) segundo Hertz.

$$F_{ad}=0$$
(15)

$$a = \sqrt[3]{\frac{rF}{K}}$$
(16)

$$a_0 = 0$$
 (17)

$$\delta = \frac{a^2}{r} = \frac{F}{Ka}$$
(18)

Sendo que:

a é o raio da área de contato;

a₀ é o raio da área de contato na adesão zero;

 δ é a deformação da extremidade esférica;

r é o raio da esfera;

F é a força de compressão aplicada;

K é o modulo reduzido de elasticidade de Young;

F_{ad} é a força de adesão;

Para calcular o módulo reduzido de Young (K), utiliza-se a equação:

$$\frac{1}{K} = \frac{3}{4} \left(\frac{1 - v_s^2}{E_s} + \frac{1 - v_e^2}{E_e} \right)$$
(19)

sendo que E_s e E_e é o coeficiente de elasticidade de superfície e da esfera, respectivamente, v_s e v_e é o coeficiente de Poisson da superfície e da esfera, respectivamente.

2.4.2.2. Modelo de Derjaguin-Müller-Toporov (DMT)

Na teoria de Derjaguin-Müller-Toporov (DMT) de 1975, além da deformação sobre a esfera elástica apresentada na teoria de Hertz que atua uma força (F), são consideradas as forças que agem entre os dois corpos – esfera e superfície – fora da região de contato. Estas forças somente produzem uma finita área de contato. Se uma compressão externa for aplicada, a área de contato aumentará. As equações a seguir apresentam o valor da força de adesão segundo o modelo DMT.

$$F_{ad} = 2\pi R W \tag{20}$$

$$a = \sqrt[3]{(F + 2\pi RW)} \frac{R}{K}$$
(21)

$$\delta = \frac{a^2}{R} \tag{22}$$

$$R = \frac{r_{1}r_{2}}{(r_{1} + r_{2})}$$
(23)

Sendo que:

a é o raio da área de contato;
R é o raio harmônico das esferas;
W é o trabalho de adesão ao contato das superfícies;
δ é a deformação da esfera;
r₁ e r₂ os raios das esferas;

F_{ad} é a força de adesão;

F é a força de compressão aplicada;

K é o modulo reduzido de elasticidade de Young.

Segundo Rimai et al (2000), o modelo DMT é válido para a atração entre as partículas devido às forças de Van der Waals e as forças eletrostáticas, ou seja, é aplicável para sistema com baixa adesão e pequenos raios.

2.4.2.3. Modelo de Johnson-Kendall-Roberts (JKR)

A teoria de Johnson-Kendall-Roberts (JKR) de 1971 não considera as forças fora da região de contato – força de longo alcance – somente evidencia as forças de curto alcance dentro da região de contato. Este modelo considera ainda que as deformações podem ser calculadas a partir de três energias: a elástica - armazenada na região de contato, a mecânica potencial - associada à aplicação de uma carga e a superficial – força de superfície. Assim, este modelo considera que as interações ocorrem dentro da zona de contato. O modelo JKR é definido pela equação que fazem corelações com as equações:

$$F_{adesão} = \frac{3\pi RW}{2}$$
(24)

$$a = \sqrt[3]{\frac{R}{K} \left[F + 3\pi RW + \sqrt{6\pi RWF + (3\pi RW)^2} \right]}$$
(25)

$$\delta = \frac{a^2}{R} - \frac{2}{3}\sqrt{\frac{6\pi W}{K}}$$
(26)

Rimai et al (2000) afirma que a teoria de JKR além de apresentar o tamanho da área de contato, indica a força necessária para remover uma partícula de um substrato.

As teorias de DMT e JKR durante os anos de 1971 a 1984 foram objetos de inúmeras discussões, promovendo assim, um grande número de experimentos e publicações. Até que se verificou que as duas teorias eram aplicáveis em duas situações muito distintas. O modelo de DMT é aplicável para corpos duros de pequenos raios e baixa energia de superfície e o modelo de JKR tem grande influência em sistemas com corpos maleáveis de grande raio e alta energia de superfície (CAPELLA e DIETLER, 1999).

2.4.2.4. Modelo de Maugis

A teoria de Maugis (1996) é aplicável a todos os sistemas, sendo considerada a mais completa e precisa. Pode ser aplicada desde esferas grandes e rígidas, com altas energias de superfícies, a corpos pequenos e macios, com baixa energia de superfície (CAPELLA e DIETLER, 1999).

Conforme afirmam Capella e Dietler (1999) o modelo de Maugis assume que a adesão é equivalente a uma tensão adicional constante, sobre uma região anular em torno de uma área de contato e engloba todas as propriedades dos materiais em um adimensional λ dado pela equação:

$$\lambda = \frac{2,06}{z_0} \sqrt[3]{\frac{RW^2}{\pi K^2}}$$
(27)

sendo que λ é o parâmetro adimensional de Maugis; z_0 distância de separação entre a partícula e a superfície de contato; R é o raio harmônico das esferas; W é o trabalho de adesão; K é o módulo reduzido de elasticidade de Young.

Se λ é grande, aplica-se o modelo de JKR, e se λ é pequeno, o modelo de DMT é empregado. No modelo de Maugis, a adesão é considerada como uma tensão adicional constante, sobre uma região anular c com o raio da área de contato a, é denotada por m.

Um esquema representativo dos modelos: de Hertz, de Derjaguin-Müller-Toporov (DMT), de Johnson-Kendall-Roberts (JKR) e de Maugis é apresentado nas Figura 7 e Figura 8.

Figura 7.: Microfotografia de uma esfera de poliestireno sobre um substrato de silicone mostrando o instante de contato.

Fonte: Bowen et al (1994)

A Figura 7 apresenta " θ " como sendo o ângulo formado no contato entre partículasubstrato, a área "a" como a região de exposição do substrato, "b" a região sombreada pela partícula e "c" a região de contato de substrato de silicone e a partícula.

Figura 8.: Microfotografia de uma partícula esférica de poliestireno em contato com um substrato de silicone, mostrando a deformação da esfera.

Fonte: Bowen et al (1994)

A Figura 8 mostra a deformação da esfera de poliestireno no momento do contato com a superfície do substrato de silicone. Esta deformação se deve a partícula ser totalmente elástica.

2.5. Características das Partículas na Força de Adesão

Algumas características físicas das partículas como: tamanho, forma, densidade, área superficial da partícula, diâmetro, volume podem influenciar na força de adesão.

A seguir serão apresentadas as características mais predominantes das partículas que influenciam diretamente na força de adesão como tamanho da partícula (granulometria) e a forma da partícula.

2.5.1. Tamanho das Partículas

O parâmetro que define o tamanho de uma partícula esférica homogênea é seu diâmetro. Uma partícula cúbica é definida pela dimensão de sua aresta. Partículas irregulares são definidas pela área projetada e pela área superficial (ALLEN, 1990).

Experimentalmente observou-se que sobre um corpo maior a força que terá maior domínio é a força gravitacional, e um corpo menor é dominado pela força de adesão (KENDALL e STAINTON, 2001).

Por meio de análises microscópicas é possível observar e medir partículas individualmente. Pode-se obter o valor do diâmetro médio a partir da área projetada da partícula. Esse número representa o tamanho da partícula, sendo possível também determinar a área superficial média da partícula.

2.5.2. Forma das partículas

A forma das partículas se faz necessária para descrever o comportamento do material particulado em vários procedimentos, tanto de caráter científico ou industrial.

Para analisar a forma da partícula, são propostos vários métodos, como: a descrição verbal, o uso de diversos coeficientes e os fatores de forma, de curvatura, a descrição por meio de formas sólidas, as funções matemáticas como a série de Fourier, as dimensões fractais entre outros (SVAROVSKY, 1990).

Alguns termos qualitativos, como esférica, regular, irregular, arredondada, quadrada, são usados para definir a forma de uma partícula. No entanto, são termos inadequados para determinar o fator de forma da partícula. O fator de forma é a relação adimensional entre várias medidas de uma partícula, que pode ser utilizado em equações que necessitem desse parâmetro (ALLEN, 1990 citado por AZEVEDO, 2009). Torna-se necessário então medir e definir o formato quantitativamente. Como na descrição do tamanho de uma partícula, o formato também pode ser determinado por número, superfície ou volume.

Um parâmetro quantitativo é a circularidade, que determina numericamente o quanto o formato de uma partícula se aproxima de um círculo perfeito.

O valor de circularidade (Φ) da partícula pode ser definido pela equação:

$$\Phi = \frac{4\pi A}{P^2}$$
(28)

sendo A a área da partícula e P o perímetro. A circularidade tem seu valor variando entre 0 e 1, sendo que um círculo perfeito tem circularidade igual a 1 (AZEVEDO, 2009).

2.5.3. Adesão e Aglomerados

Para Kendall e Stainton (2001) ao aumentar as forças de adesão entre partículas em um aglomerado aumenta-se a resistência do aglomerado, porque cada contato sobre a partícula requer mais força para provocar a ruptura deste aglomerado. Porém, partículas finas fortemente aderidas conduzem a estruturas leves, consideradas contatos fracos, embora cada contato da partícula uma a uma possa ser mais forte. Assim, a adesão pode aumentar ou diminuir a resistência do aglomerado. Como o processo de aglomeração é causado pela adesão, considera-se que a força do aglomerado final é proporcional à adesão total.

2.5.4. Nanopartículas

Boskovic et al (2005) realizaram experimentos com nanopartículas esféricas de látex de poliestireno e óxido de ferro e nanopartículas cúbicas perfeitas de óxido de magnésio, com o intuito de se estudar a influência da forma na eficiência do processo de filtração gás-sólido. Os resultados dos experimentos demonstraram que, para as partículas cúbicas, a eficiência de filtração foi menor do que para partículas esféricas, e essa diferença aumentou com o aumento do tamanho das partículas. Isso se deve ao movimento das partículas ao longo da superfície das fibras do filtro, em que as partículas esféricas depois de tocarem a fibra deslizam ou rolam e as partículas cúbicas apenas deslizam ou "tombam". As partículas cúbicas podem então tocar a fibra com as laterais ou com as arestas, o que muda a superfície de contato entre a fibra e a partícula significativamente, e aumenta a possibilidade da partícula não ficar retida na fibra.

DelRio et al (2009) caracterizaram as nanopartículas por sua densidade em processos de xerografia, atuando sobre superfícies rugosas.

Carillo et al (2010) simularam um modelo para a adesão de nanopartículas de látex aderidas ao substrato pastilha de silício, definindo-se uma nanopartícula pelo raio, através de sua deformação no contato em uma superfície que apresenta um formato de "capacete".

Diante das investigações apresentadas fica evidente que o tamanho e formatos das partículas influenciam consideravelmente no processo de adesão entre partículas e superfícies, atuando assim na força de adesão.

2.6. Influência das Características da Superfície na Força de Adesão

Para Lam e Newton (1991 e 2001) a força de adesão depende de algumas características tais como: a rugosidade das superfícies, o tamanho e a forma das partículas e as propriedades mecânicas das superfícies.

A seguir será apresentado a influência das propriedades mecânicas e da rugosidade das superfícies na força de adesão.

2.6.1. Propriedades Mecânicas das Superfícies

Os modelos desenvolvidos por Johnson, Kendall, e Roberts (teoria de JKR,1971) e por Derjaguin, Muller, e Toporov (teoria de DMT, 1975), apresentam o efeito da deformação sobre a força de adesão. Porém, este método é para deformação pequena e completamente elástica. Dahneke (1972) utilizou a teoria de Hamaker para estudar os efeitos da deformação de partícula sobre a força de adesão, calculando a energia de superfície das interações intermoleculares sobre dois corpos em contato, o qual possui a vantagem de ser independente da natureza da deformação. Quando duas esferas entram em contato, o achatamento de cada uma delas pode ocorrer de diversas formas dependendo da dureza de cada uma delas (XIE, 1997 citado por FELICETTI, 2008).

Para uma deformação totalmente elástica sob uma força de compressão F, a área da deformação, s, é dada pela equação descrita por Hertz (1881):

$$s = 1.63 \left(\frac{F.D}{K}\right)^{2/3}$$
 (29)

em que K' é a dureza de contato entre duas esferas e D é a média harmônica dos diâmetros das duas esferas.

Corn (1961) propôs que para materiais duros com superfícies lisas, baseando-se em medidas diretas de partículas de vidro e de quartzo (>20µm) a 25°C, a equação que melhor representa a força de adesão é a equação (6) indicada no item 2.3.3.

2.6.2. Superfícies rugosas e sua influência sobre a força de adesão

Uma grande variedade de materiais constitui-se de superfícies irregulares, com certa aspereza, que denomina-se rugosidade. Sendo que em um primeiro momento a aderência entre uma partícula e uma superfície se dá na parte rugosa da superfície. A Figura 9 apresenta este contato entre as superfícies de dois corpos sob um nível microscópico.

Fonte: Faustino (2010)

A rugosidade presente nas superfícies dos materiais tem o efeito de diminuir a força de adesão entre os corpos em contato, dependendo do diâmetro da partícula.

Para partículas dentro da faixa de tamanho de $10 - 100 \mu m$, a força total de Van der Waals é a mesma força de quando se trata de partículas lisas, se as rugosidades tiverem tamanhos menores que 0,01 μ m. Porém, se as rugosidades forem maiores que 0,1 μ m, o efeito da rugosidade entre os dois corpos em contato começa a dominar e então o diâmetro usado na equação para o cálculo da força de Van der Waals será o tamanho das superfícies das rugosidades (XIE, 1997 citado por Felicetti, 2008).

2.7. Métodos utilizados para Medir a Força de Adesão

Nas ultimas décadas várias técnicas foram desenvolvidas para caracterizar a adesão de partículas em superfícies. Sendo que três técnicas são consideradas as mais apropriadas para definir a adesão entre partículas e superfícies: Microscopia de Força Atômica (MFA), Separação por Campo Elétrico (SEM) e a Técnica Centrífuga

Um dos métodos mais comuns para investigar a adesão entre partículas e superfície é a microscopia de força atômica (MFA). Na literatura encontram-se um vasto campo de experimentos, utilizando microscopia de força atômica, verificando assim as interações entre uma partícula e uma superfície, podendo analisar as forças interativas que atuam na aderência dos dois sistemas como apresentado por Kendall (1994); Attard e Gillies (2001); Götzinger e Peuker (2003) e Zimmermann (2000).

Contudo este método de microscopia de força atômica é adequado e bastante preciso para verificar o comportamento da adesão de uma única partícula. Sendo extremamente limitado para investigar aderência de partículas que apresentam variações em seus tamanhos e formas sobre uma superfície. Para obter um resultado preciso da força de adesão é necessário se basear em um método estatístico, no qual podem ser verificadas várias partículas ao mesmo tempo.

O método de separação por campo elétrico foi usado desde os anos cinquenta para medir a adesão de partículas e uma superfície. Segundo Mizes et al 2000, a separação por campo elétrico caracteriza a adesão usando campos elétricos para remover partículas de uma superfície. Porém, este método caracteriza a força de adesão somente de partículas carregadas

A força de adesão entre partículas e superfícies planas é objeto de estudo há mais de 40 anos pelo método da técnica centrífuga (BÖHME et al, 1962, ZIMON, 1982, KULVANICH e STEWART, 1987, SALAZAR-BANDA et al, 2006, FELICETTI et al, 2009 e NGUYEN et al, 2010).

Geralmente a força de adesão de muitas partículas é medida em uma experiência única, sendo possível uma avaliação estatística dos dados. Isso é especialmente útil no caso de partículas com formas irregulares onde o esforço de área e aderência de contato dependerá da orientação aleatória das partículas entre si ou para a superfície. Portanto, a técnica de centrifugação é um método padrão para caracterizar o comportamento dos pós em vários segmentos industriais como o caso da indústria farmacêutica (LAM e NEWTON 1991, PODCZECK e NEWTON, 1995, TAKEUCHI, 2005 e NGUYEN et al, 2010).

Nguyen et al (2010) utilizaram a técnica centrífuga para determinar a força de adesão entre partícula-partícula. O material particulado utilizado tanto para partícula como para o substrato foi a celulose micro cristalina, diferenciando as frações: para as partículas as frações foram de 38 a 53µm e para o substrato foram de 100 a 160µm. Através da técnica centrífuga foi possível resolver o problema da polidispersão partícula-partícula, considerando a influência da rugosidade da superfície e a aplicação da força de compressão.

O item 2.8 descreve com detalhes a técnica centrífuga utilizada nesta pesquisa para determinar a força de adesão entre partículas orgânicas e substratos orgânicos constituídos de membrana de éster-celulose.

2.8. Técnica Centrifuga

Para um melhor entendimento da técnica centrífuga é bom enfatizar que a força centrífuga tem linha de ação radial e aponta sempre do centro para o exterior da trajetória circular descrita pelo corpo no referencial fixo do laboratório.

A força centrífuga é empregada para consolidar ou remover as partículas de um material pulverulento sobre a superfície de um substrato.

Para alguns estudiosos na investigação da força de adesão através da técnica centrífuga como: (BÖHME et al, 1962, LAM e NEWTON, 1991 e 1993, PODCZECK e NEWTON, 1995, KRUPP, 1967, MIZE et al, 2000, PIANTINO, 2003, SALAZAR-BANDA et al, 2007 e FELICETTI, 2008), o uso de uma centrífuga para medir forças de adesão está baseado no princípio que a força é o resultado da velocidade angular de uma partícula de massa definida a uma distância determinada do centro de rotação. A velocidade angular excederá a força de adesão entre a partícula e a superfície sobre uma velocidade centrífuga crítica. No equilíbrio, a magnitude da força centrífuga ($F_{centrífuga}$), aplicada iguala-se à força de adesão, mas com sinal oposto, conforme mostra a equação:

$$\mathbf{F}_{\text{centrifuga}} = -\mathbf{F}_{\text{ad}} \tag{30}$$

A força centrifuga é representada pela equação:

$$F_{\text{centrifuga}} = m \cdot \omega^2 \cdot r \tag{31}$$

A técnica centrífuga para determinar a adesão está baseada na separação de partículas de uma superfície de substrato devido a força centrífuga. A grandeza da força centrífuga aplicada depende da massa das partículas (m), da velocidade angular da centrífuga (ω) e da distância entre a superfície do substrato e o eixo de rotação (r).

A massa (m) das partículas é obtida pela equação:

$$\mathbf{m} = \boldsymbol{\rho}_{\mathrm{p}} \cdot \mathbf{v}_{\mathrm{p}} \tag{32}$$

sendo que ρ_p é a densidade da partícula e e v_p é o volume da partícula.

Para partículas polidispersas aderidas a uma superfície, a força necessária para separar as partículas varia proporcionalmente ao tamanho das partículas (ZIMON, 1982 e ISRAELACHVILI, 1992 citado por FELICETTI, 2008).

Böhme et al (1962) e Krupp (1967) desenvolveram uma técnica centrífuga para determinar a força de adesão de partículas esféricas. Um tubo foi especialmente construído e adaptado junto ao cabeçote do rotor da centrífuga com a finalidade de acomodar os substratos (discos de prova) contendo o material pulverulento paralelo ao eixo de rotação da centrífuga. O substrato foi colocado com a superfície empoeirada em direção ao eixo de rotação de forma que durante a centrifugação, as partículas fossem forçadas sobre a superfície do substrato pela força centrífuga. Este processo de centrifugação foi realizado a um tempo de rotação de 1 min antes de iniciar a desaceleração. Experiências preliminares tinham estabelecido que 1 min fosse suficiente para obter uma diferenciação entre os materiais nas propriedades de adesão, embora o trabalho adicional estabelecesse a ocorrência de um efeito de tempo significante.

A técnica centrífuga usada para as experiências foi descrita em detalhes por Lam e Newton (1991). Os tubos da centrífuga que continham as partículas aderidas às superfícies do substrato foram colocados no cabeçote do rotor a um ângulo fixo. Desde que Lam e Newton (1993) demonstraram a influência da duração da pressão de contato, à máxima velocidade centrífuga, na força de adesão, a máxima velocidade centrífuga foi alcançada por aumento crescente da velocidade do rotor e mantiveram exatamente 1 min (PODZECK et al, 1995 e 1996).

Experimentalmente foi confirmado por Piantino (2003) e Felicetti et al (2004) que a variação no tempo utilizado no desprendimento das partículas sobre o substrato não interferiu no valor da força de adesão. Desta forma, para facilitar a aquisição dos resultados experimentais, atribui-se a utilização do tempo de 1 min.

A técnica centrífuga descrita por Podczeck e Newton (1995), mostra que duas forças centrífugas aplicadas devem ser diferenciadas:

(a) a força *press-on*, que é aplicada para aumentar o contato entre as partículas e a superfície do substrato.

(b) a força *spin-off*, que é aplicada para separar as partículas aderidas às superfícies.

As superfícies contendo o material particulado são posicionadas nos tubos adaptados à centrífuga, de tal forma que a força centrífuga atue primeiramente nas superfícies e em seguida sobre as partículas.

O efeito da aplicação das forças centrífugas *press-on* e *spin-off* sobre a superfície do substrato contendo o material particulado é bem ilustrado pela Figura 10. As partículas são depositadas na superfície do substrato e levadas a uma centrífuga. Conforme mostra a Figura 10 (a), a superfície é rotacionada a velocidades crescentes, e a cada aumento da velocidade rotacional o número de partículas que permanecem sob a superfície do substrato é fotografado na mesma área da superfície onde as partículas foram depositadas. Assim podem-se analisar as mesmas partículas que permaneceram na superfície do substrato após cada aumento da velocidade rotacional até que, a força gerada seja suficiente, ou não, para remover aquela partícula. Três microfotografias de um experimento típico são mostradas na Figura 10(b) (MIZES et al, 2000 citado por FELICETTI, 2004).

Figura 10.: (a) Desprendimento das partículas pela técnica centrífuga, (b) análises das imagens das superfícies, no começo e depois de cada rotação.

Fonte: Mizes et al (2000) citado por Felicetti (2004).

Banda (2002) desenvolveu uma metodologia experimental para determinar a força de adesão entre partículas e uma superfície, através da técnica centrífuga. Com a utilização de uma microcentrífuga com velocidade de rotação até 14000rpm, os resultados mostraram que

utilizando a técnica centrífuga, para determinar a força de adesão entre partículas e uma superfície, quanto maior a velocidade rotação da centrífuga menor foi o tamanho de partículas a ser estudado. Os materiais utilizados foram o concentrado fosfático e o polvilho doce e uma superfície de aço. Sendo que através desta metodologia verificou-se também que a força de adesão entre partículas de concentrado fosfático e polvilho doce sobre uma superfície de aço acresceu com o aumento do tamanho das partículas.

A técnica centrífuga foi o método utilizado por Felicetti (2004), seguindo a metodologia desenvolvida por Banda (2002), para investigar a influência do tamanho das partículas de materiais pulverulentos orgânicos (polvilho doce) e inorgânicos (concentrado fosfático) sobre a força de adesão partícula-substrato, em superfícies orgânicas e inorgânicas polidas, com variação das velocidades de compressão e de desprendimento. Os resultados obtidos validaram a técnica centrífuga, mostrando que a força de adesão entre as partículas dos materiais pulverulentos investigados e a superfície dos substratos apresentou um comportamento linear com o diâmetro das partículas. Conclui-se ainda que as características das superfícies influenciam na força de adesão, sendo que para as superfícies lisas o valor da força de adesão são maiores que em superfícies rugosas, uma vez que nas superfícies lisas há um aumento da área de contato entre partícula-substrato.

CAPITULO III

MATERIAIS E MÉTODOS

Neste capítulo serão apresentados os equipamentos e a metodologia utilizados para a realização dos experimentos, bem como as características físicas do material particulado fuligem e carvão ativado e do substrato membrana de éster-celulose nas porosidades: 0,2µm, 0,4µm e 0,8µm.

3.1. Material Particulado

Os materiais particulados utilizados nesta pesquisa foram a fuligem e o carvão ativado.

A fuligem foi escolhida, pois trata-se de um pó que está diretamente relacionado com efeitos indesejáveis ao meio ambiente bem como no campo industrial e o carvão ativado tem grande utilização na indústria farmacêutica e de medicamentos e ainda é largamente utilizado em sistemas de filtragem. Pelas Figuras 3.1 e 3.2 pode se verificar que são partículas com formato irregulares. Os valores de circularidade foram calculados pela <u>equação 28</u> (ITO 2002 citado por FELICETTI 2008) do item 2.5.2 do Capitulo II. Os valores obtidos da circularidade da fuligem foi de Φ =0,67 e do carvão ativado foi de Φ =0,70. Ambos materiais particulados são semelhantes em suas características, porém o carvão apresenta, visualmente uma estrutura porosa que o difere da fuligem.

Figura 3.1.(a e b): Imagens da fuligem obtidas no microscópio MEV-FEG/DEMa/UFSCar: (a) com aumento de 4000 vezes e (b) com aumento de 5000 vezes

Fonte: Acervo Pessoal (2011)

Figura 3.2.(a e b):Imagens do carvão ativado obtidas no microscópio MEV-FEG/DEMa/UFSCar: (a) com aumento de 5000 vezes e (b) com aumento de 20000 vezes.

Fonte: Acervo Pessoal (2011)

Com isso, para a análise e seguimento dos cálculos foi utilizada a equação, para determinar o volume das partículas:

$$V_{p} = \frac{4Ar_{p}}{3}$$
(33)

Sendo A a área projetada da partícula, determinada pelo software Image-Pro Plus 7.0, e r_p o seu raio. O raio médio da partícula foi obtido pela média do maior e do menor diâmetro da partícula medido a cada dois graus de intervalo passando através do centróide da partícula, conforme pode ser visto na Figura 3.1.

Essas variáveis foram obtidas utilizando-se o analisador de imagens (Image Pro Plus 7.0). O software Image-Pro Plus 7.0 foi calibrado utilizando uma calibração compatível com a lente do microscópio óptico. Esta equação foi testada e adaptada por Banda (2002) citado por Felicetti (2004 e 2008); Faustino (2010) e Monutti (2011).

Figura 3.3.: Diâmetro médio definido pelo software Image-Pro Plus 7.0

Fonte: Adaptada de Felicetti (2008)

3.2. Substratos

Os substratos utilizados foram substratos orgânicos, membranas filtrantes de éstercelulose com diferentes porosidades: 0,2µm, 0,4µm e 0,8µm, da marca *Sheicher &Shuell – Filtration Life Science*, utilizada em processos de monitoramento de material particulado. As **Figura 3.4**. a 3.6. (a e b); apresentam as fotografias dos meios filtrantes utilizados nos experimentos, obtidas no microscópio eletrônico de varredura, do Departamento de Materiais da UFSCar.

Figura 3.4. Membrana de éster-celulose 0,2µm com aumento de (a) 5000vezes e (b) 7000vezes

Fonte: Acervo Pessoal (2011)

Figura 3.5.: Membrana de éster-celulose 0,4µm com aumento de

(a) 5000vezes e (b) 7000vezes

Fonte: Acervo Pessoal (2011)

Figura 3.6.: Membrana de éster-celulose 0,8µm com aumento de (a) 5000 vezes e (b) 7000 vezes

Fonte: Acervo Pessoal (2011)

As membranas de éster-celulose apresentam superfícies não rígidas e muita irregularidade, características que as diferenciam de substratos já utilizados em estudos anteriores, como o aço inoxidável (BANDA, 2002 e FELICETTI, 2004 e 2008), o PVC, o vidro e o Teflon[®] (FELICETTI, 2008), que possuíam superfícies polidas e rígidas.

As Figuras 3.7, 3.8 e 3.9 apresentam imagens topográficas das superfícies das membranas com as rugosidades especificas de cada uma. Essas imagens foram obtidas no Microscópio de Força Atômica (MFA-DEMa/UFSCar). Os valores de rugosidade encontrados para as membranas de 0,2µm foi equivalente a 169nm, de 0,4µm foi equivalente a 194nm e de 0,8µm foi equivalente a 334nm. Estes são valores de altura máxima de rugosidade. Maiores valores de rugosidade implicam em maiores picos de rugosidades, assim as regiões de contato entre as superfícies dos corpos são menores, e eles ficam aderidos uns aos outros com uma força de intensidade menor.

Figura 3.7.: Imagens topográficas da membrana 0,2µm obtidas no Microscópio de Força Atômica (MFA-DEMa/UFSCar) com rugosidade 169nm.

Fonte: Acervo Pessoal (2012)

Figura 3.8.: Imagens topográficas da membrana 0,4µm obtidas no Microscópio de Força Atômica (MFA-DEMa/UFSCar) com rugosidade 194nm.

Fonte: Acervo Pessoal (2012)

Figura 3.9.: Imagens topográficas da membrana 0,8µm obtidas no Microscópio de Força Atômica (MFA-DEMa/UFSCar) com rugosidade 334nm.

Fonte: Acervo Pessoal (2012)

3.3. Equipamentos

O sistema experimental utilizado era formado por um dispersor de pó (Marca Galai PD – 10, *vaccuum gage*), uma microcentrífuga (MA – 860, Marca Marconi Equipamentos), um microscópio óptico (Marca Olympus BX60), um programa analisador de imagens (Image-Pro Plus 7.0) e um microcomputador que contém os softwares necessários para o tratamento e a análise dos resultados.

3.3.1. Dispersor de Pó (Galai PD – 10, *vacuum gage*)

Utilizou-se um sistema de dispersão de pó (Galai PD-10), que utilizava o vácuo para dispersar as partículas de pó na superfície do substrato para evitar aglomerados de partículas, evitando erros na contagem das partículas no analisador de imagens. A Figura 3.10 apresenta o dispersor de pó.

Figura 3.10.: Dispersor de Pó Galai PD – 10

Fonte: Acervo Pessoal, (2012)

3.3.2. Microcentrífuga

Uma Microcentrífuga - MA – 860 da Marconi Equipamentos foi utilizada para a realização dos experimentos laboratoriais. Esta microcentrífuga possuia um sistema de seleção do tempo de aceleração e desaceleração e atingia velocidades até 14000rpm. A microcentrífuga utilizada nos experimentos está ilustrada na Figura 3.11.

Figura 3.11.: Microcentrífuga MA-860: (a) parte frontal da microcentrifuga, (b) parte interna da microcentrífuga e (c) eixo de rotação da microcentrífuga com os adaptadores

Fonte: Acervo Pessoal (2012)

No cabeçote da microcentrífuga foram instalados dois tubos construídos em alumínio, como mostra a Figura 3.12, nos quais foram colocados adaptadores, do mesmo material, cuja finalidade é de sustentar os substratos contendo o material particulado distribuído em sua superfície. Os tubos e os adaptadores são em alumínio, por se tratar de um material leve e resistente, não apresentando grande inércia às velocidades de rotação da microcentrífuga.

Fonte: Adaptado de Banda (2002).

3.3.3. Conjunto de Equipamentos que envolvem a Análise de Dados

Para análise dos experimentos foram obtidas imagens analisadas pelo conjunto de equipamentos descritos a seguir.

3.3.3.1. Microscópio Óptico (Olympus BX60)

Um microscópico óptico com lente, cuja capacidade de ampliação é de 1000 vezes, foi conectado a uma câmara de vídeo colorida (CCD-Iris – Sony Co. Japan), com lente cujo aumento é de 100 vezes promoveram uma análise confiável das partículas sobre a superfície.

3.3.3.2. Analisador de Imagens (Image Pro-Plus 7.0)

Um programa de análise de imagens (Image Pro-Plus 7.0), instalado no microcomputador, fez a contagem do número de partículas distribuídas na superfície dos substratos, e determina o diâmetro médio, a área e o perímetro das mesmas.

3.3.3.3. Microcomputador contendo os softwares necessários para o tratamento

A Figura 3.13. apresenta os equipamentos para análise e aquisição de imagens (Microscópio Óptico, Analisador de Imagens e Microcomputador) utilizados nos experimentos laboratoriais para auxiliar na determinação da força de adesão entre partículas e membranas filtrantes.

Figura 3.13.: Equipamentos utilizados para aquisição e análise das imagens

Fonte: Acervo Pessoal (2012)

3.3.4. Outros equipamentos utilizados nos experimentos

Para realização desta pesquisa foram utilizados também os demais equipamentos para caracterização e preparação dos materiais e também do ambiente de laboratório para que possam ser criadas condições adequadas para o desenvolvimento do trabalho.

- Malver Mastersize para determinar a distribuição granulométrica dos materiais particulados.
- Picnômetro digital de Hélio com precisão +- 0,06 g/cm³, utilizado para medir a densidade dos materiais particulados.
- Uma estufa de secagem e esterilização, onde o material pulverulento foi colocado durante 24 horas.

- Um dessecador que contém esferas de sílica, para evitar a absorção de umidade pelo material particulado, onde este foi armazenado. Como se pretende determinar a força de adesão de pós secos, em que a força predominante será a Força de Van der Waals, esse procedimento torna-se necessário para o controle de umidade nas partículas.
- Um desumidificador e ar condicionado foram utilizados para se extrair a umidade do ar do laboratório onde realizaram-se os experimentos, mantendo-a abaixo de 50%, para diminuir a influência da força de capilaridade existente quando a umidade relativa do ar está acima de 50%. A umidade relativa do laboratório foi medida por um termohigrômetro digital (Minipa MTH-1360).

3.4. Metodologia

A técnica centrífuga foi utilizada nesta pesquisa para investigar a influência do tamanho das partículas dos materiais particulados, sobre a força de adesão entre partículas e membranas filtrantes. Para atingirmos este objetivo foi utilizada uma microcentrífuga (MA – 860, Marconi Equipamentos), cuja velocidade máxima de rotação é de 14000rpm. A técnica centrífuga utiliza a análise de imagens para determinar o número de partículas aderidas na superfície dos substratos antes e depois de cada centrifugação.

A umidade relativa do ar dentro do laboratório foi monitorada, com a utilização de um aparelho desumidificador e aparelhos de ar condicionado (se necessário) e mantida abaixo de 50%, pois acima desse valor a força de capilaridade poderá influenciar na força de adesão (ZIMON, 1982 e PODCZECK et al, 1996). A temperatura do laboratório também foi monitorada e mantida entre 18 e 19°C.

Os materiais particulados foram mantidos, durante todo o desenvolvimento dos experimentos, armazenados em dessecadores com sílica gel, com o intuito de evitar absorção de umidade do ambiente. Uma vez que, para pós secos, as forças predominantes na determinação da força de adesão são as forças de Van der Waals.

As membranas filtrantes empregadas no experimento necessitaram ser adaptadas ao sistema experimental. Primeiramente, foram cortadas em um tamanho de aproximadamente 14mm de diâmetro e marcadas em quadrantes (doze quadrantes) que serviram de referência na localização de uma determinada partícula ou de uma determinada área do substrato, no momento da análise das imagens no programa analisador de imagens (Image Pro-Plus 7.0).

Após este procedimento os discos das membranas marcados foram afixados na superfície de um disco de vidro. O disco de vidro foi utilizado como suporte para que os substratos contendo o material particulado pudessem ser levados à microcentrífuga durante os experimentos. A Figura 3.14. mostra um substrato marcado em quadrantes já adaptado à superfície de um disco de vidro.

Figura 3.14.: Substrato marcado em quadrantes colado na superfície do disco de vidros

Fonte: Acervo Pessoal (2012)

Para evitar a aglomeração das partículas nas superfícies dos discos de prova, e minimizar a ocorrência de erros na contagem das partículas no analisador de imagens, antes de cada corrida experimental, as partículas foram dispersas nas superfícies de cada um dos discos de prova. Para tal utilizou-se um dispersor de pó (Galai PD-10). Este sistema utiliza o vácuo para dispersar as partículas de pó numa superfície. O disco de prova foi colocado na base do dispersor e depois de atingidos 0,60bar de pressão relativa, o equipamento era desligado e em seguida cerca de 0,02g do material particulado colocado no topo do cilindro do dispersor era sugado pelo vácuo e disperso sobre a superfície do disco. Em seguida, o disco contendo o material particulado foi levado até a centrífuga para o início dos experimentos.

A Figura 3.15. (a e b) mostra o esquema do dispersor de pó GALAI para dispersão do material particulado.

Fonte: Acervo Pessoal (2012)

Assim, com o pó totalmente disperso na superfície do disco de prova, foi colocado no tubo de alumínio. O disco de prova foi orientado de forma que a superfície contendo o pó ficasse posicionada para que a força centrífuga agisse em um primeiro momento sobre as partículas e em seguida sobre a superfície, havendo a aplicação da força centrífuga de compressão (*press-on*).

A Figura 3.16 apresenta a preparação do disco de prova para ser colocado na centrífuga para atuação da velocidade centrífuga de compressão (*press-on*).

Figura 3.16.: Disco de prova e tubo de alumínio para ser colocado na centrífuga para atuação da velocidade centrífuga de compressão (*press-on*).

Fonte: Acervo Pessoal, (2012)

A velocidade de compressão (*press-on*) para as corridas experimentais, foram de **1000, 2000 e 5000rpm**. Depois que as partículas foram consolidadas na superfície do substrato, o disco de prova foi levado a um microscópio óptico (Olympus BX60) e analisado pelo analisador de imagens (Image Pro-Plus 7.0), para realizar a contagem das partículas dos materiais particulados foram escolhidas faixas de diâmetros específicas de cada material particulado: **11,1-17µm, 17,1-23µm e 23,1-29µm**.

As faixas de diâmetros foram selecionadas de acordo com a distribuição granulométrica obtida pelo equipamento Malvern Matersizer do Laboratório de Controle Ambiental do DEQ/UFSCar.

Sendo o valor do diâmetro médio obtido para a amostra de fuligem de 23,35 μ m e a densidade de 2,178g/cm³ e para a amostra de carvão ativado o valor do diâmetro médio obtido foi de 24,12 μ m e a densidade de 2,282g/cm³.

A Figura 3.17 (a e b) mostra a distribuição granulométrica da fuligem e do carvão ativado, respectivamente, gerada pelo Malvern Mastersize.

Figura 3.17.: Distribuição granulométrica em (a) da fuligem e em (b) do carvão ativado gerada pelo Malvern Mastersize do Laboratório de Controle Ambiental do DEQ/UFSCar.

Em seguida o disco de prova retornou à microcentrífuga para realizar o desprendimento de partículas, sendo aplicada a velocidade centrífuga de descompressão (*spin-off*). Nesta fase o disco de prova foi orientado de forma invertida da fase de compressão (*press-on*), momento este de remoção entre o material particulado e a superfície do disco,

assim a força centrífuga agiu primeiro na superfície e em seguida sobre as partículas. Após a aplicação da velocidade de descompressão (*spin-off*), a quantidade de partículas que permaneceram aderidas sobre a superfície foi determinada, levando o disco de prova ao microscópio óptico (Olympus BX60) e feita a análise das imagens pelo analisador de imagens (Image Pro-Plus 7.0). Este procedimento se repetiu por nove vezes a cada amostra, pois a determinação da força de adesão foi obtida com o aumento da velocidade de descompressão (*spin-off*), consecutivamente depois de cada contagem.

A Figura 3.18 apresentam a preparação do disco de prova para ser colocado na microcentrífuga para atuação da velocidade centrífuga de descompressão (*spin-off*).

Figura 3.18.: Disco de prova e tubo de alumínio para ser colocado na microcentrífuga para atuação da velocidade centrífuga de descompressão (*spin-off*).

Fonte: Acervo Pessoal (2012)

As velocidades de descompressão (*spin-off*) variaram de: 1000, 3000, 5000, 7000, 9000, 11000, 13000 e 14000rpm. A cada aumento da velocidade angular de descompressão (*spin-off*), as imagens das partículas remanescentes nas superfícies dos substratos foram adquiridas, e todas comparadas com as imagens das partículas aderidas na compressão, com a utilização do microscópio óptico (Olympus BX60) e o analisador de imagens (Image Pro-Plus 7.0).

O tempo de aplicação da velocidade de compressão (*press-on*) e a velocidade de desprendimento (*spin-off*), sobre cada disco de prova, foi realizado com a duração de 1 minuto.

A Figura 3.19 (a e b) apresenta a parte interna da microcentrífuga mostrando o local onde são acoplados os tubos de alumínio para aplicação das velocidades angulares de compressão e descompressão.

Figura 3.19.: (a) Parte interna da microcentrífuga e (b). esquema com a parte interna da centrifuga MA-860

Fonte: Acervo Pessoal, (2012)

As Figuras 3.20 e 3.21 (a,b, c e d) mostram o desprendimento das partículas dos substratos, com as variações crescentes das velocidades de descompressão dos substratos fuligem/membrana e carvão ativado/membrana, respectivamente.

Figura 3.21.: Experimentos carvão ativado – membrana 0,2µm da região 03 (a). Compressão 1000rpm (b). Descompressão 5000rpm

(d). Descompressão 14000rpm

Fonte: Acervo Pessoal (2012)

A Tabela 3.1 mostra os experimentos realizados e a Tabela 3.2 as corridas experimentais para cada um dos sistemas

Faixas de Diâmetros (µm)	Substrato Membranas de éster-celulose	Material Particulado	Velocidades Angulares de Compressão (rpm)
11,1-17		Fuligem	1000
17,1-23	0,2µm	e	2000
23,1-29		Carvão	5000
11,1-17		Fuligem	1000
17,1-23	0,4µm	e	2000
23,1-29		Carvão	5000
11,1-17		Fuligem	1000
17,1-23	0,8µm	e	2000
23,1-29		Carvão	5000

 Tabela 3.1.: Experimentos Realizados

Tabela 3.2.: Corridas Experimentais

Velocidade Centrifuga de Compressão	Velocidade Centrifuga de Desprendimento	
(Press-on)	(Spin-off)	
(rpm)	(rpm)	
	1000	
	3000	
1000	5000	
2000	7000	
5000	9000	
	11000	
	13000	
	14000	

3.4.1. Cálculos da Força de Adesão

Para análise dos sistemas apresentam-se as equações que foram utilizadas no cálculo da força de adesão.

Os valores de força de adesão foram calculados através das equações (29 a 31) do item 2.8. do Capitulo II:

$$\mathbf{F}_{\text{centrifuga}} = -\mathbf{F}_{\text{adesão}} \tag{30}$$

sendo a $F_{\text{centrífuga}}$ calculada a partir da equação:

$$F_{\text{centrífuga}} = m \cdot \omega^2 \cdot r$$
(31)

sendo que ω é a velocidade angular; r é a distância entre o eixo de rotação da centrífuga e a superfície do substrato e seu valor é de 0,057m; m é a massa média de partícula que foi obtida pela equação:

$$\mathbf{m} = \boldsymbol{\rho}_{\mathrm{p}} \cdot \mathbf{V}_{\mathrm{p}} \tag{32}$$

em que ρ_p é densidade da partícula obtém-se pelo picnômetro; Vp é volume da partícula calculado através da equação (32) do item 3.1 do Capitulo III:

$$V_{p} = \frac{4.A.r_{p}}{3}$$
(33)

em que A e r_p são a área projetada e o raio da partícula, ambos determinados pelo software de análises de imagens Image-Pro Plus 7.0.
CAPITULO IV

RESULTADOS E DISCUSSÕES

Neste capítulo serão apresentados os resultados obtidos da investigação da influência do tamanho das partículas dos materiais particulados sobre a força de adesão partículasubstrato. Sendo utilizados dois materiais pulverulentos: a fuligem (ρ =2,178g/cm²) e o carvão ativado (ρ =2,280g/cm²), para cada um destes pós, o substrato utilizado foi a membrana de éster-celulose variando as porosidades: 0,2µm, 0,4µm e 0,8µm.

Para cada sistema investigado, houve a variação de velocidades angulares de compressão: 1000, 2000 e 5000rpm e variação de velocidades angulares de descompressão: 1000, 3000, 5000, 7000, 9000, 11000, 13000 e 14000rpm. Sendo investigado o desprendimento das partículas com a variação destas velocidades, obtendo os valores da força de adesão e, ainda, a relação entre a força de adesão e o diâmetro da partícula aderida. Seguindo os modelos teóricos e mecânicos encontrados na literatura foram feitas comparações com os valores encontrados experimentalmente.

4.1. Análise dos Sistemas

Com o intuito de verificar se há a influência do tamanho da partícula em seu desprendimento do substrato e, conseqüentemente, na força de adesão, foram obtidas figuras que relacionam a porcentagem de partículas dos materiais particulados fuligem e carvão ativado aderidas ao substrato membrana de éster-celulose com o aumento da velocidade angular de descompressão aplicada pela centrífuga. Este desprendimento foi analisado para três velocidades de compressão: 1000, 2000 e 5000rpm.

Os experimentos foram feitos em triplicatas, sendo que, para cada sistema analisado representa a média dos três sistemas.

4.1.1. Análise do desprendimento das partículas para os sistemas fuligem e carvão ativado e substrato membrana de éster-celulose nas porosidades: 0,2µm, 0,4µm e 0,8µm

Nos itens 4.1.1.1. e 4.1.1.2. serão apresentadas as análises dos sistemas fuligem/membrana de éster-celulose e carvão ativado/membrana de éster-celulose, respectivamente e na seqüência a discussão referente aos dados e figuras obtidos.

4.1.1.1. Desprendimento das partículas do sistema fuligem/membrana de éstercelulose nas porosidades: 0,2μm, 0,4μm e 0,8μm, variando a velocidade de compressão em 1000, 2000 e 5000rpm.

Análise do sistema fuligem/membrana de éster-celulose nas porosidades: 0,2µm, 0,4µm e 0,8µm, variando a velocidade de compressão em 1000, 2000 e 5000rpm, conforme Figuras 4.1 a 4.3.

Figura 4.1.: Porcentagem de partículas aderidas em função da velocidade angular de descompressão da fuligem para o substrato membrana de éster-celulose 0,2µm após a aplicação das velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

(b) 2000rpm

Figura 4.2.: Porcentagem de partículas aderidas em função da velocidade angular de descompressão da fuligem para o substrato membrana de éster-celulose 0,4µm após a aplicação das velocidades angulares de compressão: (a)1000,(b)2000 e (c)5000rpm.

Figura 4.3.: Porcentagem de partículas aderidas em função da velocidade angular de descompressão da fuligem para o substrato membrana de éster-celulose 0,8µm após a aplicação das velocidades angulares de compressão: (a)1000,(b)2000 e (b)5000rpm.

4.1.1.2. Desprendimento das partículas do sistema carvão ativado/ membrana de éstercelulose nas porosidades: 0,2µm, 0,4µm e 0,8µm, variando a velocidade de compressão em 1000, 2000 e 5000rpm.

Análise do sistema carvão ativado/membrana de éster-celulose nas porosidades: 0,2µm, 0,4µm e 0,8µm, variando a velocidade de compressão em 1000, 2000 e 5000rpm, conforme Figuras 4.4 a 4.6.

Figura 4.4.: Porcentagem de partículas de carvão ativado aderidas em função da velocidade angular de descompressão para o substrato membrana de éster-celulose 0,2µm após a aplicação das velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000 rpm.

(a)1000rpm (b) 2000rpm Faixa de Diâmetro Faixa de Diâmetro **→** 11,1-17µm **- 11,1-17µ**m 100 100 —**—** 17,1-23µm 🛨 23,1-29μm 80 80 %Particulas Aderidas %Particulas Aderidas 60 60 40 40 20 20 0 0 0 2000 4000 6000 8000 10000 12000 14000 16000 2000 4000 6000 8000 10000 12000 14000 16000 0 Velocidade Angular de Desprendimento (rpm) Velocidade Angular de Desprendimento (rpm)

(c) 5000rpm

Figura 4.5.: Porcentagem de partículas de carvão ativado aderidas em função da velocidade angular de descompressão para o substrato membrana de éster-celulose 0,4µm após a aplicação

Figura 4.6.: Porcentagem de partículas de carvão ativado aderidas em função da velocidade angular de descompressão para o substrato membrana de éster-celulose 0,8µm após a aplicação

As Figura 4.1, 4.2 e 4.3 (a, b e c) do item 4.1.1.1 que apresentaram as curvas da fração de partículas de fuligem aderidas aos substratos de membrana de éster-celulose $0,2\mu$ m, $0,4\mu$ m e $0,8\mu$ m, respectivamente, e as Figuras 4.4, 4.5 e 4.6 (a, b e c) do item 4.1.1.2 que apresentaram as curvas da fração de partículas de carvão ativado aderidas aos substratos de membrana de éster-celulose $0,2\mu$ m, $0,4\mu$ m e $0,8\mu$ m, respectivamente em função da velocidade angular de desprendimento, indicaram que o diâmetro das partículas tem influência direta no desprendimento das partículas do meio filtrante.

Obseva-se ainda que para as três velocidades angulares de compressão aplicadas, seguiu-se um perfil de desprendimento de partículas muito semelhante entre os diferentes sistemas, mostrando que partículas com diâmetros maiores se desprendem com maior facilidade, necessitando de velocidades angulares de descompressão menores para iniciar o desprendimento do substrato. Também constata-se que o aumento da velocidade angular de compressão torna mais difícil o desprendimento das partículas do substrato.

A magnitude da $F_{centrífuga}$ aplicada depende da massa das partículas (M), dada em Kg, da velocidade angular de descompressão (ω), dada em rad/s e da distância entre a superfície do substrato até o eixo de rotação (r), cujo valor é de 0,057m.

Para o cálculo da força de adesão, a massa média da partícula foi obtida através da equação 32 do item 2.8 do Capitulo II. Os valores da massa média, volume médio e diâmetro médio são apresentados nas Tabelas 4.1, 4.2 e 4.3 referentes ao sistema fuligem/membrana de éster-celulose e nas Tabelas 4.4, 4.5 e 4.6 referentes ao sistema carvão ativado/membrana de éster-celulose.

Tabela 4.1.: Massa média para a partícula de fuligem de acordo com o volume médio obtido para cada faixa de diâmetro para o sistema fuligem/membranéster-celulose 0,2μm após a aplicação das velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Material	Faixa de Diâmetro	Diâmetro Médio	Massa Média	Volume Médio
Particulado	(µm)	(µm)	(kg)	(m ³)
Fuligem	11,1-17	13,55	3,20E-12	1,47E-15
(ρ= 2,178 g/cm ³)	17,1-23	19,60	9,34E-12	4,29E-15
	23,1-29	25,64	2,10E-11	9,67E-15

(a) 1000rpm

Material	Faixa de Diâmetro	Diâmetro Médio	Massa Média	Volume Médio
Particulado	(µm)	(µm)	(kg)	(m ³)
Fuligem	11,1-17	13,76	3,27E-12	1,50E-15
(ρ= 2,178 g/cm ³)	17,1-23	19,89	9,34E-12	4,29E-15
	23,1-29	25,74	2,06E-11	9,47E-15
		(c) 5000rpm		
Material Particulado	Faixa de Diâmetro	Diâmetro Médio	Massa Média	Volume Médio
	(µm)	(µm)		
Fuligem	11,1-1/	13,89	3,35E-12	1,54E-15
(ρ= 2,178 g/cm ³)	17,1-23	20,32	1,04E-11	4,78E-15
	23,1-29	25,27	1,97E-11	9,06E-15

(b) 2000rpm

Tabela 4.2.: Massa média para a partícula de fuligem de acordo com o volume médio obtido para cada faixa de diâmetro para o sistema fuligem/membranéster-celulose 0,4μm após a aplicação das velocidades angulares de compressão:

(a) 1000, (b) 2000 e (c) 5000rpm.

(a) 1000rpm

Material	Faixa de Diâmetro	Diâmetro Médio	Massa Média	Volume Médio
Particulado	(µm)	(µm)	(kg)	(m ³)
Fuligem	11,1-17	13,83	3,50E-12	1,60E-15
$(\rho = 2,178 \text{ g/cm}^3)$	17,1-23	19,75	9,39E-12	4,31E-15
	23,1-29	25,12	2,00E-11	9,10E-15

(b) 2000rpm

Material	Faixa de Diâmetro	Diâmetro Médio	Massa Média	Volume Médio
Particulado	(µm)	(µm)	(kg)	(m ³)
Fuligem	11,1-17	13,87	3,51E-12	1,61E-15
$(\rho = 2,178 \text{ g/cm}^3)$	17,1-23	19,82	9,67E-12	4,44E-15
	23,1-29	26,04	2,18E-11	1,00E-14

(c) 5000rpm

Material	Faixa de Diâmetro	Diâmetro Médio	Massa Média	Volume Médio
Particulado	(µm)	(µm)	(kg)	(m ³)
Fuligem	11,1-17	13,56	3,46E-12	1,59E-15
$(\rho = 2,178 \text{ g/cm}^3)$	17,1-23	19,57	1,02E-11	4,66E-15
	23,1-29	26,12	1,96E-11	8,98E-15

Tabela 4.3.: Massa média para a partícula de fuligem de acordo com o volume médio obtido para cada faixa de diâmetro para o sistema fuligem/membranéster-celulose

0,8µm após a aplicação das velocidades angulares de compressão:

(a) 1000, (b) 2000 e (c) 5000rpm.

Material	Faixa de Diâmetro	Diâmetro Médio	Massa Média	Volume Médio
Particulado	(µm)	(µm)	(kg)	(m ³)
Fuligem	11,1-17	13,85	3,51E-12	1,61E-15
(ρ= 2,178 g/cm ³)	17,1-23	19,51	9,29E-12	4,26E-15
	23,1-29	25,82	2,06E-11	9,47E-15

(b)	2000rpm
------------	---------

Material	Faixa de Diâmetro	Diâmetro Médio	Massa Média	Volume Médio
Particulado	(µm)	(µm)	(kg)	(m ³)
Fuligem	11,1-17	13,87	3,40E-12	1,56E-15
(ρ= 2,178 g/cm ³)	17,1-23	19,82	9,41E-12	4,32E-15
	23,1-29	26,04	2,18E-11	1,00E-14

(c) 5000rpm

Material	Faixa de Diâmetro	Diâmetro Médio	Massa Média	Volume Médio
Particulado	(µm)	(µm)	(kg)	(m ³)
Fuligem	11,1-17	14,09	3,57E-12	1,64E-15
$(\rho = 2,178 \text{ g/cm}^3)$	17,1-23	19,94	9,43E-12	4,33E-15
	23,1-29	24,91	1,90E-11	8,63E-15

Tabela 4.4.: Massa média para a partícula de carvão ativado de acordo com o volume médio obtido para cada faixa de diâmetro para o sistema carvão ativado/membrana de éster-celulose 0,2μm após a aplicação das velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Material	Faixa de Diâmetro	Diâmetro Médio	Massa Média	Volume Médio
Particulado	(µm)	(µm)	(kg)	(m ³)
Carvão	11,1-17	14,54	3,59E-12	1,58E-15
$(\rho = 2,282 \text{ g/cm}^3)$	17,1-23	19,84	9,23E-12	4,04E-15
	23,1-29	25,16	1,82E-11	7,99E-15

(a) 1000rpm

Material	Faixa de Diâmetro	Diâmetro Médio	Massa Média	Volume Médio
Particulado	(µm)	(µm)	(kg)	(m ³)
Carvão	11,1-17	13,88	4,90E-12	2,15E-15
$(\rho = 2,282 \text{ g/cm}^3)$	17,1-23	20,14	1,05E-11	4,63E-15
	23,1-29	25,64	2,16E-11	9,47E-15

(b) 2000rpm

Material Particulado	Faixa de Diâmetro	Diâmetro Médio	Massa Média	Volume Médio	
	(µm)	(µm)	(kg)	(m ³)	
carvão	11,1-17	13,81	3,41E-12	1,50E-15	
$(\rho = 2,282 \text{ g/cm}^3)$	17,1-23	19,89	9,91E-12	4,34E-15	
	23,1-29	25,79	2,57E-11	1,13E-14	

(c) 5000rpm

Tabela 4.5.: Massa média para a partícula de carvão ativado de acordo com o volume médio obtido para cada faixa de diâmetro para o sistema carvão/membrana de éstercelulose 0,4μm após a aplicação das velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

(a) 1000rpm

Material	Faixa de Diâmetro	Diâmetro Médio	Massa Média	Volume Médio
Particulado	(µm)	(µm)	(kg)	(m ³)
Carvão	11,1-17	13,54	3,32E-12	1,46E-15
(ρ= 2,282 g/cm ³)	17,1-23	20,14	1,03E-11	4,54E-15
	23,1-29	25,66	2,18E-11	9,53E-15

(b) 2000rpm

_	Material	Faixa de Diâmetro	Diâmetro Médio	Massa Média	Volume Médio
_	Particulado	(µm)	(µm)	(kg)	(m ³)
-	Carvão	11,1-17	13,70	3,44E-12	1,51E-15
	(ρ= 2,282 g/cm ³)	17,1-23	19,88	1,01E-11	4,43E-15
		23,1-29	25,71	2,17E-11	9,48E-15

Material Particulado	Faixa de Diâmetro	Diâmetro Médio	Massa Média	Volume Médio	
	(µm)	(µm)	(kg)	(m ³)	
carvão	11,1-17	13,35	3,15E-12	1,38E-15	
$(\rho = 2,282 \text{ g/cm}^3)$	17,1-23	19,45	9,62E-12	4,21E-15	
	23,1-29	25,42	2,10E-11	9,20E-15	

(c) 5000rpm

Tabela 4.6.: Massa média para a partícula de carvão ativado de acordo com o volume médio obtido para cada faixa de diâmetro para o sistema carvão ativado/membrana de éster-celulose 0,8µm após a aplicação das velocidades angulares de compressão:

(a) 1000, (b) 2000 e (c) 5000rpm.

Material	Faixa de Diâmetro	Diâmetro Médio	Massa Média	Volume Médio
Particulado	(µm)	(µm)	(kg)	(m ³)
Carvão	Carvão 11,1-17		3,47E-12	1,52E-15
(ρ= 2,282 g/cm ³)	17,1-23	19,55	9,42E-12	4,13E-15
	23,1-29	25,50	2,04E-11	8,92E-15

(a) 1000rpm

Material	Faixa de Diâmetro	Diâmetro Médio	Massa Média	Volume Médio
Particulado	(µm)	(µm)	(kg)	(m ³)
Carvão	11,1-17	13,79	3,51E-12	1,54E-15
(ρ= 2,282 g/cm ³)	17,1-23	19,92	1,00E-11	4,42E-15
	23,1-29	25,84	2,20E-11	9,63E-15

(b) 2000rpm

l

Material Particulado	Faixa de Diâmetro	Diâmetro Médio	Massa Média	Volume Médio
	(µm)	(µm)	(kg)	(m ³)
carvão	11,1-17	13,75	3,48E-12	1,52E-15
(ρ= 2,282 g/cm ³)	17,1-23	19,60	9,76E-12	4,29E-15
	23,1-29	26,00	2,25E-11	9,87E-15

Com as curvas apresentadas nas Figuras 4.1, 4.2 e 4.3 do item 4.2.1.a foram construidas as Figuras 4.7, 4.8 e 4.9 e as curvas apresentadas nas Figuras 4.4, 4.5 e 4.6 foram construidas as Figuras 4.10, 4.11 e 4.12 dos sistemas fuligem/membrana de éster-celulose e carvão ativado membrana de éster-ceulose, respectivamente. Essas figuras representam a porcentagem de partículas que ainda ficaram aderidas a superfície do substrato em função da força de adesão, para as três faixas de diâmetros do pó de fuligem (11,1-17 μ m, 17,1-23 μ m e 23,1-29 μ m).

Figura 4.7.: Porcentagem de partículas aderidas no substrato em função da força de adesão do sistema fuligem/membrana de éster-celulose 0,2µm após a aplicação das velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Figura 4.8.: Porcentagem de partículas aderidas no substrato em função da força de adesão do sistema fuligem/membrana de éster-celulose 0,4µm após a aplicação das velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Figura 4.9.: Porcentagem de partículas aderidas no substrato em função da força de adesão do sistema fuligem/membrana de éster-celulose 0,8µm após a aplicação das velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Figura 4.10.: Porcentagem de partículas de carvão ativado aderidas na superfície do substrato em função da força de adesão do sistema carvão ativado/membrana de éster-celulose 0,2μm após a aplicação das velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Figura 4.11.: Porcentagem de partículas de carvão ativado aderidas na superfície do substrato em função da força de adesão do sistema carvão ativado/membrana de éster-celulose 0,4μm após a aplicação das velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Figura 4.12.: Porcentagem de partículas de carvão ativado aderidas na superfície do substrato em função da força de adesão do sistema carvão ativado/membrana de éster-celulose 0,8μm após a aplicação das velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Verifica-se que as curvas obtidas nas Figuras 4.7, 4.8 e 4.9 do sistema fuligem/membrana de éster-celulose e as curvas obtidas nas Figuras 4.10, 4.11 e 4.12 do sistema carvão ativado/ membrana de éster-celulose, apresentaram um comportamento linear e indicam que os resultados obedeceram uma distribuição log-normal, como observado por alguns estudiosos como Zimon (1982); Lam e Newton (1991); Podczeck e Newton (1995); Podczeck et al (1994); Podczeck (1999); Banda (2002); Felicetti (2004 e 2008); Faustino (2010) e Monutti (2011).

4.3. Mediana Geométrica da Força de Adesão e Desvio Padrão Geométrico

Um dos objetivos desta pesquisa foi obter uma relação entre os diâmetros das partículas e a força de adesão das mesmas em contato com o meio filtrante. Assim foram calculadas as medianas geométricas da força de adesão, bem como seus respectivos desvios padrão geométricos.

Segundo Zimon (1982) e Lam e Newton (1991) a mediana geométrica da força de adesão é definida como a força encontrada quando, após os experimentos com a centrífuga, há a probabilidade de 50% das partículas permanecerem aderidas ao substrato após o desprendimento.

A mediana geométrica representa a força de adesão média de uma partícula aderida ao substrato e foi obtida graficamente.

O desvio padrão geométrico é utilizado com o objetivo de calcular a medida numérica da dispersão mínima e máxima da força de adesão da partícula na seção linear do plano logaritmo-probabilidade. Sendo os valores da força de adesão correspondente a 16% das partículas aderidas ao substrato dos valores medidos projetados sobre a reta.

O desvio padrão geométrico, σ_g , foi calculado através da equação:

 $\sigma_{g} = \frac{\text{mediana geométrica de adesão}}{\text{força de adesão para 16% de partículas}}$ (34)

4.3.1. Valores da mediana geométrica e respectivo valor de desvio padrão geométrico para o sistema fuligem/membrana de éster-celulose e carvão ativado/membrana de éster-celulose para as porosidades 0,2µm, 0,4µm e 0,8µm.

Os valores das medianas geométricas e dos respectivos desvios padrão geométricos para os sistemas fuligem/membrana de éster-celulose e carvão ativado/membrana de éster-celulose estão apresentados nas Tabelas 4.7 a 4.12.

Tabela 4.7.: Mediana geométrica e desvio padrão sistema fuligem/membrana de éstercelulose 0,2µm

Material	Substrato	Força de	Faixas	Diâmetro Médio	Mediana	Desvio Padrão
Particulado		Compressão	de	de	Geométrica da	Geométrico
		(rpm)	Diâmetros (µm)	Partícula (µm)	Força de Adesão (N)	
		1000	11,1-17	13,55	4,16E-08	0,20
			17,1-23	19,60	6,05E-08	0,19
			23,1-29	25,64	8,52E-08	0,17
			11,1-17	13,77	4,25E-08	0,21
fuligem	0,2µm	2000	17,1-23	19,89	8,24E-08	0,20
			23,1-29	25,74	1,09E-07	0,18
			11,1-17	13,89	5,30E-08	0,21
		5000	17,1-23	20,28	1,03E-07	0,22
			23,1-29	25,27	1,47E-07	0,21

Tabela 4.8.: Mediana geométrica	e desvio padrão sistema	i fuligem/membrana de éstei	[-
	celulose 0.4um		

Material	Substrato	Força de	Faixas	Diâmetro Médio	Mediana	Desvio Padrão
Particulado		Compressão	de	de	Geométrica da	Geométrico
		(rpm)	Diâmetros (µm)	Partícula (µm)	Força de Adesão (N)	
			11,1-17	13,83	3,32E-08	0,20
		1000	17,1-23	19,75	5,41E-08	0,19
			23,1-29	25,12	8,10E-08	0,15
			11,1-17	13,87	4,15E-08	0,17
fuligem	0,4µm	2000	17,1-23	19,82	7,99E-08	0,19
			23,1-29	26,04	1,12E-07	0,16
			11,1-17	13,56	4,73E-08	0,21
		5000	17,1-23	19,57	8,64E-08	0,21
			23,1-29	26,12	1,36E-07	0,20

Material Particulado	Substrato	Força de Compressão (rom)	Faixas de Diâmetros	Diâmetro Médio de Partícula (um)	Mediana Geométrica da Força de Adesão	Desvio Padrão Geométrico			
		('p)	(µm)	r artioula (pm)	(N)				
			11,1-17	13,85	2,63E-08	0,18			
		1000	17,1-23	19,51	4,98E-08	0,19			
			23,1-29	25,82	8,10E-08	0,16			
			11,1-17	13,80	2,36E-08	0,18			
fuligem	0,8 µm	2000	17,1-23	19,68	7,83E-08	0,21			
			23,1-29	25,48	1,07E-07	0,18			
			11,1-17	14,09	2,15E-08	0,18			
		5000	17,1-23	19,94	8,84E-08	0,22			
			23,1-29	24,91	1,32E-07	0,20			

Tabela 4.9.: Mediana geométrica e desvio padrão sistema fuligem/membrana de éstercelulose 0,8µm

Tabela 4.10.: Mediana geométrica e desvio padrão	o sistema carvão ativado/membrana de
éster-celulose 0.	2um

Material	Substrato	Força de	Faixas	Diâmetro Médio	Mediana	Desvio Padrão
Particulado		Compressão	de	de	Geométrica da	Geométrico
					Força de	
		(rpm)	Diâmetros	Partícula (µm)	Adesão	
			(µm)		(N)	
			11,1-17	14,54	3,89E-08	0,20
carvão 0,2		1000	17,1-23	19,84	5,04E-08	0,17
			23,1-29	25,16	7,36E-08	0,20
			11,1-17	13,88	5,31E-08	0,21
	0,2 μm	2000	17,1-23	20,14	6,42E-08	0,22
			23,1-29	25,64	7,41E-08	0,21
			11,1-17	13,81	5,08E-08	0,21
		5000	17,1-23	19,89	1,03E-07	0,22
			23,1-29	25,79	1,35E-07	0,21

Tabela 4.11.: Mediana geométrica e desvio padrão sistema carvão ativado/membrana de
éster-celulose 0,4µm

Material	Substrato	Força de	Faixas	Diâmetro Médio	Mediana	Desvio Padrão
Particulado		Compressão	de	de	Geométrica da	Geométrico
		(rpm)	Diâmetros (µm)	Partícula (µm)	Força de Adesão (N)	
			11,1-17	13,54	2,34E-08	0,20
		1000	17,1-23	20,14	3,95E-08	0,21
carvão			23,1-29	25,66	5,28E-08	0,25
		2000	11,1-17	13,70	3,54E-08	0,20
	0,4µm		17,1-23	19,88	5,07E-08	0,21
			23,1-29	25,71	6,61E-08	0,24
			11,1-17	13,35	5,84E-08	0,20
		5000	17,1-23	19,45	1,03E-07	0,22
			23,1-29	25,42	1,60E-07	0,21

Material Particulado	Substrato	Força de Compressão (rpm)	Faixas de Diâmetros (µm)	Diâmetro Médio de Partícula (µm)	Mediana Geométrica da Força de Adesão (N)	Desvio Padrão Geométrico		
			11,1-17	13,75	3,14E-08	0,20		
		1000	17,1-23	19,55	5,40E-08	0,21		
			23,1-29	25,50	7,63E-08	0,25		
			11,1-17	13,79	3,95E-08	0,21		
carvão	0,8 μm	2000	17,1-23	19,92	5,56E-08	0,24		
			23,1-29	25,84	8,05E-08	0,25		
			11,1-17	13,75	5,45E-08	0,21		
		5000	17,1-23	19,60	9,23E-08	0,22		
			23,1-29	26,00	1,64E-07	0,25		

Tabela 4.12.: Mediana geométrica e desvio padrão sistema carvão ativado/membrana de éster-celulose 0,8μm

Pelas Tabelas 4.7 a 4.12 observa-se que os valores das faixas de diâmetros médios das partículas de fuligem e de carvão ativado, são próximos entre si, em ambos os sistemas fuligem/membrana de éster-celulose e carvão ativado/membrana de éster-celulose, nota-se que os valores obtidos das medianas geométricas da força de adesão aumentaram com o aumento do diâmetro das partículas e, ainda, verifica-se a influência da velocidade angular de compressão (*press-on*) aplicada aos referidos sistemas analisados.

Quanto aos valores obtidos dos desvios padrão geométricos, observa-se pequenas variações, isto implica diretamente na quantidade de partículas dispersas no sistema que varia consideravelmente por amostra, podendo na dispersão de pó haver uma maior quantidade de partículas em uma amostra e menos na amostragem seguinte.

4.4. Relação entre a Força de Adesão e o Diâmetro Médio das Partículas

Seguindo os dados apresentados no item 4.3.1 referentes aos sistemas fuligem/membrana de éster-celulose e carvão ativado/membrana de éster-celulose nas porosidades: 0,2µm, 0,4µm e 0,8µm respectivamente, obteve-se as Figuras 4.13 (a, b e c) e 4.14 (a, b e c) que apontam os valores da força de adesão em função do diâmetro médio das partículas de fuligem e carvão ativado.

As Figuras 4.13 (a, b e c) e 4.14 (a,b e c) representam a relação entre a força de adesão e o diâmetro médio das partículas de fuligem e carvão ativado, para os sistemas fuligem/membrana de éster-celulose e carvão ativado/membrana de éster-celulose para as porosidades: 0,2µm, 0,4µm e 0,8µm.

(a) 0,2µm, (b) 0,4µm e (c) 0,8µm.

Figura 4.14.: Força de Adesão em função do diâmetro médio das partículas para os sistemas carvão ativado/membrana de éster-celulose para as porosidades:

Verifica-se nas Figuras 4.13 e 4.14 que o valor da força de adesão aumentou com o aumento da velocidade angular de compressão, principalmente para o sistema carvão ativado/membrana de éster-celulose. Um comportamento mais acentuado pode ser observado na velocidade angular de compressão de 5000rpm. Nota-se ainda, que a força de adesão entre as partículas de fuligem e carvão ativado aderidas a superfície do substrato de membrana de éster-celulose para as porosidades de $0,2\mu$ m, $0,4\mu$ m e $0,8\mu$ m aumentaram com o aumento do diâmetro médio da partícula, relatado também em trabalhos anteriores por Banda (2002); Felicetti (2004 e 2008) e Faustino (2010).

4.5. Comparação entre os sistemas fuligem e carvão ativado e o substrato membrana de éster-celulose para as porosidades: 0,2μm, 0,4μm e 0,8μm com variação da velocidade angular de compressão em 1000, 2000 e 5000rpm.

Esta comparação visa verificar a influência da porosidade dos substratos orgânicos na intensidade da força de adesão. Os substratos analisados para as partículas de fuligem e de carvão ativado são as membranas de éster-celulose com as diferentes porosidades: 0,2µm, 0,4µm e 0,8µm, com a variação da velocidade angular de compressão: 1000, 2000 e 5000rpm.

4.5.1. Comparação entre os sistemas fuligem e carvão ativado/membrana de éstercelulose para as porosidades: 0,2µm, 0,4µm e 0,8µm.

As Figuras 4.15 e 4.16 apresentam a comparação da força de adesão em função do diâmetro médio das partículas de fuligem e carvão ativado aderidas na superfície do substrato de membrana de éster-celulose para as porosidades $0,2\mu$ m, $0,4\mu$ m e $0,8\mu$ m, variando a velocidade angular de compressão (*press-on*): (a) 1000, (b) 2000 e (c) 5000rpm, respectivamente.

Figura 4.15.: Comparação da força de adesão em função do diâmetro médio das partículas para o sistema fuligem/membrana de éster-celulose para as porosidades: 0,2μm, 0,4μm e 0,8μm para cada velocidade angular de compressão aplicada:

(a) 1000, (b) 2000 e (c) 5000rpm.

Figura 4.16.: Comparação da força de adesão em função do diâmetro médio das partículas para o sistema carvão ativado/membrana de éster-celulose para as porosidades: 0,2μm, 0,4μm e
 0,8μm para cada velocidade angular de compressão aplicada:

(a) 1000, (b) 2000 e (c) 5000rpm.

Nas Figuras 4.15 e 4.16 observa-se que o comportamento da força de adesão para o substrato membrana de éster-celulose segue um comportamento não ideal, ou seja, a membrana com menor rugosidade e porosidade deveria apresentar a força de adesão maior, por possuir uma maior área de contato, que as membranas de maior rugosidade e porosidade. Admite-se a isso que o substrato membrana de éster-celulose visualmente apresenta uma superfície irregular, sendo diretamente afetado pela força de compressão (press-on). Nota-se que na Figura 4.15 (a e c) para as velocidades angulares de compressão 1000 e 5000rpm, temse um comportamento da força de adesão satisfatório em relação membrana de éster-celulose 0,2µm, fornecendo valores da força de adesão maior que a membrana de éster-celulose 0,4µm e 0,8µm. Sendo os valores das rugosidades para a membrana de éster-celulose 0,2µm de 169nm, para a membrana de éster-celulose 0,4µm de 194nm e para a membrana de éstercelulose 0,8µm de 334nm. Estes valores de rugosidade foram obtidos pela microscopia de força atômica. Comparando os dois sistemas observa-se que o sistema fuligem/substrato tem um comportamento que segue para o ideal que o sistema carvão ativado/substrato, possivelmente isso se deve a distribuição granulométrica, cujos valores de diâmetro médio (d_p) são de 23,35µm para a fuligem e de 24,12µm para o carvão ativado, sendo a densidade do carvão ativado ($\rho = 2,280$ g/cm²) maior que a densidade da fuligem ($\rho = 2,178$ g/cm²). Nota-se que com o aumento das velocidades angulares de compressão em ambos os sistemas apontaram uma variação no dimensionamento da força de adesão em relação aos substratos, ou seja, observa-se que a força de compressão teve influência direta neste comportamento, provavelmente ocasionado pela deformação na superfície do substrato, forçando as partículas de fuligem e carvão ativado adentrarem nos poros do substrato, afetando de diferentes formas os sistemas partícula/substrato. Pode-se ainda verificar que os valores da força de adesão em relação ao diâmetro médio das partículas que apresentaram intensidades próximas entre si, aumentaram com o diâmetro médio da partícula. Este fato pode ter ocorrido devido as interações intermoleculares que provocam uma atração maior entre material particulado e o substrato uma vez que ambos são compostos orgânicos, predominando assim a força de Van der Waals, fazendo com que estas intensidades no valor de força de adesão ficassem próximas.

4.5.2. Comparação entre os materiais particulados fuligem e carvão ativado no substrato membrana de éster-celulose nas porosidades de 0,2μm, 04μm e 0,8μm.

As Figuras 4.17 a 4.19 (a, b e c) apresentam as comparações entre os materiais particulados fuligem e carvão ativado no substrato membrana de éster-celulose nas porosidades de 0,2µm, 0,4µm e 0,8µm, com a variação da velocidade angular de compressão em 1000, 2000 e 5000rpm.

Figura 4.17.:Comparação entre os materiais particulados fuligem e carvão ativado para a velocidade angular de compressão de 1000rpm no substrato membrana de éstercelulose nas porosidades: (a) 0,2μm, (b) 0,4μm e (c) 0,8μm.

Figura 4.18.:Comparação entre os materiais particulados fuligem e carvão ativado para a velocidade angular de compressão de 2000rpm no substrato membrana de éstercelulose nas porosidades: (a) 0,2μm, (b) 0,4μm e (c) 0,8μm.

Figura 4.19:Comparação entre os materiais particulados fuligem e carvão ativado para a velocidade angular de compressão de 5000rpm no substrato membrana de éster-

Verifica-se nas Figuras 4.17 a 4.19 (a, b e c) a influência direta do aumento da velocidade angular de compressão nos sistemas fuligem e carvão ativado/membrana de éstercelulose nas porosidades de $0,2\mu$ m, $0,4\mu$ m e $0,8\mu$ m e, também pode-se observar que a mudança da superfície do substrato também alterou o comportamento da relação entre a força de adesão e o diâmetro médio das partículas. Possivelmente a força *press-on* provocou uma deformação na superfície da membrana de éster-celulose devido ao comportamento não constante em relação ao material particulado. Nota-se com a aplicação da velocidade angular de compressão (força *press-on*) de 1000 e 2000rpm que a fuligem teve uma força de adesão em relação ao diâmetro médio das partículas maior que a do carvão ativado. Na aplicação da velocidade angular de compressão (força *press-on*) de 5000rpm observou-se que este comportamento mudou totalmente e o carvão passou a ter uma força de adesão em relação ao diâmetro médio das partículas maior que o da fuligem provavelmente devido a influência da velocidade angular de compressão (força *press-on*). Esta força *press-on* deve ter afetado o substrato e o material particulado, deformando a superfície e forçando o material particulado a adentrar nos poros do substrato, uma vez que são membrana porosas.

4.6. Comparação entre os dados experimentais com os modelos teóricos

Nesta parte compararam-se os valores da força de adesão obtidos com os dados experimentais com os valores da força de adesão derivados dos modelos apresentados na literatura. Os modelos de Bradley, DMT e JKR.

Para chegar aos cálculos da força de adesão destes modelos da teoria da adesão foi necessário, primeiramente, obter o cálculo do trabalho de adesão (W). Com isso foi realizada uma busca na literatura dos valores da tensão superficial dos meios envolvidos: substrato de éster-celulose e material particulado: fuligem e carvão ativado.

Considerando os materiais particulados fuligem e carvão ativado como hidrocarbonetos, utilizou-se para ambos os pós o mesmo valor da tensão superficial. Sendo que através da tensão superficial foram obtidas as respectivas componentes de dispersão (γ^d) e de polarização (γ^p) dos meios envolvidos partícula/substrato. Estes dados são apresentados na Tabela 4.13.

Iustiu	Tubelu men Tensuo supermenu uos componentes du udesuo							
Material	γ (mJ/m ²)	$\gamma^{d} (mJ/m^{2})$	$\gamma^{p} (mJ/m^{2})$					
Acetato de celulose ⁽¹⁾	45,90	32,31	13,59					
Fuligem e Carvão Ativado ⁽²⁾	35,00	16,48	18,52					

Tabela 4.13.: Tensão superficial dos componentes da adesão

(1) Brandrup (1989) e (2) Glass & Larsen (1994)

4.6.1 Cálculo do Trabalho de Adesão

Para obter as comparações entre os dados experimentais e os modelos da literatura, o primeiro passo foi a escolha do cálculo do trabalho de adesão (W), que mais aproximassem dos resultados experimentais. Assim foram calculados os valores das tensões interfaciais dos meios envolvidos neste estudo, através da relação de Antonow's (W_{RA}), média geométrica (W_{MG}) e do método da média harmônica (W_{MH}), através das respectivas equações:

$$\gamma_{12} = \left| \gamma_1 - \gamma_2 \right| \tag{11}$$

$$\gamma_{12} = \gamma_1 + \gamma_2 - \frac{4\gamma_2^{d}}{\gamma_1^{d} + \gamma_2^{d}} - \frac{4\gamma_1^{p}\gamma_2^{p}}{\gamma_1^{p} + \gamma_2^{p}}$$
(12)

$$\gamma_{12} = \gamma_1 + \gamma_2 - 2(\gamma_1^d \gamma_2^d)^{1/2} - 2(\gamma_1^p \gamma_2^p)^{1/2}$$
(13)

A Tabela 4.14 são apresentados os valores da tensão interfacial calculada a partir das equações 11, 12 e 13, apresentadas anteriormente no item 2.4.1 do Capitulo II, para os sistemas fuligem e carvão ativado/membrana éster-celulose.

Sistema	Tensão Interfacial (γ_{12})						
	Média	Média	Relação de				
Substrato/Material Particulado	Geométrica	Harmônica	Antonow				
	$W_{MG}(mJm^2)$	$W_{MH}(mJm^2)$	$W_{RA}(mJm^2)$				
	3,02	5,89	10,90				

Tabela 4.14.: Tensão Interfacial

Com os valores apresentados na Tabela 4.14 foi possível obter os valores das tensões interfaciais, sendo estes valores apresentados na Tabela 4.15, possibilitando assim o calculo do trabalho de adesão (W) através da equação (10), do item 2.4.1, Capitulo II.

$$W_{12} = \gamma_1 + \gamma_2 - \gamma_{12}$$
(10)

A Tabela 4.15 apresenta os valores obtidos para o trabalho de adesão (W).

Trabalhos de Adesão Calculados						
Média	Média Harmônica	Relação de				
Geométrica	_	Antonow				
$W_{MG}(mJm^{-2})$	$W_{MH}(mJm^{-2})$	$W_{RA}(mJm^{-2})$				
77,88	75,01	70,0				
	Trat Média Geométrica $W_{MG}(mJm^{-2})$ 77,88	Trabalhos de Adesão CalcMédiaMédia HarmônicaGeométrica $W_{MG}(mJm^{-2})$ 77,8875,01				

Tabela 4.15.: Trabalho de Adesão Calculado

4.6.1.1. Cálculo da Força de Adesão Teórica com Variação do Trabalho de Adesão

Com os valores do trabalho de adesão calculados para cada relação, apresentados na Tabela 4.15, foi possível calcular a força de adesão teórica variando-se o trabalho de adesão (W), para cada sistema partícula/substrato estudados, utilizando-se o modelo de Bradley para estes cálculos.

Nas Tabelas 4.16 (a, b e c) e 4.17 (a, b e c) são apresentados os valores da força de adesão teórica variando-se o valor do trabalho de adesão (W), para os sistemas fuligem/membrana de éster-celulose e carvão ativado/membrana de éster-celulose, nas porosidades 0,2µm, 0,4µm e 0,8µm, respectivamente. Na sequência destas tabelas foram obtidas as Figuras 4.20, 4.21 e 4.22 sistema fuligem/membrana de éster-celulose e 4.23, 4.24 e 4.25 sistema carvão ativado/membrana de éster-celulose para facilitar a visualização dos dados obtidos em cada sistema analisado.

			(,,			
Velocidade	Faixa de Diâmetro	Diâmetro	Força de Adesão			
de compressão		Médio	Experimental	Força	a de Adesão T	eórica
(rpm)	(µm)	(µm)	(N)		(N)	
				Média	Média	Relação de
				Geométrica	Harmônica	Antonow
	11,1-17	13,55	4,16E-08	1,66E-06	1,60E-06	1,49E-06
1000	17,1-23	19,60	6,05E-08	2,40E-06	2,31E-06	2,15E-06
	23,1-29	25,64	8,52E-08	3,14E-06	3,02E-06	2,82E-06
	11,1-17	13,77	4,25E-08	1,68E-06	1,62E-06	1,51E-06
2000	17,1-23	19,89	8,24E-08	2,43E-06	2,34E-06	2,19E-06
	23,1-29	25,74	1,09E-07	3,15E-06	3,03E-06	2,83E-06
	11,1-17	13,89	5,30E-08	1,70E-06	1,64E-06	1,53E-06
5000	17,1-23	20,28	1,03E-07	2,48E-06	2,39E-06	2,23E-06
	23,1-29	25,27	1,47E-07	3,10E-06	2,98E-06	2,78E-06

Tabela 4.16.: Força de Adesão Teórica com variação de calculo do Trabalho de adesão para sistema fuligem/membrana de éster-celulose

(a) **0,2µm**

(b) 0,4µm

Velocidade de compressão (rpm)	Faixa de Diâmetro (µm)	Diâmetro Médio (µm)	Força de Adesão Experimental (N)	Força	a de Adesão T (N)	eórica
				Média	Média	Relação de
				Geométrica	Harmônica	Antonow
	11,1-17	13,75	3,32E-08	1,68E-06	1,61E-06	1,51E-06
1000	17,1-23	19,58	5,41E-08	2,39E-06	2,31E-06	2,15E-06
	23,1-29	25,64	8,10E-08	3,13E-06	3,01E-06	2,82E-06
	11,1-17	13,87	4,15E-08	1,70E-06	1,63E-06	1,52E-06
2000	17,1-23	19,82	7,99E-08	2,42E-06	2,33E-06	2,18E-06
	23,1-29	26,04	1,12E-07	3,18E-06	3,07E-06	2,86E-06
	11,1-17	13,56	4,73E-08	1,66E-06	1,60E-06	1,49E-06
5000	17,1-23	19,57	8,64E-08	2,39E-06	2,30E-06	2,15E-06
	23,1-29	26,12	1,36E-07	3,19E-06	3,08E-06	2,87E-06

Velocidade de compressão	Faixa de Diâmetro	Diâmetro Médio	Força de Adesão Experimental	Força	a de Adesão T	eórica
(rpm)	(µm)	(µm)	(N)		(N)	
				Média	Média	Relação de
				Geométrica	Harmônica	Antonow
	11,1-17	13,85	2,63E-08	1,69E-06	1,63E-06	1,52E-06
1000	17,1-23	19,51	4,98E-08	2,39E-06	2,31E-06	2,14E-06
	23,1-29	25,82	8,10E-08	3,16E-06	3,04E-06	2,84E-06
	11,1-17	13,80	2,36E-08	1,68E-06	1,63E-06	1,52E-06
2000	17,1-23	19,68	7,83E-08	2,41E-06	2,32E-06	2,15E-06
	23,1-29	25,48	1,07E-07	3,12E-06	3,00E-06	2,80E-06
	11,1-17	14,09	2,15E-08	1,72E-06	1,66E-06	1,55E-06
5000	17,1-23	19,94	8,84E-08	2,43E-06	2,35E-06	2,19E-06
	23,1-29	24,91	1,32E-07	3,05E-06	2,93E-06	2,74E-06

(c) 0,8 µm

As Figuras 4.20 a 4.22 representam as curvas obtidas através dos valores da Tabela 4.16 (a, b e c).

Figura 4.20.: Força de adesão teórica com variação do trabalho de adesão para o sistema fuligem/membrana de éster-celulose 0,2µm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Figura 4.21.: Força de adesão teórica com variação do trabalho de adesão para o sistema fuligem/membrana de éster-celulose 0,4μm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Figura 4.22.: Força de adesão teórica com variação do trabalho de adesão para o sistema fuligem/membrana de éster-celulose 0,8μm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Tabela 4.17.: Força de Adesão Teórica com variação de calculo do Trabalho de adesão para sistema carvão ativado/membrana de éster-celulose para as diferentes porosidades: (a) 0,2μm, (b) 0,4μm e (c) 0,8μm

(a) 0,2 µm							
	Faixa de		Força de				
Velocidade	Diâmetro	Diâmetro	Adesão				
de compressão		Médio	Experimental	Força	a de Adesão T	eórica	
(rpm)	(µm)	(µm)	(N)		(N)		
				Média	Média	Relação de	
				Geométrica	Harmônica	Antonow	
	11,1-17	14,54	3,89E-08	1,78E-06	1,71E-06	1,60E-06	
1000	17,1-23	19,84	5,04E-08	2,43E-06	2,34E-06	2,18E-06	
	23,1-29	25,16	7,36E-08	3,08E-06	2,97E-06	2,77E-06	
	11,1-17	13,88	5,31E-08	1,70E-06	1,56E-06	1,51E-06	
2000	17,1-23	20,14	6,42E-08	2,46E-06	2,37E-06	2,18E-06	
	23,1-29	25,64	7,41E-08	3,14E-06	3,02E-06	2,83E-06	
	11,1-17	13,81	5,08E-08	1,70E-06	1,63E-06	1,55E-06	
5000	17,1-23	19,89	1,03E-07	2,43E-06	2,34E-06	2,11E-06	
	23,1-29	25,79	1,35E-07	3,15E-06	3,04E-06	2,82E-06	

(b) 0,4µm

Velocidade	Faixa de	Diâmetro	Força de Adesão			
Velocidade						
de compressão	Diâmetro	Médio	Experimental	Força	de Adesão T	Teórica
(rpm)	(µm)	(µm)	(N)	(N)		
				Média	Média	Relação de
				Geométrica	Harmônica	Antonow
	11,1-17	13,54	2,34E-08	1,66E-06	1,60E-06	1,49E-06
1000	17,1-23	20,14	3,95E-08	2,46E-06	2,37E-06	2,21E-06
	23,1-29	25,66	5,28E-08	3,14E-06	3,02E-06	2,82E-06
	11,1-17	13,70	3,54E-08	1,68E-06	1,61E-06	1,51E-06
2000	17,1-23	19,88	5,07E-08	2,43E-06	2,34E-06	2,18E-06
	23,1-29	25,71	6,61E-08	3,14E-06	3,03E-06	2,83E-06
	11,1-17	13,35	5,84E-08	1,63E-06	1,57E-06	1,47E-06
5000	17,1-23	19,45	1,03E-07	2,38E-06	2,29E-06	2,14E-06
	23,1-29	25,42	1,60E-07	3,11E-06	3,00E-06	2,80E-06

Velocidade	Faixa de	Diâmetro	Força de Adesão				
de compressão	Diâmetro	Médio	Experimental	Força de Adesão Teórica			
(rpm)	(µm)	(µm)	(N)	(N)			
				Média	Média	Relação de	
				Geométrica	Harmônica	Antonow	
	11,1-17	13,75	3,14E-08	1,68E-06	1,62E-06	1,51E-06	
1000	17,1-23	19,55	5,40E-08	2,39E-06	2,30E-06	2,15E-06	
	23,1-29	25,50	7,63E-08	3,12E-06	3,00E-06	2,80E-06	
	11,1-17	13,79	3,95E-08	1,69E-06	1,63E-06	1,52E-06	
2000	17,1-23	19,92	5,56E-08	2,44E-06	2,35E-06	2,19E-06	
	23,1-29	25,84	8,05E-08	3,20E-06	3,04E-06	2,84E-06	
	11,1-17	13,75	5,45E-08	1,68E-06	1,62E-06	1,51E-06	
5000	17,1-23	19,60	9,23E-08	2,40E-06	2,31E-06	2,15E-06	
	23,1-29	26,00	1,64E-07	3,18E-06	3,06E-06	2,86E-06	

(c) 0,8 µm

As Figuras 4.23 a 4.25 representam as curvas obtidas através dos valores das Tabelas 4.17 (a, b e c).

Figura 4.23.: Força de adesão teórica com variação do trabalho de adesão para o sistema carvão ativado/membrana de éster-celulose 0,2μm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Figura 4.24.: Força de adesão teórica com variação do trabalho de adesão para o sistema carvão ativado/membrana de éster-celulose 0,4µm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Figura 4.25.: Força de adesão teórica com variação do trabalho de adesão para o sistema carvão ativado/membrana de éster-celulose 0,8μm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Conforme as Tabelas 4.16 e 4.17 (a, b e c) representadas pelas Figuras 4.20 a 4.22 e Figuras 4.23 a 4.25, respectivamente, verifica-se que a força de adesão teórica baseada nos modelos apresentados pela literatura, variando-se o trabalho de adesão (W) são muito maiores que a força de adesão experimental, a média/relação que mais se aproximou dos valores experimentais é a Relação de Antonow's. Observa-se que este fato nos sistemas fuligem/membrana-éster de celulose e carvão ativado/membrana-éster de celulose para as porosidades: $0,2\mu$ m, $0,4\mu$ m e $0,8\mu$ m com a variação das velocidades angulares de compressão: 1000, 2000 e 5000rpm. Devido a distância entre os valores da força de adesão experimental e teórica se fez necessária uma busca na literatura de um modelo teórico que melhor representaria a força de adesão experimental.

4.6.2. Comparação dos Dados Experimentais com Variação dos Modelos da Teoria de Adesão.

Os modelos investigados foram: modelo da teoria da adesão de Bradley (1932); os modelos mecânicos de Derjaguin-Müller-Toporov (DMT, 1975) e Johnson-Kendall-Roberts (JKR, 1971); representados pelas respectivas equações:

$$F_{adesão} = \frac{\pi W d_{p}}{2}$$
(9)

$$\mathbf{F}_{\mathrm{adesão}} = 2\pi \mathbf{W} \mathbf{R} \tag{20}$$

$$F_{adesão} = \frac{3\pi WR}{2}$$
(24)

Para o cálculo da força de adesão teórica seguindo os modelos aqui citados, utilizou-se a relação de Antonow's para o valor do trabalho de adesão na obtenção da força de adesão teórica, uma vez que mais se aproximou do valor da força de adesão experimental. Assim calculou-se a força de adesão teórica para os sistemas fuligem e carvão ativado/membrana éster-celulose nas porosidades 0,2μm, 0,4μm e 0,8μm, variando-se as velocidades angulares de compressão em 1000, 2000 e 5000rpm.

As Tabelas 4.18 (a, b e c) e 4.19 (a, b e c) apresentam os valores obtidos da força de adesão experimental e os valores da força de adesão teóricos da literatura para os sistemas fuligem/membrana de éster-celulose e carvão ativado/membrana de éster-celulose, respectivamente, nas diferentes porosidades de 0,2µm, 0,4µm e 0,8µm. Sendo que para uma melhor comparação destes dados obtidos, na sequência destas tabelas são apresentadas as Figuras 4.26 a 4.28, para o sistema fuligem/membrana de éster-celulose, e as Figuras 4.29 a 4.31, para o sistema carvão ativado/membrana de éster-celulose.

Tabela 4.18.: Força de Adesão Teórica com variação de Modelo Teóricos da ForçaAdesão para sistema fuligem/membrana de éster-celulose.

Velocidade de Compressão	Faixa de Diâmetro	Diâmetro Médio	Força de Adesão Experimental	Força de Adesão Teórica (N)		
(rpm)	(µm)	(µm)	(N)	Modelos da Literatura da Adesão		
				Bradley	DMT	JKR
	11,1-17	13,55	4,16E-08	1,49E-06	2,97E-06	2,23E-06
1000	17,1-23	19,6	6,05E-08	2,15E-06	4,30E-06	3,23E-06
	23,1-29	25,64	8,52E-08	2,82E-06	5,63E-06	4,23E-06
	11,1-17	13,77	4,25E-08	1,51E-06	3,02E-06	2,26E-06
2000	17,1-23	19,89	8,24E-08	2,19E-06	4,38E-06	3,28E-06
	23,1-29	25,74	1,09E-07	2,83E-06	5,66E-06	4,24E-06
	11,1-17	13,89	5,30E-08	1,53E-06	3,06E-06	2,29E-06
5000	17,1-23	20,28	1,03E-07	2,23E-06	4,46E-06	3,34E-06
	23,1-29	25,27	1,47E-07	2,78E-06	5,56E-06	4,17E-06

(a) 0,2µm

Velocidade de	Faixa de	Diâmetro	Força de Adesão			
Compressão	Diâmetro	Médio	Experimental	Força de Adesão Teórica (N)		
(rpm)	(µm)	(µm)	(N)	Modelos da Literatura da Adesão		
				Bradley	DMT	JKR
	11,1-17	13,75	3,32E-08	1,51E-06	3,02E-06	2,26E-06
1000	17,1-23	19,58	5,41E-08	2,15E-06	4,30E-06	3,27E-06
	23,1-29	25,64	8,10E-08	2,82E-06	5,64E-06	4,23E-06
	11,1-17	13,87	4,15E-08	1,52E-06	3,04E-06	2,28E-06
2000	17,1-23	19,82	7,99E-08	2,18E-06	4,36E-06	3,27E-06
	23,1-29	26,04	1,12E-07	2,86E-06	5,72E-06	4,29E-06
	11,1-17	13,56	4,73E-08	1,49E-06	2,98E-06	2,23E-06
5000	17,1-23	19,57	8,64E-08	2,15E-06	4,30E-06	3,22E-06
	23,1-29	26,12	1,36E-07	2,87E-06	5,74E-06	4,30E-06

(b) 0,4µm

(c) 0,8µm

Velocidade de	Faixa de	Diâmetro	Força de Adesão	Forc	a da Adação Taóri	~~
Compressão	Diâmetro	Médio	Experimental	(N)		
(rpm)	(μm)	(µm)	(N)	Modelos da Literatura da Adesão		
				Bradley	DMT	JKR
	11,1-17	13,85	2,63E-08	1,52E-06	3,04E-06	2,28E-06
1000	17,1-23	19,51	4,98E-08	2,14E-06	4,28E-06	3,21E-06
	23,1-29	25,82	8,10E-08	2,84E-06	5,68E-06	4,25E-06
	11,1-17	13,80	2,36E-08	1,52E-06	3,04E-06	2,27E-06
2000	17,1-23	19,68	7,83E-08	2,15E-06	4,30E-06	3,24E-06
	23,1-29	25,48	1,07E-07	2,80E-06	5,60E-06	4,20E-06
	11,1-17	14,09	2,15E-08	1,55E-06	3,10E-06	2,32E-06
5000	17,1-23	19,94	8,84E-08	2,19E-06	4,38E-06	3,28E-06
	23,1-29	24,91	1,32E-07	2,74E-06	5,48E-06	4,10E-06

Figura 4.26.: Força de Adesão Teórica com variação de Modelo Teóricos e Mecânicos da Força para sistema fuligem/membrana de éster-celulose 0,2µm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Figura 4.27.: Força de Adesão Teórica com variação de Modelo Teóricos e Mecânicos da Força para sistema fuligem/membrana de éster-celulose 0,4μm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Figura 4.28.: Força de Adesão Teórica com variação de Modelo Teóricos e Mecânicos da Força para sistema fuligem/membrana de éster-celulose 0,8µm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Tabela 4.19.: Força de Adesão Teórica com variação de Modelo Teóricos da ForçaAdesão para sistema carvão ativado/membrana de éster-celulose.

(a) 0 ,2µm										
Velocidade de	Faixa de	Diâmetro	Força de Adesão	Forca de Adesão Teórica						
Compressão	Diâmetro	Médio	Experimental		(N)					
(rpm)	(µm)	(µm)	(N)	Model	os da Literatura d	a Adesão				
				Bradley	DMT	JKR				
	11,1-17	14,54	3,89E-08	1,60E-06	3,20E-06	2,40E-06				
1000	17,1-23	19,84	5,04E-08	2,18E-06	4,36E-06	3,27E-06				
	23,1-29	25,16	7,36E-08	2,77E-06	5,53E-06	4,15E-06				
	11,1-17	13,77	5,31E-08	1,51E-06	3,02E-06	2,28E-06				
2000	17,1-23	19,89	6,42E-08	2,18E-06	4,37E-06	3,28E-06				
	23,1-29	25,74	7,41E-08	2,83E-06	5,66E-06	4,24E-06				
	11,1-17	14,07	5,08E-08	1,55E-06	3,09E-06	2,32E-06				
5000	17,1-23	19,20	1,03E-07	2,11E-06	4,22E-06	3,17E-06				
	23,1-29	25,63	1,35E-07	2,82E-06	5,63E-06	4,23E-06				

(b) **0,4**µm

Velocidade de	Faixa de	Diâmetro	Força de Adesão				
Compressão	Diâmetro	Médio	Experimental	Força de Adesão Teórica (N)			
(rpm)	(µm)	(µm)	(N)	Mo	delos da Literati	ura	
				Bradley	DMT	JKR	
	11,1-17	13,54	2,34E-08	1,49E-06	2,98E-06	2,23E-06	
1000	17,1-23	20,14	3,95E-08	2,21E-06	4,43E-06	3,32E-06	
	23,1-29	25,66	5,28E-08	2,82E-06	5,64E-06	4,23E-06	
	11,1-17	13,70	3,54E-08	1,51E-06	3,01E-06	2,26E-06	
2000	17,1-23	19,88	5,07E-08	2,18E-06	4,37E-06	3,28E-06	
	23,1-29	25,71	6,61E-08	2,83E-06	5,65E-06	4,24E-06	
	11,1-17	13,35	5,84E-08	1,47E-06	2,93E-06	2,20E-06	
5000	17,1-23	19,45	1,03E-07	2,14E-06	4,28E-06	3,21E-06	
	23,1-29	25,42	1,60E-07	2,80E-06	5,59E-06	4,19E-06	

(c) 0,8µm

Velocidade de	Faixa de	Diâmetro	Força de Adesão	Força de Adesão Teórica		
Compressão	Diâmetro	Médio	Experimental		(N)	
(rpm)	(µm)	(µm)	(N)	Мос	delos da Literatu	ira
				Bradley	DMT	JKR
	11,1-17	13,75	3,14E-08	1,51E-06	3,02E-06	2,27E-06
1000	17,1-23	19,55	5,40E-08	2,15E-06	4,30E-06	3,22E-06
	23,1-29	25,50	7,63E-08	2,80E-06	5,61E-06	4,21E-06
	11,1-17	13,79	3,95E-08	1,52E-06	3,03E-06	2,27E-06
2000	17,1-23	19,92	5,56E-08	2,19E-06	4,38E-06	3,29E-06
	23,1-29	25,84	8,05E-08	2,84E-06	5,68E-06	4,26E-06
	11,1-17	13,75	5,45E-08	1,51E-06	3,02E-06	2,27E-06
5000	17,1-23	19,60	9,23E-08	2,15E-06	4,31E-06	3,23E-06
	23,1-29	26,00	1,64E-07	2,86E-06	5,72E-06	4,30E-06

Figura 4.29.: Força de Adesão Teórica com variação de Modelo Teóricos e Mecânicos da Força para sistema carvão ativado/membrana de éster-celulose 0,2μm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Figura 4.30.: Força de Adesão Teórica com variação de Modelo Teóricos e Mecânicos da Força para sistema carvão ativado/membrana de éster-celulose 0,4μm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Figura 4.31.: Força de Adesão Teórica com variação de Modelo Teóricos e Mecânicos da Força para sistema fuligem/membrana de éster-celulose 0,8µm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Pelas Figuras 4.26 a 4.28 e Figuras 4.29 a 4.31, que representam as forças de adesão em função do diâmetro médio das partículas observa-se que para os sistemas analisados, o modelo de Bradley (1962), foi o que mais se aproximou dos dados experimentais, outra observação que se fez relevante é em relação aos valores da força de adesão apresentada pelos modelos da literatura que estão distantes dos valores da força de adesão experimental como um todo. Algumas hipóteses podem ser mencionadas:

a. os modelos teóricos utilizaram como material particulado, partículas esféricas e completamente lisas. Neste estudo os materiais particulados (fuligem e carvão ativado) são pós com partículas visualmente irregulares em suas superfícies, apresentando os valores de circularidades para fuligem de Φ =0,67 e para o carvão ativado de Φ =0,70, gerando assim menos pontos de contato e portanto, uma força de adesão menor que para partículas esféricas que geram mais pontos de contato com as superfícies;

- b. os modelos teóricos também utilizaram em seus experimentos substratos com superfícies completamente lisas e sem porosidades. A membrana de éster-celulose, analisada neste trabalho, apresenta uma superfície porosa e rugosa, sendo difícil sua análise com o microscópio de força atômica, conforme as Figuras 3.4, 3.5 e 3.6 do item 3.2 do capitulo III, apresentando os valores de porosidade e rugosidade das membranas de éster-celulose de: 0,2µm foi equivalente a 169nm, de 0,4µm foi equivalente a 194nm e de 0,8µm foi equivalente a 334nm;
- c. os modelos teóricos em seus experimentos consideraram a força de adesão como o somatório da força de capilaridade, força eletrostática e força de Van der Waals. Neste estudo não foram consideradas as forças de capilaridade e a força eletrostática, uma vez que os sistemas não foram carregados com cargas elétricas e, ainda, a força de compressão aplicada aos sistemas minimizaram o efeito da eletrostática e, também tomou-se todo o cuidado com a umidade relativa do ar, mantendo abaixo de 50%, para que a interferência da umidade relativa do ar fosse a mínima possível nos experimentos, considerando assim como predominante a força de Van der Waals para os sistemas analisados.

4.6.3. Modelo para aproximar os dados teóricos aos experimentais.

Pelos modelos apresentados e verificados na literatura, observa-se que todos em suas respectivas equações seguem um padrão como a equação:

$$F_{ad} = k_t W d_p$$
(35)

sendo W o trabalho de adesão, d_p é diâmetro da partícula aderida e k_t é uma constante teórica que depende apenas do modelo de força de adesão adotado para o calculo da adesão teórica.

Esses valores k_t são obtidos das equações 9, 20 e 24 e estão relacionados na Tabela 4.20.

Modelos da Literatura da Adesão	Valores de k _t
Bradley	π/2
DMT	2π
JKR	3π/2

Tabela 4.20.: Valores de k_t

Felicetti (2004) propôs um modelo semelhante ao de Corn (1961), desprezando-se o termo referente a umidade relativa do ar, uma vez que considera-se a predominância da força de Van der Waals, descrito pela equação:

$$F_{ad} = K.D_p \tag{36}$$

Modelo este que segue um padrão idêntico aos demais modelos teóricos da literatura de adesão.

Para a correção do modelo teórico aos valores obtidos experimentalmente, fez-se necessário a utilização de uma equação que envolve uma constante de correção $k_{c,}$ seguindo o padrão dos modelos apresentados. Assim apresenta-se a equação para obter a correção para a força de adesão real ou força de adesão corrigida (F_{ac}):

$$F_{ac} = k_c \cdot F_t \tag{37}$$

Equação esta que pode-se definir F_{ac} como força de adesão corrigida (N), sendo k_c uma constante que corrige o valor da força de adesão teórica (F_t) de acordo com o modelo teórico de adesão. Assim esta equação visa minimizar as diferenças entre os valores experimentais e teóricos.

Para o cálculo dos valores de k_c foi feita, uma média aritmética para cada faixa de diâmetro médio de cada força de adesão, relacionando a força de adesão experimental pelo valor da força de adesão teórica com base nos modelos da literatura. Estes valores estão apresentados nas Tabelas 4.21 e 4.22.

Velocidade de Compressão	Valores de k_c							
(rpm)	Model	Modelos Teóricos da Adesão						
	Bradley	DMT	JKR					
1000	2,60E-02	1,23E-02	1,71E-02					
2000	3,31E-02	1,60E-02	2,21E-02					
5000	4,00E-02	2,00E-02	2,60E-02					

Tabela 4.21.: Valores de k_c para sistema fuligem/membrana de éster celulose

Tabela 4.22.: Valores de kc para o sistema carvão ativado/membrana de éster celulose

Velocidade de Compressão	Valores de k_c						
(rpm)	Model	Modelos Teóricos da Adesão					
	Bradley	DMT	JKR				
1000	2,20E-02	1,14E-02	1,50E-02				
2000	2,80E-02	1,40E-02	1,90E-02				
5000	4,60E-02	2,30E-02	3,03E-02				

Com os valores apresentados nas Tabelas 4.21 e 4.22 para os valores de k_c e através da equação 37, foi realizado o cálculo das forças com os fatores de correção, obtendo as forças de adesão corrigidas e com isso foi possível fazer uma comparação entre os sistemas estudados de fuligem e carvão ativado/membrana de éster-celulose, com os dados das forças de adesão experimental. Estes resultados seguem apresentados na Tabela 4.23 (a, b e c) sistema fuligem/membrana de éster-celulose representadas através das Figuras 4.32, 4.33 e 4.34 e na Tabela 4.24 (a, b e c) sistema carvão ativado/membrana de éster-celulose representadas através das Figuras 4.35, 4.36 e 4.37.

Tabela 4.23.:Força de adesão corrigida com a variação do modelo de força de adesão, para o sistema fuligem/membrana de éster-celulose nas diferentes porosidades 0,2μm, 0,4μm e 0,8μm para as velocidades angulares de compressão:1000, 2000 e 5000rpm.

(a) 0,2µm									
Velocidade de Compressão	Faixa de Diâmetro	Diâmetro Médio	Força de Adesão Experimental	Força de Adesão Teórica Corrigida (N)					
(rpm)	(µm)	(µm)	(N)	Mode	elos Teóricos da	Adesão			
				Bradley	DMT	JKR			
	11,1-17	13,55	4,16E-08	3,90E-08	3,70E-08	3,80E-08			
1000	17,1-23	19,6	6,05E-08	5,60E-08	5,30E-08	5,50-08			
	23,1-29	25,64	8,52E-08	7,40E-08	7,00E-08	7,30E-08			
	11,1-17	13,77	4,25E-08	5,00E-08	5,00E-08	5,00E-08			
2000	17,1-23	19,89	8,24E-08	7,30E-08	7,00E-08	7,30E-08			
	23,1-29	25,74	1,09E-07	9,40E-08	9,10E-08	9,40E-08			
	11,1-17	13,89	5,30E-08	6,12E-08	6,12E-08	6,00E-08			
5000	17,1-23	20,28	1,03E-07	9,00E-08	9,00E-08	9,00E-08			
	23,1-29	25,27	1,47E-07	1,12E-07	1,12E-07	1,10E-07			

Velocidade de	Faixa de	Diâmetro	Força de Adesão				
Compressão	Diâmetro	Mádio	Experimental	Força de Adesão Teórica Corrigida			
(rpm)	μm)	(μm)	(N)	Mode	los Teóricos da A	desão	
				Bradley	DMT	JKR	
	11,1-17	13,75	3,32E-08	3,92E-08	3,72E-08	3,90E-08	
1000	17,1-23	19,58	5,41E-08	5,50E-08	5,40E-08	5,60E-08	
	23,1-29	25,64	8,10E-08	7,33E-08	7,00E-08	7,23E-08	
	11,1-17	13,87	4,15E-08	5,00E-08	5,00E-08	5,08E-08	
2000	17,1-23	19,82	7,99E-08	7,25E-08	7,00E-08	7,23E-08	
	23,1-29	26,04	1,12E-07	9,50E-08	9,20E-08	9,50E-08	
	11,1-17	13,56	4,73E-08	6,00E-08	6,00E-08	6,00E-08	
5000	17,1-23	19,57	8,64E-08	8,60E-08	8,60E-08	8,40E-08	
	23,1-29	26,12	1,36E-07	1,20E-07	1,20E-07	1,20E-07	

(b) **0,4**µm

(c) 0,8µm

Velocidade de	Faixa de	Diâmetro	Força de Adesão			
Compressão	Diâmetro	Médio	Experimental	Força de <i>l</i>	Adesão Teóric (N)	a Corrigida
(rpm)	(µm)	(µm)	(N)	Model	os Teóricos da	Adesão
				Bradley	DMT	JKR
	11,1-17	13,85	2,63E-08	3,95E-08	3,74E-08	4,00E-08
1000	17,1-23	19,51	4,98E-08	5,60E-08	5,30E-08	5,50E-08
	23,1-29	25,82	8,10E-08	7,40E-08	7,00E-08	7,30E-08
	11,1-17	13,8	2,36E-08	5,03E-08	4,90E-08	5,02E-08
2000	17,1-23	19,68	7,83E-08	7,12E-08	7,00E-08	7,16E-08
	23,1-29	25,48	1,07E-07	9,30E-08	9,00E-08	9,30E-08
	11,1-17	14,09	2,15E-08	6,20E-08	6,20E-08	6,03E-08
5000	17,1-23	19,94	8,84E-08	8,80E-08	8,80E-08	8,60E-08
	23,1-29	24,91	1,32E-07	1,10E-07	1,10E-07	1,10E-07

Figura 4.32.: Força de adesão corrigida com a variação do modelo de força de adesão, para o sistema fuligem/membrana de éster-celulose 0,2µm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Figura 4.33.: Força de adesão corrigida com a variação do modelo de força de adesão, para o sistema fuligem/membrana de éster-celulose 0,4µm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Figura 4.34.: Força de adesão corrigida com a variação do modelo de força de adesão, para o sistema fuligem/membrana de éster-celulose 0,8µm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Tabela 4.24 (a, b e c).: Força de adesão corrigida com a variação do modelo de força de adesão, para o sistema carvão ativado/membrana de éster-celulose nas diferentes porosidades 0,2μm, 0,4μm e 0,8μm para as velocidades angulares de compressão: 1000, 2000 e 5000rpm.

(a) 0,2µm									
Velocidade de Compressão	Faixa de Diâmetro	Diâmetro Médio	Força de Adesão Experimental	Força de Adesão Teórica Corrigida (N)					
(rpm)	(µm)	(µm)	(N)	Mod	elos Teóricos da	Adesão			
				Bradley	DMT	JKR			
	11,1-17	14,54	3,89E-08	3,52E-08	3,70E-08	3,60E-08			
1000	17,1-23	19,84	5,04E-08	5,00E-08	5,00E-08	5,00E-08			
_	23,1-29	25,16	7,36E-08	6,10E-08	6,30E-08	6,30E-08			
	11,1-17	13,88	5,31E-08	4,30E-08	4,30E-08	4,30E-08			
2000	17,1-23	20,14	6,42E-08	6,10E-08	6,12E-08	6,23E-08			
	23,1-29	25,64	7,41E-08	7,93E-08	7,93E-08	8,06E-08			
	11,1-17	13,81	5,08E-08	7,13E-08	7,11E-08	7,10E-08			
5000	17,1-23	19,89	1,03E-07	9,70E-08	9,70E-08	9,70E-08			
	23,1-29	25,79	1,35E-07	1,30E-07	1,30E-07	1,30E-07			

Velocidade de	Faixa de	Diâmetro	Força de Adesão				
Compressão	Diâmetro	Médio	Experimental	Força de Adesão Teórica Corrigida (N)			
(rpm)	(µm)	(µm)	(N)	Mode	los Teóricos da A	desão	
				Bradley	DMT	JKR	
	11,1-17	13,54	2,34E-08	3,30E-08	3,40E-08	3,40E-08	
1000	17,1-23	20,14	3,95E-08	5,00E-08	5,05E-08	5,00E-08	
	23,1-29	25,66	5,28E-08	6,20E-08	6,40E-08	6,40E-08	
	11,1-17	13,70	3,54E-08	4,30E-08	4,20E-08	4,30E-08	
2000	17,1-23	19,88	5,07E-08	6,10E-08	6,12E-08	6,23E-08	
	23,1-29	25,71	6,61E-08	7,90E-08	7,90E-08	8,10E-08	
	11,1-17	13,35	5,84E-08	7,00E-08	6,80E-08	7,00E-08	
5000	17,1-23	19,45	1,03E-07	1,00E-07	1,00E-07	1,00E-07	
	23,1-29	25,42	1,60E-07	1,30E-07	1,30E-07	1,30E-07	

(b) **0,4**µm

(c) 0,8µm

Velocidade de	Faixa de	Diâmetro	Força de Adesão			
Compressão	Diâmetro	Médio	Experimental	Força de <i>i</i>	Adesão Teóric (N)	a Corrigida
(rpm)	(µm)	(µm)	(N)	Model	os Teóricos da	Adesão
				Bradley	DMT	JKR
	11,1-17	13,75	3,14E-08	3,30E-08	3,40E-08	3,40E-08
1000	17,1-23	19,55	5,40E-08	5,20E-08	5,20E-08	5,00E-08
	23,1-29	25,50	7,63E-08	6,20E-08	6,43E-08	6,35E-08
	11,1-17	13,79	3,95E-08	4,30E-08	4,20E-08	4,30E-08
2000	17,1-23	19,92	5,56E-08	6,10E-08	6,10E-08	6,23E-08
	23,1-29	25,84	8,05E-08	7,92E-08	7,91E-08	8,06E-08
	11,1-17	13,75	5,45E-08	6,80E-08	6,80E-08	6,70E-08
5000	17,1-23	19,60	9,23E-08	9,85E-08	9,85E-08	9,76E-08
	23,1-29	26,00	1,64E-07	1,30E-07	1,30E-07	1,30E-07

Figura 4.35.:Força de adesão corrigida com a variação do modelo de força de adesão, para o sistema carvão ativado/membrana de éster-celulose 0,2μm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Figura 4.36.: Força de adesão corrigida com a variação do modelo de força de adesão, para o sistema carvão ativado/membrana de éster-celulose 0,4µm para as velocidades

Figura 4.37.: Força de adesão corrigida com a variação do modelo de força de adesão, para o sistema carvão ativado/membrana de éster-celulose 0,8μm para as velocidades angulares de compressão: (a) 1000, (b) 2000 e (c) 5000rpm.

Observa-se pelos dados obtidos nas Figuras 4.32 a 4.34 e Figuras 4.35 a 4.37 que o modelo descrito através da equação 35, com os valores k_c que aproximam os valores da força teórica de adesão com o valor da força de adesão experimental, uma vez que este fator de correção k_c depende da velocidade angular de compressão aplicada a cada sistema estudado. Verifica-se ainda que o modelo apresentado é satisfatório para a aproximação dos valores teóricos e experimental da força de adesão.

CAPITULO V

CONCLUSÕES

Na elaboração deste trabalho utilizou-se a técnica centrífuga como método para investigar a influência do tamanho das partículas dos materiais particulados orgânicos (fuligem e carvão ativado) e o substrato orgânico (membrana de éster-celulose) sobre a força de adesão partícula-substrato, variando as porosidades do meio filtrante em 0,2µm, 0,4µm e 0,8µm, assim como as velocidades angulares de compressão e descompressão, visando analisar também o desprendimento destas partículas com o aumento destas velocidades.

Assim a partir dos resultados experimentais e tendo em vista os objetivos propostos, as principais conclusões deste trabalho são:

- o desprendimento das partículas depende diretamente de seu diâmetro médio com a variação da velocidade angular de desprendimento;
- a força de adesão entre os materiais particulados: fuligem e carvão ativado e o substrato de membrana de éster-celulose variando as porosidades 0,2μm, 0,4μm e 0,8μm apresentaram um comportamento linear com o diâmetro das partículas numa escala logaritmo-probabilidade para as três velocidades angulares de compressão aplicada: 1000, 2000 e 5000rpm;
- superfícies orgânicas com porosidades menores fornecem forças de adesão maiores, porém nesta pesquisa não foi observado tal comportamento, uma vez que verificou-se em ambos os sistemas analisados que o aumento da velocidade angular de compressão tem influência direta na força de adesão, causando assim uma possível deformação na superfície do substrato fazendo com que a partícula adentre para o interior dos poros apresentando um comportamento não ideal referente a força de adesão e o substrato membrana de éster-celulose;
- A fuligem e o carvão ativado apresentam partículas visualmente irregulares, sendo aderidas a um meio visualmente irregular e poroso, fornecendo assim valores de força de adesão baixos em relação às partículas regulares como apresentado em outros estudos de Banda (2002), Felicetti (2004 e 2008) e Faustino (2010).

- A força de adesão teórica com base na relação de Antonow's para o cálculo do trabalho de adesão (W), bem como o modelo teórico de Bradley (1962) foram os que mais se aproximaram dos valores da força de adesão obtidos experimentalmente.
- Os modelos teóricos da literatura apresentaram valores da força de adesão bem distante dos valores experimentais. Isto pode ser justificado pelo fato de tanto os materiais particulados fuligem e carvão ativado como o substrato membrana de éster-celulose serem irregulares, ou seja, a fuligem e o carvão ativado tem um morfologia distante de uma esfera e as membranas de éster-celulose apresentam porosidades e rugosidades e, pode-se ainda considerar para o cálculo da força de adesão a predominância da força de Van der Waals. Fato este que evidenciou a verificação de um modelo que ajustasse o mais próximo possível estes valores. Um fator de correção k_c foi obtido para obter a equação de correção destes valores: F_{ac}=k_cF_t, sendo que F_{ac} é a força de adesão teórica corrigida, e F_t é a força de adesão teórica de acordo com os modelos teóricos de adesão de Bradley (1932), DMT (1975) e JKR (1971).

CONSIDERAÇÃO FINAL

Pela definição de força de adesão e da técnica centrífuga apresentadas neste estudo, conclui-se que os resultados obtidos da força de adesão partícula-substrato, ambos de origem orgânica, são pertinentes com a metodologia e com os objetivos assumidos nesta pesquisa.

Uma vez que a análise dos sistemas partícula/substrato analisados, evidenciam que uma força aplicada para aumentar o contato das partículas com a superfície do substrato, tem influência direta no valor da força de adesão, bem como a influência direta do diâmetro médio ao desprendimento das partículas com o aumento da velocidade angular de descompressão e a influência direta do substrato na adesão dos sistemas partícula/substrato, validando o método da técnica centrífuga.

CAPITULO VI

SUGESTÕES

- Estudar a força adesão com os materiais particulados fuligem e carvão ativado em outros tipos de substratos, como por exemplo, em superfícies lisas e inorgânicas e ou superfícies lisas e orgânicas.
- Utilizar outro tipo de material particulado para o substrato membrana de éstercelulose. Material particulado com morfologia mais circular para verificar a influência na força de adesão.
- Utilizar uma centrifuga mais potente para estudar o comportamento de nanopartículas no desprendimento da superfície de substratos lisos e rugosos.
- Verificar o modelo teórico de Maugis e comparar seus valores com dados experimentais.
- Utilizar como material particulado, pós farmacêuticos, uma vez que as investigações fazendo uso da técnica centrífuga para o segmento farmacológico é de grande importância como alguns estudos apresentados na literatura.
- Verificar efetivamente a influência da rugosidade no valor da força de adesão, comparando substratos com superfícies porosas com substratos que possuem superfícies lisas.

CAPITULO VII

REFERÊNCIAS BILBIOGRÁFICAS

- ADAMSON, A.W., "**Physical Chemistry of Surfaces**", 5th ed. John Wiley & Sons, Inc California, 1990.
- AHRENS, F., PATTERSON, T., MUELLER, S. and HOJJATIE, B., "Investigation of paper dryer picking, web transfer quality issues using a new web adhesion and drying simulatior". Brazilian Journal of Chemical Engineering, v.22, n°2, p.217 – 225, 2005.
- ALLEN, T. "Article size measurement". 4ª ed. London: Champman and Hall. 1990.
- ATTARD, P., GILLIES, G., "Deformation and Adhesion of Viscoelastic Particles: Theory and Atomic Force Microscopy". Ian Wark Research, University of South Australia. Submitted to Aust. J. Chem, September, 2001.
- BANDA, G. R. S., "Desenvolvimento de uma metodologia experimental, para determinar a força de adesão entre partículas e uma superfície plana, utilizando a técnica centrífuga". Dissertação de Mestrado, PPGE-EQ/UFSCar, São Carlos, UFSCar, 2002.
- BANDA G.R, FELICETTI, M.A., GONÇALVES, J.A.S., COURY, J.R., AGUIAR, M.L. "Determination of the adhesion force between particles and a flat surface, using the centrifuge technique". Powder Technology 173 (2007) 107–117 - Available on line at <u>www.sciencedirect.com</u>.
- BÖEHME, G., KRUPP, H., RABENHORST, H. and SANDSTEDE G., "Adhesion measurements involving small particles". Chemical Engineering Research and Design. Vol. 40a, p.252-259, 1962.

- BOSKOVIC, L., ALTMAN, I. S., AGRANOVSKI, I. E., BRADDOCK, R. D., YOJO, T., CHOI, M., "Influence of Particle Shape on Filtration Processes". Aerosol Science and Technology, volume 39, p.1184 – 1190, 2005.
- BOWEN, R.C, DEMEJO, L. P. AND RIMAI, D. S., "Advances in Particle Adhesion". Gordon and Breach Publisers, PG. 191-200 1994.
- BRADLEY, R.S., "The cohesive force between solid surfaces and the surfaces energy of solids", Philos, Mag. V. 13, p.853 862, 1932.
- BRANDRUP, J., IMMERGUT, E.H., "**Polymer handbook**" 3ed. New York: John Wiley, p. VI/411 VI/424, 1989.
- CARRILLO, J-M. Y., RAPHAEL, E. AND DOBRYNIN, A. V., "Adhesion of Nanoparticles". LANGMUIR ARTICLE - American Chemical Society - Received May 17, 2010. Revised Manuscript Received June 17, 2010, P. 12973–12979.
- CORN, M. "**The adhesion of solid particles to solid surfaces, I. A review**", J. Air Pollution Com trol Assoc. v. 11 p. 523-528, 1961
- DAHNEKE, B., "Influence of flattening on adhesion of particles". Journal of Colloid and Interface Science, v40, n.1, p.1, 1972.
- DELRIO, F. W. D., MARTIN, L. B., BRAD, L. C., ALEX. D. B. AND MAARTEN, P., "The effect of nanoparticles on rough surface adhesion". Journal of Applied Physics, v. 99 Issue: 10, p. 104304-104304-9, 2009.
- DERJAGUIN, B. V., MULLER V. M., TOPOROV Y.P., "Effect of contact deformations on the adhesion of particles". Journal of Colloid Interface Science, v.53, p.314-326, 1975.

- FAUSTINO, P. B., "Determinação experimental da força de adesão entre partículas e meios filtrantes constituídos de celulose". Dissertação de Mestrado, PPG-EQ/UFSCar, São Carlos, SP, 2010.
- FELICETTI, M. A., "Determinação da força de adesão entre partículas e uma superfície aplicando a Técnica Centrífuga". Dissertação de Mestrado, PPG-EQ/UFSCar, São Carlos, SP, 2004.
- FELICETTI, M. A., "Investigação da influência do tamanho das partículas de materiais pulverulentos sobre a força de adesão em diferentes substratos aplicando a técnica centrífuga". Tese de Doutorado, PPG-EQ/UFScar, São Carlos, SP, 2008.
- FELICETTI, M. A., GONÇALVES, J.A.S., COURY, J. R. AND AGUIAR, M. L., "Force of adhesion between particles and a surface". 2nd Mercosur Congress on Chemical Engineering e 4th Mercosur Congress on Process Systems Engineering – ENPROMER 2005.
- FELICETTI, M. A., SALAZAR-BANDA, G. R., COURY, J. R. AND AGUIAR, M. L., "Influence of particle size, applied compression, and substratum material on particle-wurface adhesion force using the centrifuge technique". Ind. Eng. Chem. Res. 2009, 48, 877–887
- FISHER, L.R. AND ISRAELACHVILI, J.N., "Direct measurements of the effect of meniscus forces on adhesion: a study of the applicability of macroscopic thermodynamics to microscopic surfaces". Colloids Surf., v.3, p.303 319, 1981.

GADY, B., REIFENBERGER, R., RIMAI, D. S., L. P. DeMejo, Langmuir, v. 13, p. 2533,

GOOD, RJ "Definition of adhesion" - Journal of Adhesion v. 8 n. 1 p. 1-9 -1976

GÖTZINGER, M., PEUKERT, W., "Dispersive forces of particle-surface interactions: direct AFM measurements and modeling". Powder Technology – 130, 102-109, 2003

- GLASS, A.S., LARSEN, J.W., "Coal surface properties. Specific and nonspecific interactions for polar molecules and surface tensions for hydrocarbons at the surface of Illinois", 1994.
- GREENWOOD, J. A., JOHNSON, K. L., "An alternative to the Maugis model fo adhesion between elastic spheres". J. Phys. D: Appl. Phys, pg 3279-3290, 1998.
- HAMAKER, H. C., "The London Van der Waals attraction between spherical particles". Physica 4(10), 1058–1072, 1937.
- HINDS, W. C., "Aerosol techonology: porprerties, behavior, and measuremente fo airbone particle". A Wiley-interscience publication, 2^a Edition, p. 141-144, 1998.
- ISRAELACHVILI, J., "Intermolecular and Surface Forces". 2^a Edition, Academic Press, New York, p. 161-164, 1992.
- ITO, L. X., "Estudo da porosidade de tortas de filtração de gases". (Dissertação de Mestrado), PPG-EQ / UFSCar, São Carlos-SP, 2002.
- KENDALL, K., STAINTON, CARL. "Adhesion and aggregation of fine particles". Powder Technology 121:223–229, 2001.
- KENDALL, K., AMAL, R., JIANG, X. ANDA YU, A. "Effect of Adhesion on Aggregation in Nanoparticle Dispersions". The Journal of Adhesion, 83:573–585, 2007
- KORDECKI, M.C., ORR, C., "Adhesion of solid particles to solid-surfaces". Archives of Environmental Health, v.1, p.1-9, 1996.
- KULVANICH, P., STEWART, P.J. "Fundamental considerations in the measurement of adhesional forces between particles using the centrifuge method". International Journal of Phurmaceutics, 35 (1987) 111-120
- LAM, K.K., NEWTON, J.M., "Investigation of Applied Compression on The Adhesion of Powders to a Substrate Surface", Powder Technology, V. 65, P. 167 175, 1991.

- LAM, K.K., NEWTON, J.M., "Influence of particle size on the adhesion behaviour of powders, after application of an initial press-on force", Powder Technology, V.73, P.117 - 125, 1992.
- LAM, K.K., NEWTON, J.M., "The Influence of The Time of Application of Contact Pressure on Particle Adhesion to a Substrate Surface", Powder Technology, V.76, P.149 - 154, 1993.
- LEE, M. H., JAFFE, A. B., MITTAL, K. L., "Particles on surfaces". I Plenum Press, New York, P. 169, 1988.
- MAUGIS, D., "On the contact and adhesion of rough surfaces", J. Adhesion Sci. And Tech., V.10, P. 161 175, 1996.
- MIZES, H. A., "Surface Roughness and Particle Adhesion", Advances in Particle Adhesion, Gordon and Breach Publishers, pg. 155-165, 1994.
- MIZES, H. A., OTT, M., EKLUND, E., HAYS, D., "Small particle adhesion: measurement and control", Colloids and Surfaces A. Physicochemical and Engineering Aspects 165 (2000) 11–23 – USA, v.165, p. 11 - 23, 2000
- MONUTTI, A. L. B., **"Determinação da força de adesão entre partículas e substratos orgânicos".** Trabalho de Graduação, Departamento de Engenharia Química, UFSCar, São Carlos-SP., 2011.
- NGUYEN, THANH T., RAMBANAPASI, CLINTON, DE BOER, ANNE H., FRIJLINK, HENDERIK W., VEN, PETER M. V. D., DE VRIES, JOOP, BUSSCHER, HENK J., MAARSCHALK, KEES V. D. VOORT. "A centrifuge method to measure particle cohesion forces to substrate surfaces: The use of a force distribution concept for data interpretation". International Journal fo Pharmaceutics, Volume: 393, Issue: 1-2 Pages: 88-95, Jun 30 2010.

- O'BRIEN, W. J. and HERMANN, J. J., "Strengh of liquid bridges between dissimilar
- PIANTINO, F. "Determinação da força de adesão entre partículas e uma superfície plana e técnica centrifuga." Monografia, São Carlos, UFSCar, 2003.

materials". Journal of Adhesion, v.5, p.91-103, 1973.

- PODCZECK, F., NEWTON, J.M., JAMES, M.B., "Assessment of adhesion and autoadhesion forces between particles and surfaces: Part I. The investigation of autoadhesion phenomena of salmeterol xinafoate and lactose monohydrate particles using compacted powder surfaces" *Journal of Adhesion Science and Technology* v. 8, n 12, p. 1459 - 1472, 1994.
- PODCZECK, F., NEWTON,J.M., "Development of an ultracentrifuge technique to determine the adhesion and friction properties between particles and surfaces". Journal of Pharmaceutical Sciences, v.84, n.9, p. 1067 – 1071, 1995.
- PODCZECK, F., NEWTON, J.M. AND JAMES, B.M. "Influence of Relative Humidity of Storage Air on the Adhesion and Autoadhesion of Micronized Particles to Particulate and Compacted Powder Surfaces". Journal of Colloid and Interface Science - 187, 484–491,1996.
- PODCZECK, F., "Investigations into the reduction of powder adhesion to stainless steel surfaces by surface modification to aid capsule filling", International Journal of Pharmaceutics, v. 178, p. 93 - 100, 1999.
- RENNIE, P. R., CHEN, X. D., MACKERETH, A. R., "Adhesion characteristics of whole milk powder to a stainless steel surface". Powder Technology, v.97, p. 191-199, 1998.
- RIMAI, D.S., BUSNAINA, A.A., "The adhesion and Removal of Particles from Surfaces". Journal of Particulate Science and Technology, v.13, p.249-270, 1995.
- RIMAI, D.S., QUESNEL, D.J., BUSNAINA, A.A., "The adhesion of dry particles in the nanometer to micrometer-size range". Colloids and Surfaces, v. 165, p. 3 10, 2000.

- RUMPF, H., "**Particles Adhesion**". In: Sastra, K.V.S. (ed.) Agglomeration 77, volume 1, American Institute of Mining, Metallurgical and Petroleum Engineers, New York, p.97-129, 1977.
- STEWART, P. J. "Particles interaction in pharmaceutical systems". Pharmaceutical Interaction., v.7, p.146-149, 1986.
- SCHUBERT, H, "Principles of Agglomeration", Int. Chem. Eng., v.21, n.3, p. 363 371, 1981.
- SVAROVSKY, L. "Characterization of powders. In RHODES, M. Principles of powder technology". Ed. John Wiley & Songs Ltd. pg. 35-68, 1990.
- TAKEUCHI, M. "Adhesion forces of charged particles" Chemical Engineering Science, pg. v.61:2279 – 2289, 2006.
- XIE, H.Y. "The role of Interparticle forces in the fluidization of fine particles". Powder Technology, v.94, p.99 – 108, 1997.
- WU, S. "Polymer Interface and Adhesion" Dekker, New York, 1982.
- ZIMMERMANN, U. SINDEL, I. "Measurement of Interaction Forces Between Individual Powder Particles Using an Atomic Force Microscope". Powder Technology, p.247– 254, 2001.
- ZIMON A. D., "The adhesion of dust and powder", Adhesion of Dust and Powders, Consultants Bureau, New York and London, p. 1-9, p.108-125, 1982.

APÊNDICE A

Resultados obtidos do Analisador de Imagens (Image Pro Plus 7.0) e resultados experimentais obtidos com a microcentrífuga para os sistemas fuligem e carvão e o substrato membrana de éster-celulose nas porosidades 0,2µm, 0,4µm e 0,8µm. **Tabela A.1.:** Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,2μm, para velocidade angular de compressão (*press-on*) de 1000rpm - 1ª corrida.

Objeto do					Perímetr
Analisador	Área	Diâmetro Médio	Raio	Volume	0
	(µm ²)	(µm)	(µm)	(μm^3)	(µm)
99	137,68	12,79	6,40	1174,14	41,36
110	133,31	12,63	6,31	1122,47	44,23
121	127,85	12,52	6,26	1066,97	41,64
105	124,57	12,65	6,33	1050,63	40,24
131	204,34	15,91	7,95	2167,05	52,29
280	204,34	16,85	8,42	2295,41	52,84
70	109,27	11,71	5,86	853,42	36,78
98	109,27	11,79	5,90	858,90	36,84
201	163,91	13,38	6,69	1462,19	46,50
23	115,83	11,33	5,66	874,76	40,54
65	138,78	12,46	6,23	1152,70	43,60
39	139,87	12,70	6,35	1184,30	41,90
42	160,63	15,78	7,89	1689,90	58,17
129	105,99	12,40	6,20	876,08	37,13
200	148,61	12,83	6,42	1271,49	46,49
224	161,72	14,13	7,07	1523,85	46,79
132	126,76	11,54	5,77	975,35	47,79
180	135,50	13,22	6,61	1193,74	47,59
34	205,43	15,58	7,79	2133,62	52,51
29	219,64	16,45	8,22	2408,24	61,02
45	133,31	12,16	6,08	1081,14	54,22
30	160,63	14,21	7,11	1521,87	49,16
150	134,41	13,05	6,52	1169,22	46,01
223	135,50	12,33	6,17	1114,24	42,96
209	144,24	12,91	6,46	1241,59	45,07
66	169,37	14,05	7,03	1586,61	49,64
181	171,56	14,60	7,30	1669,62	49,19
207	218,55	15,91	7,96	2318,49	51,37
170	122,39	11,58	5,79	945,17	39,69
54	135,50	11,69	5,84	1055,92	44,76
85	149,70	12,59	6,30	1256,92	43,57
79	195,60	15,49	7,75	2020,32	53,13
soma	4844,06	429,25	214,62	44316,34	1484,99
média	151,38	13,41	6,71	1384,89	46,41

(a) Faixa de diâmetro (11,1-17µm)

Objeto do			· · · · ·		Perímetr
Analisador	Área	Diâmetro Médio	Raio	Volume	0
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)
81	273,18	17,91	8,96	3262,25	72,16
187	281,92	18,44	9,22	3465,66	75,05
16	363,88	20,22	10,11	4904,67	81,69
340	333,28	19,56	9,78	4346,98	67,19
142	262,25	17,44	8,72	3048,65	66,78
66	449,11	22,81	11,41	6830,09	88,55
211	458,95	22,84	11,42	6986,78	99,34
15	275,37	18,52	9,26	3400,74	64,49
193	309,24	19,33	9,67	3985,67	67,40
170	309,24	20,17	10,09	4159,16	68,00
151	411,96	21,76	10,88	5976,46	97,94
122	278,65	19,77	9,89	3673,28	76,72
17	375,90	21,41	10,71	5366,22	74,50
121	269,90	17,54	8,77	3156,50	56,89
114	320,17	19,28	9,64	4114,67	68,80
17	299,41	18,34	9,17	3659,77	69,54
270	309,24	18,97	9,48	3910,30	62,81
116	272,09	17,83	8,92	3235,09	72,65
202	290,67	17,98	8,99	3483,50	69,83
soma	6144,40	370,13	185,07	80966,42	1400,34
média	323,39	19,48	9,74	4261,39	73,70

(b) Faixa de diâmetro (17,1-23µm)

(c) Faixa de diâmetro (23,1-29µm)

Objeto do					Perímetr
Analisador	Área	Diâmetro Médio	Raio	Volume	0
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
94	638,15	28,44	14,22	12098,82	110,21
117	664,38	28,57	14,29	12655,82	120,74
392	470,97	23,84	11,92	7485,37	84,32
91	487,36	24,11	12,05	7832,54	92,05
176	582,42	26,21	13,11	10178,74	96,72
94	454,57	23,51	11,75	7123,49	108,65
68	456,76	24,06	12,03	7325,69	107,96
99	493,91	24,44	12,22	8046,12	87,50
249	535,44	24,73	12,37	8828,84	102,14
247	547,46	25,19	12,59	9191,96	88,79
soma	5331,41	253,09	126,55	90767,39	999,09
média	533,14	25,31	12,65	9076,74	99,91

Tabela A.2.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,2µm, para velocidade angular de compressão (*press-on*) de 1000rpm – 2ª corrida.

Objeto do					Perímetr
Analisador	Área	Diâmetro Médio	Raio	Volume	0
	(µm ²)	(µm)	(µm)	(μm^3)	(µm)
58	162,82	13,20	6,60	1432,82	48,15
16	132,22	12,21	6,10	1075,85	38,67
120	132,22	12,63	6,32	1113,40	42,44
44	216,36	15,67	7,84	2260,56	57,83
125	116,92	11,11	5,55	865,98	40,22
65	92,88	11,16	5,58	690,98	34,71
124	127,85	11,46	5,73	976,55	38,37
7	171,56	14,40	7,20	1647,40	48,03
113	185,76	14,50	7,25	1795,11	49,78
31	216,36	16,25	8,13	2344,51	61,93
217	107,09	11,83	5,91	844,54	36,71
231	187,95	15,13	7,57	1896,39	52,80
162	103,81	11,52	5,76	797,21	35,99
212	180,30	14,98	7,49	1800,45	50,03
26	122,39	12,62	6,31	1029,56	40,96
80	219,64	15,71	7,86	2301,03	51,39
50	100,53	11,51	5,75	771,15	35,39
74	159,54	14,12	7,06	1501,69	46,73
251	139,87	12,38	6,19	1154,78	43,32
166	205,43	15,51	7,76	2124,39	53,30
207	206,53	15,62	7,81	2151,21	50,15
58	113,64	11,92	5,96	903,17	35,58
149	124,57	12,54	6,27	1041,81	39,09
247	163,91	14,05	7,02	1534,82	48,24
233	170,47	14,37	7,19	1633,41	49,07
152	193,41	14,93	7,47	1925,27	49,12
180	177,02	15,14	7,57	1786,89	51,59
soma	4231,04	366,49	183,24	39400,92	1229,61
média	156,71	13,57	6,79	1459,29	45,54

(a) Faixa de diâmetro (11,1-17µm)

(b)	Faixa	de	diâmetro ((17)	.1-23	um)
-----	-------	----	------------	------	-------	-----

Objeto do					Perímetr
Analisador	Área	Diâmetro Médio	Raio	Volume	0
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)
24	366,06	20,70	10,35	5051,74	70,26
66	360,60	21,28	10,64	5115,04	75,07
170	358,41	21,28	10,64	5084,70	72,84
130	397,75	21,56	10,78	5716,25	75,45
87	432,72	22,77	11,38	6567,30	82,95
43	261,16	18,47	9,24	3215,95	65,17
5	303,78	19,02	9,51	3852,80	65,55
19	358,41	20,35	10,17	4862,03	68,66

média	316,89	19,55	9,77	4183,05	67,58
soma	8239,16	508,27	254,13	108759,38	1757,06
151	302,69	18,80	9,40	3794,15	60,46
243	232,75	17,44	8,72	2705,63	61,94
24	338,75	19,75	9,87	4460,02	71,00
181	271,00	18,40	9,20	3324,12	61,57
66	255,70	17,39	8,70	2964,86	58,41
52	252,42	17,37	8,69	2923,43	61,19
41	338,75	20,14	10,07	4548,26	72,83
144	257,88	17,18	8,59	2953,06	59,89
23	326,73	19,88	9,94	4331,25	67,52
92	286,29	19,54	9,77	3730,01	66,96
46	304,87	19,16	9,58	3895,09	66,54
173	369,34	20,91	10,45	5148,48	68,87
142	333,28	20,67	10,34	4592,84	70,14
212	325,63	19,45	9,72	4221,53	70,97
191	287,39	18,74	9,37	3590,26	60,64
211	293,94	18,31	9,16	3588,64	71,36
222	391,20	22,47	11,24	5860,49	74,52
235	231,66	17,23	8,62	2661,47	56,33

Continuação da Tabela A.2. (b)

(c) Faixa de diâmetro (23,1-29µm)

Objeto do					Perímetr
Analisador	Área	Diâmetro Médio	Raio	Volume	0
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)
164	524,51	24,55	12,27	8583,79	94,30
63	439,28	25,57	12,79	7488,30	89,72
24	678,58	28,21	14,11	12762,29	99,06
127	620,67	27,88	13,94	11534,15	99,98
187	539,81	25,74	12,87	9264,52	85,98
47	642,52	27,62	13,81	11832,14	106,72
152	595,54	28,24	14,12	11212,93	106,89
91	411,96	24,03	12,02	6599,69	78,03
128	476,43	24,04	12,02	7635,29	88,75
44	519,05	24,85	12,43	8598,87	85,09
62	545,27	27,02	13,51	9822,34	93,45
244	470,97	23,52	11,76	7385,27	82,53
93	441,46	23,90	11,95	7034,07	86,82
100	571,50	25,88	12,94	9860,79	96,15
194	670,93	28,47	14,24	12736,06	101,67
170	490,63	24,15	12,07	7897,97	105,73
soma	8639,10	413,68	206,84	150248,45	1500,87
média	539,94	25,85	12,93	9390,53	93,80

Tabela A.3.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,2μm, para velocidade angular de compressão (*press-on*) de 1000rpm – 3ª corrida

Objeto do					Perímetr
Analisador	Área	Diâmetro Médio	Raio	Volume	0
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
130	139,87	12,22	6,11	1139,45	42,48
100	177,02	13,89	6,95	1639,44	52,10
514	165,00	14,02	7,01	1541,77	48,69
106	234,94	16,44	8,22	2575,05	55,86
417	140,96	12,21	6,11	1147,50	40,54
281	136,59	12,79	6,39	1164,50	41,43
251	174,84	13,85	6,92	1614,23	48,43
641	126,76	11,85	5,93	1001,40	41,69
359	137,68	12,88	6,44	1182,02	41,36
546	183,58	14,56	7,28	1781,66	48,86
604	207,62	15,29	7,65	2116,37	53,77
284	237,12	16,77	8,38	2650,71	77,45
20	120,20	11,42	5,71	915,16	39,38
329	186,86	14,75	7,38	1837,64	50,96
70	225,10	16,20	8,10	2431,15	55,44
55	239,31	16,38	8,19	2613,32	59,78
58	110,37	11,13	5,56	818,66	41,18
301	123,48	12,30	6,15	1012,26	39,99
400	131,13	12,31	6,15	1075,85	41,33
165	168,28	13,35	6,68	1498,17	50,12
265	206,53	15,26	7,63	2101,39	54,38
525	195,60	15,03	7,52	1960,05	58,86
752	196,69	14,55	7,27	1907,41	54,88
227	177,02	14,91	7,45	1759,54	51,36
702	96,16	11,62	5,81	744,83	34,93
68	177,02	14,19	7,09	1674,16	54,17
16	180,30	14,37	7,18	1726,82	52,61
364	132,22	12,63	6,32	1113,33	41,34
470	156,26	13,11	6,55	1365,28	45,42
soma	4884,49	400,26	200,13	46109,12	1418,81
média	168,43	13,80	6,90	1589,97	48,92

(a) Faixa de diâmetro (11,1-17µm)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do Analisador	Área (μm²)	Diâmetro Médio (µm)	Raio (µm)	Volume (µm ³)	Perímetr 0 (µm)
16	284,11	18,19	9,10	3445,49	65,92
224	395,57	21,42	10,71	5647,87	85,99
497	394,47	22,18	11,09	5833,53	90,71
692	264,44	18,13	9,07	3196,31	71,93
460	339,84	19,57	9,79	4434,84	69,91
11	308,15	19,05	9,52	3912,55	71,12

33	321,26	19,35	9,67	4143,56	64,59
401	333,28	19,50	9,75	4333,04	81,73
652	344,21	20,05	10,03	4601,01	68,58
546	350,77	20,30	10,15	4746,34	69,43
61	327,82	20,22	10,11	4418,01	70,07
105	382,45	21,19	10,59	5402,25	72,48
517	271,00	17,38	8,69	3139,82	67,19
431	361,69	20,77	10,39	5008,40	70,45
691	399,94	22,47	11,23	5990,28	85,48
515	274,27	17,84	8,92	3261,52	71,43
350	297,22	18,46	9,23	3657,65	62,03
soma	5650,49	336,05	168,03	75172,49	1239,03
média	332,38	19,77	9,88	4421,91	72,88

Continuação da Tabela A.3 (b)

(c) Fixa de diâmetro (23,1-29µm)

	(0)	Fixa ue ulaineti 0 (23	,1-27μm)		
Objeto do Analisador	Á roo	Diâmatra Mádia	Daio	Volumo	Perímetr
Anansauor	Area	Diametro Meulo	Kalo	volume	U
	(µm²)	(µm)	(µm)	(µm ³)	(µm)
483	617,39	28,42	14,21	11695,70	117,59
505	591,17	26,79	13,39	10556,58	104,13
338	595,54	27,65	13,83	10979,66	110,66
319	632,69	27,47	13,73	11584,73	114,85
37	679,68	28,20	14,10	12777,02	105,85
97	480,80	23,73	11,86	7605,01	89,71
66	604,28	27,55	13,78	11098,76	114,16
93	541,99	27,33	13,66	9873,53	119,09
237	583,52	25,99	13,00	10110,64	104,30
730	556,20	26,28	13,14	9742,92	102,62
172	562,75	25,58	12,79	9595,04	102,45
399	564,94	25,59	12,79	9636,78	101,21
soma	7010,93	320,55	160,28	125256,35	1286,63
média	584,24	26,71	13.36	10438.03	107.22

Tabela A.4.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,2µm, para velocidade angular de compressão (*press-on*) de 2000rpm – 1ª corrida

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
11	105,99	11,44	5,72	808,67	39,82
15	122,39	11,75	5,87	958,56	42,36
51	89,60	12,81	6,40	764,95	35,32
35	139,87	12,89	6,45	1202,03	47,76
55	167,19	13,81	6,90	1538,79	44,58
60	138,78	12,70	6,35	1174,98	39,89

(a) Faixa de diâmetro (11,1-17µm)

média	151,00	13,51	6,75	1391,61	46,55
soma	2416,02	216,14	108,07	22265,83	744,82
201	182,49	14,34	7,17	1744,66	55,33
65	239,31	16,53	8,27	2637,62	60,88
13	180,30	14,07	7,04	1691,46	51,45
78	211,99	15,78	7,89	2229,85	50,28
37	186,86	14,37	7,18	1789,49	62,10
24	111,46	13,44	6,72	998,91	38,85
96	109,27	12,81	6,40	932,93	40,97
96	171,56	13,95	6,97	1595,34	47,26
87	126,76	12,73	6,36	1075,37	41,88
52	132,22	12,73	6,37	1122,21	46,09

Continuação da Tabela A.4 (a)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)
50	351,86	20,90	10,45	4903,48	84,17
12	246,96	17,58	8,79	2893,97	63,68
92	303,78	18,26	9,13	3697,22	75,79
52	297,22	18,55	9,28	3675,87	88,73
50	391,20	21,57	10,78	5624,40	73,66
83	298,31	19,33	9,66	3844,02	69,06
225	258,98	17,70	8,85	3055,18	57,97
soma	2148,30	133,88	66,94	27694,13	513,05
média	306,90	19,13	9,56	3956,30	73,29

(c) Faixa de diâmetro (23,1-29µm)

Objeto do	,				
Analisador	Area	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
61	543,09	25,33	12,67	9171,55	101,71
36	585,70	27,22	13,61	10626,59	112,70
16	492,82	24,04	12,02	7898,34	91,00
17	611,93	26,83	13,41	10943,55	105,25
87	630,50	27,15	13,58	11413,76	111,44
78	528,88	24,43	12,22	8614,38	105,64
1	658,91	28,84	14,42	12669,52	127,37
soma	4051,83	183,84	91,92	71337,69	755,12
média	578,83	26,26	13,13	10191,10	107,87

Tabela A.5.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,2μm, para velocidade angular de compressão (*press-on*) de 2000rpm – 2ª corrida

Objeto do	í		D •	X 7 X	
Analisador	Area	Diâmetro Médio	Raio	Volume	Perimetro
	(μm^2)	(µm)	(µm)	(µm³)	(µm)
30	208,71	16,10	8,05	2240,30	53,45
601	128,94	12,13	6,07	1043,00	39,79
710	156,26	13,85	6,93	1443,15	45,61
95	196,69	15,55	7,77	2038,86	51,26
311	210,90	16,03	8,02	2253,99	55,78
399	127,85	11,84	5,92	1008,91	46,24
140	165,00	13,72	6,86	1508,82	46,53
256	125,66	11,91	5,95	997,72	40,90
171	178,11	14,32	7,16	1699,89	51,75
302	240,40	16,97	8,48	2719,71	57,89
330	113,64	11,37	5,68	861,20	38,01
287	137,68	12,34	6,17	1133,06	42,46
358	155,17	13,81	6,91	1428,97	49,14
165	205,43	14,85	7,43	2034,11	64,30
516	119,11	11,24	5,62	892,13	37,84
22	147,52	12,47	6,24	1226,84	47,31
296	146,43	12,67	6,33	1236,79	45,12
430	178,11	14,81	7,41	1758,97	50,47
103	119,11	11,27	5,64	895,01	36,51
150	135,50	11,95	5,97	1079,28	42,57
338	126,76	11,98	5,99	1012,62	40,21
634	218,55	15,62	7,81	2276,20	55,92
734	207,62	16,35	8,18	2263,41	53,79
61	243,68	16,64	8,32	2702,81	59,18
105	202,15	15,28	7,64	2059,03	52,35
96	149,70	12,62	6,31	1259,24	47,13
19	133,31	12,71	6,35	1129,41	42,26
323	159,54	13,21	6,60	1404,79	44,84
83	192,32	14,63	7,32	1875,95	50,46
57	151,89	13,13	6,56	1329,19	49,84
726	245,86	15,99	7,99	2620,54	81,26
158	120,20	11,24	5,62	900,31	39,49
214	151,89	12,77	6,39	1293,50	46,36
soma	5499,69	451,37	225,68	51627,70	1606,02
média	166,66	13,68	6,84	1564,48	48,67

(a) Faixa de diâmetro (11,1-17µm)

....

1

Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(µm ²)	(µm)	(µm)	(μm^3)	(µm)
29	296,13	19,30	9,65	3811,15	63,24
147	370,43	20,60	10,30	5087,78	69,61
130	298,31	18,38	9,19	3655,75	67,52
555	231,66	17,52	8,76	2706,05	55,48
401	257,88	17,65	8,83	3035,20	76,69
141	371,53	20,85	10,43	5165,26	82,43
197	432,72	22,35	11,17	6446,19	98,43
232	469,87	22,92	11,46	7178,90	84,45
473	317,98	19,56	9,78	4146,18	71,70
284	323,45	19,64	9,82	4234,40	80,62
274	346,39	20,16	10,08	4656,03	77,49
294	458,95	22,67	11,33	6935,76	92,49
432	361,69	20,52	10,26	4947,82	80,62
35	425,07	22,43	11,22	6357,01	86,59
soma	4962,07	284,56	142,28	68363,48	1087,38
média	354,43	20,33	10,16	4883,11	77,67

(b) Faixa de diâmetro (17,1-23µm)

(c) Faixa de diâmetro (23,1-29µm)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(µm)	(µm ³)	(µm)
59	689,51	28,54	14,27	13116,92	99,28
275	455,67	23,62	11,81	7176,33	113,62
496	535,44	25,02	12,51	8931,46	98,92
342	640,34	27,07	13,54	11556,26	126,34
452	545,27	25,51	12,75	9271,82	95,14
154	604,28	26,36	13,18	10618,38	111,72
241	401,03	26,08	13,04	6971,69	111,99
soma	3871,53	182,19	91,10	67642,85	757,02
média	553,08	26,03	13,01	9663,26	108,15

Tabela A.6.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,2μm, para velocidade angular de compressão (*press-on*) de 2000rpm – 3ª corrida

Objeto do Analisador	Área (μm²)	Diâmetro Médio (µm)	Raio (µm)	Volume (µm ³)	Perímetro (µm)
832	207,62	16,36	8,18	2263,95	55,15
1189	187,95	14,60	7,30	1829,57	49,32
906	168,28	14,11	7,05	1582,60	45,86
160	174,84	13,94	6,97	1624,38	59,90
567	194,51	16,20	8,10	2101,10	56,65

(a) Faixa de diâmetro (11,1-17µm)

média	174,84	14,14	7,07	1690,52	50,97
soma	3496,73	282,75	141,38	33810,48	1019,41
208	210,90	16,81	8,40	2363,41	57,35
741	136,59	11,83	5,91	1077,16	40,36
847	140,96	12,30	6,15	1155,98	43,40
278	115,83	11,67	5,83	900,92	40,12
564	116,92	11,43	5,72	891,33	37,08
532	140,96	12,24	6,12	1150,00	46,90
230	199,97	14,99	7,49	1998,26	56,82
51	182,49	14,41	7,20	1752,95	46,45
786	239,31	16,45	8,23	2624,71	63,04
264	197,78	15,18	7,59	2001,73	58,29
257	162,82	13,32	6,66	1445,72	45,67
286	130,03	12,15	6,08	1053,49	41,69
713	250,23	16,76	8,38	2795,47	65,55
470	189,04	15,34	7,67	1933,73	56,13
607	149,70	12,67	6,33	1264,03	53,69

Continuação da Tabela A.6.: (a)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do	1		р.	T 7 T	
Analisador	Area	Diametro Medio	Raio	Volume	Perimetro
	(μm^2)	(µm)	(µm)	(µm ³)	(µm)
350	367,16	20,70	10,35	5065,56	69,08
60	361,69	21,98	10,99	5299,36	83,55
213	232,75	17,12	8,56	2656,12	60,62
964	310,33	19,42	9,71	4017,19	79,70
677	357,32	20,83	10,41	4962,00	76,21
296	255,70	17,98	8,99	3065,15	64,93
925	430,53	22,26	11,13	6390,10	86,65
494	449,11	22,86	11,43	6843,65	108,26
340	275,37	18,36	9,18	3369,87	66,99
238	256,79	18,66	9,33	3194,40	84,33
26	408,68	21,90	10,95	5965,67	90,56
399	261,16	17,71	8,86	3084,31	58,48
449	315,80	19,13	9,56	4026,43	82,90
soma	4282,40	258,89	129,45	57939,79	1012,25
média	329,42	19,91	9,96	4456,91	77,87

(c) Faixa de diâmetro (23,1-29µm)

Objeto do Analisador	Área (μm²)	Diâmetro Médio (µm)	Raio (µm)	Volume (µm ³)	Perímetro (µm)
321	475,34	23,49	11,75	7444,83	106,60
488	493,91	25,31	12,65	8333,82	94,77
117	574,77	26,31	13,16	10081,68	92,58
878	487,36	23,59	11,80	7665,99	93,33
555	479,71	24,63	12,32	7878,37	103,17
165	601,00	27,46	13,73	11002,96	127,95
soma	3112,09	150,80	75,40	52407,65	618,40
média	518,68	25,13	12,57	8734,61	103,07

Tabela A.7.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,2μm, para velocidade angular de compressão (*press-on*) de 5000rpm – 1ª corrida

Objeto do			• • •		
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(µm ²)	(µm)	(µm)	(μm^3)	(µm)
140	207,62	15,24	7,62	2110,07	53,01
248	169,37	14,06	7,03	1587,43	47,75
109	207,62	15,36	7,68	2125,45	52,78
290	111,46	11,74	5,87	872,61	40,21
112	126,76	12,08	6,04	1020,53	42,38
161	183,58	14,29	7,14	1748,30	52,32
392	193,41	15,65	7,82	2017,58	57,73
174	194,51	15,35	7,68	1990,63	51,76
83	157,35	14,25	7,12	1494,52	47,95
53	193,41	14,50	7,25	1869,34	50,08
256	182,49	14,92	7,46	1814,74	49,15
67	126,76	11,66	5,83	985,48	42,96
145	145,33	12,96	6,48	1255,31	42,57
189	64,47	11,42	5,71	490,71	30,21
soma	2264,13	193,46	96,73	21382,71	660,86
média	161,72	13,82	6,91	1527,34	47,20

(a) Faixa de diâmetro (11,1-17µm)

(b)	Faixa	de	diâmetro	(17)	1-23	um)
----	---	-------	----	----------	------	------	-----

Objeto do	1				
Analisador	Area	Diâmetro Médio	Raio	Volume	Perimetro
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)
233	248,05	17,45	8,73	2886,25	71,35
336	313,61	19,58	9,79	4094,57	73,29
281	371,53	21,05	10,53	5214,11	78,49
254	460,04	22,87	11,44	7014,56	85,30
20	389,01	21,42	10,71	5554,61	71,59
44	332,19	20,07	10,03	4443,94	73,83
6	392,29	21,99	10,99	5750,69	76,37
177	429,44	22,85	11,42	6541,72	80,47
56	417,42	21,63	10,81	6018,77	79,72
68	355,14	20,57	10,29	4870,20	71,50
111	393,38	21,37	10,68	5603,30	86,62
soma	4102,10	230,85	115,42	57992,72	848,54
média	372,92	20,99	10,49	5272,07	77,14

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
205	474,24	23,22	11,61	7342,33	101,92
300	472,06	23,58	11,79	7421,86	87,43
8	489,54	24,02	12,01	7840,67	102,16
96	499,38	25,22	12,61	8396,82	95,55
58	509,21	25,99	13,00	8824,37	90,67
188	601,00	26,68	13,34	10688,38	104,19
122	620,67	27,08	13,54	11205,04	100,49
soma	3666,10	175,80	87,90	61719,49	682,42
média	523,73	25,11	12,56	8817,07	97,49

(c) Faixa de diâmetro (23,1-29µm)

Tabela A.8.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) pa	ra o
sistema fuligem/membrana de éster-celulose 0,2µm, para velocidade angular d	e
compressão (<i>press-on</i>) de 5000rpm – 2ª corrida	

Objeto do	1				
Analisador	Area	Diâmetro Médio	Raio	Volume	Perímetro
	(µm²)	(µm)	(µm)	(µm³)	(µm)
578	210,90	15,46	7,73	2174,13	57,90
195	249,14	16,82	8,41	2793,08	66,92
260	119,11	11,46	5,73	909,99	37,93
389	140,96	13,86	6,93	1302,05	44,43
224	162,82	14,65	7,33	1590,24	47,64
319	179,21	15,57	7,78	1859,73	53,45
77	222,92	16,86	8,43	2506,25	56,28
274	122,39	11,67	5,84	952,51	38,47
231	125,66	12,36	6,18	1035,62	39,74
533	123,48	12,50	6,25	1029,37	41,46
170	148,61	12,64	6,32	1252,35	44,85
339	139,87	12,65	6,33	1179,69	44,40
316	144,24	12,84	6,42	1234,84	42,40
554	172,65	13,69	6,85	1576,29	46,69
381	181,39	14,63	7,31	1769,17	48,99
104	192,32	14,89	7,45	1909,19	57,85
105	202,15	15,06	7,53	2029,64	52,94
346	137,68	12,28	6,14	1127,27	39,92
180	206,53	15,51	7,75	2135,04	53,74
416	128,94	12,09	6,05	1039,57	39,68
224	145,33	12,20	6,10	1182,48	45,76
139	173,74	13,79	6,89	1596,96	45,02
22	126,76	12,16	6,08	1027,54	50,96
365	122,39	12,19	6,10	994,97	42,83
254	213,08	15,42	7,71	2190,01	61,21
205	136,59	11,38	5,69	1036,17	56,09
417	148,61	12,64	6,32	1252,52	43,24

(a) Faixa de diâmetro (11,1-17µm)
3					
545	145,33	12,69	6,34	1229,39	45,11
661	168,28	14,41	7,21	1617,11	46,31
564	242,59	16,42	8,21	2656,05	69,50
375	109,27	11,70	5,85	852,60	35,48
697	146,43	13,07	6,53	1275,76	45,42
684	154,07	13,05	6,52	1340,12	47,04
420	185,76	14,83	7,42	1836,99	50,20
171	150,80	12,80	6,40	1286,50	41,91
402	168,28	14,17	7,08	1589,40	49,08
386	233,84	16,81	8,41	2620,79	74,01
340	122,39	11,96	5,98	976,20	39,46
538	186,86	14,65	7,32	1824,73	48,03
322	204,34	15,54	7,77	2116,31	54,50
100	236,03 6831 73	16,46 565 8 5	8,23	2589,51 64408 13	58,/1 2005 55
soilla	166.63	505,05 13.80	<u> </u>	1572 12	2005,55
meuta	100,03 (b)	13,00 Faiva de diâmetro (0,90 (17.1.23um)	15/5,15	40,92
Objeto do	(0)		[17,1-25μm]		
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
mansauor	(um^2)	(um)	(um)	(um^3)	(um)
12	(µm)	(µm)	(µm)	(µm)	(µm)
43	367,16	20,37	10,19	4986,37	82,65
435	368,25	20,89	10,44	5127,87	82,98
106	457,85	22,54	11,27	68/9,15	98,72
144	290,67	18,77	9,39	3637,74	75,69
527	343,12	20,52	10,26	4694,24	76,53
133	356,23	21,19	10,60	5032,58	71,26
272	426,16	22,65	11,33	6435,16	88,86
80	281,92	18,44	9,22	3465,94	63,23
376	393,38	21,68	10,84	5685,84	82,53
636	327,82	19,67	9,83	4298,45	65,22
151	429,44	22,51	11,25	6444,27	82,92
442	391,20	21,42	10,71	5587,36	82,40
455	376,99	20,87	10,44	5246,45	76,02
soma	4810,18	271,53	135,77	67521,41	1029,01
média	370,01	20,89	10,44	5193,95	79,15
	(c)	Faixa de diâmetro (23,1-29µm)	[1
Objeto do	4		р.	.	
Analisador	Area	Diâmetro Médio	Kaio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
430	467,69	23,65	11,82	7373,61	88,55
288	593,35	26,77	13,39	10590,32	124,24
30	661,10	27,51	13,76	12125,90	115,34
503	440,37	23,33	11,66	6848,20	81,89
495	437,09	23,46	11,73	6836,35	93,04
552	499,38	24,07	12,04	8014,99	81,47
345	704,81	28,61	14,30	13441,26	147,54

25,04

25,58

228,02

25,34

9102,29

9186,32

83519,22

9279,91

91,10

110,46

933,63

103,74

12,52

12,79

114,01

12,67

Continuação da Tabela A.8.: (a)

441

55

soma

média

545,27

538,71

4887,77

543,09

Tabela A.9.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,2µm, para velocidade angular de compressão (press-on) de 5000rpm - 3ª corrida

	(a) Faixa de diâmetro (11,1-17µm)						
Objeto do							
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro		
	(μm^2)	(μm)	(µm)	(μm^3)	(µm)		
84	169,37	13,57	6,78	1532,10	57,28		
266	214,17	15,98	7,99	2281,07	55,33		
726	83,05	11,21	5,61	620,88	39,70		
1007	143,15	12,47	6,24	1190,10	46,97		
674	160,63	13,48	6,74	1443,49	52,83		
221	173,74	13,86	6,93	1605,18	54,42		
91	185,76	15,55	7,78	1925,76	55,26		
995	99,44	11,21	5,60	742,88	37,44		
549	114,74	11,21	5,60	857,46	36,28		
21	227,29	16,51	8,26	2502,24	65,66		
547	255,70	16,91	8,45	2882,53	58,90		
441	134,41	12,56	6,28	1125,10	40,89		
140	187,95	15,30	7,65	1917,21	52,13		
451	255,70	16,79	8,39	2861,48	65,57		
183	145,33	12,35	6,17	1196,22	44,11		
330	177,02	14,05	7,02	1658,02	51,50		
632	203,25	14,92	7,46	2021,86	60,29		
227	210,90	15,93	7,96	2239,19	65,84		
70	125,66	12,22	6,11	1024,04	48,04		
840	201,06	16,20	8,10	2171,78	55,94		
905	163,91	14,06	7,03	1536,30	48,24		
303	221,82	15,66	7,83	2315,33	64,19		
1025	221,82	15,81	7,90	2337,67	58,96		
697	140,96	12,67	6,34	1191,11	45,32		
489	135,50	13,26	6,63	1197,87	49,05		
soma	4352,33	353,73	176,86	42376,87	1310,12		
média	174,09	14,15	7,07	1695,07	52,40		

(a)	Faixa	de	diâmetro	$(11, 1-17 \mu m)$

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
972	(µm) 228.01	(µIII) 20.00	(µ111)	(µ111) 4591.90	(µIII)
075	526,91	20,90	10,43	4301,09	77,50
376	366,06	20,97	10,49	5118,38	91,96
522	253,51	17,39	8,70	2939,52	71,92
157	280,83	18,28	9,14	3422,74	60,34
25	386,83	21,50	10,75	5544,21	79,44
132	233,84	17,23	8,62	2686,12	58,07
439	265,53	18,11	9,06	3206,40	69,05
735	316,89	20,93	10,47	4422,65	74,24
230	242,59	17,27	8,63	2792,27	57,92
869	257,88	17,53	8,77	3014,42	60,14

1 11					
soma	6701,69	422,19	211,10	86871,70	1688,02
348	369,34	21,74	10,87	5352,11	80,01
285	335,47	19,23	9,61	4300,01	97,70
756	358,41	20,30	10,15	4851,23	89,90
151	307,06	19,27	9,64	3945,53	77,40
22	284,11	17,81	8,90	3372,51	75,64
303	254,61	17,52	8,76	2974,24	68,14
362	310,33	19,55	9,78	4045,46	71,67
468	244,77	17,28	8,64	2819,85	60,91
863	325,63	19,91	9,96	4322,26	103,28
810	250,23	17,82	8,91	2972,11	63,12
768	403,22	22,18	11,09	5963,46	110,62
549	325,63	19,46	9,73	4224,35	89,26

Continuação da Tabela A.9.: (b)

(c) Faixa de diâmetro (23,1-29µm)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm ²)	(μm)	(µm)	(μm^3)	(µm)
73	532,16	27,80	13,90	9863,49	133,31
519	615,21	26,83	13,41	11003,52	100,59
10	550,73	24,76	12,38	9088,98	114,04
510	466,59	23,68	11,84	7367,06	92,81
100	438,18	23,70	11,85	6922,43	85,48
646	527,79	25,61	12,80	9010,77	105,69
707	507,03	24,83	12,42	8393,88	94,46
319	647,99	27,42	13,71	11845,25	121,07
127	508,12	24,86	12,43	8420,88	111,84
soma	4793,79	229,49	114,74	81916,26	959,29
média	532,64	25,50	12,75	9101,81	106,59

Tabela A.10.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,4μm, para velocidade angular de compressão (*press-on*) de 1000rpm - 1ª corrida.

(a) Faixa de diâmetro (11,1-17μm)								
Objeto do Analisador	Área (μm²)	Diâmetro Médio (µm)	Raio (µm)	Volume (µm ³)	Perímetro (µm)			
16	218,55	15,84	7,92	2307,22	79,31			
94	139,87	12,17	6,09	1134,81	40,64			
48	127,85	12,44	6,22	1060,17	40,57			
99	151,89	13,23	6,61	1339,28	46,33			
54	190,13	14,36	7,18	1820,49	49,47			
159	111,46	11,38	5,69	845,90	40,55			
18	116,92	11,80	5,90	919,90	39,60			
94	115,83	11,93	5,97	921,52	38,89			

média	157,19	13,44	6,72	1445,52	47,52
soma	5187,17	443,60	221,80	47702,07	1568,05
9	180,30	14,99	7,50	1801,95	50,69
126	160,63	14,41	7,20	1542,81	48,71
43	130,03	12,32	6,16	1068,34	44,60
40	136,59	12,03	6,02	1095,76	41,97
186	158,45	13,55	6,77	1431,28	45,51
140	130,03	13,58	6,79	1177,19	47,62
65	251,33	16,62	8,31	2785,29	59,99
62	184,67	14,73	7,36	1813,12	55,73
60	184,67	14,50	7,25	1784,99	53,35
133	155,17	13,34	6,67	1380,06	48,85
85	120,20	11,93	5,97	956,26	37,78
38	184,67	14,60	7,30	1797,54	52,77
117	131,13	12,15	6,08	1062,49	40,82
89	165,00	15,10	7,55	1660,84	49,04
154	178,11	14,47	7,24	1718,31	49,01
20	147,52	13,23	6,61	1301,10	46,14
168	213,08	15,67	7,83	2225,87	57,18
87	144,24	12,54	6,27	1206,26	44,83
60	113,64	11,23	5,61	850,65	38,18
114	101,62	11,22	5,61	760,46	35,27
59	243,68	16,68	8,34	2709,51	56,54
47	187,95	14,87	7,43	1862,83	63,46
57	142,05	12,50	6,25	1184,07	45,32
142	130,03	11,87	5,93	1028,93	38,76
154	139,87	12,30	6,15	1146,86	40,58

Continuação da Tabela A.10.: (a)

Objeto do A policador	Ároa	Diâmatra Mádia	Daio	Volumo	Dorímotro
Anansauor	Area			$\sqrt{3}$	refinetro
	(µm)	(μm)	(µm)	(µm)	(µm)
47	299,41	19,61	9,80	3913,43	75,69
133	271,00	17,57	8,79	3174,36	57,39
131	367,16	21,51	10,76	5265,69	75,93
60	209,80	17,59	8,80	2460,62	64,99
191	279,74	18,45	9,23	3440,92	69,61
20	426,16	21,99	10,99	6246,40	90,08
179	253,51	17,44	8,72	2947,30	64,46
98	334,37	20,15	10,08	4492,66	72,89
62	405,40	21,45	10,72	5795,93	76,94
154	274,27	18,25	9,13	3337,64	67,80
16	272,09	17,91	8,95	3248,15	59,80
soma	3392,92	211,92	105,96	44323,09	775,57
média	308,45	19,27	9,63	4029,37	70,51

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)
27	670,93	28,98	14,49	12961,70	114,22
93	490,63	23,70	11,85	7752,76	107,49
140	514,67	24,46	12,23	8392,06	94,80
108	552,92	25,59	12,80	9434,32	90,02
116	604,28	27,27	13,63	10985,11	95,82
31	558,38	26,78	13,39	9969,94	119,21
85	607,56	26,86	13,43	10878,72	100,48
18	630,50	28,32	14,16	11904,24	106,88
138	504,84	24,62	12,31	8284,68	83,10
147	499,38	23,92	11,96	7964,27	89,39
soma	5634,10	260,50	130,25	98527,80	1001,42
média	563,41	26,05	13,03	9852,78	100,14

(c) Faixa de diâmetro (23,1-29µm)

Tabela A.11.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,4μm, para velocidade angular de compressão (*press-on*) de 1000rpm - 2ª corrida.

	(u) 1	una de diameno (11,1 1 , µm)		
Objeto do	,				
Analisador	Area	Diâmetro Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)
130	182,49	13,98	6,99	1700,53	48,39
113	191,23	14,89	7,45	1898,59	51,93
167	202,15	14,92	7,46	2010,11	54,05
381	126,76	13,40	6,70	1132,53	41,65
342	162,82	13,95	6,97	1514,02	45,30
275	201,06	15,09	7,54	2022,15	60,69
248	225,10	16,79	8,40	2519,80	61,76
473	103,81	11,24	5,62	777,73	37,85
613	142,05	13,01	6,51	1232,11	42,62
196	154,07	13,20	6,60	1355,82	49,19
309	173,74	13,74	6,87	1591,00	49,67
431	172,65	13,90	6,95	1599,40	54,73
447	215,27	15,19	7,60	2180,17	61,14
489	224,01	15,90	7,95	2375,21	63,26
104	211,99	16,24	8,12	2295,05	55,73
456	149,70	13,01	6,51	1298,55	44,40
228	136,59	13,37	6,68	1217,44	43,23
98	172,65	13,86	6,93	1594,80	52,33
170	185,76	15,49	7,74	1917,88	53,65
379	127,85	11,92	5,96	1015,99	48,52
288	203,25	15,45	7,73	2093,52	53,74
250	215,27	15,54	7,77	2230,75	60,09
210	241,49	16,86	8,43	2714,14	59,04

(a) Faixa de diâmetro (11,1-17µm)

média	172,55	14,07	7,04	1649,63	50,85
soma	7246,96	591,04	295,52	69284,58	2135,78
360	178,11	13,77	6,88	1635,08	60,21
525	139,87	13,50	6,75	1258,40	43,48
19	144,24	12,73	6,36	1223,65	44,05
642	139,87	13,00	6,50	1212,66	43,64
526	145,33	12,64	6,32	1224,71	52,19
41	209,80	15,15	7,58	2119,54	53,86
233	161,72	13,46	6,73	1450,70	45,67
314	148,61	12,95	6,47	1282,58	50,67
199	150,80	12,81	6,40	1287,70	41,77
330	145,33	12,69	6,34	1229,40	42,00
160	191,23	15,56	7,78	1983,84	52,52
470	171,56	14,32	7,16	1637,88	53,42
284	131,13	14,20	7,10	1241,56	42,55
707	159,54	13,26	6,63	1410,38	45,91
229	138,78	12,88	6,44	1191,37	45,29
600	211,99	15,28	7,64	2160,05	52,84
800	170,47	13,64	6,82	1550,09	58,45
32	125,66	11,36	5,68	951,67	41,47
396	261,16	16,92	8,46	2946,01	72,85

Continuação da Tabela A.11.: (a)

(b)Faixa de diâmetro (17,1-23µm)

Objeto do	,				_
Analisador	Area	Diâmetro Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)
18	383,55	21,36	10,68	5462,92	76,25
49	260,07	17,82	8,91	3089,41	65,01
278	274,27	17,83	8,91	3260,01	65,70
553	286,29	18,14	9,07	3463,05	64,23
304	285,20	18,91	9,45	3595,30	68,70
368	327,82	19,17	9,58	4188,70	70,39
36	442,55	22,82	11,41	6733,00	94,78
873	257,88	17,78	8,89	3056,95	62,95
237	437,09	22,65	11,32	6599,78	111,62
194	261,16	18,56	9,28	3231,11	61,53
171	298,31	18,66	9,33	3711,89	78,94
191	295,04	18,91	9,46	3720,31	61,53
754	327,82	19,29	9,64	4214,79	72,86
535	354,04	20,27	10,13	4783,17	80,68
337	230,57	17,65	8,83	2713,44	53,59
6	299,41	19,64	9,82	3921,13	92,21
105	375,90	21,25	10,63	5325,88	78,12
soma	5396,98	330,72	165,36	71070,84	1259,09
média	317,47	19,45	9,73	4180,64	74,06

Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
501	466,59	23,86	11,93	7421,01	81,34
518	669,84	28,11	14,05	12550,75	102,16
262	550,73	26,03	13,01	9556,07	97,34
159	657,82	27,19	13,60	11924,20	117,50
38	535,44	24,68	12,34	8809,99	93,48
609	479,71	23,59	11,80	7544,70	92,04
221	492,82	24,37	12,19	8008,05	98,64
19	527,79	24,89	12,45	8759,23	89,88
156	559,48	26,19	13,09	9768,00	122,53
69	637,06	27,49	13,75	11677,30	94,03
315	487,36	23,61	11,81	7672,20	93,50
65	522,32	24,22	12,11	8434,71	98,95
149	574,77	26,20	13,10	10040,93	96,75
331	501,56	24,20	12,10	8093,21	89,82
soma	7663,29	354,65	177,32	130260,37	1367,97
média	547,38	25,33	12,67	9304,31	97,71

(c) Faixa de diâmetro (23,1-29µm)

Tabela A.12.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,4µm, para velocidade angular de compressão (*press-on*) de 1000rpm - 3ª corrida.

	(a)	Faixa de diametro (11,1-1/μπ)		
Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
289	145,33	12,72	6,36	1232,35	45,16
127	158,45	13,46	6,73	1421,84	44,61
171	228,38	16,38	8,19	2493,55	64,57
121	245,86	16,99	8,49	2784,39	60,75
84	115,83	11,23	5,61	866,82	40,21
27	127,85	11,32	5,66	964,82	42,75
261	142,05	12,53	6,26	1186,16	43,94
182	158,45	13,10	6,55	1384,07	58,32
263	169,37	13,56	6,78	1531,27	47,57
139	169,37	13,79	6,89	1556,67	61,45
245	242,59	16,85	8,43	2725,55	60,61
358	162,82	13,91	6,95	1509,56	47,50
230	177,02	15,10	7,55	1781,49	52,98
443	231,66	16,15	8,07	2493,76	69,79
327	245,86	16,82	8,41	2756,28	61,45
38	139,87	12,54	6,27	1169,14	41,60
17	160,63	13,15	6,57	1408,17	46,31
140	180,30	14,20	7,10	1706,84	48,40
196	192,32	14,87	7,44	1906,60	57,70

(a) Faixa de diâmetro (11,1-17µm)

378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $17,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$ 257 $154,07$ $13,02$ $6,51$ $1336,90$ $46,44$ 181 $159,54$ $13,74$ $6,87$ $1461,31$ $47,70$ 44 $201,06$ $15,41$ $7,70$ $2065,19$ $49,64$ 318 $169,37$ $13,77$ $6,89$ $155,30$ $48,56$ 172 $180,30$ $14,15$ $7,07$ $1700,69$ $58,20$ 65 $221,82$ $12,26$ $6,18$ $1053,68$ $41,11$ 202 $146,43$ $12,47$	média	169,15	13,80	6,90	1595,82	49,26
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $177,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$ 257 $154,07$ $13,02$ $6,51$ $1336,90$ $46,44$ 181 $159,54$ $13,74$ $6,87$ $1461,31$ $47,70$ 44 $201,06$ $15,41$ $7,04$ $1507,67$ $45,40$ 289 $186,86$ $14,53$ $7,26$ $1809,70$ $50,79$ 44 $201,06$ $15,41$ $7,07$ $1700,69$ $58,20$ 172 $180,30$ $14,15$ $7,07$ $1700,69$ $58,20$ 65 $221,82$ $12,50$ <td< th=""><th>soma</th><th>8288,33</th><th>676,20</th><th>338,10</th><th>78195,03</th><th>2413,96</th></td<>	soma	8288,33	676,20	338,10	78195,03	2413,96
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $177,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$ 257 $154,07$ $13,02$ $6,51$ $1336,90$ $46,44$ 181 $159,54$ $13,74$ $6,87$ $1461,31$ $47,70$ 416 $160,63$ $14,08$ $7,04$ $1507,67$ $45,40$ 289 $186,86$ $14,53$ $7,26$ $1809,70$ $50,79$ 80 $127,85$ $12,36$ $6,18$ $1053,68$ $41,11$ 202 $146,43$ $12,47$ $6,24$ $1217,66$ $41,03$ 199 $180,30$ $14,15$ <	177	221,82	16,22	8,11	2398,99	55,56
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $17,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$ 257 $154,07$ $13,02$ $6,51$ $1336,90$ $46,44$ 181 $159,54$ $13,74$ $6,87$ $1461,31$ $47,70$ 444 $201,06$ $15,41$ $7,70$ $2005,19$ $49,64$ 318 $169,37$ $13,77$ $6,89$ $1555,30$ $48,56$ 172 $180,30$ $14,15$ $7,07$ $170,69$ $58,20$ 80 $127,85$ $12,36$ $6,18$ $1053,68$ $41,11$ 202 $146,43$ $12,47$ <td< td=""><td>232</td><td>210,90</td><td>15,48</td><td>7,74</td><td>2176,09</td><td>55,16</td></td<>	232	210,90	15,48	7,74	2176,09	55,16
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $177,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$ 257 $154,07$ $13,02$ $6,51$ $1336,90$ $46,44$ 181 $159,54$ $13,74$ $6,87$ $1461,31$ $47,70$ 444 $201,06$ $15,41$ $7,70$ $2005,19$ $49,64$ 318 $169,37$ $13,77$ $6,89$ $1555,30$ $48,56$ 172 $180,30$ $14,15$ $7,08$ $1701,27$ $48,54$ 136 $125,66$ $11,69$ $5,84$ $978,95$ $38,70$ 80 $127,85$ $12,36$ <t< td=""><td>101</td><td>184,67</td><td>14,59</td><td>7,29</td><td>1795,96</td><td>57,36</td></t<>	101	184,67	14,59	7,29	1795,96	57,36
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $177,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$ 257 $154,07$ $13,02$ $6,51$ $1336,90$ $46,44$ 181 $159,54$ $13,74$ $6,87$ $1461,31$ $47,70$ 44 $201,06$ $15,41$ $7,70$ $2065,19$ $49,64$ 318 $169,37$ $13,77$ $6,89$ $1555,30$ $48,56$ 172 $180,30$ $14,15$ $7,07$ $1700,69$ $58,20$ 80 $127,85$ $12,36$ $6,18$ $1053,68$ $41,11$ 202 $146,43$ $12,47$ <t< td=""><td>399</td><td>145,33</td><td>12,54</td><td>6,27</td><td>1215,34</td><td>44,18</td></t<>	399	145,33	12,54	6,27	1215,34	44,18
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $177,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$ 257 $154,07$ $13,02$ $6,51$ $1336,90$ $46,44$ 181 $159,54$ $13,74$ $6,87$ $1461,31$ $47,70$ 44 $201,06$ $15,41$ $7,70$ $2065,19$ $49,64$ 318 $169,37$ $13,77$ $6,89$ $1555,30$ $48,56$ 172 $180,30$ $14,15$ $7,07$ $1700,69$ $58,20$ 80 $127,85$ $12,36$ $6,18$ $1053,68$ $41,11$ 202 $146,43$ $12,47$ <t< td=""><td>15</td><td>121,29</td><td>11,25</td><td>5,62</td><td>909,37</td><td>43,00</td></t<>	15	121,29	11,25	5,62	909,37	43,00
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $177,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$ 257 $154,07$ $13,02$ $6,51$ $1336,90$ $46,44$ 181 $159,54$ $13,74$ $6,87$ $1461,31$ $47,70$ 44 $201,06$ $15,41$ $7,70$ $2065,19$ $49,64$ 318 $169,37$ $13,77$ $6,89$ $1555,30$ $48,56$ 172 $180,30$ $14,15$ $7,08$ $1701,27$ $48,54$ 136 $125,66$ $11,69$ $5,84$ $978,95$ $38,70$ 80 $127,85$ $12,36$ <td< td=""><td>65</td><td>221,82</td><td>15,50</td><td>7,75</td><td>2292,12</td><td>55,68</td></td<>	65	221,82	15,50	7,75	2292,12	55,68
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $177,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$ 257 $154,07$ $13,02$ $6,51$ $1336,90$ $46,44$ 181 $159,54$ $13,74$ $6,87$ $1461,31$ $47,70$ 44 $201,06$ $15,41$ $7,70$ $2065,19$ $49,64$ 318 $169,37$ $13,77$ $6,89$ $1555,30$ $48,56$ 172 $180,30$ $14,15$ $7,08$ $1701,27$ $48,54$ 136 $125,66$ $11,69$ $5,84$ $978,95$ $38,70$ 80 $127,85$ $12,36$ <td< td=""><td>199</td><td>180,30</td><td>14,15</td><td>7,07</td><td>1700,69</td><td>58,20</td></td<>	199	180,30	14,15	7,07	1700,69	58,20
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $177,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$ 257 $154,07$ $13,02$ $6,51$ $1336,90$ $46,44$ 181 $159,54$ $13,74$ $6,87$ $1461,31$ $47,70$ 44 $201,06$ $15,41$ $7,70$ $2065,19$ $49,64$ 318 $169,37$ $13,77$ $6,89$ $1555,30$ $48,56$ 172 $180,30$ $14,15$ $7,08$ $1701,27$ $48,54$ 136 $125,66$ $11,69$ $5,84$ $978,95$ $38,70$ 80 $127,85$ $12,36$ <td< td=""><td>202</td><td>146,43</td><td>12,47</td><td>6,24</td><td>1217,66</td><td>41,03</td></td<>	202	146,43	12,47	6,24	1217,66	41,03
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $177,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$ 257 $154,07$ $13,02$ $6,51$ $1336,90$ $46,44$ 181 $159,54$ $13,74$ $6,87$ $1461,31$ $47,70$ 44 $201,06$ $15,41$ $7,70$ $2065,19$ $49,64$ 318 $169,37$ $13,77$ $6,89$ $1555,30$ $48,56$ 172 $180,30$ $14,15$ $7,08$ $1701,27$ $48,54$ 136 $125,66$ $11,69$ $5,84$ $978,95$ $38,70$	80	127,85	12,36	6,18	1053,68	41,11
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $177,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$ 257 $154,07$ $13,02$ $6,51$ $1336,90$ $46,44$ 181 $159,54$ $13,74$ $6,87$ $1461,31$ $47,70$ 416 $160,63$ $14,08$ $7,04$ $1507,67$ $45,40$ 289 $186,86$ $14,53$ $7,26$ $1809,70$ $50,79$ 44 $201,06$ $15,41$ $7,70$ $2065,19$ $49,64$ 318 $169,37$ $13,77$ $6,89$ $1555,30$ $48,56$ 172 $180,30$ $14,15$ <	136	125,66	11,69	5,84	978,95	38,70
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $177,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$ 257 $154,07$ $13,02$ $6,51$ $1336,90$ $46,44$ 181 $159,54$ $13,74$ $6,87$ $1461,31$ $47,70$ 416 $160,63$ $14,08$ $7,04$ $1507,67$ $45,40$ 289 $186,86$ $14,53$ $7,26$ $1809,70$ $50,79$ 44 $201,06$ $15,41$ $7,70$ $2065,19$ $49,64$ 318 $169,37$ $13,77$ $6,89$ $1555,30$ $48,56$	172	180,30	14,15	7,08	1701,27	48,54
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $177,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$ 257 $154,07$ $13,02$ $6,51$ $1336,90$ $46,44$ 181 $159,54$ $13,74$ $6,87$ $1461,31$ $47,70$ 416 $160,63$ $14,08$ $7,04$ $1507,67$ $45,40$ 289 $186,86$ $14,53$ $7,26$ $1809,70$ $50,79$ 44 $201,06$ $15,41$ $7,70$ $2065,19$ $49,64$	318	169,37	13,77	6,89	1555,30	48,56
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $177,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$ 257 $154,07$ $13,02$ $6,51$ $1336,90$ $46,44$ 181 $159,54$ $13,74$ $6,87$ $1461,31$ $47,70$ 416 $160,63$ $14,08$ $7,04$ $1507,67$ $45,40$ 289 $186,86$ $14,53$ $7,26$ $1809,70$ $50,79$	44	201,06	15,41	7,70	2065,19	49,64
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $177,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$ 257 $154,07$ $13,02$ $6,51$ $1336,90$ $46,44$ 181 $159,54$ $13,74$ $6,87$ $1461,31$ $47,70$ 416 $160,63$ $14,08$ $7,04$ $1507,67$ $45,40$	289	186,86	14,53	7,26	1809,70	50,79
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $177,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$ 257 $154,07$ $13,02$ $6,51$ $1336,90$ $46,44$ 181 $159,54$ $13,74$ $6,87$ $1461,31$ $47,70$	416	160,63	14,08	7,04	1507,67	45,40
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $177,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$ 257 $154,07$ $13,02$ $6,51$ $1336,90$ $46,44$	181	159,54	13,74	6,87	1461,31	47,70
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $177,02$ $14,06$ $7,03$ $1659,33$ $49,75$ 293 $186,86$ $15,31$ $7,65$ $1906,79$ $47,88$	257	154,07	13,02	6,51	1336,90	46,44
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$ 159 $177,02$ $14,06$ $7,03$ $1659,33$ $49,75$	293	186,86	15,31	7,65	1906,79	47,88
378 $208,71$ $15,67$ $7,83$ $2179,90$ $52,54$ 402 $110,37$ $11,95$ $5,97$ $878,99$ $40,04$ 19 $157,35$ $13,16$ $6,58$ $1380,44$ $44,55$ 36 $167,19$ $13,60$ $6,80$ $1515,61$ $46,60$ 222 $99,44$ $11,27$ $5,63$ $746,95$ $35,08$ 240 $121,29$ $11,67$ $5,83$ $943,39$ $44,15$ 208 $124,57$ $11,98$ $5,99$ $995,02$ $42,74$ 158 $213,08$ $15,74$ $7,87$ $2236,39$ $54,32$ 54 $113,64$ $11,45$ $5,72$ $867,44$ $37,77$ 202 $148,61$ $13,25$ $6,62$ $1312,50$ $45,51$ 328 $168,28$ $13,52$ $6,76$ $1516,77$ $50,28$	159	177,02	14,06	7,03	1659,33	49,75
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	328	168,28	13,52	6,76	1516,77	50,28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	202	148,61	13,25	6,62	1312,50	45,51
378208,7115,677,832179,9052,54402110,3711,955,97878,9940,0419157,3513,166,581380,4444,5536167,1913,606,801515,6146,6022299,4411,275,63746,9535,08240121,2911,675,83943,3944,15208124,5711,985,99995,0242,74158213,0815,747,872236,3954,32	54	113,64	11,45	5,72	867,44	37,77
378208,7115,677,832179,9052,54402110,3711,955,97878,9940,0419157,3513,166,581380,4444,5536167,1913,606,801515,6146,6022299,4411,275,63746,9535,08240121,2911,675,83943,3944,15208124,5711,985,99995,0242,74	158	213,08	15,74	7,87	2236,39	54,32
378208,7115,677,832179,9052,54402110,3711,955,97878,9940,0419157,3513,166,581380,4444,5536167,1913,606,801515,6146,6022299,4411,275,63746,9535,08240121,2911,675,83943,3944,15	208	124,57	11,98	5,99	995,02	42,74
378208,7115,677,832179,9052,54402110,3711,955,97878,9940,0419157,3513,166,581380,4444,5536167,1913,606,801515,6146,6022299,4411,275,63746,9535,08	240	121,29	11,67	5,83	943,39	44,15
378208,7115,677,832179,9052,54402110,3711,955,97878,9940,0419157,3513,166,581380,4444,5536167,1913,606,801515,6146,60	222	99,44	11,27	5,63	746,95	35,08
378208,7115,677,832179,9052,54402110,3711,955,97878,9940,0419157,3513,166,581380,4444,55	36	167,19	13,60	6,80	1515,61	46,60
378 208,71 15,67 7,83 2179,90 52,54 402 110,37 11,95 5,97 878,99 40,04	19	157,35	13,16	6,58	1380,44	44,55
378 208,71 15,67 7,83 2179,90 52,54	402	110,37	11,95	5,97	878,99	40,04
	378	208,71	15,67	7,83	2179,90	52,54

Continuação da Tabela A.12.: (a)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
107	296,13	18,27	9,14	3607,28	61,62
373	347,49	20,17	10,09	4672,73	70,88
55	438,18	22,21	11,10	6487,86	95,22
247	348,58	20,04	10,02	4656,10	73,36
198	351,86	20,71	10,36	4858,92	75,15
223	277,55	17,53	8,76	3243,45	79,81
380	333,28	20,63	10,32	4584,37	74,97
325	429,44	22,23	11,11	6363,55	85,39
25	442,55	22,97	11,49	6778,03	82,94
371	397,75	21,78	10,89	5775,96	75,94

410	413,05	21,99	11,00	6056,46	97,70
59	289,57	19,12	9,56	3691,24	71,93
86	326,73	19,51	9,76	4250,53	77,30
99	421,79	22,24	11,12	6255,02	89,14
26	385,73	21,53	10,76	5536,24	97,08
188	277,55	18,37	9,19	3399,46	61,45
249	316,89	19,04	9,52	4021,47	65,52
217	403,22	21,64	10,82	5815,79	73,43
198	281,92	18,01	9,01	3385,21	62,68
soma	6779,28	388,00	194,00	93439,67	1471,53
média	356,80	20,42	10,21	4917,88	77,45

Continuação da Tabela A.12.: (b)

(c) Faixa de diâmetro (23,1-29µm)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(µm ²)	(µm)	(µm)	(μm^3)	(µm)
33	482,99	23,41	11,70	7536,46	90,76
275	602,09	26,37	13,19	10585,03	109,93
316	532,16	25,01	12,50	8871,84	92,02
173	678,58	28,79	14,40	13026,11	114,75
181	587,89	25,69	12,84	10068,07	111,42
247	482,99	23,67	11,84	7622,55	85,27
252	492,82	26,12	13,06	8581,73	114,10
251	558,38	27,45	13,73	10219,60	108,75
52	564,94	25,21	12,60	9494,70	108,74
soma	4982,83	231,72	115,86	86006,09	935,74
média	553,65	25,75	12,87	9556,23	103,97

Tabela A.13.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,4μm, para velocidade angular de compressão (*press-on*) de 2000rpm - 1ª corrida.

	()		(==,==,=,=,		
Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm²)	(µm)	(µm)	(µm³)	(µm)
151	126,76	11,61	5,80	980,72	40,63
27	161,72	13,46	6,73	1451,72	49,35
96	243,68	16,95	8,47	2753,45	59,17
191	207,62	15,56	7,78	2154,20	66,08
115	136,59	11,91	5,95	1084,27	40,66
71	175,93	13,71	6,86	1608,13	50,94
124	170,47	14,45	7,22	1642,11	50,98
194	128,94	11,64	5,82	1000,72	38,78
91	136,59	12,16	6,08	1107,60	39,54

(a) Faixa de diâmetro (11,1-17µm)

média	161,01	13,56	6,78	1494,99	47,10
soma	4669,22	393,15	196,58	43354,83	1365,91
9	204,34	15,99	7,99	2177,65	53,04
260	190,13	14,61	7,31	1852,08	50,66
125	148,61	12,54	6,27	1242,39	42,70
169	133,31	11,37	5,68	1010,34	42,11
120	221,82	16,06	8,03	2374,62	58,97
73	204,34	14,93	7,47	2034,22	60,46
121	195,60	15,42	7,71	2010,49	58,04
133	155,17	13,45	6,72	1391,30	48,04
201	135,50	12,56	6,28	1134,39	43,04
161	152,98	13,47	6,74	1373,92	41,90
66	135,50	13,13	6,57	1186,08	46,93
55	116,92	11,80	5,90	919,71	38,18
28	112,55	11,74	5,87	880,80	38,49
117	236,03	16,87	8,44	2654,56	57,57
234	148,61	12,89	6,44	1276,81	43,24
5	104,90	11,73	5,86	820,08	35,31
248	126,76	11,41	5,71	964,35	40,93
67	165,00	14,75	7,38	1622,55	45,21
33	158,45	14,19	7,09	1498,58	43,69
137	134,41	12,80	6,40	1146,96	41,25

Continuação da Tabela A.13.: (a)

Objeto do					
Analisador	Area	Diâmetro Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)
97	431,63	22,45	11,22	6459,32	77,50
8	354,04	19,92	9,96	4701,74	73,86
96	230,57	18,35	9,17	2820,18	66,36
50	296,13	19,82	9,91	3913,18	69,42
158	374,81	20,46	10,23	5112,36	88,72
199	335,47	19,84	9,92	4437,40	72,15
108	373,71	21,28	10,64	5302,69	71,22
216	279,74	18,01	9,01	3359,45	62,24
184	321,26	18,69	9,35	4003,36	77,66
154	305,96	19,00	9,50	3876,38	65,73
69	271,00	18,47	9,23	3336,77	60,55
241	286,29	18,82	9,41	3591,26	66,84
221	355,14	21,01	10,51	4975,33	73,58
188	384,64	20,62	10,31	5286,71	86,35
56	379,18	21,57	10,79	5452,79	77,29
50	344,21	20,16	10,08	4625,35	70,42
203	285,20	20,56	10,28	3909,11	68,35
155	337,65	21,94	10,97	4939,02	79,21

156	263,35	17,51	8,/5	30/3,9/	65,72 50.07
25	236,03	17,62	8,81	2773,02	59,07
62	425,07	22,38	11,19	6343,33	74,54
69	430,53	22,87	11,43	6563,34	85,93
soma	7301,60	441,36	220,68	98856,06	1592,71
média	331,89	20,06	10,03	4493,46	72,40

Continuação da Tabela A.14.: (b)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
84	535,44	24,86	12,43	8875,12	90,81
125	545,27	26,12	13,06	9496,51	93,48
175	573,68	26,67	13,34	10200,28	115,21
152	538,71	25,02	12,51	8986,35	98,17
7	498,28	24,06	12,03	7992,86	106,62
190	618,48	25,59	12,79	10550,47	158,65
24	626,13	26,64	13,32	11121,42	102,83
soma	3936,00	178,97	89,49	67223,01	765,77
média	562,29	25,57	12,78	9603,29	109,40

(c) Faixa de diâmetro (23,1-29µm)

Tabela A.14.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,4μm, para velocidade angular de compressão (*press-on*) de 2000rpm - 2ª corrida.

	્ય) I alka ac alameno	(11,1 1/µ11	/	
Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
10	182,49	14,06	7,03	1710,98	47,71
650	173,74	14,43	7,21	1670,97	50,24
663	158,45	13,14	6,57	1388,16	46,08
294	127,85	12,44	6,22	1060,71	41,26
708	137,68	12,72	6,36	1167,23	44,09
680	182,49	14,61	7,30	1777,19	52,57
404	181,39	14,23	7,12	1721,16	48,12
412	197,78	15,10	7,55	1990,66	66,44
474	234,94	16,57	8,28	2594,90	60,66
204	132,22	11,47	5,73	1010,92	43,00
639	124,57	11,92	5,96	989,57	39,37
95	120,20	12,13	6,07	972,39	47,52
438	193,41	14,66	7,33	1890,06	51,57
673	170,47	14,74	7,37	1675,28	52,53
206	130,03	11,78	5,89	1021,26	38,86
261	194,51	15,00	7,50	1945,67	55,48
528	146,43	12,61	6,30	1230,77	42,97

((ล)	Faixa	de diâmetro	$(11.1-17\mu m)$
	a)	Гагла	ut utamento	(11,1,1-1) (µ111)

Continuação da Tabela A.14.: (a)

média	165.52	13.70	6.85	1544.34	48.60
soma	3807,06	315,11	157,55	35519,83	1117,78
274	101,62	11,21	5,60	759,21	35,97
339	227,29	16,47	8,24	2496,35	63,87
731	181,39	14,74	7,37	1782,26	49,02
78	182,49	14,27	7,14	1736,54	46,85
746	180,30	14,18	7,09	1704,89	49,38
283	145,33	12,62	6,31	1222,69	44,21

(b) Faixa de diâmetro (17,1-23µm)

Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
100	248,05	17,49	61,65	8,74	2891,48
603	279,74	18,14	65,81	9,07	3382,25
504	246,96	17,14	63,02	8,57	2822,18
323	315,80	20,48	80,08	10,24	4311,93
614	253,51	18,24	61,74	9,12	3082,67
331	290,67	18,48	63,68	9,24	3581,23
448	340,93	20,30	73,90	10,15	4612,99
482	274,27	18,09	65,80	9,04	3306,91
293	333,28	19,52	93,22	9,76	4336,71
678	317,98	19,69	66,55	9,85	4174,11
356	369,34	20,42	74,89	10,21	5027,56
740	231,66	17,55	57,88	8,77	2710,15
468	273,18	17,76	69,74	8,88	3234,93
357	291,76	18,33	66,84	9,17	3565,79
371	349,67	19,98	86,22	9,99	4658,04
75	369,34	20,97	78,33	10,48	5162,24
752	390,10	21,41	79,34	10,71	5569,13
266	359,51	19,91	89,72	9,95	4770,66
soma	5535,75	343,88	1298,42	171,94	71200,97
média	307,54	19,10	72,13	9,55	3955,61

(c) Faixa de diâmetro (23,1-29µm)

Objeto do	1	Diâmetro			
Analisador	Area	Médio	Raio	Volume	Perimetro
	(μm^2)	(µm)	(µm)	(µm³)	(µm)
91	488,45	23,91	11,96	7786,53	107,98
148	532,16	27,37	13,68	9709,42	140,07
374	684,05	28,74	14,37	13106,31	126,67
266	467,69	23,54	11,77	7339,43	92,53
184	486,26	23,79	11,90	7713,59	92,88
144	694,97	28,38	14,19	13148,70	108,85
5	555,11	28,57	14,28	10572,85	120,83
soma	3908,68	184,30	92,15	69376,82	789,82
média	558,38	26,33	13,16	9910,97	112,83

Tabela A.15.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,4μm, para velocidade angular de compressão (*press-on*) de 2000rpm - 3ª corrida.

Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(μm)	(µm)	(μm^3)	(µm)
210	195,60	14,81	7,40	1930,92	48,42
182	122,39	11,97	5,98	976,59	41,85
372	180,30	14,92	7,46	1793,74	48,47
367	121,29	12,84	6,42	1038,52	38,71
310	177,02	14,84	7,42	1750,77	52,15
279	241,49	16,24	8,12	2614,42	61,68
68	168,28	14,00	7,00	1570,24	46,15
207	217,45	15,69	7,84	2273,92	61,18
33	136,59	12,09	6,04	1100,76	40,22
197	140,96	12,23	6,12	1149,77	46,77
218	215,27	15,38	7,69	2206,81	60,07
82	236,03	15,60	7,80	2454,98	66,20
231	182,49	14,44	7,22	1756,87	53,33
379	222,92	16,27	8,13	2417,74	62,98
263	207,62	16,51	8,25	2284,71	59,75
71	132,22	12,44	6,22	1096,82	42,78
131	199,97	15,23	7,61	2029,85	55,46
305	230,57	16,34	8,17	2511,79	58,86
182	118,01	11,76	5,88	925,51	41,72
222	142,05	13,08	6,54	1238,75	41,36
26	168,28	14,40	7,20	1615,78	47,53
151	227,29	16,33	8,16	2473,79	57,37
159	149,70	13,11	6,55	1308,27	43,58
165	181,39	14,30	7,15	1729,09	52,76
289	230,57	16,36	8,18	2514,90	54,63
36	203,25	15,35	7,68	2080,49	49,18
soma	4748,99	376,52	188,26	46845,81	1333,16
média	182,65	14,48	7,24	1801,76	51,28

(a) Faixa de diâmetro (11,1-17µm)

Objeto do Analisador	Área (μm²)	Diâmetro Médio (µm)	Raio (µm)	Volume (µm ³)	Perímetro (µm)
148	393,38	22,60	11,30	5926,80	94,81
436	449,11	22,89	11,45	6854,68	90,96
74	289,57	18,46	9,23	3563,59	69,55
34	398,85	21,56	10,78	5732,62	78,68
220	312,52	19,75	9,87	4114,41	77,55
393	278,65	17,89	8,94	3322,72	69,12
255	458,95	22,48	11,24	6877,87	94,67
36	308,15	18,54	9,27	3808,93	72,03
109	290,67	19,08	9,54	3698,21	69,21
soma	3179,83	183,25	91,63	43899,83	716,58
média	353,31	20,36	10,18	4877,76	79,62

Objeto do Analisador	Área (μm²)	Diâmetro Médio (µm)	Raio (µm)	Volume (µm ³)	Perímetro (µm)
206	660,01	27,58	13,79	12135,80	107,72
252	509,21	24,56	12,28	8335,97	95,96
31	588,98	26,75	13,38	10504,81	140,64
4	519,05	24,74	12,37	8560,02	98,24
139	669,84	28,39	14,19	12677,49	141,38
284	574,77	25,78	12,89	9877,59	87,83
soma	3521,86	157,79	78,90	62091,68	671,78
média	586,98	26,30	13,15	10348,61	111,96

(c) Faixa de diâmetro (23,1-29µm)

Tabela A.16.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,4μm, para velocidade angular de compressão (*press-on*) de 5000rpm - 1ª corrida.

Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(µm ²)	(µm)	(µm)	(μm^3)	(µm)
38	137,68	12,51	6,25	1148,13	41,75
30	136,59	12,76	6,38	1161,98	40,84
110	100,53	11,19	5,60	749,97	34,52
19	97,25	11,48	5,74	744,62	35,03
120	105,99	12,18	6,09	860,80	37,09
200	181,39	14,43	7,21	1744,79	46,87
66	107,09	11,27	5,64	804,72	39,75
19	166,09	12,99	6,50	1438,93	51,09
76	134,41	12,22	6,11	1095,00	40,79
146	155,17	12,99	6,50	1344,17	46,55
57	211,99	15,41	7,71	2178,12	52,33
15	109,27	11,90	5,95	866,92	38,05
140	186,86	15,38	7,69	1915,31	48,62
187	104,90	11,10	5,55	776,28	35,20
35	101,62	11,15	5,57	755,32	35,10
157	127,85	11,53	5,76	982,39	39,02
10	166,09	13,56	6,78	1501,29	47,77
127	115,83	11,89	5,94	917,90	40,96
76	146,43	13,50	6,75	1317,61	47,38
15	112,55	11,16	5,58	837,17	37,52
77	192,32	15,42	7,71	1976,77	50,25
soma	2897,91	266,02	133,01	25118,20	886,48
					42,21
média	138,00	12,67	6,33	1196,10	

(a) Faixa de diâmetro (11,1-17µm)

Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
184	357,32	20,88	10,44	4973,11	74,66
80	369,34	20,33	10,16	5005,61	82,63
213	426,16	22,35	11,17	6348,74	76,50
42	277,55	18,69	9,35	3458,88	66,79
77	342,02	20,09	10,04	4580,43	68,49
51	380,27	21,29	10,65	5397,87	75,44
72	248,05	17,23	8,62	2849,28	58,20
18	286,29	18,12	9,06	3459,10	66,45
86	328,91	19,13	9,56	4193,93	72,65
25	413,05	22,07	11,04	6078,37	90,43
82	251,33	18,32	9,16	3068,85	60,71
12	309,24	19,58	9,79	4035,99	76,73
156	366,06	20,22	10,11	4933,55	79,88
147	264,44	17,26	8,63	3042,62	61,54
18	336,56	19,45	9,73	4365,17	68,69
167	253,51	17,72	8,86	2995,28	60,81
soma	5210,12	312,72	156,36	68786,78	1140,61
média	612,96	19,55	9,77	4299,17	71,29

(b) Faixa de diâmetro (17,1-23µm

(c) Faixa de diâmetro (23,1-29µm)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(μm)	(μm)	(μm^3)	(μm)
203	524,51	24,79	12,69	8875,40	100,96
20	531,07	25,38	12,83	9084,65	88,86
99	512,49	25,66	12,83	8766,88	91,69
143	570,40	27,87	13,93	10597,54	113,73
172	455,67	23,69	11,85	7197,51	83,11
194	538,71	27,28	13,64	9797,85	113,89
109	562,75	26,46	13,23	9926,83	104,36
92	631,60	27,25	13,63	11474,75	98,03
134	727,76	28,97	14,48	14054,01	104,55
174	631,60	27,29	13,65	11492,30	99,01
54	596,63	27,40	13,70	10897,80	99,34
56	700,44	28,94	14,47	13514,12	138,56
soma	6983,62	320,99	160,93	116804,24	1236,08
média	581,97	26,75	13,41	10618,57	103,01

Tabela A.17.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,4µm, para velocidade angular de compressão (press-on) de 5000rpm - 2ª corrida.

-

Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
18	120,20	11,70	5,85	937,50	41,18
495	131,13	11,82	5,91	1033,71	38,76
682	131,13	12,31	6,16	1076,13	38,94
660	198,88	15,56	7,78	2063,35	51,80
403	231,66	16,58	8,29	2561,19	60,33
248	165,00	13,66	6,83	1502,75	46,85
459	231,66	16,06	8,03	2479,74	70,04
251	225,10	15,69	7,84	2354,21	55,66
227	97,25	12,01	6,01	778,91	37,75
102	136,59	12,77	6,39	1163,27	47,39
335	244,77	16,90	8,45	2757,23	72,93
394	142,05	12,56	6,28	1189,83	44,27
561	202,15	15,07	7,54	2031,20	53,34
316	134,41	13,43	6,71	1203,08	43,68
222	132,22	12,07	6,04	1063,98	40,38
375	111,46	13,24	6,62	983,48	37,53
288	157,35	13,44	6,72	1410,14	43,49
438	160,63	13,48	6,74	1443,02	49,80
220	241,49	16,86	8,43	2714,95	59,78
142	250,23	16,94	8,47	2826,30	58,44
368	115,83	11,15	5,57	860,80	42,36
375	155,17	13,15	6,58	1360,48	46,20
635	169,37	13,78	6,89	1555,87	49,05
282	159,54	14,11	7,06	1501,14	46,61
195	174,84	14,31	7,15	1667,59	54,22
545	116,92	11,81	5,90	920,31	39,57
398	118,01	12,01	6,01	945,23	39,00
soma	4455,05	372,48	186,24	42385,38	1309,32
média	165,00	13,80	6,90	1569,83	48,49

(a) Faixa de diâmetro (11,1-17µm)

Objeto do	_				
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm ²)	(μm)	(µm)	(μm^3)	(µm)
422	392,29	21,72	10,86	5681,21	73,32
860	290,67	18,83	9,41	3648,26	70,20
367	345,30	20,05	10,02	4615,09	70,50
916	256,79	18,19	9,10	3114,84	77,12
486	234,94	17,65	8,83	2764,92	60,67
127	319,08	19,15	9,57	4072,96	79,99
499	350,77	21,14	10,57	4942,36	77,79
210	262,25	17,26	8,63	3018,25	70,40
30	363,88	20,74	10,37	5030,45	72,29
243	411,96	22,52	11,26	6183,93	86,02
146	291,76	18,38	9,19	3575,53	71,59
153	302,69	18,85	9,42	3803,39	67,97
468	351,86	19,84	9,92	4654,94	79,25
24	226,19	18,41	9,20	2775,57	55,06
346	398,85	22,24	11,12	5913,98	75,48
314	316,89	19,49	9,74	4117,37	81,77
soma	5116,15	314,46	157,23	67913,05	1169,44
média	319,76	19,65	9,83	4244,57	73,09

(b) Faixa de diâmetro (17,1-23µm)

(c) Faixa de diâmetro (23,1-29µm)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(µm ²)	(µm)	(µm)	(µm ³)	(µm)
2	660,01	27,58	13,79	12135,04	149,55
383	672,03	28,01	14,00	12548,13	103,76
9	658,91	28,51	14,26	12525,12	139,10
351	482,99	23,27	11,64	7493,24	101,45
111	562,75	25,55	12,78	9585,90	101,36
349	619,58	27,10	13,55	11194,78	102,95
433	656,73	28,19	14,10	12342,18	127,99
5	347,49	24,40	12,20	5652,25	110,67
365	443,65	23,40	11,70	6922,11	91,82
532	513,58	24,49	12,24	8383,40	80,90
315	472,06	25,66	12,83	8075,80	100,94
130	647,99	28,30	14,15	12225,66	121,82
soma	6737,75	314,47	157,23	119083,61	1332,30
média	561,48	26,21	13,10	9923,63	111,03

Tabela A.18.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,4μm, para velocidade angular de compressão (*press-on*) de 5000rpm - 3ª corrida.

....

Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
223	230,57	16,35	8,17	2512,54	58,20
50	242,59	16,63	8,32	2690,12	55,26
339	201,06	14,82	7,41	1987,06	57,03
171	190,13	14,57	7,28	1846,47	51,41
94	180,30	15,48	7,74	1860,61	51,27
156	238,21	16,73	8,37	2657,06	58,02
283	140,96	14,61	7,31	1373,12	46,78
94	96,16	12,01	6,01	769,95	35,53
430	192,32	15,21	7,60	1949,57	56,16
16	118,01	11,66	5,83	917,15	37,45
66	120,20	11,22	5,61	899,49	38,60
445	179,21	14,47	7,23	1728,28	49,52
167	108,18	11,24	5,62	810,44	38,67
217	135,50	12,38	6,19	1118,52	44,21
335	148,61	13,50	6,75	1337,67	46,09
soma	2522,01	210,88	105,44	24458,04	724,20
média	168,13	14,06	7,03	1630,54	48,28

(a) Faixa de diâmetro (11,1-17µm)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)
38	343,12	19,74	9,87	4516,24	71,67
258	213,08	17,93	8,96	2546,63	62,77
223	384,64	20,46	10,23	5245,86	84,48
202	268,81	18,02	9,01	3229,43	63,28
383	323,45	19,36	9,68	4174,21	67,47
150	331,10	19,86	9,93	4383,43	74,45
34	291,76	18,58	9,29	3614,20	77,34
137	297,22	19,41	9,71	3846,27	69,95
301	346,39	20,24	10,12	4674,87	85,05
13	357,32	20,38	10,19	4854,11	84,02
63	257,88	18,18	9,09	3126,10	66,10
45	296,13	18,98	9,49	3746,44	64,93
256	357,32	20,98	10,49	4996,65	69,28
269	387,92	22,18	11,09	5734,81	78,63
191	266,63	17,55	8,78	3119,81	60,18
181	305,96	19,36	9,68	3949,35	67,18
448	406,49	22,42	11,21	6076,06	79,75

				1	
60	284,11	18,28	9,14	3463,25	67,91
264	356,23	20,17	10,08	4789,41	79,63
166	441,46	21,94	10,97	6458,51	95,13
341	266,63	18,03	9,02	3205,28	65,37
138	281,92	18,06	9,03	3395,20	64,98
306	331,10	19,85	9,92	4380,81	78,13
177	430,53	22,02	11,01	6319,21	98,97
130	326,73	19,35	9,67	4214,68	70,11
soma	8153,93	491,33	245,67	108060,83	1846,75
média	326,16	19,65	9,83	4322,43	73,87

Continuação da Tabela A.18.: (b)

(c) Faixa de diâmetro (23,1-29µm)

Objeto do Analisador	Área (μm²)	Diâmetro Médio (µm)	Raio (µm)	Volume (μm ³)	Perímetro (µm)
24	727,76	28,87	14,43	14004,48	129,94
134	488,45	23,82	11,91	7755,19	87,22
100	632,69	27,48	13,74	11592,63	94,02
103	485,17	24,05	12,02	7778,72	82,11
soma	2334,06	104,21	52,11	41131,02	393,29
média	583,52	26,05	13,03	10282,76	98,32

Tabela A.19.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o	0
sistema fuligem/membrana de éster-celulose 0,8µm, para velocidade angular de	
compressão (press-on) de 1000rpm - 1ª corrida.	

(a) Faixa de diametro (11,1-17µm)							
Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro		
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)		
72	124,57	11,24	5,62	933,82	35,31		
83	151,89	13,23	6,61	1339,31	41,53		
147	96,16	11,93	5,96	764,71	37,46		
311	132,22	12,70	6,35	1119,62	39,88		
233	250,23	16,81	8,40	2804,06	52,78		
137	172,65	14,86	7,43	1710,84	46,67		
110	177,02	13,87	6,93	1636,35	43,54		
176	181,39	14,33	7,17	1733,12	45,00		
108	186,86	15,12	7,56	1883,73	47,48		
232	201,06	15,16	7,58	2031,75	47,60		
44	95,07	11,25	5,63	713,29	35,34		
45	97,25	11,97	5,99	776,31	37,60		
91	120,20	12,37	6,18	991,00	38,83		

(a)	Faixa	de	diâmetro	(11, 1-17)	μm
------------	-------	----	----------	------------	----

média	162.05	13.68	6.84	1526.61	42.97
soma	9236,82	779,95	389,98	87016,92	2449,04
185	246,96	16,99	8,49	2796,43	53,33
360	211,99	15,71	7,86	2220,32	49,33
163	142,05	13,00	6,50	1230,81	40,81
30	135,50	12,24	6,12	1105,84	38,44
220	222.92	16.13	8.07	2397.82	50.66
124	202.15	16.08	8.04	2167.04	50.49
149	195.60	14.28	7,14	1862.36	44.85
158	156.26	12.96	6.48	1349.80	40.69
84	120.20	11.15	5,57	893.38	35.01
130	88 51	11 50	5.75	678 72	36.12
133	241.49	16 59	8 29	2670 19	52.08
168	132,22	12,23	6.43	1284 38	40.41
221	132.22	12.09	6.12	1078 16	38.41
105	114,74	11,27	5.04	035 73	37 35
250	114 74	11 20	5.64	863.46	35.45
250	186.86	14 30	7 10	1792.36	45 18
200	134 41	12,12	6.06	1085 51	38.04
35	104 90	12.12	6.06	847 34	38.05
304	211,99	16.10	8.05	2310.44	50 55
124	211.99	15,15	7.80	2204.26	48.97
49	169 37	15.13	7 57	1708 86	47 52
189	168.28	13.76	6.88	1543.25	43 19
270	165.00	13,51	675	1485 84	42,10
236	161 72	13.43	671	1447 57	42.16
236	133 31	11 94	5.97	1061 43	37 50
325	190.13	12,34	7 21	1826.81	45.25
483	147,32	12,50	6.27	1207 12	30 37
<u> </u>	124,37	11,99	6.79	1332.04	37,03 A2 57
329	120,20	12,10	5.00	9/4,/2	27.62
203	105,50	14,40	6.08	074.72	43,22
223	1/0,11	14,24	7 20	1091,04	44,72
414	151,89	14,20	7,13	1445,45	44,70
448	140,96	12,03	6,02	1130,59	51,18
162	119,11	11,32	5,66	898,49	35,53
56	/9,//	11,61	5,80	617,21	36,44
150	242,59	16,59	8,29	2682,49	52,08
275	216,36	16,24	8,12	2343,16	51,01
95	207,62	16.09	8,04	2226,83	50,52
270	203,25	15,67	7,83	2123,17	49,20
259	165,00	13,55	6,//	1490,33	42,54
38	231,66	16,25	8,12	2509,23	51,02
161	137,68	12,35	6,18	1133,60	51.02
16	125,66	12,87	6,44	1078,53	40,42
76	105.00	12.07	6.4.4	1070.52	10.12

Continuação da Tabela A.19.: (a)

Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(µm ²)	(μm)	(µm)	(μm^3)	(µm)
144	372,62	20,78	10,39	5162,63	65,26
131	367,16	20,32	10,16	4973,31	63,80
25	372,62	20,04	10,02	4977,91	62,92
238	253,51	18,21	9,10	3077,50	57,18
77	281,92	19,52	9,76	3668,24	61,28
368	351,86	20,77	10,39	4873,13	65,23
130	384,64	21,21	10,60	5438,20	66,59
22	385,73	21,47	10,74	5521,41	67,42
180	314,71	19,83	9,91	4159,46	62,25
218	316,89	19,31	9,65	4079,17	60,63
117	287,39	19,25	9,62	3687,21	60,43
112	317,98	19,08	9,54	4044,73	59,91
303	430,53	22,22	11,11	6377,01	69,76
479	220,73	18,38	9,19	2705,31	57,73
262	257,88	17,96	8,98	3087,43	56,39
381	359,51	20,73	10,36	4967,33	65,08
155	322,35	19,81	9,91	4257,81	62,21
182	347,49	20,32	10,16	4706,84	63,80
57	240,40	17,87	8,93	2863,17	56,10
125	254,61	17,21	8,60	2920,89	54,03
281	315,80	19,61	9,80	4128,30	61,57
333	263,35	18,11	9,05	3178,74	56,85
25	271,00	18,57	9,28	3354,29	58,30
147	263,35	17,86	8,93	3136,21	56,09
200	298,31	17,83	8,92	3546,32	55,99
270	381,36	20,60	10,30	5237,94	64,69
333	399,94	21,25	10,62	5664,91	66,71
349	421,79	21,74	10,87	6113,68	68,27
soma	9055,43	549,84	274,92	119909,08	1726,48
média	323,41	19,64	9,82	4282,47	61,66

(b) Faixa de diâmetro (17,1-23µm)

(c) Faixa de diâmetro (23,1-29µm)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(μm)	(µm)	(μm^3)	(µm)
89	554,01	26,03	13,01	9612,15	81,72
366	599,91	26,59	13,29	10632,75	83,48
23	513,58	24,85	12,43	8509,87	78,04
185	587,89	26,49	13,25	10382,67	83,18
393	467,69	23,16	11,58	7222,42	72,74
172	420,70	26,43	13,22	7413,24	83,00
175	607,56	27,57	13,78	11166,22	86,56
154	613,02	26,75	13,37	10931,17	83,99
119	532,16	24,64	12,32	8740,31	77,36
324	532,16	25,20	12,60	8939,65	79,12
297	442,55	24,12	12,06	7115,41	75,73

15 511,40 25,02 12,51 8530,66 78,5 116 521,23 26,27 13,13 9127,54 82,4 197 544,18 24,96 12,48 9056,47 78,3 soma 7448,03 358,07 179,04 127380,53 1124	média	532,00	25,58	12,79	9098,61	80,31
15 511,40 25,02 12,51 8530,66 78,5 116 521,23 26,27 13,13 9127,54 82,4 197 544,18 24,96 12,48 9056,47 78,3	soma	7448,03	358,07	179,04	127380,53	1124,35
15 511,40 25,02 12,51 8530,66 78,5 116 521,23 26,27 13,13 9127,54 82,4	197	544,18	24,96	12,48	9056,47	78,39
15 511,40 25,02 12,51 8530,66 78,5	116	521,23	26,27	13,13	9127,54	82,48
	15	511,40	25,02	12,51	8530,66	78,57

Continuação da Tabela A.19.: (c)

Tabela A.20.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,8μm, para velocidade angular de compressão (*press-on*) de 1000rpm - 2ª corrida.

(a) Faixa de diâmetro (11,1-17µm)						
Objeto do		Diâmetro				
Analisador	Área	Médio	Raio	Volume	Perímetro	
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)	
558	148,61	12,95	6,48	1283,14	40,67	
328	191,23	14,76	7,38	1882,22	46,36	
426	122,39	11,94	5,97	974,15	37,49	
540	127,85	12,70	6,35	1082,58	39,88	
342	210,90	15,54	7,77	2185,42	48,81	
683	151,87	12,32	6,16	1247,36	38,68	
681	104,90	11,21	5,61	784,23	35,21	
561	148,61	12,99	6,50	1287,17	40,79	
427	161,72	13,38	6,69	1442,32	42,01	
95	167,19	13,95	6,98	1555,21	43,81	
146	217,45	15,55	7,77	2253,95	48,82	
240	175,93	14,63	7,31	1715,57	45,93	
253	111,46	11,24	5,62	835,24	35,30	
303	155,17	13,73	6,86	1420,16	43,11	
610	171,56	13,66	6,83	1562,24	42,89	
299	221,82	15,80	7,90	2336,38	49,61	
173	251,33	16,93	8,46	2836,29	53,15	
183	108,18	11,30	5,65	814,77	35,47	
30	230,57	16,84	8,42	2588,28	52,87	
196	242,59	16,62	8,31	2687,53	52,18	
567	124,57	11,96	5,98	993,42	37,56	
45	180,30	14,13	7,06	1698,12	44,36	
219	183,58	14,92	7,46	1826,33	46,86	
327	214,17	16,18	8,09	2310,04	50,80	
92	240,40	16,31	8,16	2614,35	51,22	
340	148,61	12,43	6,22	1231,89	39,04	
465	122,39	11,71	5,85	955,37	36,77	
676	127,85	11,77	5,88	1002,80	36,94	
951	132,22	11,88	5,94	1046,91	37,29	
1030	145,33	12,51	6,26	1212,52	39,30	

média	170,00	13,81	6,90	1615,50	43,36
soma	7650,16	621,45	310,72	72697,59	1951,34
400	264,44	16,88	8,44	2976,67	53,02
663	199,97	15,19	7,60	2025,28	47,70
584	193,41	14,97	7,49	1930,35	47,01
235	142,05	12,33	6,17	1167,95	38,72
461	144,24	12,66	6,33	1217,31	39,75
315	121,29	11,23	5,62	908,42	35,28
517	109,27	11,90	5,95	866,82	37,36
704	221,82	16,31	8,16	2412,41	51,22
300	206,53	15,77	7,89	2171,37	49,52
778	187,95	13,95	6,98	1748,27	43,81
427	161,72	13,51	6,76	1456,60	42,42
322	133,31	12,37	6,19	1099,75	38,85
919	128,94	11,83	5,92	1017,10	37,15
454	211,99	15,32	7,66	2165,39	48,11
198	182,49	15,35	7,68	1867,98	48,21

Continuação da Tabela A.20.: (a)

Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(µm ²)	(µm)	(µm)	(μm^3)	(µm)
196	266,63	17,89	8,95	3180,12	56,18
535	320,17	19,06	9,53	4067,46	59,84
596	343,12	20,65	10,32	4723,22	64,84
779	376,99	20,32	10,16	5107,74	63,81
292	351,86	20,26	10,13	4753,42	63,63
487	446,93	22,66	11,33	6752,02	71,16
297	244,77	17,28	8,64	2820,43	54,27
278	317,98	19,67	9,83	4169,36	61,76
606	345,30	21,26	10,63	4894,17	66,76
506	263,35	17,74	8,87	3114,24	55,70
67	276,46	17,65	8,83	3253,21	55,42
585	314,71	19,14	9,57	4015,09	60,09
397	342,02	20,12	10,06	4586,66	63,16
299	355,14	20,92	10,46	4953,92	65,70
39	312,52	18,68	9,34	3892,89	58,67
258	313,61	18,97	9,48	3965,32	59,55
127	363,88	21,59	10,79	5237,41	67,79
1132	359,51	20,20	10,10	4841,16	63,43
350	283,02	18,42	9,21	3474,51	57,82
342	297,22	19,10	9,55	3785,48	59,99
1007	366,06	21,27	10,63	5189,59	66,77
317	287,39	18,34	9,17	3513,00	57,57
478	320,17	19,51	9,75	4163,41	61,25
172	331,10	19,54	9,77	4312,55	61,35
134	334,37	19,37	9,68	4317,39	60,81
soma	8134,26	489,59	244,80	107083,76	1537,33
média	325,37	19,58	9,79	4283,35	61,49

Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(µm ²)	(µm)	(µm)	(μm^3)	(µm)
102	543,08	25,79	12,90	9337,36	80,98
508	581,33	27,45	13,72	10637,04	86,18
421	685,14	28,23	14,11	12893,46	88,64
30	508,12	24,70	12,35	8367,58	77,56
605	647,99	27,38	13,69	11826,05	85,96
16	454,57	23,23	11,62	7041,18	72,96
1015	485,17	23,95	11,98	7748,01	75,22
89	501,56	24,14	12,07	8071,89	75,80
1181	523,42	25,05	12,53	8741,84	78,66
174	584,61	27,84	13,92	10851,91	87,43
619	584,61	25,99	13,00	10129,45	81,61
75	487,36	23,85	11,92	7747,62	74,88
136	586,79	27,44	13,72	10735,81	86,17
821	617,39	28,06	14,03	11548,42	88,10
soma	7791,14	363,11	181,55	135677,60	1140,15
média	556,51	25,94	12,97	9691,26	81,44

(c) Faixa de diâmetro (23,1-29µm)

Tabela A.21.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,8μm, para velocidade angular de compressão (*press-on*) de 1000rpm - 3ª corrida.

	(a) Faixa de diametro (11,1-1/µm)							
Objeto do	,							
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro			
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)			
189	139,87	12,47	6,23	1162,62	43,04			
23	177,02	13,99	6,99	1650,79	45,92			
146	189,04	14,93	7,47	1881,88	55,26			
81	194,51	15,35	7,67	1989,96	55,13			
430	130,03	11,76	5,88	1019,23	43,75			
366	181,39	13,99	6,99	1691,55	60,06			
627	216,36	15,62	7,81	2253,30	56,49			
587	105,99	11,17	5,58	789,20	38,56			
562	132,22	11,85	5,92	1044,50	41,38			
275	142,05	12,46	6,23	1179,60	43,40			
427	192,32	14,73	7,37	1888,83	52,13			
96	225,10	16,34	8,17	2451,55	56,89			
578	128,94	11,75	5,87	1009,61	39,16			
181	148,61	13,24	6,62	1311,71	42,73			
482	198,88	14,48	7,24	1919,90	57,12			
263	191,23	15,45	7,72	1969,26	52,47			
108	218,55	16,31	8,16	2376,40	58,78			
71	130,03	12,65	6,32	1096,58	41,99			

(a) Faixa de diâmetro (11,1-17µm)

média	178,74	14,17	7,08	1731,92	52,10
soma	6255,86	495,93	247,97	60617,28	1823,57
191	213,08	16,15	8,07	2293,89	59,19
504	222,92	16,04	8,02	2383,82	56,79
409	208,71	15,46	7,73	2150,98	56,39
509	264,44	16,87	8,44	2974,61	65,19
675	186,86	14,53	7,26	1809,73	50,27
401	150,80	13,53	6,76	1359,70	54,68
263	260,07	16,83	8,42	2918,66	67,81
214	142,05	12,39	6,19	1173,33	47,96
23	113,64	11,48	5,74	869,54	38,99
123	218,55	16,76	8,38	2442,09	67,40
449	168,28	13,05	6,52	1463,84	56,87
631	150,80	12,94	6,47	1300,58	54,55
747	165,00	14,10	7,05	1550,98	47,28
668	236,03	16,32	8,16	2568,71	61,54
30	170,47	13,81	6,90	1569,35	47,54
495	163,91	13,14	6,57	1435,53	48,50
72	178,11	14,03	7,01	1665,47	58,37

Continuação da Tabela A.21.: (a)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm ²)	(μm)	(µm)	(μm^3)	(µm)
165	305,96	18,88	9,44	3851,34	73,84
127	407,59	22,57	11,29	6133,25	79,55
662	241,49	17,20	8,60	2769,44	57,07
635	253,51	17,94	8,97	3032,31	60,22
454	309,24	18,41	9,21	3795,93	96,32
639	266,63	17,23	8,61	3062,54	80,43
315	260,07	17,49	8,75	3032,95	56,08
90	275,37	17,51	8,76	3214,86	71,73
160	288,48	18,45	9,23	3548,54	66,86
696	371,53	21,95	10,97	5436,08	99,39
625	361,69	20,52	10,26	4947,72	71,02
145	460,04	22,84	11,42	7005,38	104,92
284	266,63	17,79	8,90	3162,70	60,55
64	284,11	17,94	8,97	3398,44	70,19
162	311,43	18,75	9,38	3892,88	72,95
176	420,70	22,23	11,12	6235,52	85,39
484	396,66	22,18	11,09	5866,48	76,54
586	340,93	19,44	9,72	4418,15	86,18
336	330,00	19,72	9,86	4339,31	74,14
383	333,28	19,84	9,92	4407,46	74,86
68	360,60	21,31	10,65	5122,64	79,82
soma	6845,93	410,21	205,11	90673,94	1598,05
média	326,00	19,53	9,77	4317,81	76,10

Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(µm ²)	(μm)	(µm)	(μm^3)	(µm)
251	499,38	24,21	12,10	8059,49	89,73
531	486,26	24,08	12,04	7806,51	90,51
650	512,49	25,38	12,69	8671,54	139,98
63	473,15	24,62	12,31	7766,15	121,34
456	550,73	25,38	12,69	9316,73	102,76
192	655,64	27,74	13,87	12125,87	96,66
379	619,58	28,27	14,14	11678,81	136,38
322	570,40	26,42	13,21	10048,09	133,72
888	527,79	25,66	12,83	9029,17	109,13
20	616,30	27,45	13,73	11279,04	112,20
35	608,65	26,49	13,25	10749,68	104,92
679	496,10	23,90	11,95	7903,08	99,80
131	655,64	27,60	13,80	12063,90	103,33
276	536,53	28,30	14,15	10121,22	121,09
soma	7808,63	365,51	182,75	136619,28	1561,54
média	557,76	26,11	13,05	9758,52	111,54

(c) Faixa de diâmetro (23,1-29µm)

Tabela A.22.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,8μm, para velocidade angular de compressão (*press-on*) de 2000rpm - 1ª corrida.

	(a) raixa de diametro (11,1-1/µm)								
Objeto do	,	Diâmetro							
Analisador	Årea	Médio	Raio	Volume	Perímetro				
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)				
103	114,74	12,43	6,21	950,62	42,19				
60	146,43	13,64	6,82	1331,61	50,12				
229	139,87	11,85	5,93	1105,39	50,87				
49	119,11	13,23	6,61	1050,46	44,78				
211	238,21	16,18	8,09	2569,67	69,79				
108	163,91	14,26	7,13	1558,02	50,35				
12	233,84	16,15	8,07	2517,66	67,74				
48	225,10	16,21	8,10	2432,03	75,00				
386	163,91	13,64	6,82	1490,72	43,76				
19	184,67	14,60	7,30	1797,09	50,62				
260	202,15	14,88	7,44	2005,76	53,14				
171	204,34	15,08	7,54	2054,49	55,36				
159	142,05	12,65	6,33	1198,35	42,60				
175	148,61	12,68	6,34	1256,46	44,59				
66	120.20	11.62	5.81	930.97	39.05				

(a) Faixa de diâmetro (11.1-17µm)

48	113,64	11,43	5,72	866,16	37,67
92	119,11	12,62	6,31	1001,83	39,80
88	166,09	13,82	6,91	1530,74	45,25
196	109,27	11,73	5,86	854,27	37,01
269	146,43	12,96	6,48	1264,77	44,51
58	227,29	16,55	8,28	2507,80	56,32
225	239,31	16,62	8,31	2651,24	56,69
266	124,57	12,43	6,21	1031,88	38,77
87	148,61	13,64	6,82	1351,66	42,92
368	140,96	12,67	6,34	1190,95	43,51
374	202,15	15,72	7,86	2118,67	66,48
100	102,72	12,22	6,11	836,97	35,64
soma	4387,30	371,51	185,76	41456,26	1324,53
média	162,49	13,76	6,88	1535,42	49,06

Continuação da Tabela A.22.: (a)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do	1		. .		
Analisador	Area	Diâmetro Médio	Raio	Volume	Perimetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
192	279,74	17,84	8,92	3326,39	62,19
252	414,14	22,73	11,36	6275,44	103,87
110	359,51	22,79	11,39	5461,59	91,89
123	358,41	20,16	10,08	4817,26	80,34
347	243,68	17,29	8,65	2809,59	63,92
112	371,53	21,74	10,87	5384,78	91,55
214	372,62	22,28	11,14	5534,40	89,42
84	301,59	18,68	9,34	3756,10	91,58
50	278,65	18,69	9,34	3471,48	63,33
260	381,36	21,50	10,75	5466,11	73,23
166	242,59	17,55	8,78	2838,57	65,50
27	297,22	18,90	9,45	3744,51	73,74
163	254,61	17,32	8,66	2939,30	56,63
97	296,13	18,50	9,25	3653,08	62,54
231	251,33	17,33	8,66	2902,89	63,64
298	252,42	17,40	8,70	2927,70	60,46
233	345,30	20,63	10,32	4749,96	79,19
soma	5300,82	331,33	165,66	70059,14	1273,04
média	311,81	19,49	9,74	4121,13	74,88

Objeto do	_				
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
102	538,71	25,58	12,79	9185,92	98,44
115	504,84	24,40	12,20	8211,79	91,26
25	396,66	23,54	11,77	6225,47	91,79
166	587,89	26,26	13,13	10292,73	103,85
344	478,61	23,12	11,56	7375,87	106,79
166	531,07	25,14	12,57	8899,55	99,41
157	477,52	23,97	11,99	7631,52	100,85
28	478,61	23,62	11,81	7535,81	86,63
17	594,44	26,87	13,43	10648,27	100,53
105	376,99	24,77	12,39	6225,89	88,54
140	583,52	27,18	13,59	10574,73	91,43
161	469,87	23,68	11,84	7416,58	85,54
151	422,89	23,62	11,81	6657,89	91,27
278	485,17	24,25	12,12	7843,43	84,87
68	632,69	26,97	13,48	11374,55	103,85
295	644,71	27,43	13,71	11788,58	109,22
84	583,52	28,43	14,21	11058,29	113,15
348	625,04	27,72	13,86	11550,10	123,98
soma	9412,75	456,53	228,27	160496,97	1771,37
média	522,93	25,36	12,68	8916,50	98,41

(c) Faixa de diâmetro (23,1-29µm)

Tabela A.23.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,8μm, para velocidade angular de compressão (*press-on*) de 2000rpm - 2ª corrida.

	(a)	Faixa de diâmetro	o (11,1-17µm)		
Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
483	118,01	11,68	5,84	918,88	40,34
175	159,54	12,90	6,45	1371,71	44,34
583	183,58	14,92	7,46	1826,03	52,20
83	125,66	13,29	6,64	1113,16	47,55
856	227,29	16,42	8,21	2488,20	59,12
78	125,66	11,85	5,93	992,81	39,36
810	181,39	14,27	7,13	1725,33	49,91
976	116,92	11,85	5,93	923,88	37,46
575	144,24	12,59	6,30	1211,12	43,32
1034	161,72	13,40	6,70	1444,32	54,80
802	167,19	13,66	6,83	1523,05	55,55
928	199,97	16,05	8,03	2139,96	56,06
740	134,41	12,95	6,47	1160,14	44,58
624	138,78	12,48	6,24	1154,52	41,06

média	167.72	13.88	6.94	1599.64	50.29
soma	6205,60	513,52	256,76	59186,82	1860,57
215	233,84	16,74	8,37	2609,29	58,02
756	178,11	14,38	7,19	1707,20	51,47
507	149,70	13,58	6,79	1355,16	46,63
531	149,70	13,18	6,59	1315,02	48,11
721	146,43	12,84	6,42	1253,72	46,43
65	120,20	11,65	5,83	933,65	39,68
112	204,34	15,28	7,64	2081,33	52,10
764	186,86	14,54	7,27	1810,99	53,92
584	119,11	11,20	5,60	889,40	39,98
360	229,47	16,22	8,11	2481,01	60,35
56	210,90	14,75	7,38	2074,29	75,98
70	163,91	14,75	7,38	1612,11	51,26
767	182,49	14,53	7,27	1767,82	53,34
252	122,39	12,22	6,11	997,27	39,99
875	115,83	12,09	6,04	933,38	36,05
980	258,98	16,72	8,36	2886,06	63,91
77	165,00	13,79	6,89	1516,52	44,82
358	119,11	11,44	5,72	908,08	45,43
626	246,96	16,81	8,41	2768,25	75,60
481	165,00	13,82	6,91	1520,67	48,74
442	95,07	11,73	5,86	743,36	37,46
182	228,38	16,61	8,31	2529,17	65,81
251	229,47	16,34	8,17	2499,97	59,83

Continuação da Tabela A.23.: (a)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do					
Analisador	Area	Diâmetro Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)
671	428,35	22,24	11,12	6352,14	80,96
502	286,29	18,29	9,15	3491,80	74,68
757	289,57	19,71	9,86	3805,44	69,72
150	317,98	19,85	9,92	4207,60	66,55
646	249,14	17,19	8,59	2854,46	59,72
666	303,78	18,39	9,20	3725,09	69,46
375	317,98	19,82	9,91	4201,65	77,65
702	279,74	18,51	9,25	3451,19	73,18
82	297,22	19,96	9,98	3955,44	73,15
241	448,02	22,51	11,25	6722,99	89,04
445	413,05	21,97	10,98	6048,53	95,18
933	274,27	19,35	9,67	3537,62	64,82
149	262,25	18,64	9,32	3259,46	64,42
639	395,57	21,67	10,83	5713,44	76,66
387	314,71	18,71	9,36	3926,46	74,30

Continuação da Tabela A.23.: (b)

587	278,65	18,10	9,05	3361,64	71,55
87	307,06	18,87	9,44	3863,07	64,97
6	315,80	19,27	9,64	4057,38	77,08
soma	5779,43	353,05	176,53	76535,39	1323,08
média	321,08	19,61	9,81	4251,97	73,50

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
1 1141134401	(μm^2)	(um)	(um)	(um^3)	(um)
276	618,48	27.63	13,81	11390,86	125.59
653	484,08	23,95	11,97	7727,94	97,81
275	490,63	24,36	12,18	7969,13	96,42
641	668,75	27,74	13,87	12365,61	131,61
847	652,36	28,43	14,21	12363,46	124,66
278	559,48	25,82	12,91	9629,78	100,28
52	557,29	25,34	12,67	9416,20	109,37
605	539,81	26,78	13,39	9636,18	108,65
665	448,02	23,30	11,65	6959,96	121,83
455	482,99	23,61	11,80	7601,32	79,44
501	478,61	23,90	11,95	7627,41	89,51
797	570,40	25,70	12,85	9774,66	101,74
967	643,62	27,58	13,79	11832,74	114,18
108	623,95	27,93	13,96	11617,27	113,31
399	626,13	26,93	13,46	11239,41	96,45
818	711,37	28,33	14,17	13435,47	133,64
689	478,61	23,67	11,83	7552,05	85,13
279	515,77	25,53	12,76	8777,06	114,96
soma	10150,34	466,52	233,26	176916,51	1944,57
média	563,91	25,92	12,96	9828,70	108,03

(c) Faixa de diâmetro (23,1-29µm)

Tabela A.24.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,8μm, para velocidade angular de compressão (*press-on*) de 2000rpm - 3ª corrida.

	(-		(11) (1)		
Objeto do Analisador	Área (μm²)	Diâmetro Médio (µm)	Raio (µm)	Volume (µm ³)	Perímetro (µm)
206	138,78	12,93	6,46	1195,99	45,69
316	132,22	13,05	6,53	1150,57	44,01
478	179,21	13,98	6,99	1669,61	47,88
93	112,55	13,30	6,65	998,09	39,93
433	216,36	15,82	7,91	2281,25	58,80

(a)	Faixa	de	diâmetro	$(11, 1-17 \mu m)$
-----	-------	----	----------	--------------------

média	167,32	13,98	6,99	1590,81	49,10
soma	4015,77	335,54	167,77	38179,55	1178,34
387	190,13	14,42	7,21	1828,11	51,59
222	158,45	13,65	6,83	1441,87	45,87
201	155,17	13,13	6,57	1358,72	47,32
406	143,15	12,48	6,24	1191,18	41,34
337	180,30	14,39	7,20	1729,97	48,53
118	192,32	15,47	7,74	1983,86	53,27
317	158,45	14,16	7,08	1495,49	45,92
291	137,68	12,37	6,18	1135,19	43,35
63	232,75	16,64	8,32	2582,01	58,16
246	179,21	14,25	7,12	1702,08	50,31
470	167,19	13,79	6,89	1536,98	48,52
367	161,72	12,76	6,38	1375,56	59,50
161	209,80	16,73	8,37	2340,28	57,15
349	174,84	13,66	6,83	1592,10	59,20
520	169,37	14,32	7,16	1616,67	51,18
596	134,41	12,47	6,24	1117,77	43,04
563	100,53	11,40	5,70	763,74	41,15
769	252,42	16,93	8,47	2849,42	54,44
665	138,78	13,44	6,72	1243,02	42,19

Continuação da Tabela A.24.: (a)

Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(µm ²)	(µm)	(µm)	(μm^3)	(µm)
128	344,21	20,41	10,21	4683,84	73,61
240	304,87	19,52	9,76	3967,03	83,59
78	255,70	17,50	8,75	2982,92	62,54
860	261,16	17,56	8,78	3057,80	63,37
629	276,46	18,40	9,20	3390,46	71,99
114	273,18	17,75	8,87	3232,02	65,60
242	364,97	20,91	10,46	5088,58	73,71
31	344,21	20,22	10,11	4640,82	69,96
83	279,74	18,04	9,02	3363,71	73,82
604	448,02	22,78	11,39	6803,04	109,72
448	296,13	19,44	9,72	3837,20	66,58
399	326,73	19,49	9,74	4244,70	69,12
595	308,15	19,37	9,68	3978,76	74,98
415	375,90	20,67	10,34	5179,91	92,46
334	372,62	21,22	10,61	5271,04	72,34
82	432,72	22,00	11,00	6345,37	96,72
soma	5264,76	315,26	157,63	70067,19	1220,09
média	329,05	19,70	9,85	4379,20	76,26

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)
754	485,17	24,18	12,09	7822,10	102,99
426	594,44	26,47	13,23	10488,77	106,06
39	551,83	25,77	12,88	9480,15	101,61
387	462,22	23,28	11,64	7173,20	98,16
174	507,03	24,22	12,11	8185,29	95,72
400	562,75	25,97	12,98	9741,89	94,95
2	606,46	26,68	13,34	10785,82	96,29
49	566,03	25,47	12,73	9610,43	101,06
soma	4335,94	202,03	101,01	73287,66	796,84
média	541,99	25,25	12,63	9160,96	99,61

(c) Faixa de diâmetro (23,1-29µm)

Tabela A.25.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o
sistema fuligem/membrana de éster-celulose 0,8µm, para velocidade angular de
compressão (press-on) de 5000rpm - 1ª corrida.

Objeto do	Ámaa	Diâmatra Mádia	Daio	Volumo	Donimatra
Anansauor	Area	Diametro Medio	Kalo	volume	Perimetro
	(µm²)	(µm)	(µm)	(µm³)	(µm)
18	172,65	14,73	7,36	1695,43	54,87
148	160,63	13,89	6,95	1487,83	50,28
387	172,65	14,43	7,21	1660,75	49,99
268	252,42	16,80	8,40	2826,89	59,38
64	136,59	12,32	6,16	1121,96	39,69
263	175,93	14,49	7,24	1699,29	49,97
286	217,45	15,76	7,88	2285,01	54,98
46	219,64	16,21	8,11	2373,63	56,27
218	227,29	16,86	8,43	2555,12	56,74
83	101,62	11,57	5,78	783,80	37,60
144	179,21	13,85	6,92	1654,10	52,47
126	173,74	13,86	6,93	1604,90	47,69
326	185,76	15,47	7,73	1915,45	52,48
376	134,41	11,98	5,99	1073,59	43,83
252	146,43	12,51	6,26	1221,31	42,64
327	208,71	15,63	7,82	2175,32	56,01
438	234,94	16,47	8,24	2579,77	57,08
264	234,94	16,71	8,36	2617,35	59,36
197	105,99	11,27	5,64	796,69	38,23
280	127,85	12,47	6,23	1062,59	40,35
265	138,78	12,56	6,28	1161,74	43,59
217	211,99	15,67	7,83	2214,00	53,06

(a)	Faixa	de	diâmetro	(11,1-17	μm)
-----	-------	----	----------	----------	-----

média	177,64	14,33	7,16	1740,78	50,08
soma	5684,36	458,52	229,26	55705,00	1602,60
331	239,31	16,80	8,40	2680,06	60,69
38	218,55	16,21	8,11	2361,79	55,91
55	163,91	14,85	7,43	1623,00	45,45
300	147,52	12,89	6,45	1267,91	43,55
124	189,04	14,94	7,47	1882,87	54,05
221	172,65	13,72	6,86	1578,63	48,87
226	132,22	12,32	6,16	1086,08	42,95
95	193,41	15,23	7,62	1964,06	52,30
16	174,84	13,69	6,85	1596,17	58,18
424	133,31	12,35	6,18	1097,92	44,08

Continuação da Tabela A.25.: (a)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm ²)	(μm)	(µm)	(μm^3)	(µm)
176	422,89	22,49	11,24	6339,62	97,90
405	326,73	20,28	10,14	4417,47	69,35
322	330,00	20,60	10,30	4532,38	76,70
226	245,86	17,93	8,96	2938,64	72,00
43	277,55	18,07	9,03	3342,83	63,92
341	357,32	21,23	10,62	5057,52	72,46
342	413,05	22,03	11,01	6066,25	79,12
37	289,57	19,16	9,58	3699,65	77,74
160	430,53	22,25	11,13	6387,04	90,62
25	263,35	19,33	9,66	3392,85	64,19
141	374,81	20,73	10,36	5179,48	80,73
34	381,36	21,86	10,93	5558,07	75,08
164	240,40	17,72	8,86	2840,59	61,04
68	255,70	17,94	8,97	3057,85	68,89
293	287,39	18,70	9,35	3582,12	69,50
277	241,49	17,33	8,66	2789,84	59,87
242	286,29	19,78	9,89	3775,46	66,90
48	310,33	19,19	9,60	3971,11	73,13
soma	5734,63	356,62	178,31	76928,77	1319,14
média	318,59	19,81	9,91	4273,82	73,29

Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)
71	461,13	26,59	13,30	8174,42	122,26
141	637,06	26,79	13,40	11379,19	109,48
456	571,50	25,61	12,80	9757,25	102,12
159	488,45	27,59	13,80	8984,60	121,10
355	410,87	23,39	11,70	6407,35	86,09
289	508,12	24,09	12,05	8160,79	97,28
209	470,97	23,83	11,91	7480,82	93,03
91	529,97	24,92	12,46	8805,10	111,59
soma	4078,06	202,82	101,41	69149,52	842,96
média	509,76	25,35	12,68	8643,69	105,37

(c) Faixa de diâmetro (23,1-29µm)

Tabela A.26.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o
sistema fuligem/membrana de éster-celulose 0,8µm, para velocidade angular de
compressão (press-on) de 5000rpm - 2ª corrida.

Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
295	140,96	12,52	42,56	6,26	1176,98
366	148,61	13,00	44,77	6,50	1287,74
332	143,15	14,18	51,82	7,09	1353,65
375	113,64	11,81	39,69	5,90	894,59
419	131,13	12,02	49,08	6,01	1051,20
156	140,96	13,07	42,95	6,54	1228,30
506	199,97	15,51	51,35	7,76	2067,72
157	184,67	14,72	50,03	7,36	1811,66
210	187,95	16,20	56,50	8,10	2030,21
280	192,32	14,92	53,47	7,46	1913,57
428	154,07	13,59	58,02	6,80	1396,18
181	215,27	16,16	68,87	8,08	2318,77
soma	1952,70	167,71	609,11	83,86	18530,57
média	162,73	13,98	50,76	6,99	1544,21

(a) Faixa de diâmetro (11.1	1-17um)
-----------------------------	---------

(b) Faixa de diâmetro (17,1-23µm)

Objeto do Analisador	Área (μm²)	Diâmetro Médio (µm)	Raio (µm)	Volume (µm ³)	Perímetro (µm)
529	278,65	19,21	62,51	9,60	3567,71
118	316,89	18,14	94,25	9,07	3832,02
536	352,95	21,17	80,79	10,58	4980,72

125	206,53	17,35	54,54	8,67	2388,55
482	309,24	19,60	68,14	9,80	4041,75
279	251,33	18,23	62,29	9,11	3053,94
106	370,43	22,31	118,20	11,15	5509,55
512	420,70	22,56	100,77	11,28	6328,49
soma	2506,72	158,57	641,48	79,28	33702,72
média	313,34	19,82	80,19	9,91	4212,84

Continuação da Tabela A.26.: (b)

(c) Faixa de diâmetro (23,1-29µm)

Objeto do	Ámaa	Diâmetro Médio	Daia	Volumo	Dovímotro
Analisador	Area	Iviedio	Kalo	volume	Perimetro
	(µm²)	(µm)	(µm)	(µm³)	(µm)
529	278,65	19,21	62,51	9,60	3567,71
118	316,89	18,14	94,25	9,07	3832,02
29	322,35	20,24	79,78	10,12	4349,11
125	206,53	17,35	54,54	8,67	2388,55
482	309,24	19,60	68,14	9,80	4041,75
279	251,33	18,23	62,29	9,11	3053,94
106	370,43	22,31	118,20	11,15	5509,55
512	420,70	22,56	100,77	11,28	6328,49
159	614,11	26,56	100,88	13,28	10872,98
102	635,97	27,34	101,49	13,67	11590,52
639	694,97	28,60	103,78	14,30	13252,45
408	701,53	28,71	105,29	14,35	13426,07
143	446,93	23,12	95,46	11,56	6889,05
274	559,48	25,46	91,89	12,73	9497,01
113	732,13	28,81	113,61	14,41	14062,72
255	599,91	26,43	98,85	13,22	10571,30
664	602,09	26,90	94,96	13,45	10796,38
49	431,63	23,45	100,30	11,72	6746,52
soma	8494,86	423,01	1646,99	211,51	140776,12
média	471,94	23,50	91,50	11,75	7820,90

Tabela A.27.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema fuligem/membrana de éster-celulose 0,8μm, para velocidade angular de compressão (*press-on*) de 5000rpm - 3ª corrida.

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)
116	228,38	16,41	8,21	2498,51	59,75
11	185,76	14,88	7,44	1842,22	61,63
748	198,88	15,22	7,61	2017,61	60,73
488	217,45	15,70	7,85	2276,26	61,87
332	155,17	13,60	6,80	1406,79	58,72
284	167,19	14,57	7,28	1623,49	48,90
733	148,61	12,82	6,41	1269,83	45,44
121	156,26	13,04	6,52	1358,23	44,49
334	177,02	14,68	7,34	1732,46	50,78
521	118,01	11,32	5,66	890,47	39,00
284	194,51	15,22	7,61	1973,43	60,11
385	110,37	11,10	5,55	817,06	36,69
750	130,03	11,26	5,63	976,01	43,44
731	155,17	12,99	6,50	1344,16	45,90
209	234,94	16,40	8,20	2568,41	68,09
276	146,43	12,60	6,30	1230,43	42,09
216	163,91	13,05	6,52	1425,54	61,88
450	227,29	15,97	7,99	2420,30	65,82
502	142,05	12,55	6,28	1188,92	44,14
383	156,26	13,66	6,83	1423,23	46,08
345	209,80	15,48	7,74	2164,54	56,99
99	232,75	16,46	8,23	2553,68	65,14
216	116,92	12,06	6,03	939,88	39,05
763	148,61	13,53	6,76	1340,11	45,12
401	181,39	15,12	7,56	1828,94	50,65
soma	4303,16	349,68	174,84	41110,50	1302,52
média	172,13	13,99	6,99	1644,42	52,10

(a) Faixa de diâmetro (11,1-17µm)

(b) ixa de diâmetro (17,1-23µm)					
Objeto do	,	Diâmetro			
Analisador	Area	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
710	303,78	21,57	10,79	4369,12	94,61
719	379,18	21,55	10,78	5448,66	107,48
793	398,85	21,18	10,59	5632,08	90,79
607	254,61	17,68	8,84	3001,28	72,79
447	283,02	17,89	8,94	3374,74	64,90
298	297,22	19,78	9,89	3919,14	94,24
198	287,39	18,40	9,20	3525,53	67,93
650	279,74	19,34	9,67	3606,46	78,76
-------	---------	--------	--------	----------	---------
251	391,20	21,48	10,74	5602,49	81,74
471	349,67	20,26	10,13	4723,81	75,30
811	305,96	19,29	9,64	3934,66	67,07
318	351,86	20,15	10,07	4725,67	75,77
174	289,57	18,37	9,18	3546,21	72,87
12	386,83	21,11	10,55	5442,83	71,47
288	396,66	21,50	10,75	5684,45	84,08
28	411,96	22,85	11,42	6274,60	104,40
soma	5367,47	322,40	161,20	72811,72	1304,22
média	335,47	20,15	10,07	4550,73	81,51

Continuação da Tabela A.27.: (b)

(c) Faixa de diâmetro (23,1-29µm)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
584	541,99	25,38	12,69	9170,78	98,71
514	465,50	28,28	14,14	8775,49	116,73
610	527,79	26,21	13,11	9222,87	126,84
252	560,57	26,44	13,22	9881,56	122,32
357	496,10	24,13	12,07	7981,34	92,76
433	562,75	25,98	12,99	9747,59	92,31
98	676,40	28,94	14,47	13049,31	132,59
149	496,10	24,18	12,09	7998,67	91,62
526	509,21	24,53	12,27	8327,81	101,93
37	656,73	27,69	13,85	12124,13	99,64
soma	5493,14	261,77	130,89	96279,53	1075,44
média	549,31	26,18	13,09	9627,95	107,54

Tabela A.28.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,2µm, para velocidade angular de compressão (press-on) de 1000rpm - 1ª corrida.

		(a) Faixa de diân	netro (11,1-1	7μm)	
Objeto do Analisador	Área (μm²)	Diâmetro Médio (µm)	Raio (µm)	Volume (µm ³)	Perímetro (µm)
64	151,89	12,80	6,40	1296,21	45,00
570	148,61	14,47	7,24	1433,83	45,59
44	125,66	13,07	6,54	1095,35	42,37
117	169,37	14,54	7,27	1642,00	48,88
35	225,10	16,75	8,38	2513,99	60,72
335	147,52	13,45	6,73	1322,86	45,49
360	168,28	14,52	7,26	1628,45	47,69
537	109,27	11,14	5,57	811,37	38,71
371	118,01	11,68	5,84	919,31	38,51

do diêm (11 1 17 . () **T** •

345	127,85	11,75	5,88	1001,50	39,56
255	121,29	11,98	5,99	968,60	44,86
450	137,68	12,49	6,24	1146,21	44,94
292	130,03	12,78	6,39	1107,70	43,51
16	142,05	13,33	6,67	1262,55	44,97
540	201,06	14,84	7,42	1989,66	52,94
17	220,73	15,97	7,99	2350,62	70,25
517	249,14	16,63	8,31	2761,94	67,33
229	87,42	11,10	5,55	647,04	33,05
405	128,94	11,64	5,82	1000,79	44,11
247	137,68	12,24	6,12	1123,60	40,70
436	154,07	13,25	6,62	1360,66	46,65
147	167,19	14,95	7,48	1666,39	47,25
381	219,64	15,58	7,79	2281,38	60,55
140	207,62	15,40	7,70	2131,21	53,81
507	197,78	15,76	7,88	2078,39	56,60
239	182,49	16,00	8,00	1946,73	50,26
61	114,74	11,22	5,61	857,92	37,06
190	147,52	12,43	6,21	1222,11	44,03
310	173,74	13,62	6,81	1578,12	48,16
55	151,89	13,79	6,89	1396,24	45,79
167	173,74	14,07	7,03	1629,38	46,39
194	172,65	14,27	7,13	1642,16	48,88
281	136,59	13,53	6,76	1231,99	43,40
740	228,38	16,15	8,07	2458,22	56,17
110	249,14	16,82	8,41	2794,19	69,76
390	118,01	11,58	5,79	910,83	37,28
71	171,56	13,82	6,91	1581,10	48,38
396	197,78	15,27	7,63	2012,89	51,85
339	228,38	16,19	8,10	2465,44	54,30
15	219,64	16,20	8,10	2372,49	53,62
277	120,20	11,28	5,64	903,81	36,39
100	222,92	15,66	7,83	2327,63	55,11
315	197,78	15,75	7,88	2076,97	60,12
300	241,49	16,84	8,42	2711,28	64,71
457	132,22	12,37	6,19	1090,68	41,88
332	139,87	12,76	6,38	1189,96	44,37
543	156,26	13,14	6,57	1368,86	48,08
468	169,37	13,60	6,80	1536,06	50,45
505	207,62	15,36	7,68	2126,03	53,66
524	195,60	15,59	7,80	2032,96	51,79
387	165,00	13,50	6,75	1484,85	44,32

Continuação da Tabela A.28.: (a)

715

soma

média

174,84

8783,34

168,91

14,52

727,46

13,99

7,26

363,73

6,99

1691,95

84182,44

1618,89

50,20

2540,45

48,85

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
1111154401	(um^2)	(um)	(um)	(um^3)	(um)
184	(µm) 283.02	(µm) 18.12	<u>(μπ)</u> 9.06	(µm) 2563.53	(µm) 66.26
183	203,02	21.02	9,00	3663.02	88.40
105	285.20	10.33	0.67	2756.63	60.15
385	285,20	19,55	9,07	2750,03	65.06
97	323,03	20.01	9,08	2008 77	70.43
07	362,43	20,91	10,40	3996,77	79,45
440 57	350,77	21,70	10,85	3803,03	72,41
37	250,23	17,30	8,08	21/1,84	(2.02
108	243,68	18,18	9,09	2215,20	62,03
432	293,94	18,31	9,16	2691,73	/8,25
107	301,59	18,63	9,31	2809,19	64,80
195	408,68	21,84	10,92	4462,99	74,49
460	432,72	22,69	11,34	4908,90	81,52
308	449,11	22,76	11,38	5111,16	96,99
205	288,48	18,47	9,24	2664,40	65,95
352	381,36	22,59	11,29	4306,77	88,49
756	281,92	17,82	8,91	2512,09	66,65
425	344,21	19,92	9,96	3427,86	88,29
739	355,14	20,96	10,48	3720,99	78,26
714	401,03	21,22	10,61	4255,36	89,87
86	293,94	18,62	9,31	2736,58	70,53
27	273,18	18,90	9,45	2581,52	66,14
229	314,71	19,07	9,53	3000,41	88,10
133	315,80	19,76	9,88	3119,70	70,46
494	349,67	20,66	10,33	3611,77	83,88
206	408,68	21,77	10,88	4447,94	79,22
570	249,14	17,20	8,60	2142,29	60,65
254	371,53	21,09	10,55	3918,58	95,44
575	363,88	21,15	10,57	3847,38	75,49
456	327,82	19,82	9,91	3248,76	67,87
82	301,59	18,80	9,40	2834,70	63,55
518	313,61	19,04	9,52	2985,96	69,16
203	355,14	20,75	10,38	3685,33	76,02
soma	10646,44	637,80	318,90	107358,45	2416,95
média	332,70	19,93	9,97	3354,95	75,53

(b) Faixa de diâmetro (17,1-23µm)

(c) Faixa de diâmetro (23,1-29µm)

Objeto do Analisador	Área (µm²)	Diâmetro Médio (µm)	Raio (µm)	Volume (µm ³)	Perímetro (µm)
383	525,60	24,41	12,21	6415,88	90,33
190	559,48	25,39	12,70	7102,80	108,46
103	607,56	26,28	13,14	7983,96	105,62

média	536,57	25,34	12,67	6840,52	98,49
soma	13414,31	633,48	316,74	171013,07	2462,29
666	693,88	28,19	14,10	9781,35	107,25
278	497,19	24,02	12,01	5970,70	93,24
623	640,34	27,39	13,70	8770,11	99,19
536	556,20	26,22	13,11	7292,36	96,34
554	507,03	23,83	11,92	6041,54	111,22
506	467,69	23,36	11,68	5462,45	83,00
484	433,81	23,47	11,74	5091,46	88,37
116	558,38	26,28	13,14	7338,24	112,99
265	584,61	25,83	12,92	7550,54	102,95
344	621,76	27,53	13,76	8557,24	95,68
335	657,82	27,24	13,62	8957,94	108,91
98	472,06	24,24	12,12	5722,18	81,32
90	512,49	24,30	12,15	6226,30	95,00
416	477,52	24,06	12,03	5745,71	83,07
352	484,08	23,47	11,73	5679,78	102,70
210	486,26	28,64	14,32	6962,62	112,67
330	511,40	26,22	13,11	6703,76	103,75
135	584.61	26.55	13.28	7760.94	93.42
57	444.74	23.25	11.62	5170.02	95.01
64	554.01	25.15	12,58	6967.11	109,73
95	505.93	24,70	12.35	6247.11	103.53
446	469,87	23,46	11,73	5510,96	78,57

Continuação da Tabela A.28.: (c)

Tabela A.29.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,2μm, para velocidade angular de compressão (*press-on*) de 1000rpm - 2ª corrida.

Objete de			•		
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(μm)	(µm)	(μm^3)	(µm)
339	128,94	12,51	6,25	1075,20	41,59
298	142,05	13,05	6,53	1236,30	47,96
237	204,34	14,99	7,50	2042,04	68,75
383	111,46	12,10	6,05	899,12	36,82
334	115,83	12,20	6,10	942,15	39,61
349	140,96	12,53	6,26	1177,44	45,52
229	144,24	12,82	6,41	1232,66	44,36
250	144,24	13,39	6,69	1287,52	44,28
318	111,46	13,46	6,73	1000,05	47,70
135	137,68	12,14	6,07	1114,02	40,99
162	184,67	14,31	7,15	1761,60	47,11

média	162,82	13,84	6,92	1537,02	49,00
soma	4233,22	359,73	179,87	39962,56	1273,89
219	167,19	14,31	7,15	1594,87	46,36
56	135,50	11,81	5,90	1066,67	49,36
207	196,69	15,50	7,75	2032,50	50,31
284	186,86	14,72	7,36	1834,30	54,70
18	175,93	14,92	7,46	1749,99	51,66
230	189,04	14,74	7,37	1857,14	62,82
152	215,27	16,69	8,34	2394,62	55,84
143	128,94	11,75	5,87	1009,63	41,69
135	251,33	16,70	8,35	2798,83	62,72
102	158,45	13,37	6,69	1412,38	45,21
163	222,92	16,52	8,26	2455,61	57,57
282	206,53	15,36	7,68	2114,46	52,99
138	131,13	12,18	6,09	1064,67	40,17
409	165,00	15,26	7,63	1678,14	54,28
521	136,59	12,42	6,21	1130,62	43,53

Continuação da Tabela A.29.: (a)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
265	246,96	17,10	8,55	2815,36	74,02
628	261,16	17,87	8,94	3112,16	64,25
162	349,67	20,03	10,02	4670,27	67,11
426	401,03	21,67	10,83	5793,02	90,77
65	322,35	19,16	9,58	4117,21	81,03
306	342,02	20,21	10,10	4607,07	79,87
169	286,29	18,63	9,31	3555,59	77,84
258	335,47	19,85	9,92	4438,84	89,45
soma	0,00	154,52	77,26	33109,53	624,35
média	318,12	19,31	9,66	4138,69	78,04
306 169 258 soma média	342,02 286,29 335,47 0,00 318,12	20,21 18,63 19,85 154,52 19,31	9,31 9,92 77,26 9,66	4607,07 3555,59 4438,84 33109,53 4138,69	79,87 77,84 89,45 624,35 78,04

(c) Faixa de diâmetro (23,1-29µm)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
308	441,46	24,19	12,10	7120,17	85,11
299	522,32	25,24	12,62	8789,73	83,50
119	411,96	23,24	11,62	6381,79	112,38
266	463,32	23,17	11,59	7157,76	77,26
393	575,87	25,82	12,91	9913,90	90,37
330	448,02	23,14	11,57	6912,66	107,37
soma	2862,94	144,81	72,41	46276,02	555,99
média	477,16	24,14	12,07	7712,67	92,66

Tabela A.30.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,2μm, para velocidade angular de compressão (*press-on*) de 1000rpm - 3ª corrida.

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(µm ²)	(µm)	(µm)	(μm^3)	(µm)
12	156,26	13,15	6,57	1369,57	47,56
46	194,51	15,07	7,53	1954,07	52,62
21	204,34	15,51	7,75	2112,66	54,60
95	144,24	13,62	6,81	1309,77	53,99
381	145,33	13,62	6,81	1319,72	47,80
131	181,39	14,42	7,21	1744,04	56,41
183	218,55	16,19	8,09	2358,67	53,19
69	100,53	11,24	5,62	753,43	35,95
249	128,94	12,23	6,11	1051,16	40,48
233	157,35	13,93	6,96	1461,09	48,27
23	203,25	16,03	8,02	2172,66	53,61
41	225,10	16,25	8,12	2438,49	57,08
209	110,37	11,27	5,64	829,53	38,60
132	118,01	11,86	5,93	932,82	41,52
80	244,77	16,44	8,22	2683,36	62,41
309	113,64	11,72	5,86	888,19	39,62
402	119,11	11,70	5,85	928,74	41,03
377	122,39	11,88	5,94	969,00	44,76
350	163,91	13,64	6,82	1490,51	46,79
29	146,43	13,42	6,71	1310,44	51,27
96	215,27	15,73	7,87	2258,08	56,03
157	213,08	16,34	8,17	2321,22	58,48
274	179,21	14,36	7,18	1715,82	52,12
132	221,82	15,39	7,70	2275,98	69,81
50	125,66	11,33	5,67	949,22	43,32
202	202,15	15,48	7,74	2086,84	65,28
23	121,29	12,98	6,49	1049,46	42,97
267	158,45	13,76	6,88	1453,17	46,73
123	216,36	16,11	8,06	2323,76	58,39
soma	4851,71	404,68	202,34	46511,50	1460,70
média	167,30	13,95	6,98	1603,84	50,37

(a) Faixa de diâmetro (11,1-17μm)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do Analisador	Área (μm²)	Diâmetro Médio (µm)	Raio (µm)	Volume (µm ³)	Perímetro (µm)
154	272,09	18,39	9,20	3336,18	66,78
320	351,86	21,31	10,65	4998,43	74,58
284	387,92	21,55	10,77	5572,70	76,09
199	325,63	19,27	9,64	4184,23	85,68
180	283,02	18,47	9,23	3484,62	62,72
16	409,77	21,73	10,86	5935,44	76,44

média	337,16	20,22	10,11	4611,81	75,21
soma	7417,43	444,83	222,42	101459,81	1654,51
61	314,71	20,01	10,00	4197,14	72,90
29	312,52	19,25	9,63	4011,27	75,02
239	281,92	18,79	9,39	3531,31	65,01
207	295,04	18,64	9,32	3667,14	73,59
323	245,86	18,44	9,22	3021,90	69,36
287	454,57	22,95	11,48	6955,37	84,32
106	430,53	22,67	11,33	6505,75	85,71
219	321,26	19,31	9,66	4135,74	70,96
20	445,83	22,40	11,20	6659,09	87,06
168	256,79	17,87	8,93	3058,88	65,00
11	274,27	17,34	8,67	3169,88	74,94
88	335,47	22,69	11,34	5074,11	81,13
95	421,79	22,05	11,02	6199,08	82,41
386	331,10	21,79	10,89	4809,03	77,15
114	375,90	21,63	10,81	5419,36	79,81
270	289,57	18,30	9,15	3533,15	67,86

Continuação da Tabela A.30.: (b)

(c) Faixa de diâmetro (23,1-29µm)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(µm ²)	(µm)	(µm)	(μm^3)	(µm)
164	491,73	24,12	12,06	7906,69	94,49
5	485,17	24,59	12,30	7954,16	119,03
257	498,28	25,55	12,78	8487,67	90,47
213	532,16	24,71	12,35	8765,64	103,74
152	523,42	24,36	12,18	8501,13	107,32
357	484,08	25,78	12,89	8318,63	93,68
167	704,81	28,64	14,32	13456,46	108,14
171	579,15	28,39	14,20	10961,83	129,17
29	613,02	26,53	13,27	10844,11	95,74
soma	4911,81	232,67	116,34	85196,31	941,79
média	545,76	25,85	12,93	9466,26	104,64

Tabela A.31.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,2μm, para velocidade angular de compressão (*press-on*) de 2000rpm - 1ª corrida.

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(um^2)	(um)	(um)	(um^3)	(um)
58	162.82	13 20	6.60	1432.82	48.15
20	163.91	14 30	7 15	1562.15	49.78
180	162.82	14.48	7.24	1571.38	49.23
168	171.56	14.77	7,39	1689.39	55.90
171	109,27	11,45	5,73	834,31	37,75
16	132,22	12,21	6,10	1075,85	38,67
120	132,22	12,63	6,32	1113,40	42,44
108	168,28	13,78	6,89	1546,30	49,32
44	216,36	15,67	7,84	2260,56	57,83
125	116,92	11,11	5,55	865,98	40,22
65	92,88	11,16	5,58	690,98	34,71
124	127,85	11,46	5,73	976,55	38,37
160	124,57	11,38	5,69	945,13	49,21
77	119,11	12,50	6,25	992,91	41,51
113	185,76	14,50	7,25	1795,11	49,78
72	190,13	15,86	7,93	2010,11	54,83
217	107,09	11,83	5,91	844,54	36,71
93	205,43	15,07	7,54	2064,54	57,66
231	187,95	15,13	7,57	1896,39	52,80
180	128,94	11,31	5,66	972,25	43,95
59	126,76	12,92	6,46	1091,54	45,35
162	103,81	11,52	5,76	797,21	35,99
239	136,59	13,20	6,60	1201,86	49,07
118	156,26	13,51	6,76	1407,49	48,15
98	198,88	14,65	7,33	1942,84	58,36
212	180,30	14,98	7,49	1800,45	50,03
26	122,39	12,62	6,31	1029,56	40,96
10	185,76	13,85	6,92	1714,94	59,08
80	219,64	15,71	7,86	2301,03	51,39
50	100,53	11,51	5,75	771,15	35,39
228	160,63	12,89	6,44	1380,11	63,79
28	163,91	13,50	6,75	1474,84	58,91
74	159,54	14,12	7,06	1501,69	46,73
65	197,78	15,24	7,62	2009,47	62,23
251	139,87	12,38	6,19	1154,78	43,32
166	205,43	15,51	7,76	2124,39	53,30
207	206,53	15,62	7,81	2151,21	50,15
58	113,64	11,92	5,96	903,17	35,58
149	124,57	12,54	6,27	1041,81	39,09
42	181.39	15.26	7.63	1845.75	56.74

média	154.22	13.44	6.72	1413.31	47.70
soma	7093.98	618.06	309.03	65012.41	2194.21
247	163,91	14,05	7,02	1534,82	48,24
233	170,47	14,37	7,19	1633,41	49,07
180	177,02	15,14	7,57	1786,89	51,59
164	110,37	11,19	5,59	823,11	39,34
155	140,96	11,97	5,98	1124,74	47,77
105	140,96	14,08	7,04	1323,50	45,75

Continuação da tabela A.31.: (a)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
170	358,41	21,28	10,64	5084,70	72,84
130	397,75	21,56	10,78	5716,25	75,45
87	432,72	22,77	11,38	6567,30	82,95
66	360,60	21,28	10,64	5115,04	75,07
170	358,41	21,28	10,64	5084,70	72,84
130	397,75	21,56	10,78	5716,25	75,45
87	432,72	22,77	11,38	6567,30	82,95
2	428,35	22,87	11,43	6529,73	86,43
43	261,16	18,47	9,24	3215,95	65,17
94	266,63	18,50	9,25	3288,77	63,76
5	303,78	19,02	9,51	3852,80	65,55
19	358,41	20,35	10,17	4862,03	68,66
137	370,43	21,08	10,54	5206,40	77,39
134	287,39	20,76	10,38	3976,61	72,41
235	231,66	17,23	8,62	2661,47	56,33
151	347,49	19,52	9,76	4520,99	86,71
260	313,61	20,26	10,13	4234,99	78,79
222	391,20	22,47	11,24	5860,49	74,52
127	433,81	22,78	11,39	6587,97	99,68
211	293,94	18,31	9,16	3588,64	71,36
191	287,39	18,74	9,37	3590,26	60,64
212	325,63	19,45	9,72	4221,53	70,97
158	254,61	17,51	8,76	2972,68	66,05
142	333,28	20,67	10,34	4592,84	70,14
173	369,34	20,91	10,45	5148,48	68,87
132	386,83	22,68	11,34	5848,33	81,64
46	304,87	19,16	9,58	3895,09	66,54
92	286,29	19,54	9,77	3730,01	66,96
23	326,73	19,88	9,94	4331,25	67,52
144	257,88	17,18	8,59	2953,06	59,89
233	327,82	19,39	9,70	4238,02	76,50
41	338,75	20,14	10,07	4548,26	72,83
146	351,86	20,61	10,30	4833,90	79,50
136	336,56	20,78	10,39	4661,60	76,41

181	271,00	18,40	9,20	3324,12	61,57
180	253,51	18,44	9,22	3116,88	62,75
24	338,75	19,75	9,87	4460,02	71,00
146	379,18	22,14	11,07	5596,95	78,01
243	232,75	17,44	8,72	2705,63	61,94
260	325,63	19,19	9,59	4164,88	86,38
114	404,31	22,59	11,29	6087,87	86,23
151	302,69	18,80	9,40	3794,15	60,46
soma	14790,06	900,01	450,01	200022,52	3242,22
média	328,67	20,00	10,00	4444,94	72,05

Continuação da Tabela A.31.: (b)

(c) Faixa de diâmetro (23,1-29µm)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(μm)	(µm)	(µm ³)	(µm)
100	524,51	24,86	12,43	8693,63	89,17
105	514,67	25,04	12,52	8593,08	105,94
85	451,30	23,64	11,82	7113,69	90,91
139	431,63	23,75	11,87	6833,98	88,96
126	448,02	24,00	12,00	7167,31	93,13
164	524,51	24,55	12,27	8583,79	94,30
63	439,28	25,57	12,79	7488,30	89,72
24	678,58	28,21	14,11	12762,29	99,06
127	620,67	27,88	13,94	11534,15	99,98
6	601,00	28,42	14,21	11385,65	148,06
245	461,13	23,25	11,63	7148,23	103,29
187	539,81	25,74	12,87	9264,52	85,98
193	480,80	26,96	13,48	8640,17	103,34
47	642,52	27,62	13,81	11832,14	106,72
152	595,54	28,24	14,12	11212,93	106,89
91	411,96	24,03	12,02	6599,69	78,03
128	476,43	24,04	12,02	7635,29	88,75
246	429,44	24,81	12,40	7101,57	87,82
44	519,05	24,85	12,43	8598,87	85,09
78	618,48	26,96	13,48	11114,81	109,44
62	545,27	27,02	13,51	9822,34	93,45
72	617,39	27,15	13,58	11175,10	114,10
244	470,97	23,52	11,76	7385,27	82,53
93	441,46	23,90	11,95	7034,07	86,82
217	534,34	24,93	12,46	8880,65	117,40
100	571,50	25,88	12,94	9860,79	96,15
194	670,93	28,47	14,24	12736,06	101,67
155	455,67	23,21	11,60	7050,21	89,04
170	490,63	24,15	12,07	7897,97	105,73
196	488,45	24,64	12,32	8025,03	98,60

418,51 23,23 11,61 6480,10 116 84,73 469,87 7282,06 98,05 206 23,25 11,62 16584,31 811,77 405,88 282933,70 3122,85 soma 25,37 97,59 média 518,26 12,68 8841,68

Continuação da tabela A.31.: (c)

Tabela A.32.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,2μm, para velocidade angular de compressão (*press-on*) de 2000rpm - 2ª corrida.

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
356	138,78	13,94	6.97	1766,56	43,92
261	190,13	14,97	7,48	1231,93	53,93
411	123,48	11,63	5,81	897,74	39,21
48	115,83	11,77	5,89	1389,35	39,82
266	177,02	14,73	7,36	1330,50	49,91
116	135,50	11,73	5,87	982,99	42,92
127	125,66	11,91	5,95	867,43	39,82
232	109,27	12,93	6,46	1271,37	40,44
374	147,52	13,38	6,69	1364,63	46,71
412	152,98	13,98	6,99	1996,57	46,28
179	214,17	16,65	8,32	1540,31	58,81
188	138,78	11,88	5,94	1167,94	44,18
193	147,52	13,33	6,67	1417,89	45,67
189	159,54	13,38	6,69	1569,63	48,43
309	175,93	15,36	7,68	2092,31	50,58
69	204,34	15,55	7,78	1914,92	53,73
336	184,67	14,95	7,47	2177,83	51,05
383	218,55	16,46	8,23	1402,80	55,64
296	127,85	12,63	6,31	1241,98	41,90
53	147,52	13,41	6,71	1446,12	44,90
216	161,72	14,56	7,28	1198,59	47,09
223	123,48	11,94	5,97	1147,69	37,84
193	144,24	12,90	6,45	1418,97	42,88
17	165,00	13,45	6,72	1283,48	45,65
155	143,15	12,43	6,21	1511,72	43,37
406	182,49	14,79	7,39	1884,98	52,01
202	191,23	15,42	7,71	2134,94	55,32
253	207,62	15,62	7,81	1751,87	56,64
147	168,28	15,84	7,92	2192,86	50,26
418	207,62	15,91	7,96	1843,36	59,21
201	173,74	13,86	6,93	2150,56	49,25
212	232,75	16,33	8,17	2724,79	58,61
43	250,23	16,79	8,39	2592,39	66,67
228	231,66	16,99	8,49	1423,21	60,14

	170.60	14.00	204,57	2420 (4	1702,25
soma	6824.08	568 74	284 37	137185 47	1962.25
322	225,10	16,16	8,08	73495,54	52,39
365	204,34	15,53	7,76	2330,15	53,30
309	205,43	15,35	7,68	2091,23	49,77
140	169,37	13,92	6,96	1906,76	46,69
304	175,93	14,75	7,38	1665,83	57,55
31	125,66	11,64	5,82	1365,76	39,78

Continuação Tabela A. 32.: (a)

E.

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(μm)	(µm)	(μm^3)	(μm)
157	284,11	17,40	8,70	3295,50	72,89
457	370,43	22,49	11,25	5554,08	78,37
192	403,22	21,64	10,82	5817,68	77,95
404	250,23	17,22	8,61	2872,16	60,92
362	454,57	23,00	11,50	6969,59	78,91
155	307,06	18,99	9,50	3887,36	80,34
51	371,53	22,10	11,05	5474,09	73,37
203	326,73	19,89	9,95	4332,84	76,01
259	273,18	17,57	8,79	3200,50	60,86
14	382,45	19,58	9,79	4992,49	106,79
21	331,10	20,40	10,20	4502,04	75,83
379	313,61	18,89	9,45	3950,22	73,93
181	327,82	20,03	10,01	4376,84	70,64
46	396,66	22,23	11,12	5878,65	76,62
46	360,60	20,93	10,47	5032,09	73,23
107	382,45	21,27	10,64	5424,36	72,40
273	305,96	18,42	9,21	3756,27	76,46
19	348,58	21,16	10,58	4917,85	69,14
146	338,75	21,18	10,59	4783,24	79,05
305	354,04	20,95	10,48	4945,56	89,51
262	462,22	22,91	11,45	7058,52	92,76
soma	7345,31	428,26	214,13	101021,92	1615,98
média	349,78	20,39	10,20	4810,57	76,95

|--|

Objeto do	Ánaa	Diâmetro Mádio	Daia	Volumo	Dovímotro
Anansauor	Area	Ivieuto	Kalo	v olullie	rennetro
	(µm²)	(µm)	(µm)	(µm ³)	(µm)
88	560,57	25,82	12,91	9649,48	97,74
265	572,59	25,99	12,99	9920,63	98,45
306	578,05	25,80	12,90	9943,89	100,51
164	477,52	23,30	11,65	7416,95	98,94
221	620,67	27,25	13,63	11275,69	97,23
260	644,71	27,43	13,71	11788,60	93,10
soma	3454,11	155,59	77,79	59995,23	585,98
média	575,68	25,93	12,97	9999,20	97,66

Tabela A.33.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,2μm, para velocidade angular de compressão (*press-on*) de 2000rpm - 3ª corrida.

Objeto do	1	Diâmetro			
Analisador	Area	Médio	Raio	Volume	Perimetro
	(μm^2)	(µm)	(µm)	(µm³)	(µm)
22	145,33	13,20	6,60	1278,93	44,68
7	192,32	14,92	7,46	1913,42	51,92
119	169,37	13,90	6,95	1569,99	45,47
223	154,07	14,51	7,26	1490,46	45,76
101	215,27	15,84	7,92	2273,66	53,48
66	124,57	11,81	5,90	980,52	40,55
230	133,31	12,18	6,09	1082,71	42,62
145	174,84	14,73	7,36	1716,48	51,37
275	144,24	12,24	6,12	1177,23	43,21
187	144,24	12,30	6,15	1182,72	48,78
34	253,51	16,97	8,49	2868,18	60,93
40	125,66	11,57	5,79	969,52	40,28
23	163,91	13,34	6,67	1458,04	46,65
18	133,31	12,16	6,08	1080,54	41,69
15	213,08	15,64	7,82	2221,05	50,10
21	241,49	16,45	8,23	2648,45	68,70
78	120,20	11,52	5,76	923,23	39,08
212	166,09	14,80	7,40	1638,96	48,81
198	172,65	15,01	7,50	1727,39	50,44
21	142,05	13,00	6,50	1231,24	43,68
56	194,51	15,46	7,73	2004,08	53,20
150	242,59	16,62	8,31	2687,17	54,55
7	178,11	15,21	7,61	1806,30	53,17
63	127,85	12,50	6,25	1065,30	43,63
64	155,17	13,18	6,59	1363,73	42,95
10	168,28	13,85	6,92	1553,39	47,56
136	172,65	14,47	7,24	1665,67	45,25
96	182,49	14,75	7,37	1794,25	50,29
7	201,06	15,63	7,82	2095,25	52,88
56	203,25	16,60	8,30	2249,21	58,11
149	109,27	11,39	5,69	829,72	42,78
19	155,17	14,36	7,18	1485,32	49,58
183	233,84	16,07	8,04	2505,95	58,88
soma	5653,77	466,19	233,09	54538,08	1611,01
média	171,33	14,13	7,06	1652,67	48,82

(a) Faixa de diâmetro (11,1-17µm)

_

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)
210	290,67	18,25	9,12	3536,00	64,39
145	322,35	19,15	9,57	4114,40	66,36
14	258,98	17,11	8,55	2953,90	55,80
73	433,81	22,54	11,27	6518,33	76,47
44	302,69	19,64	9,82	3963,78	73,47
229	347,49	20,07	10,03	4649,05	71,79
145	281,92	18,63	9,31	3500,64	66,16
44	325,63	20,70	10,35	4493,44	75,90
36	261,16	17,48	8,74	3043,68	61,75
45	364,97	21,19	10,59	5155,22	81,30
17	242,59	17,19	8,60	2780,17	68,09
89	421,79	22,00	11,00	6186,36	87,54
6	440,37	22,69	11,35	6661,97	92,47
19	284,11	18,05	9,02	3418,21	65,99
93	304,87	20,31	10,15	4127,76	70,67
73	421,79	22,44	11,22	6311,03	76,53
75	452,39	22,87	11,44	6898,08	79,80
108	448,02	22,98	11,49	6863,31	100,36
72	262,25	17,88	8,94	3126,57	62,88
43	299,41	19,40	9,70	3871,75	65,26
104	361,69	20,41	10,20	4920,79	69,17
soma	7128,95	420,97	210,48	97094,43	1532,15
média	339,47	20,05	10,02	4623,54	72,96

(b) Faixa de diâmetro (17,1-23µm)

	(c) Faixa de diâmetro (23,1-29µm)							
Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro			
	(μm^2)	(µm)	(µm)	(µm ³)	(µm)			
174	584,61	26,70	13,35	10405,75	102,98			
116	463,32	23,46	11,73	7246,49	84,73			
148	502,65	24,12	12,06	8081,81	82,65			
265	566,03	25,45	12,72	9602,67	94,92			
253	546,36	25,71	12,85	9364,08	98,54			
173	568,22	26,95	13,48	10209,00	120,50			
54	618,48	26,61	13,30	10970,28	108,57			
54	534,34	25,05	12,53	8923,59	112,88			
21	566,03	25,68	12,84	9689,18	99,41			
96	545,27	25,77	12,88	9367,59	90,35			
56	474,24	24,02	12,01	7594,12	90,05			
79	501,56	24,54	12,27	8205,25	86,06			
2	579,15	25,43	12,71	9816,89	105,59			
179	603,19	26,51	13,25	10659,30	105,36			
121	585,70	25,93	12,97	10126,40	93,90			
108	522,32	25,36	12,68	8830,41	95,89			
10	596,63	26,79	13,39	10654,16	98,21			

27,49

13,75

11877,09

98,07

80

647,99

37	497,19	24,21	12,10	8024,04	94,82
38	464,41	25,39	12,70	7860,94	89,68
83	558,38	25,62	12,81	9537,74	85,38
51	651,27	27,16	13,58	11790,65	111,20
76	445,83	23,14	11,57	6878,64	75,13
142	550,73	25,51	12,75	9365,73	87,53
soma	13173,91	612,58	306,29	225081,81	2312,40
média	548,91	25,52	12,76	9378,41	96,35

Continuação da tabela A.33. (c)

Tabela A.34.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,2μm, para velocidade angular de compressão (*press-on*) de 5000rpm - 1ª corrida.

	(a) 1	aixa ut utailitti 0	(11,1-17µm)		
Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
12	119,11	12,81	6,40	1017,11	42,87
133	166,09	13,34	6,67	1477,00	47,32
87	162,82	14,55	7,28	1579,38	48,98
59	120,20	11,16	5,58	894,45	36,97
37	118,01	12,00	6,00	944,08	38,26
68	150,80	13,32	6,66	1338,97	44,18
60	191,23	14,98	7,49	1909,24	50,60
132	170,47	14,24	7,12	1617,86	48,58
137	229,47	16,94	8,47	2591,62	63,25
93	113,64	11,73	5,87	888,99	42,11
83	115,83	12,19	6,09	941,09	37,07
77	144,24	12,63	6,31	1214,42	43,28
65	108,18	11,89	5,94	857,19	42,14
181	136,59	12,22	6,11	1112,85	48,14
205	146,43	13,25	6,62	1293,31	49,87
48	181,39	14,73	7,36	1781,24	54,68
222	210,90	16,14	8,07	2268,70	54,64
132	116,92	11,62	5,81	905,63	44,30
7	124,57	12,68	6,34	1052,72	43,44
116	160,63	13,36	6,68	1430,97	44,38
125	215,27	15,69	7,84	2251,20	53,51
36	122,39	11,60	5,80	946,78	41,41
42	124,57	12,08	6,04	1003,36	41,68
95	142,05	14,63	7,32	1385,61	45,58
89	222,92	16,15	8,08	2400,51	56,91
81	130,03	12,61	6,30	1092,82	45,60
120	213,08	15,21	7,61	2160,72	62,07

123	178,11	16,50	8,25	1958,73	56,47
112	102,72	12,10	6,05	828,25	43,33
92	213,08	16,07	8,04	2283,42	59,20
100	121,29	11,76	5,88	951,29	42,90
113	119,11	12,80	6,40	1016,26	39,99
90	218,55	15,93	7,96	2320,94	56,14
142	114,74	11,79	5,89	901,59	41,05
98	171,56	14,61	7,30	1670,54	50,23
soma	5396,98	475,29	237,64	50288,87	1661,16
média	154,20	13,58	6,79	1436,82	47,46

Continuação da tabela A.34. (a)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
132	309,24	19,29	9,64	3976,78	67,42
104	374,81	21,03	10,51	5254,27	82,28
35	295,04	18,95	9,47	3726,39	64,10
54	324,54	19,48	9,74	4214,96	69,64
63	421,79	22,93	11,47	6448,51	78,24
41	454,57	22,98	11,49	6962,94	75,81
69	233,84	17,78	8,89	2771,46	61,81
149	280,83	17,86	8,93	3343,05	70,57
41	289,57	19,25	9,62	3715,84	77,14
195	354,04	22,04	11,02	5203,12	75,55
121	252,42	18,17	9,08	3057,59	63,76
106	304,87	18,85	9,42	3830,67	61,64
128	243,68	17,92	8,96	2910,56	72,16
22	260,07	19,60	9,80	3397,41	64,30
64	401,03	21,26	10,63	5685,16	84,43
100	263,35	17,14	8,57	3009,14	62,00
93	342,02	20,10	10,05	4582,17	72,71
111	349,67	20,35	10,18	4743,98	71,76
97	334,37	20,77	10,39	4630,02	85,38
9	363,88	21,14	10,57	5128,48	72,41
106	180,30	17,46	8,73	2098,45	56,40
96	237,12	18,00	9,00	2845,41	62,45
131	288,48	18,24	9,12	3507,50	82,52
78	354,04	21,54	10,77	5084,27	73,41
73	418,51	22,68	11,34	6327,51	75,14
135	284,11	18,09	9,05	3427,11	66,75
12	301,59	18,19	9,10	3657,91	68,22
soma	8517,80	531,07	265,54	113540,65	1918,01
média	315,47	19,67	9,83	4205,21	71,04

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(μm)	(μm ³)	(µm)
171	578,05	26,16	13,08	15122,96	95,68
6	686,23	28,94	14,47	19860,54	100,82
176	574,77	26,19	13,09	15051,34	108,32
13	590,07	26,64	13,32	15718,95	97,04
27	641,43	27,66	13,83	17741,18	98,20
15	526,69	24,04	12,02	12662,89	102,53
34	595,54	26,39	13,20	15718,44	97,75
40	501,56	25,84	12,92	12958,86	86,06
48	482,99	24,47	12,24	11820,19	107,32
150	620,67	27,46	13,73	17042,03	117,67
61	510,30	24,43	12,22	12467,32	104,62
47	525,60	24,45	12,23	12853,37	96,56
57	511,40	25,07	12,54	12821,11	85,73
135	585,70	26,31	13,16	15412,68	90,70
188	465,50	23,34	11,67	10865,02	89,45
soma	8396,51	387,40	193,70	218116,90	1478,44
média	559,77	25,83	12,91	14541,13	98,56

(c) Faixa de diâmetro (23,1-29µm)

Tabela A.35.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,2μm, para velocidade angular de compressão (*press-on*) de 5000rpm - 2ª corrida.

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm ²)	(μm)	(µm)	(µm ³)	(µm)
96	210,90	15,10	7,55	2122,99	58,75
67	199,97	15,70	7,85	2093,25	51,73
228	114,74	12,32	6,16	942,65	41,89
69	165,00	14,83	7,42	1631,73	52,00
15	139,87	14,98	7,49	1396,40	47,13
55	95,07	11,11	5,55	704,12	36,36
233	230,57	16,09	8,04	2472,76	59,65
106	205,43	15,88	7,94	2174,69	59,90
171	243,68	16,54	8,27	2687,08	58,69
274	163,91	14,37	7,19	1570,68	45,23
212	115,83	11,24	5,62	867,91	41,19
110	149,70	13,43	6,71	1339,94	45,72
59	173,74	13,85	6,92	1604,11	45,55
112	222,92	16,19	8,10	2406,53	54,42
134	123,48	11,96	5,98	984,56	40,25
190	143,15	14,01	7.01	1337.37	45,83

(a) Faixa de diâmetro (11,1-17µm)

média	163,36	13,96	6,90	1524,03	47,21
soma	5227,60	446,86	220,88	48768,91	1510,73
167	160,63	14,58	6,87	1504,51	49,66
272	177,02	14,28	6,85	1483,69	44,14
292	130,03	12,50	6,88	1504,72	40,14
241	232,75	16,76	6,90	1525,57	57,71
87	214,17	15,90	6,95	1560,13	54,48
270	81,95	11,48	5,74	627,00	30,20
112	210,90	16,85	8,42	2368,45	57,27
210	199,97	15,28	7,64	2037,12	50,58
145	113,64	11,44	5,72	866,96	37,03
8	121,29	11,19	5,59	904,48	36,96
165	107,09	11,14	5,57	795,28	35,18
220	219,64	15,98	7,99	2340,23	55,89
127	148,61	14,36	7,18	1422,34	49,56
133	134,41	11,74	5,87	1051,76	41,94
210	111,46	11,44	5,72	849,88	36,80
143	166,09	14,36	7,18	1590,01	48,91

Continuação da Tabela A.35. (a)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(μm)	(μm)	(μm^3)	(μm)
70	317,98	20,21	10,10	4284,17	76,38
217	256,79	18,31	9,15	3133,76	65,43
163	251,33	19,71	9,85	3302,13	66,66
177	406,49	21,57	10,79	5845,58	74,13
69	445,83	22,97	11,49	6827,98	79,92
152	262,25	18,20	9,10	3182,88	67,89
88	343,12	19,96	9,98	4566,76	71,56
228	255,70	17,10	8,55	2915,19	59,17
236	354,04	20,56	10,28	4853,69	73,63
175	436,00	22,21	9,88	4257,31	82,40
288	303,78	18,68	9,92	4323,57	66,30
191	347,49	20,41	9,90	4320,59	66,97
92	410,87	22,34	9,98	4452,79	84,67
57	272,09	18,04	9,99	4565,95	63,92
67	307,06	18,85	9,90	4411,20	68,61
118	279,74	17,92	9,73	4159,86	71,92
285	307,06	20,04	9,82	4296,34	73,21
238	434,91	22,13	9,79	4251,13	85,37
soma	5992,51	359,22	178,21	77950,88	1298,13
média	332,92	19,96	9,90	4330,60	72,12

Objeto do	,	Diâmetro			
Analisador	Area	Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)
88	495,01	23,97	11,98	7909,65	83,35
77	593,35	26,28	13,14	10394,19	95,72
121	670,93	28,47	14,24	12735,82	106,24
68	479,71	23,57	11,78	7537,57	80,76
178	641,43	28,11	14,05	12019,68	109,57
122	555,11	25,70	12,85	9510,54	87,48
65	482,99	24,98	12,49	8044,63	94,54
79	556,20	25,57	13,01	10017,91	88,03
64	557,29	25,91	12,93	9736,01	90,79
246	592,26	26,27	13,08	10037,19	97,59
149	517,95	27,33	13,05	9943,17	116,30
91	541,99	25,37	12,89	9557,65	85,64
207	634,87	28,28	13,07	9901,30	112,13
soma	7319,08	339,81	168,57	127345,31	1248,14
média	563,01	26,14	12,97	9795,79	96,01

(c) Faixa de diâmetro (23,1-29µm)

Tabela A.36.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,2μm, para velocidade angular de compressão (*press-on*) de 5000rpm - 3ª corrida.

Objeto do		Diâmetro					
Analisador	Área	Médio	Raio	Volume	Perímetro		
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)		
28	189,04	15,21	7,60	1916,35	51,13		
39	90,70	11,92	5,96	721,01	33,99		
150	121,29	12,12	6,06	979,75	42,62		
12	101,62	11,67	5,84	790,63	35,52		
38	163,91	13,67	6,83	1493,25	47,27		
80	205,43	15,73	7,87	2154,51	51,09		
20	169,37	13,73	6,87	1550,82	48,00		
146	159,54	13,84	6,92	1472,03	45,55		
63	131,13	14,04	7,02	1227,57	44,86		
91	228,38	15,41	7,71	2346,49	61,00		
45	243,68	16,67	8,34	2708,51	55,68		
46	110,37	11,92	5,96	877,24	40,61		
161	190,13	14,36	7,18	1820,02	60,92		
198	175,93	14,50	7,25	1700,86	49,06		
147	112,55	11,33	5,66	849,76	40,53		
184	134,41	11,89	5,95	1065,81	41,51		

média	160,44	13,84	6,92	1521,29	48,01
soma	4652,83	401,49	200,74	44117,35	1392,32
52	197,78	15,30	7,65	2017,13	52,35
59	174,84	14,12	7,06	1646,02	49,08
119	133,31	12,02	6,01	1068,32	45,73
114	126,76	11,76	5,88	993,42	41,61
80	173,74	14,83	7,42	1717,85	53,82
23	198,88	15,90	7,95	2107,68	58,80
80	128,94	12,72	6,36	1093,16	48,16
26	128,94	12,62	6,31	1084,76	41,42
124	201,06	16,62	8,31	2227,82	54,76
68	189,04	15,09	7,55	1902,31	50,89
77	157,35	14,31	7,16	1501,65	47,92
105	207,62	15,98	7,99	2211,37	60,05
193	107,09	12,20	6,10	871,23	38,38

Continuação da Tabela A.36 (a)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
76	340,93	20,26	10,13	4603,92	67,72
77	302,69	20,42	10,21	4119,57	79,73
153	288,48	18,59	9,29	3574,98	68,12
68	312,52	19,61	9,81	4086,50	66,72
124	303,78	19,99	9,99	4047,81	68,24
82	351,86	20,48	10,24	4804,78	82,01
9	417,42	22,03	11,01	6129,86	78,31
191	368,25	20,70	10,35	5082,05	74,27
252	370,43	21,34	10,67	5268,95	72,11
115	326,73	18,94	9,47	4125,16	82,72
48	312,52	19,29	9,65	4019,84	71,09
14	352,95	20,18	10,09	4748,27	68,88
87	322,35	19,01	9,51	4085,65	73,00
39	381,36	21,13	10,57	5372,78	69,22
4	261,16	18,24	9,12	3176,24	61,53
83	308,15	18,84	9,42	3870,32	66,55
129	374,81	20,57	10,28	5139,17	71,62
27	272,09	18,14	9,07	3289,81	70,62
205	297,22	18,84	9,42	3733,01	63,61
176	361,69	20,69	10,34	4988,53	71,76
177	339,84	21,63	10,82	4901,07	71,27
soma	6967,23	418,91	209,46	93168,28	1499,11
média	331,77	19,95	9,97	4436,58	71,39

Objeto do		Diâmetro			
Analisador	Area	Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)
25	526,69	24,10	12,05	8463,97	103,02
93	492,82	24,93	12,47	8191,22	93,70
50	629,41	27,54	13,77	11557,00	91,37
260	632,69	27,00	13,50	11388,12	103,03
252	619,58	27,57	13,78	11387,66	115,85
168	474,24	23,21	11,60	7337,80	91,12
106	637,06	27,15	13,57	11530,46	109,44
1	541,99	25,15	12,57	9087,28	88,88
167	617,39	27,02	13,51	11119,39	100,10
83	474,24	23,75	11,87	7508,25	86,03
141	491,73	23,80	11,90	7801,58	94,44
27	625,04	26,66	13,33	11110,24	99,26
soma	6762,89	307,88	153,94	116482,96	1176,22
média	563,57	25,66	12,83	9706,91	98,02

(c) Faixa de diâmetro (23,1-29µm)

Tabela A.37.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,4μm, para velocidade angular de compressão (*press-on*) de 1000rpm - 1ª corrida.

Objete de	(u)	Diâm stra	<u>ιο (11,1 17 μπ</u>	,	
	í	Diametro	D •	X 7 1	
Analisador	Area	Medio	Raio	Volume	Perimetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
153	118,01	11,39	5,69	895,82	44,19
76	114,74	11,47	5,73	877,29	38,10
151	120,20	11,80	5,90	945,41	39,30
178	135,50	12,54	6,27	1132,66	43,64
189	147,52	12,80	6,40	1258,96	43,23
91	156,26	13,33	6,66	1388,58	45,65
19	132,22	13,90	6,95	1225,15	45,61
57	177,02	15,22	7,61	1796,75	49,87
164	125,66	12,71	6,36	1065,05	46,30
9	160,63	13,76	6,88	1473,41	45,28
128	140,96	14,44	7,22	1356,97	45,85
107	102,72	11,28	5,64	772,16	34,65
78	131,13	11,69	5,84	1021,59	40,73
98	130,03	12,51	6,26	1084,60	46,37
59	191,23	14,38	7,19	1833,18	50,42
146	197,78	15,29	7,64	2016,01	51,65
33	110,37	11,52	5,76	847,68	39,10
11	132,22	12,51	6,26	1102,98	41,08

(a) Faixa de diâmetro (11,1-17µm)

média	151,49	13,29	6,65	1372,79	46,09
soma	6211,06	545,01	272,51	56284,56	1889,85
27	181,39	15,54	7,77	1878,75	49,52
74	139,87	12,18	6,09	1135,31	44,41
233	216,36	16,16	8,08	2330,98	57,72
182	177,02	13,99	6,99	1650,97	48,20
12	121,29	12,05	6,02	974,04	42,77
144	243,68	16,90	8,45	2744,79	59,74
176	169,37	14,16	7,08	1598,77	46,38
64	132,22	11,77	5,89	1037,58	40,58
174	116,92	11,17	5,58	870,53	37,19
165	194,51	14,78	7,39	1917,12	53,42
190	177,02	14,06	7,03	1658,74	50,31
120	143,15	13,81	6,90	1317,51	47,26
16	172,65	13,65	6,83	1571,18	48,39
179	159,54	13,35	6,67	1419,66	49,00
201	134,41	12,78	6,39	1144,76	43,97
47	152,98	12,95	6,47	1320,44	53,94
126	97,25	12,13	6,07	786,64	38,62
73	119.11	11.14	5.57	884.89	40.56
46	198,88	14.89	7,44	1973.96	57.41
171	191.23	14.53	7.27	1852.76	48,44
67	136,59	13,91	6,96	1266.88	44,09
7	115,83	11,55	5,78	891,99	41,81
70	195,60	15,05	7,52	1962,08	55,10

Continuação da Tabela A.37.: (a)

Objeto do	Ános	Diâmetro Médio	Daia	Volumo	Dominatio
Anansauor	Area	Medio	Kalo	volume	Perimetro
	(µm²)	(µm)	(µm)	(µm ³)	(µm)
12	311,43	20,86	10,43	4331,44	78,11
25	410,87	22,10	11,05	6052,49	74,40
70	249,14	18,52	9,26	3075,89	58,90
175	363,88	21,69	10,85	5262,17	74,52
11	324,54	19,75	9,87	4272,74	90,63
59	394,47	21,57	10,78	5672,51	74,22
41	378,08	21,09	10,54	5314,83	70,38
49	422,89	22,01	11,01	6206,05	89,57
154	288,48	18,99	9,50	3652,76	63,56
17	347,49	20,76	10,38	4808,58	72,96
119	335,47	19,77	9,88	4420,60	87,15
135	243,68	17,14	8,57	2783,86	57,59
42	369,34	21,22	10,61	5225,81	88,83
131	239,31	17,20	8,60	2743,98	55,96
286	475,34	22,96	11,48	7275,80	103,70
26	240,40	18,51	9,26	2966,73	57,94

Continuação da Tabela A.37.: (b)

74	308,15	19,69	9,84	4044,87	70,43
42	330,00	19,89	9,95	4376,93	65,94
soma	6032,94	363,72	181,86	82488,02	1334,79
média	335,16	20,21	10,10	4582,67	74,15

(c) Faixa de diâmetro (23,1-29µm)							
Objeto do		Diâmetro					
Analisador	Área	Médio	Raio	Volume	Perímetro		
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)		
30	543,09	24,98	12,49	9044,62	107,54		
18	620,67	26,51	13,25	10967,63	102,55		
109	492,82	24,69	12,35	8111,83	106,56		
9	513,58	25,14	12,57	8608,00	97,71		
74	633,78	27,21	13,61	11498,74	94,33		
23	427,26	23,79	11,89	6775,53	98,97		
58	437,09	23,99	11,99	6989,50	89,33		
13	599,91	26,43	13,21	10569,20	90,62		
37	611,93	27,11	13,56	11060,89	104,76		
13	599,91	26,43	13,21	10569,20	90,62		
37	611,93	27,11	13,56	11060,89	104,76		
74	539,81	25,51	12,75	9178,67	99,45		
129	632,69	28,83	14,41	12159,48	114,53		
46	516,86	24,43	12,21	8416,95	87,47		
34	537,62	25,89	12,94	9278,57	94,16		
144	534,34	24,95	12,48	8888,49	86,43		
53	496,10	24,11	12,06	7974,37	88,12		
48	585,70	26,33	13,16	10279,55	106,28		
49	592,26	26,57	13,29	10491,70	111,22		
soma	10527,33	490,00	245,00	181923,82	1875,42		
média	554,07	25,79	12,89	9574,94	98,71		

Tabela A.38.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,4μm, para velocidade angular de compressão (*press-on*) de 1000rpm - 2ª corrida.

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
111	143,15	13,08	6,54	1248,18	41,38
255	131,13	11,92	5,96	1042,15	42,05
8	155,17	13,69	6,85	1416,54	44,64
41	116,92	12,15	6,07	946,87	44,36
162	182,49	14,88	7,44	1810,10	48,84
225	130,03	11,72	5,86	1016,30	41,89
197	182,49	14,21	7,10	1728,69	48,79
71	199,97	15,04	7,52	2004,94	54,09
136	222,92	15,92	7,96	2365,85	54,95
71	199,97	15,04	7,52	2004,94	54,09
136	222,92	15,92	7,96	2365,85	54,95
24	119,11	12,27	6,13	974,28	39,65
20	137,68	12,99	6,49	1192,13	42,27
4	160,63	13,43	6,72	1438,42	46,81
80	166,09	14,44	7,22	1599,31	48,33
29	201,06	16,50	8,25	2212,14	55,41
169	115,83	12,00	6,00	926,77	38,43
199	139,87	13,05	6,53	1217,07	44,07
123	140,96	13,29	6,64	1248,51	45,68
78	205,43	14,89	7,45	2039,85	53,54
28	178,11	14,14	7,07	1678,43	54,95
395	169,37	14,15	7,08	1598,22	60,48
427	173,74	15,33	7,66	1775,49	50,49
358	222,92	16,03	8,02	2382,49	56,73
40	113,64	11,21	5,60	849,19	40,35
151	170,47	15,52	7,76	1763,49	60,23
86	121,29	12,09	6,05	977,89	38,52
118	112,55	12,68	6,34	951,74	48,82
304	217,45	16,04	8,02	2325,18	74,81
soma	4753,36	403,64	201,82	45101,03	1429,60
média	163,91	13,92	6,96	1555,21	49,30

(a)	Faixa	de	diâmetro	(11,1-1	7µm)
-----	-------	----	----------	---------	------

Objeto do	4	Diâmetro			
Analisador	Area	Médio	Raio	Volume	Perimetro
	(μm^2)	(µm)	(µm)	(µm³)	(µm)
200	421,79	22,13	11,07	6223,11	73,84
81	293,94	18,35	9,17	3595,20	64,33
253	317,98	19,27	9,63	4085,02	70,21
37	311,43	19,73	9,86	4095,48	79,26
103	402,12	22,62	11,31	6064,31	81,62
32	392,29	22,70	11,35	5937,76	86,99
274	267,72	17,78	8,89	3173,29	64,05
203	289,57	18,61	9,30	3592,32	62,72
121	288,48	19,08	9,54	3669,41	65,28
212	409,77	22,10	11,05	6036,52	100,14
82	376,99	21,53	10,77	5412,02	85,22
66	425,07	22,20	11,10	6290,47	82,15
20	269,90	18,32	9,16	3296,59	70,07
91	351,86	20,25	10,13	4751,24	71,61
80	309,24	18,80	9,40	3876,12	68,09
28	328,91	19,84	9,92	4350,92	76,11
173	452,39	22,29	11,14	6722,10	105,84
466	382,45	21,62	10,81	5513,37	76,76
181	378,08	21,34	10,67	5379,97	79,05
127	373,71	22,40	11,20	5580,48	86,18
297	367,16	21,13	10,57	5172,05	78,47
soma	7410,87	432,10	216,05	102817,76	1628,00
média	352,90	20,58	10,29	4896,08	77,52

(b) Faixa de diâmetro (17,1-23µm)

(c) Faixa de diâmetro (23,1-29µm)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(μm)	(μm^3)	(µm)
164	491,73	24,13	12,07	7910,55	85,10
241	585,70	26,02	13,01	10159,58	93,70
103	693,88	28,59	14,30	13225,95	105,04
90	520,14	24,78	12,39	8593,47	82,28
266	620,67	26,66	13,33	11031,00	109,22
151	631,60	27,26	13,63	11478,40	99,61
18	587,89	26,05	13,02	10208,50	104,88
120	622,85	27,05	13,53	11233,68	99,46
226	622,85	27,12	13,56	11261,60	96,71
30	464,41	23,89	11,95	7397,50	88,28
18	500,47	24,55	12,27	8190,52	92,87
51	569,31	25,97	12,99	9858,31	90,07
27	570,40	26,26	13,13	9987,74	91,44

85	500,47	24,15	12,08	8059,09	93,92
143	581,33	25,80	12,90	9997,31	96,97
454	469,87	23,28	11,64	7292,80	85,23
73	643,62	27,13	13,56	11639,79	106,79
33	433,81	23,44	11,72	6779,57	80,97
soma	10111,00	462,15	231,07	174305,37	1702,54
média	561,72	25,67	12,84	9683,63	94,59

Continuação da Tabela A.38.: (c)

Tabela A.39.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,4μm, para velocidade angular de compressão (*press-on*) de 1000rpm - 3ª corrida.

		(a) I alka ut ulai	neu (11,1 17		
Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(μm)	(μm^3)	(µm)
168	147,52	13,05	6,52	1282,94	42,14
132	248,05	16,58	8,29	2742,12	56,86
177	103,81	11,42	5,71	790,44	37,76
416	139,87	13,70	6,85	1277,68	43,99
151	214,17	15,25	7,63	2177,60	52,84
402	232,75	15,91	7,95	2468,30	62,84
157	196,69	16,32	8,16	2140,54	56,79
116	92,88	11,14	5,57	689,58	36,79
118	95,07	11,61	5,81	735,90	36,65
353	128,94	11,71	5,85	1006,60	41,20
77	189,04	14,80	7,40	1865,45	55,21
435	197,78	15,82	7,91	2086,23	57,06
371	113,64	11,47	5,73	868,75	37,97
486	146,43	13,48	6,74	1315,60	45,37
252	177,02	14,08	7,04	1662,01	57,21
424	167,19	14,84	7,42	1653,63	55,04
70	198,88	15,32	7,66	2031,07	50,44
#####	233,84	16,76	8,38	2612,89	58,28
#####	108,18	11,86	5,93	855,41	39,42
#####	128,94	11,94	5,97	1026,61	41,93
#####	125,66	12,16	6,08	1018,78	42,55
#####	128,94	12,22	6,11	1050,66	44,50
#####	222,92	16,20	8,10	2407,96	57,90
#####	261,16	16,95	8,47	2950,96	65,81
48,00	122,39	12,33	6,16	1005,88	39,79
76,00	146,43	12,89	6,45	1258,49	47,73
37,00	150,80	13,93	6,97	1400,75	49,63

média	158,53	13,58	6,79	1480,25	47,70
soma	8401,98	719,61	359,80	78453,07	2527,97
210	214,17	15,58	7,79	2224,66	55,63
184	187,95	14,43	7,21	1807,94	54,72
6	178,11	13,80	6,90	1638,83	47,40
117	149,70	13,43	6,71	1340,31	45,67
49	138,78	12,55	6,27	1160,91	44,66
45	121,29	11,74	5,87	949,64	41,52
69	225,10	16,74	8,37	2512,55	58,99
390	224,01	16,23	8,12	2424,15	60,80
328	143,15	12,87	6,43	1228,16	42,79
40	126,76	12,12	6,06	1024,26	48,32
329	122,39	11,92	5,96	972,85	42,64
207	124,57	13,23	6,62	1099,08	46,80
230	150,80	12,53	6,26	1259,43	43,80
318	147,52	12,52	6,26	1231,27	44,42
108	110,37	11,97	5,98	880,47	36,56
174	127,85	11,57	5,79	986,34	42,49
149	206,53	15,34	7,67	2111,55	53,69
672	149,70	13,94	6,97	1390,93	44,70
115	161,72	13,51	6,75	1456,56	48,03
157	165,00	13,50	6,75	1484,86	49,15
680	139,87	12,83	6,42	1196,48	44,02
27	111,46	11,94	5,97	887,17	37,37
660	121,29	11,29	5,64	912,73	39,77
129	134,41	14,33	7,16	1283,62	45,56
320	163,91	13,33	6,66	1456,28	52,55
145	136,59	12,62	6,31	1149,24	42,21

Continuação da Tabela A.39.: (a)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(μm)	(μm^3)	(µm)
51	325,63	20,05	10,03	4353,09	74,91
21	429,44	22,24	11,12	6368,54	93,08
494	234,94	17,73	8,87	2777,40	62,69
431	224,01	18,83	9,41	2812,06	70,34
22	261,16	18,95	9,47	3299,03	68,77
143	342,02	22,02	11,01	5020,53	85,08
80	253,51	17,28	8,64	2920,44	66,00
372	290,67	19,63	9,82	3804,18	64,21
442	334,37	19,65	9,82	4380,04	67,16
270	419,61	22,21	11,11	6214,28	98,82
41	291,76	18,46	9,23	3590,78	68,86
72	319,08	20,19	10,10	4295,72	82,64
107	302,69	20,18	10,09	4072,12	76,20

156283,0218,529,263494,3362,02376309,2418,799,403874,5970,70223375,9020,7510,375199,8472,79179390,1021,0310,525470,5078,16131339,8419,499,744414,8870,19126418,5122,5111,266280,7979,35182281,9218,709,353514,3770,0687384,6422,3811,195738,4482,94soma6812,06419,61209,8191895,951564,97	média	324,38	19,98	9,99	4376,00	74,52
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	soma	6812,06	419,61	209,81	91895,95	1564,97
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	87	384,64	22,38	11,19	5738,44	82,94
156283,0218,529,263494,3362,02376309,2418,799,403874,5970,70223375,9020,7510,375199,8472,79179390,1021,0310,525470,5078,16131339,8419,499,744414,8870,19126418,5122,5111,266280,7979,35	182	281,92	18,70	9,35	3514,37	70,06
156283,0218,529,263494,3362,02376309,2418,799,403874,5970,70223375,9020,7510,375199,8472,79179390,1021,0310,525470,5078,16131339,8419,499,744414,8870,19	126	418,51	22,51	11,26	6280,79	79,35
156283,0218,529,263494,3362,02376309,2418,799,403874,5970,70223375,9020,7510,375199,8472,79179390,1021,0310,525470,5078,16	131	339,84	19,49	9,74	4414,88	70,19
156283,0218,529,263494,3362,02376309,2418,799,403874,5970,70223375,9020,7510,375199,8472,79	179	390,10	21,03	10,52	5470,50	78,16
156 283,02 18,52 9,26 3494,33 62,02 376 309,24 18,79 9,40 3874,59 70,70	223	375,90	20,75	10,37	5199,84	72,79
156 283,02 18,52 9,26 3494,33 62,02	376	309,24	18,79	9,40	3874,59	70,70
	156	283,02	18,52	9,26	3494,33	62,02

Continuação da Tabela A.39.: (b)

(c)Faixa de diâmetro (23,1-29µm)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm^2)	(μm)	(μm)	(μm^3)	(μm)
34	515,77	24,59	12,29	8454,33	91,05
42	476,43	23,28	11,64	7394,26	99,13
147	708,09	28,99	14,49	13684,35	128,22
400	651,27	27,40	13,70	11897,67	102,98
122	536,53	25,12	12,56	8983,83	89,80
390	586,79	26,17	13,09	10238,14	92,11
192	714,64	28,60	14,30	13627,42	136,94
388	467,69	23,63	11,81	7366,84	98,72
276	452,39	24,32	12,16	7333,24	81,70
13	453,48	24,01	12,01	7259,96	88,48
27	547,46	25,63	12,81	9353,70	95,71
soma	6110,53	281,74	140,87	105593,72	1104,85
média	555,50	25,61	12,81	9599,43	100,44

Tabela A.40.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,4μm, para velocidade angular de compressão (*press-on*) de 2000rpm - 1ª corrida.

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(μm)	(μm^3)	(µm)
121	128,94	12,09	6,05	1039,59	47,52
170	125,66	12,82	6,41	1073,72	46,40
251	158,45	13,06	6,53	1379,75	46,15
235	244,77	16,73	8,36	2729,61	56,86
150	224,01	16,98	8,49	2536,35	66,31
240	100,53	11,66	5,83	781,32	42,81
172	125,66	12,38	6,19	1036,78	41,28
232	135,50	12,56	6,28	1134,15	44,30
143	152,98	13,06	6,53	1331,56	52,25
155	159,54	13,48	6,74	1433,20	50,62
243	189,04	14,75	7,38	1859,06	57,80
237	113,64	11,70	5,85	886,48	42,68
145	110,37	11,74	5,87	863,65	42,96
61	104,90	11,85	5,93	829,06	37,79
158	133,31	12,74	6,37	1132,04	45,68
168	97,25	11,47	5,74	743,78	35,26
125	121,29	12,34	6,17	997,82	41,71
72	152,98	13,48	6,74	1374,82	56,76
213	221,82	16,30	8,15	2411,07	54,95
211	143,15	13,19	6,59	1258,60	48,18
175	160,63	13,66	6,83	1462,76	52,39
216	131,13	14,54	7,27	1271,22	46,47
271	120,20	11,58	5,79	927,94	39,32
297	126,76	11,58	5,79	978,96	48,15
73	132,22	12,40	6,20	1093,13	44,20
214	170,47	13,79	6,90	1567,43	46,56
174	207,62	15,37	7,68	2127,36	57,72
47	111,46	11,89	5,95	883,62	39,54
232	99,44	11,90	5,95	788,67	38,52
195	211,99	15,32	7,66	2164,80	56,08
10	203,25	15,83	7,92	2145,13	59,22
288	119,11	11,73	5,87	931,76	40,70
78	219,64	15,56	7,78	2278,67	62,58
316	76,49	11,37	5,69	579,91	33,29
148	107,09	11,67	5,83	832,78	39,60
158	127,85	12,26	6,13	1044,63	44,84
121	132,22	12,64	6,32	1114,10	44,06
98	157,35	13,51	6,76	1417,28	45,53
265	173,74	14,54	7,27	1684,40	58,03

273	180,30	14,75	7,37	1772,81	47,27
53	216,36	15,62	7,81	2253,33	68,59
249	194,51	14,43	7,22	1871,28	54,67
125	225,10	16,14	8,07	2421,93	59,89
112	101,62	11,20	5,60	758,91	33,48
62	107,09	11,77	5,89	840,55	42,57
86	124,57	12,06	6,03	1001,24	40,43
144	155,17	12,82	6,41	1326,28	49,51
6	128,94	12,88	6,44	1107,27	43,21
161	127,85	13,53	6,76	1153,07	44,78
soma	7293,95	650,72	325,36	66633,66	2339,44
média	148,86	13,28	6,64	1359,87	47,74

Continuação da Tabela A.40.: (a)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(µm ³)	(µm)
182	325,63	20,88	10,44	4531,77	73,16
90	264,44	17,91	8,95	3157,32	64,14
107	201,06	17,97	8,99	2409,38	61,85
180	420,70	22,74	11,37	6376,48	80,24
149	254,61	17,88	8,94	3035,55	80,15
135	338,75	20,79	10,40	4695,27	90,01
257	446,93	22,82	11,41	6800,06	105,57
160	238,21	18,46	9,23	2930,94	68,07
141	246,96	18,85	9,42	3103,09	63,45
55	339,84	19,92	9,96	4513,41	74,07
77	315,80	20,31	10,16	4276,55	67,49
182	283,02	18,66	9,33	3521,21	80,55
151	314,71	20,44	10,22	4287,35	85,28
225	325,63	20,77	10,39	4509,59	70,26
243	431,63	22,50	11,25	6473,83	81,86
148	219,64	17,20	8,60	2518,97	65,79
37	336,56	19,57	9,79	4391,91	68,35
289	278,65	19,64	9,82	3649,25	65,79
24	286,29	18,28	9,14	3489,11	61,10
157	286,29	18,74	9,37	3577,27	60,00
125	276,46	18,87	9,44	3477,87	79,31
68	335,47	20,17	10,09	4511,68	75,75
243	333,28	20,64	10,32	4586,62	72,70
43	361,69	20,91	10,45	5041,49	73,07
219	363,88	21,10	10,55	5119,18	72,89
118	396,66	21,45	10,73	5672,73	71,10
66	249,14	17,29	8,65	2871,80	64,12
282	284,11	18,42	9,21	3488,58	62,44
190	334,37	20,16	10,08	4494,13	70,11

média	311,48	19,61	9,80	4128,03	71,44
soma	12770,70	803,84	401,92	169249,20	2929,00
156	370,43	20,78	10,39	5132,13	70,84
20	349,67	20,15	10,07	4697,22	71,88
166	332,19	19,75	9,87	4373,46	74,31
37	240,40	17,24	8,62	2763,37	56,99
40	263,35	17,21	8,61	3021,49	61,36
168	366,06	20,54	10,27	5012,80	84,46
29	263,35	19,26	9,63	3380,53	63,63
35	278,65	18,94	9,47	3518,42	62,24
235	287,39	18,79	9,39	3599,19	62,78
169	414,14	22,01	11,01	6078,21	85,50
167	279,74	18,45	9,23	3440,96	67,82
299	234,94	17,36	8,68	2719,02	58,51

Continuação da Tabela A.40.: (a)

(c) Faixa de diâmetro (23,1-29µm)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(μm)	(µm)	(μm^3)	(µm)
226	527,79	24,98	12,49	8788,87	100,80
191	551,83	25,74	12,87	9468,88	96,77
216	499,38	25,65	12,83	8539,44	89,55
48	534,34	26,89	13,44	9578,89	111,00
265	461,13	24,11	12,05	7411,44	107,07
282	580,24	27,26	13,63	10545,01	105,87
302	477,52	23,34	11,67	7429,38	112,65
148	453,48	23,28	11,64	7037,38	94,03
106	561,66	26,52	13,26	9930,97	141,04
25	406,49	24,12	12,06	6536,17	119,37
84	546,36	25,06	12,53	9126,47	89,78
215	580,24	25,85	12,93	10001,20	115,96
11	533,25	27,79	13,89	9879,03	118,33
soma	6713,71	330,58	165,29	114273,13	1402,23
média	516,44	25,43	12,71	8790,24	107,86

Tabela A.41.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,4μm, para velocidade angular de compressão (*press-on*) de 2000rpm - 2ª corrida.

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(µm ²)	(µm)	(µm)	(µm ³)	(µm)
303	137,68	12,08	6,04	1108,86	42,71
393	142,05	12,39	6,19	1173,12	45,71
49	123,48	12,77	6,39	1051,22	42,31
224	157,35	13,24	6,62	1388,65	45,89
147	152,98	13,56	6,78	1383,23	47,55
42	142,05	12,47	6,24	1181,09	40,75
54	146,43	13,06	6,53	1274,96	47,02
161	219,64	15,63	7,81	2288,24	55,93
477	198,88	15,95	7,98	2115,14	54,07
127	231,66	16,04	8,02	2477,44	59,68
475	171,56	13,91	6,96	1591,37	47,53
283	175,93	14,68	7,34	1721,88	50,23
253	190,13	15,21	7,61	1928,46	51,91
32	228,38	16,21	8,11	2468,42	54,09
181	181,39	15,31	7,65	1851,21	52,45
298	83,05	11,79	5,90	652,89	35,40
65	133,31	13,51	6,75	1200,37	40,96
564	214,17	16,01	8,00	2285,52	54,75
537	142,05	12,62	6,31	1195,60	47,88
80	142,05	12,79	6,39	1211,04	49,02
305	154,07	12,85	6,42	1319,63	44,27
175	112,55	11,32	5,66	849,59	40,21
464	148,61	13,25	6,63	1313,06	43,32
257	180,30	14,36	7,18	1725,91	52,41
67	178,11	14,98	7,49	1778,38	52,86
333	122,39	11,34	5,67	925,00	38,40
514	202,15	15,80	7,90	2129,35	56,58
46	236,03	16,36	8,18	2574,61	55,74
62	226,19	16,80	8,40	2533,44	62,27
449	147,52	13,38	6,69	1315,63	46,89
243	166,09	13,66	6,83	1512,17	46,97
350	148,61	13,72	6,86	1359,36	47,56
155	185,76	14,44	7,22	1788,66	47,54
114	126,76	13,18	6,59	1113,48	42,69
soma	5649,40	474,67	237,34	53786,95	1643,54
média	166,16	13,96	6,98	1581,97	48,34

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
22	191,23	17,37	8,68	2214,40	52,94
154	335,47	19,81	9,91	4431,50	70,52
83	352,95	19,93	9,96	4688,45	79,68
25	363,88	20,30	10,15	4924,55	77,10
59	385,73	21,21	10,61	5454,66	73,26
87	285,20	18,35	9,18	3489,54	64,50
146	316,89	20,05	10,03	4235,84	68,64
117	457,85	22,68	11,34	6923,55	96,26
16	410,87	21,37	10,68	5852,42	81,09
469	356,23	21,02	10,51	4991,28	74,17
181	454,57	22,76	11,38	6897,92	93,36
170	456,76	22,83	11,42	6952,93	109,26
207	342,02	19,81	9,90	4515,99	71,42
500	330,00	20,37	10,18	4480,38	81,78
340	254,61	17,59	8,80	2986,13	58,46
338	327,82	19,85	9,92	4337,44	72,94
307	347,49	20,06	10,03	4646,30	71,12
471	359,51	20,49	10,25	4911,86	84,34
56	433,81	22,08	11,04	6385,27	87,90
92	394,47	20,99	10,49	5519,26	85,88
99	436,00	22,44	11,22	6521,53	78,35
98	236,03	17,74	8,87	2791,95	64,34
82	340,93	20,78	10,39	4723,95	75,17
156	428,35	22,16	11,08	6328,60	77,61
221	276,46	17,70	8,85	3261,88	62,80
34	399,94	21,68	10,84	5780,16	77,08
294	264,44	18,21	9,11	3210,37	61,57
42	289,57	18,24	9,12	3522,16	69,51
488	369,34	20,89	10,44	5143,03	71,85
483	285,20	18,23	9,11	3465,44	64,27
186	449,11	22,97	11,49	6878,28	91,13
soma	10932,73	629,96	314,98	150467,05	2348,30
média	352,67	20,32	10,16	4853,78	75,75

(b) Faixa de diâmetro (17,1-23µm)

Objeto do	Ámaa	Diâmetro Mádia	Daio	Valuma	Donímotro
Analisador	Area (um ²)	(um)		(um^3)	(um)
384	561,66	25,85	12,92	9679,12	96,24
291	614,11	27,03	13,52	11066,55	95,75
503	657,82	27,75	13,87	12168,44	98,74
158	675,31	28,12	14,06	12660,49	95,08
186	638,15	27,48	13,74	11690,81	100,90
389	463,32	23,27	11,63	7186,77	88,40
191	487,36	23,98	11,99	7792,39	87,57
412	491,73	25,70	12,85	8425,10	97,65
242	598,81	26,48	13,24	10571,12	95,85
243	602,09	26,66	13,33	10699,48	102,30
137	656,73	27,91	13,96	12220,20	107,28
soma	6447,09	290,23	145,11	114160,45	1065,76
média	586,10	26,38	13,19	10378,22	96,89

(c) Faixa de diâmetro (23,1-29µm)

Tabela A.42.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,4μm, para velocidade angular de compressão (*press-on*) de 2000rpm - 3ª corrida.

(a) Faixa de diametro (11,1-17µm)						
Objeto do		Diâmetro				
Analisador	Área	Médio	Raio	Volume	Perímetro	
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)	
104	172,65	13,95	6,97	1605,36	53,95	
301	181,39	14,91	7,45	1802,79	46,97	
153	233,84	16,31	8,15	2542,18	62,96	
218	208,71	16,72	8,36	2326,70	63,77	
176	121,29	11,58	5,79	936,52	43,51	
279	125,66	12,05	6,02	1009,21	44,51	
82	160,63	12,66	6,33	1355,62	52,21	
281	246,96	16,86	8,43	2775,09	55,44	
50	113,64	11,14	5,57	844,24	42,67	
217	112,55	11,43	5,71	857,47	38,21	
215	202,15	14,81	7,41	1996,10	58,70	
233	208,71	15,63	7,82	2174,80	49,88	
53	238,21	16,82	8,41	2670,51	59,73	
188	120,20	11,30	5,65	905,38	40,69	
47	125,66	12,65	6,33	1059,87	42,20	
22,00	147,52	12,80	6,40	1258,92	40,71	
21	226,19	16,00	8,00	2412,52	56,43	

(a) Faixa de diâmetro (11,1-17μm)

média	165,82	13,82	6,91	1582,47	48,71
soma	7793,33	649,39	324,69	74376,32	2289,21
347	198,88	16,31	8,15	2162,30	60,44
219	136,59	15,08	7,54	1373,03	46,20
28	161,72	14,74	7,37	1589,05	51,76
155	181,39	14,48	7,24	1751,48	50,30
41	95,07	11,56	5,78	732,52	39,08
381	107,09	11,55	5,77	824,28	38,18
380	110,37	11,26	5,63	828,84	37,38
94	105,99	11,21	5,61	792,27	39,70
352	113,64	11,87	5,94	899,63	40,06
289	119,11	11,47	5,73	910,63	43,68
34	118,01	11,22	5,61	883,05	44,85
139	256,79	16,81	8,41	2877,88	65,64
66	218,55	16,58	8,29	2415,45	54,31
638	215,27	15,81	7,91	2269,56	59,68
47	143,15	13,07	6,54	1247,32	45,08
300	120,20	11,16	5,58	894,21	38,06
59	209,80	16,10	8,05	2252,30	56,27
230	211,99	15,83	7,91	2236,57	57,26
61	183,58	14,42	7,21	1765,08	48,83
211	174,84	14,06	7,03	1638,78	45,02
133	169,37	13,64	6,82	1539,68	48,72
413	151,89	13,11	6,56	1327,96	44,46
432	126,76	12,01	6,00	1014,49	41,49
25	105,99	11,13	5,56	786,48	35,36
88	193,41	15,41	7,71	1987,17	56,66
357	209,80	15,25	7,62	2132,71	51,28
315	183,58	14,16	7,08	1733,51	51,26
101	203,25	15,11	7,56	2047,52	52,08
233	158,45	14,01	7,01	1480,24	46,06
159	162,82	13,35	6,67	1449,03	47,50
augue Iueen	a : :: :=:: (u)				

Continuação Tabela A.42.: (a)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
257	273,18	17,28	8,64	3147,47	69,48
316	257,88	17,31	8,65	2975,55	61,08
311	266,63	17,87	8,93	3175,69	60,41
64	291,76	18,46	9,23	3589,94	97,10
155	364,97	20,15	10,08	4903,93	83,70
160	428,35	22,47	11,23	6415,73	77,03
23	337,65	19,73	9,87	4442,15	70,40
56	322,35	20,06	10,03	4311,17	78,12
105	236,03	17,90	8,95	2816,18	59,97

média	330,25	19,84	9,92	4431,81	74,20
soma	8916,65	535,76	267,88	119658,80	2003,48
218	403,22	22,62	11,31	6081,29	85,68
192	374,81	22,29	11,14	5568,93	78,18
12	395,57	21,29	10,65	5615,61	105,07
145	311,43	18,90	9,45	3924,44	68,11
252	406,49	22,00	11,00	5962,62	84,35
69	284,11	18,93	9,46	3585,21	69,47
136	348,58	19,96	9,98	4639,04	71,22
542	293,94	18,47	9,23	3619,28	73,81
66	386,83	21,56	10,78	5559,53	76,44
20	284,11	18,28	9,14	3461,45	63,27
13	370,43	20,89	10,45	5159,99	71,00
192	287,39	18,82	9,41	3604,80	66,60
93	404,31	21,83	10,91	5883,53	73,99
18	234,94	17,25	8,62	2701,01	58,09
50	312,52	19,56	9,78	4075,31	72,59
176	418,51	22,39	11,19	6246,12	77,32
65	337,65	20,30	10,15	4569,61	74,03
128	283,02	19,20	9,60	3623,20	76,96

Continuação Tabela A.42.: (b)

(c) Faixa de diâmetro (23,1-29µm)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm ²)	(μm)	(µm)	(μm^3)	(µm)
221	599,91	27,74	13,87	11093,62	122,98
50	511,40	25,11	12,56	8562,20	93,11
115	551,83	25,30	12,65	9308,24	89,38
72	585,70	25,80	12,90	10073,06	101,07
106	495,01	23,87	11,94	7877,43	88,01
21	699,35	28,85	14,43	13451,26	96,61
219	463,32	23,38	11,69	7220,77	97,42
508	620,67	28,16	14,08	11650,58	109,46
383	438,18	23,25	11,62	6791,74	85,28
80	522,32	25,00	12,50	8706,40	93,88
144	461,13	23,85	11,93	7332,84	107,60
soma	5948,80	280,31	140,16	102068,15	1084,80
média	540,80	25,48	12,74	9278,92	98,62
Tabela A.43.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,4μm, para velocidade angular de compressão (*press-on*) de 5000rpm - 1ª corrida.

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
69	238,21	16,51	8,25	2621,64	54,34
22	107,09	11,19	5,59	798,66	36,15
23	137,68	12,62	6,31	1158,11	45,79
123	150,80	13,23	6,61	1329,82	48,25
15	185,76	14,87	7,43	1841,26	49,77
18	122,39	11,93	5,96	973,18	44,47
149	160,63	13,10	6,55	1403,36	47,12
42	143,15	14,46	7,23	1379,84	46,87
189	134,41	12,30	6,15	1101,87	44,46
51	125,66	13,07	6,53	1094,69	48,86
262	160,63	13,12	6,56	1405,25	44,08
24	189,04	14,65	7,33	1846,71	62,54
122	195,60	14,74	7,37	1922,49	52,86
137	193,41	14,85	7,43	1914,93	51,98
242	101,62	11,50	5,75	779,45	40,33
174	120,20	11,80	5,90	945,29	42,18
72	86,33	11,94	5,97	687,12	35,59
255	114,74	11,22	5,61	858,49	35,18
242	108,18	11,33	5,66	817,00	37,68
68	178,11	14,11	7,06	1675,97	49,67
220	130,03	12,36	6,18	1071,54	43,55
238	155,17	13,47	6,74	1393,82	53,62
49	137,68	13,71	6,86	1258,76	43,68
120	189,04	14,87	7,44	1874,27	63,25
163	116,92	11,13	5,56	867,31	38,17
63	105,99	11,63	5,81	821,81	38,75
284	162,82	13,38	6,69	1452,64	46,59
125	173,74	14,00	7,00	1621,75	49,97
85	206,53	15,12	7,56	2081,31	57,41
36	214,17	15,51	7,75	2214,11	60,34
163	123,48	11,42	5,71	939,89	39,46
138	170,47	13,90	6,95	1579,26	49,63
23	128,94	13,34	6,67	1146,31	44,92
137	187,95	14,91	7,45	1867,64	53,25
90	114,74	11,72	5,86	896,52	38,02
108	133,31	13,73	6,86	1220,08	43,28
soma	5404,63	476,73	238,36	1717693,42	1682,06
média	150.13	13.24	6.62	1357.28	46.72

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(μm)	(μm^3)	(µm)
212	210,90	16,69	8,35	2347,00	62,33
87	288,48	18,55	9,28	3568,03	73,58
49	300,50	18,90	9,45	3785,76	78,77
171	266,63	18,08	9,04	3214,35	69,06
19	290,67	18,56	9,28	3597,02	72,21
18	308,15	19,16	9,58	3935,58	67,64
46	321,26	19,46	9,73	4167,39	72,55
273	323,45	19,59	9,80	4224,42	66,15
167	346,39	19,96	9,98	4609,58	74,76
5	437,09	22,66	11,33	6604,16	86,97
177	416,33	22,21	11,10	6163,27	80,74
242	314,71	19,54	9,77	4100,47	76,05
250	320,17	19,24	9,62	4105,97	68,35
194	252,42	17,62	8,81	2965,33	58,03
135	325,63	19,24	9,62	4177,73	90,42
37	455,67	22,99	11,49	6983,74	83,74
82	246,96	17,44	8,72	2871,84	67,52
83	232,75	17,87	8,93	2772,45	62,65
186	290,67	18,42	9,21	3569,40	63,53
soma	5948,80	366,19	183,10	77763,49	1375,05
média	313,09	19,27	9,64	4092,82	72,37

(b) Faixa de diâmetro (17,1-23µm)

(c) Faixa de diâmetro (23,1-29µm)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(µm ²)	(μm)	(µm)	(μm^3)	(µm)
133	643,62	27,53	13,76	11810,46	106,83
100	502,65	24,33	12,16	8151,45	83,02
203	567,13	25,29	12,65	9562,24	98,13
183	548,55	25,84	12,92	9448,19	94,04
43	468,78	23,94	11,97	7483,23	91,98
317	592,26	26,06	13,03	10290,45	104,40
265	536,53	24,66	12,33	8821,41	100,28
235	562,75	25,52	12,76	9573,00	96,73
118	428,35	23,34	11,67	6666,33	84,57
15	550,73	26,64	13,32	9782,11	99,86
232	511,40	24,87	12,44	8480,54	84,85
soma	5912,74	278,03	139,01	100069,41	1044,69
média	537,52	25,28	12,64	9097,22	94,97

Tabela A.44.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,4μm, para velocidade angular de compressão (*press-on*) de 5000rpm - 2ª corrida.

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(μm)	(μm^3)	(µm)
48	250,23	16,90	8,45	2820,08	61,98
521	145,33	13,96	6,98	1352,08	48,45
109	182,49	14,03	7,01	1706,24	47,21
944	206,53	16,35	8,17	2250,52	56,81
113	210,90	16,55	8,27	2326,72	60,80
350	110,37	12,39	6,19	911,58	38,83
345	100,53	12,40	6,20	831,33	38,08
439	151,89	13,76	6,88	1393,07	47,18
474	209,80	15,35	7,68	2147,24	57,37
68	138,78	12,52	6,26	1158,35	42,98
154	152,98	13,01	6,51	1327,20	46,83
342	196,69	16,64	8,32	2182,59	56,47
496	118,01	11,31	5,65	889,73	38,26
516	152,98	12,56	6,28	1280,66	43,66
433	136,59	13,18	6,59	1200,44	49,29
178	152,98	13,50	6,75	1376,71	46,52
183	123,48	14,07	7,03	1158,10	44,32
44	165,00	14,83	7,41	1631,11	50,67
40	99,44	11,30	5,65	749,29	37,16
87	104,90	11,42	5,71	798,61	39,34
475	105,99	12,18	6,09	861,00	38,28
293	228,38	16,30	8,15	2480,98	60,26
334	125,66	11,34	5,67	950,39	42,98
244	166,09	13,50	6,75	1494,57	45,43
74	157,35	13,50	6,75	1416,01	52,56
278	162,82	13,79	6,89	1496,33	47,22
95	189,04	15,45	7,72	1946,65	53,46
509	86,33	11,31	5,66	651,08	34,35
345	92,88	11,79	5,90	730,24	32,52
103	137,68	13,00	6,50	1193,54	44,15
88	151,89	13,04	6,52	1320,77	48,11
184	158,45	14,31	7,16	1512,02	49,30
159	174,84	15,27	7,64	1779,96	55,10
142	110,37	11,32	5,66	832,96	35,97
683	110,37	11,35	5,68	835,39	41,58
331	131,13	12,57	6,28	1098,60	43,23
490	135,50	13,25	6,63	1197,03	44,51

358 soma 6	177,02 5 891,83	14,95 617,04	7,47 308,52	1763,86 63325,36	46,69 2121,96
358	177,02	14,95	7,47	1763,86	46,69
540)	,.	-,		,
348	165.00	13.67	6.84	1504.17	44,91
294	115,83	11,80	5,90	910,99	37,84
681	201,06	14,99	7,49	2009,11	55,93
520	170,47	13,77	6,89	1565,00	48,20
639	147,52	12,57	6,28	1235,88	41,89
435	136,59	12,46	6,23	1134,25	40,63
569	127,85	11,95	5,98	1018,55	44,44
735	115,83	11,58	5,79	894,38	40,19

Continuação Tabela A.44.: (a)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
67	328,91	20,36	10,18	4464,67	73,71
32	379,18	21,39	10,70	5407,82	76,09
564	255,70	17,74	8,87	3023,81	61,75
767	364,97	20,52	10,26	4993,74	79,52
517	413,05	21,37	10,69	5884,85	92,76
564	255,70	17,74	8,87	3023,81	61,75
767	364,97	20,52	10,26	4993,74	79,52
517	413,05	21,37	10,69	5884,85	92,76
738	326,73	20,36	10,18	4434,94	74,49
357	361,69	20,83	10,41	5022,61	78,60
310	383,55	22,30	11,15	5701,91	74,02
463	277,55	18,10	9,05	3349,27	67,05
179	281,92	19,97	9,98	3753,03	68,91
75	338,75	20,88	10,44	4715,85	73,43
184	274,27	18,00	9,00	3292,16	60,23
581	361,69	20,14	10,07	4856,99	78,13
461	389,01	21,45	10,72	5562,44	77,53
645	397,75	21,56	10,78	5717,65	83,05
655	422,89	22,02	11,01	6207,85	78,55
332	291,76	18,39	9,19	3576,12	64,13
155	254,61	17,11	8,56	2904,64	61,26
440	310,33	18,58	9,29	3843,47	72,73
109	303,78	19,29	9,64	3905,58	69,23
82	430,53	22,56	11,28	6474,93	77,40
222	269,90	17,57	8,79	3162,02	60,93
355	314,71	18,72	9,36	3926,84	64,49
626	266,63	17,39	8,69	3090,46	68,04
281	272,09	17,78	8,89	3224,78	71,67
308	224,01	17,33	8,66	2587,72	57,62

média	329,97	19,70	9,85	4411,28	72,35
soma	12539,04	748,77	374,39	167628,58	2749,42
308	438,18	22,66	11,33	6619,65	79,58
109	363,88	21,06	10,53	5110,05	75,76
78	441,46	22,38	11,19	6586,23	87,32
410	316,89	19,05	9,53	4024,54	75,47
542	254,61	17,26	8,63	2930,41	59,62
141	255,70	17,13	8,56	2919,88	67,35
97	423,98	22,73	11,36	6423,89	82,94
612	233,84	17,76	8,88	2768,68	57,78
199	280,83	17,39	8,70	3256,69	64,27

Continuação Tabela A.44.: (b)

(c) Faixa de diâmetro (23,1-29µm)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(μm)	(µm)	(μm^3)	(µm)
159	574,77	26,10	13,05	10000,52	96,40
369	472,06	23,59	11,80	7424,47	85,84
685	496,10	24,04	12,02	7952,15	87,78
894	546,36	25,85	12,92	9414,01	94,78
940	574,77	26,50	13,25	10155,61	102,61
299	480,80	24,47	12,24	7844,56	94,23
794	537,62	25,05	12,52	8976,72	90,86
45	567,13	26,50	13,25	10019,62	119,14
174	591,17	25,99	13,00	10244,28	101,55
451	572,59	26,47	13,24	10105,20	112,06
241	595,54	28,64	14,32	11372,07	107,33
322	583,52	26,44	13,22	10286,40	111,07
751	507,03	24,34	12,17	8225,74	105,88
325	468,78	23,30	11,65	7282,26	93,16
31	484,08	24,04	12,02	7759,48	103,59
126	597,72	26,30	13,15	10481,05	104,08
298	458,95	24,09	12,05	7371,53	108,34
381	525,60	24,53	12,27	8596,82	97,41
710	613,02	27,36	13,68	11180,33	98,97
820	632,69	27,48	13,74	11591,07	105,06
635	708,09	28,62	14,31	13508,16	106,47
soma	11588,37	539,72	269,86	199792,04	2126,59
média	551,83	25,70	12,85	9513,91	101,27

Tabela A.45.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,4μm, para velocidade angular de compressão (*press-on*) de 5000rpm - 3ª corrida.

Objeto do	_	Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(μm)	(μm ³)	(µm)
220	116,92	12,06	6,03	939,91	41,41
228	134,41	13,23	6,62	1185,75	42,99
109	177,02	13,66	6,83	1611,78	53,24
336	155,17	13,24	6,62	1369,29	45,10
250	166,09	13,55	6,77	1499,96	48,96
311	162,82	13,71	6,86	1488,24	43,15
212	168,28	13,75	6,88	1543,11	48,55
263	220,73	16,58	8,29	2439,44	66,20
50	241,49	16,59	8,30	2671,62	56,69
163	119,11	11,67	5,83	926,61	39,32
11	169,37	13,97	6,98	1577,31	51,90
58	198,88	15,19	7,59	2013,78	53,02
7	155,17	16,67	8,34	1724,73	49,42
13	121,29	11,79	5,89	953,12	38,65
139	123,48	11,81	5,90	972,18	41,41
44	134,41	12,50	6,25	1120,44	43,05
147	166,09	14,55	7,28	1611,24	47,95
221	240,40	16,35	8,17	2620,14	60,49
329	132,22	11,73	5,86	1033,90	40,72
79	166,09	15,94	7,97	1765,15	52,25
278	209,80	15,98	7,99	2235,46	56,62
273	87,42	11,11	5,56	647,49	33,85
266	108,18	11,35	5,68	818,90	35,32
88	99,44	11,66	5,83	772,86	38,58
115	127,85	12,11	6,05	1031,97	41,07
312	135,50	13,23	6,61	1194,65	45,05
294	196,69	15,24	7,62	1998,68	49,79
287	121,29	11,22	5,61	907,19	39,15
409	124,57	11,58	5,79	961,90	39,36
348	119,11	11,86	5,93	941,87	41,44
144	130,03	12,47	6,23	1080,91	40,81
51	127,85	12,48	6,24	1063,65	43,63
374	199,97	15,28	7,64	2037,09	54,75
397	236,03	16,25	8,12	2556,29	54,21
136	98,35	12,11	6,06	794,29	36,11
129	170,47	13,58	6,79	1543,46	50,44
252	195,60	14,95	7,48	1949,98	52,30

média	154,41	13,50	6,75	1428,56	46,50
soma	8029,36	702,20	351,10	74284,86	2418,15
138	184,67	14,34	7,17	1765,73	51,03
308	179,21	14,07	7,04	1681,31	48,45
323	139,87	13,65	6,83	1272,88	44,48
159	126,76	12,35	6,18	1043,73	43,05
141	119,11	11,28	5,64	895,54	38,07
146	112,55	11,11	5,56	833,76	37,07
181	190,13	15,43	7,72	1956,29	52,11
65	132,22	13,46	6,73	1186,12	43,92
14	144,24	13,04	6,52	1254,01	50,36
106	138,78	14,19	7,09	1312,79	45,54
170	143,15	12,57	6,29	1199,95	50,08
171	160,63	14,41	7,21	1543,31	53,33
71	181,39	13,99	7,00	1692,33	49,77
170	107,09	11,63	5,81	830,26	41,52
236	211,99	15,66	7,83	2212,50	52,42

Continuação Tabela A.45.: (a)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
96	384,64	21,60	10,80	5537,64	81,53
42	385,73	22,00	11,00	5658,16	84,14
169	219,64	18,75	9,38	2745,60	56,58
116	324,54	19,87	9,94	4299,87	82,98
38	240,40	17,13	8,56	2744,85	58,10
231	246,96	17,64	8,82	2904,79	61,60
304	258,98	17,52	8,76	3025,59	68,93
247	249,14	17,87	8,94	2968,64	63,69
265	296,13	19,94	9,97	3936,15	72,17
206	407,59	22,25	11,13	6046,69	83,18
147	299,41	19,76	9,88	3944,37	67,35
140	216,36	17,65	8,83	2546,02	65,79
179	233,84	17,90	8,95	2789,84	60,43
268	449,11	22,98	11,49	6879,04	87,22
240	265,53	17,53	8,76	3102,84	61,13
465	296,13	18,86	9,43	3723,62	68,23
150	327,82	19,56	9,78	4274,66	77,04
251	452,39	22,69	11,34	6842,87	95,70
125	249,14	18,53	9,27	3078,06	70,42
146	370,43	21,05	10,52	5197,69	78,46
233	263,35	17,27	8,64	3032,43	66,98
325	303,78	18,54	9,27	3754,68	70,36
348	386,83	21,33	10,66	5500,55	73,14

Continuação Tabela A.45.: (b)

média	313,35	19,53	9,77	4164,31	72,58
soma	7833,76	488,26	244,13	104107,75	1814,40
163	289,57	18,22	9,11	3517,58	83,04
366	416,33	21,82	10,91	6055,55	76,20

(c) Faixa de diâmetro (23,1-29µm)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(μm)	(μm^3)	(µm)
178	582,42	25,75	12,88	9999,33	99,10
214	575,87	26,00	13,00	9979,96	100,79
246	545,27	25,33	12,66	9207,61	96,50
32	570,40	25,87	12,93	9837,42	95,42
83	604,28	26,84	13,42	10813,63	102,27
248	537,62	24,76	12,38	8875,71	94,39
291	562,75	26,15	13,07	9808,96	111,45
168	536,53	25,37	12,69	9074,87	88,62
41	548,55	25,95	12,97	9488,52	102,94
326	525,60	25,68	12,84	8996,62	100,97
404	491,73	23,95	11,97	7849,84	94,61
127	586,79	28,20	14,10	11030,14	114,92
239	402,12	23,16	11,58	6207,67	77,94
8	534,34	24,88	12,44	8864,45	95,80
139	623,95	26,82	13,41	11154,77	96,11
283	476,43	23,54	11,77	7475,94	83,03
362	439,28	23,87	11,93	6990,18	91,24
151	580,24	25,72	12,86	9948,17	108,99
240	505,93	25,30	12,65	8534,07	96,13
61	528,88	25,16	12,58	8869,74	91,30
295	532,16	25,26	12,63	8959,96	92,14
soma	11291,15	533,53	266,76	191967,55	2034,65
média	537,67	25,41	12,70	9141,31	96,89

Tabela A.46.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,8μm, para velocidade angular de compressão (*press-on*) de 1000rpm - 1ª corrida.

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
94	183,58	14,29	7,15	1749,30	48,28
67	135,50	12,02	6,01	1085,55	44,88
106	135,50	13,33	6,67	1204,34	44,85
11	195,60	15,11	7,55	1970,25	55,97
73	228,38	16,64	8,32	2532,79	59,05
183	112,55	11,28	5,64	846,51	40,88
42	105,99	11,33	5,67	800,83	36,38
180	112,55	12,06	6,03	904,65	41,68
43	112,55	12,23	6,12	917,79	42,26
276	157,35	13,95	6,98	1463,43	55,65
98	177,02	14,54	7,27	1716,47	49,89
284	196,69	15,67	7,83	2054,32	59,12
150	121,29	11,35	5,68	918,03	36,45
71	122,39	11,71	5,86	955,77	45,19
64	147,52	13,31	6,66	1309,05	52,45
158	112,55	11,18	5,59	838,61	37,11
227	78,68	11,24	5,62	589,47	31,03
131	121,29	12,89	6,45	1042,42	41,43
200	139,87	13,16	6,58	1227,35	43,90
82	172,65	13,59	6,79	1563,99	47,90
84	184,67	14,54	7,27	1790,61	54,82
206	210,90	16,62	8,31	2337,04	56,80
22	120,20	11,16	5,58	893,90	41,52
165	123,48	12,99	6,49	1069,17	44,25
184	123,48	11,69	5,84	962,20	41,45
224	132,22	12,36	6,18	1089,08	41,12
171	125,66	12,43	6,21	1041,30	40,50
66	170,47	13,83	6,92	1571,98	46,38
20	190,13	14,57	7,28	1846,27	50,02
56	205,43	15,80	7,90	2163,40	55,31
149	109,27	11,19	5,59	815,11	40,34
125	130,03	11,44	5,72	992,09	41,91
175	116,92	11,92	5,96	928,96	43,68
160	144,24	13,20	6,60	1269,56	45,54
197	149,70	13,70	6,85	1367,53	46,99
234	90,70	11,18	5,59	675,72	32,51
170	122,39	11,31	5,65	922,67	38,36
60	151,89	13,31	6,66	1348,18	46,77

média	147,19	13,14	6,57	1329,23	45,61
soma	7800,98	696,39	348,20	70449,42	2417,49
204	184,67	16,14	8,07	1986,53	54,82
263	208,71	15,64	7,82	2176,78	54,83
256	150,80	13,01	6,51	1308,31	44,51
245	130,03	11,99	5,99	1039,35	39,82
317	121,29	11,72	5,86	947,43	39,13
149	111,46	11,15	5,58	828,82	40,75
119	244,77	16,56	8,28	2702,69	59,38
282	122,39	12,73	6,37	1038,95	40,37
219	115,83	12,31	6,16	950,66	40,22
100	124,57	11,88	5,94	986,53	45,47
126	186,86	15,20	7,60	1893,83	49,14
146	146,43	12,86	6,43	1255,72	43,88
100	137,68	12,79	6,39	1173,82	43,06
161	119,11	12,16	6,08	965,54	42,26
184	225,10	16,12	8,06	2418,80	57,23

Continuação Tabela A.46.: (a)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
102	338,75	19,90	9,95	4493,10	77,55
201	394,47	22,79	11,40	5994,32	80,86
74	214,17	17,39	8,70	2483,31	58,68
189	266,63	18,34	9,17	3260,36	78,38
151	311,43	19,11	9,56	3968,12	79,14
207	300,50	20,08	10,04	4022,17	79,45
158	263,35	17,50	8,75	3071,67	70,78
233	292,85	18,34	9,17	3580,34	77,46
230	320,17	20,20	10,10	4311,27	72,11
167	244,77	17,22	8,61	2810,67	59,24
43	279,74	17,95	8,97	3347,38	63,09
66	219,64	18,32	9,16	2682,72	62,29
91	271,00	18,61	9,30	3361,67	62,03
47	287,39	19,99	10,00	3830,28	68,02
184	379,18	20,75	10,37	5244,68	77,03
159	416,33	22,65	11,32	6285,53	87,15
242	231,66	17,65	8,83	2726,33	63,48
295	269,90	18,30	9,15	3293,59	61,74
5	320,17	19,33	9,67	4126,82	66,23
33	312,52	20,57	10,28	4285,48	67,70
68	426,16	22,85	11,42	6491,79	81,11
277	258,98	17,74	8,87	3062,84	70,92
101	268.81	18.20	9.10	3261.14	73.02

	11/3/,/4	155,55	507,07	100720,07	2704,15
soma	11757 74	735 35	367 67	153728 89	2784 15
121	322,35	19,58	9,79	4208,42	82,31
70	304,87	18,84	9,42	3829,51	66,59
90	314,71	18,77	9,39	3938,82	86,61
296	425,07	22,02	11,01	6239,76	80,59
74	406,49	21,47	10,74	5818,78	110,92
175	374,81	21,43	10,72	5355,68	94,73
91	331,10	19,88	9,94	4388,04	73,80
31	307,06	19,32	9,66	3954,31	67,88
28	275,37	17,63	8,81	3235,79	68,27
198	260,07	17,88	8,94	3099,30	64,40
71	286,29	17,62	8,81	3362,73	82,09
23	347,49	20,26	10,13	4693,91	71,23
88	325,63	19,21	9,61	4170,66	67,04
178	261,16	17,45	8,73	3038,59	58,61
98	326,73	20,20	10,10	4399,00	71,62

Continuação Tabela A.46.: (b)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(μm)	(µm)	(μm^3)	(µm)
182	675,31	28,94	14,47	13029,50	140,68
159	523,42	28,97	14,48	10107,19	134,12
59	461,13	23,63	11,81	7264,22	82,79
3	488,45	24,07	12,04	7838,09	86,40
119	462,22	23,56	11,78	7260,37	101,60
174	504,84	27,93	13,96	9400,05	115,90
104	633,78	27,75	13,87	11724,15	105,32
145	511,40	24,34	12,17	8296,67	108,33
23	476,43	27,81	13,90	8832,29	117,16
140	429,44	23,62	11,81	6762,43	106,68
222	511,40	25,59	12,79	8723,54	91,82
330	432,72	23,16	11,58	6680,71	90,42
392	465,50	23,63	11,82	7334,31	89,62
soma	6576,03	332,99	166,49	113253,53	1370,84
média	505,85	25,61	12,81	8711,81	105,45

Tabela A.47.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,8μm, para velocidade angular de compressão (*press-on*) de 1000rpm - 2ª corrida.

Objeto do	_	Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(μm)	(µm)	(μm^3)	(µm)
598	175,93	13,61	6,81	1596,77	50,13
662	155,17	13,77	6,88	1424,07	46,26
285	126,76	11,46	5,73	968,03	43,00
195	118,01	11,18	5,59	879,73	38,99
319	124,57	12,33	6,17	1024,05	42,37
140	203,25	16,00	8,00	2167,50	57,55
83	230,57	16,48	8,24	2532,93	55,17
133	208,71	16,15	8,08	2247,69	56,66
160	217,45	16,23	8,12	2352,99	60,96
81	125,66	11,88	5,94	995,58	42,22
2	126,76	14,11	7,05	1192,10	45,67
83	194,51	15,14	7,57	1962,73	50,34
100	217,45	16,21	8,11	2350,18	63,08
37	114,74	12,28	6,14	939,21	40,22
176	193,41	15,36	7,68	1980,90	63,68
242	134,41	12,59	6,29	1127,90	41,01
232	171,56	14,29	7,14	1634,36	51,85
88	177,02	14,71	7,36	1736,50	47,18
54	98,35	11,61	5,81	761,51	36,33
3	139,87	13,64	6,82	1271,47	44,38
47	170,47	14,15	7,07	1607,93	50,89
69	154,07	13,43	6,71	1379,04	51,17
15	187,95	14,81	7,40	1855,20	65,13
48	196,69	15,01	7,50	1967,58	57,53
33	189,04	14,71	7,36	1854,02	57,17
4	211,99	15,20	7,60	2147,76	55,16
33	189,04	14,71	7,36	1854,02	57,17
4	211,99	15,20	7,60	2147,76	55,16
72	169,37	14,68	7,34	1657,69	49,62
52	149,70	14,86	7,43	1482,94	49,07
soma	5084,46	425,77	212,89	49100,12	1525,10
média	169,48	14,19	7,10	1636,67	50,84

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
20	260,07	17,87	8,94	3098,36	70,72
22	364,97	21,17	10,58	5149,89	86,33
108	312,52	18,19	9,09	3789,28	106,83
66	255,70	18,20	9,10	3102,61	78,01
413	246,96	18,93	9,46	3116,11	72,34
45	330,00	19,44	9,72	4277,65	76,12
221	288,48	17,91	8,95	3443,84	63,61
197	342,02	19,75	9,87	4503,00	81,63
157	333,28	20,61	10,30	4578,67	75,36
164	351,86	20,71	10,35	4856,95	79,04
12	258,98	18,05	9,02	3115,73	65,12
12	358,41	20,84	10,42	4979,30	72,65
54	299,41	18,59	9,30	3711,13	69,39
209	290,67	18,71	9,36	3626,39	79,24
109	374,81	22,23	11,12	5555,71	83,88
214	251,33	17,54	8,77	2938,73	63,96
75	291,76	19,32	9,66	3757,36	64,20
4	320,17	19,88	9,94	4243,33	82,76
100	243,68	17,17	8,58	2788,71	62,11
54	379,18	22,05	11,03	5574,30	93,27
44	266,63	17,73	8,87	3151,74	61,23
soma	6420,86	404,88	202,44	83358,82	1587,82
média	305,76	19,28	9,64	3969,47	75,61

(b) Faixa de diâmetro (17,1-23µm)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
19	657,82	27,97	13,99	12266,77	101,43
135	415,24	23,78	11,89	6583,73	105,62
202	485,17	24,39	12,19	7887,52	94,91
45	478,61	23,54	11,77	7512,02	95,14
120	492,82	24,40	12,20	8016,34	97,91
373	525,60	25,19	12,60	8827,47	86,61
65	482,99	24,14	12,07	7773,52	108,59
105	549,64	25,00	12,50	9162,33	96,32
155	433,81	23,57	11,79	6816,75	90,10
184	561,66	25,65	12,83	9605,03	98,10
58	509,21	24,34	12,17	8262,60	84,72
77	550,73	26,13	13,07	9594,73	107,07
77	489,54	23,76	11,88	7753,64	87,26
62	641,43	26,92	13,46	11513,36	103,91
14	690,60	28,94	14,47	13324,17	125,10

1 44	48,02 24,05	12,33	/303,05	91,01
	21,05	12,55	1005,00	,01
1 44	48,02 24,65	12,33	/363,65	91,01

Continuação Tabela A.47.: (c)

Tabela A.48.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,8μm, para velocidade angular de compressão (*press-on*) de 1000rpm - 3ª corrida.

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(μm)	(μm^3)	(µm)
1	149,70	13,36	6,68	1332,97	44,01
22	180,30	14,41	7,20	1731,62	58,98
149	118,01	11,50	5,75	905,15	38,95
277	144,24	12,76	6,38	1226,96	42,21
63	165,00	13,36	6,68	1469,81	47,25
95	177,02	14,26	7,13	1682,68	49,80
295	169,37	14,85	7,43	1676,81	54,84
358	134,41	12,52	6,26	1121,43	41,24
209	186,86	14,96	7,48	1863,45	49,49
61	112,55	11,49	5,74	861,88	40,08
120	179,21	14,38	7,19	1718,50	49,72
186	124,57	13,49	6,75	1120,43	40,66
37	146,43	14,96	7,48	1460,00	51,93
126	245,86	16,64	8,32	2727,76	58,56
112	104,90	11,21	5,61	783,97	36,59
72	134,41	11,57	5,78	1036,46	42,46
164	107,09	11,63	5,82	830,53	46,13
121	224,01	16,21	8,10	2420,41	53,67
328	221,82	16,70	8,35	2469,87	55,01
187	132,22	11,97	5,98	1054,88	42,11
424	171,56	14,72	7,36	1683,62	50,60
425	195,60	15,61	7,80	2035,27	54,29
35	135,50	12,48	6,24	1127,01	44,77
53	192,32	15,01	7,50	1924,47	51,54
31	183,58	15,44	7,72	1889,42	55,67
100	229,47	15,82	7,91	2420,85	58,16
43	248,05	16,34	8,17	2701,61	70,97
244	159,54	13,94	6.97	1482.76	45,60

159	178,11	15,08	7,54	1790,50	49,12
87	216,36	15,86	7,93	2287,86	59,65
92	100,53	11,36	5,68	761,04	38,14
36	242,59	16,94	8,47	2739,36	59,58
158	101,62	12,13	6,07	822,10	36,92
soma	5512,81	462,94	231,47	53161,43	1618,70
média	167,05	14,03	7,01	1610,95	49,05

Continuação Tabela A.48.: (a)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do					
Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(µm ²)	(µm)	(µm)	(µm³)	(µm)
349	263,35	17,96	8,98	3152,42	61,79
390	305,96	19,28	9,64	3931,80	68,64
316	398,85	22,97	11,48	6107,16	88,12
95	396,66	21,83	10,91	5772,03	84,58
102	328,91	20,26	10,13	4442,36	79,59
217	304,87	20,84	10,42	4235,23	76,90
48	416,33	22,04	11,02	6117,70	76,46
59	393,38	22,68	11,34	5947,23	78,20
50	236,03	18,22	9,11	2866,59	61,16
298	316,89	19,27	9,64	4071,93	67,13
386	319,08	20,27	10,13	4310,82	75,91
250	244,77	17,30	8,65	2822,84	59,47
177	237,12	17,76	8,88	2806,77	62,43
118	295,04	19,58	9,79	3851,52	88,96
5	352,95	20,29	10,15	4775,27	77,19
109	373,71	21,10	10,55	5256,54	68,82
68	298,31	19,71	9,85	3919,51	69,92
17	319,08	19,27	9,63	4098,40	61,27
405	337,65	20,36	10,18	4583,21	68,01
413	363,88	20,64	10,32	5007,95	79,73
soma	6502,82	401,61	200,80	88077,28	1454,26
média	325,14	20,08	10,04	4403,86	72,71

Objeto do Analisador	Áraa	Diâmetro Módio	Paio	Volumo	Porímetro
Anansauu	(μm^2)	μm)	(μm)	(μm^3)	μm)
111	418,51	24,37	12,18	6798,38	93,87
206	585,70	26,86	13,43	10489,08	104,24
131	499,38	24,61	12,31	8193,44	88,63
30	572,59	27,01	13,50	10310,11	133,41
2	621,76	27,47	13,73	11385,38	100,10
252	486,26	25,04	12,52	8116,41	101,14
308	604,28	26,61	13,31	10721,82	100,38
soma	3788,48	181,97	90,98	66014,62	721,79
média	541,21	26,00	13,00	9430,66	103,11

Tabela A.49.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,8μm, para velocidade angular de compressão (*press-on*) de 2000rpm - 1ª corrida.

Obieto do		Diâmetro		, , , , , , , , , , , , , , , , , , , 	
Analisador	Área	Médio	Raio	Volume	Perímetro
	(um^2)	(um)	(um)	(μm^3)	(um)
57	201.06	15.09	7,54	2022,05	56,97
14	220,73	15,98	7,99	2351,60	53,54
129	228,38	16,26	8,13	2476,31	61,76
151	110,37	11,27	5,63	828,87	45,74
116	140,96	12,81	6,40	1203,69	43,92
69	139,87	13,26	6,63	1236,89	49,02
15	173,74	15,66	7,83	1814,26	54,18
273	125,66	11,26	5,63	943,23	39,49
415	144,24	12,67	6,34	1218,79	44,18
120	159,54	13,73	6,87	1460,59	49,43
82	197,78	15,08	7,54	1987,73	51,37
313	123,48	11,75	5,88	967,26	45,28
413	133,31	12,30	6,15	1092,74	43,44
203	125,66	12,01	6,00	1005,88	48,19
365	174,84	13,95	6,97	1625,56	45,64
51	178,11	14,15	7,07	1679,97	50,07
91	115,83	11,15	5,58	861,38	39,69
111	126,76	12,89	6,45	1089,64	44,35
30	170,47	14,16	7,08	1609,53	49,89
235	121,29	11,78	5,89	952,28	40,22
15	146,43	12,50	6,25	1220,01	41,57
293	168,28	14,46	7,23	1622,31	46,32
29	199,97	15,94	7,97	2124,87	52,47
176	226,19	16,69	8,34	2516,69	57,66
48	248,05	16,91	8,45	2795,93	63,55
172	179,21	14,62	7,31	1747,07	46,94
98	121,29	11,62	5,81	939,59	39,63
261	122,39	12,01	6,00	979,82	40,12
266	150,80	12,75	6,37	1281,49	45,58
188	158,45	12,89	6,45	1361,72	47,45
246	150,80	13,49	6,74	1355,97	44,83
191	136,59	14,26	7,13	1298,23	44,63
33	185,76	14,37	7,18	1779,24	53,55
341	96,16	11,47	5,74	735,43	38,50
127	121,29	12,60	6,30	1018,68	44,61
183	194,51	14,89	7,45	1930,87	54,19
165	166,09	14,90	7,45	1649,47	50,80
soma	5884,33	503,56	251,78	54785,64	1768,78
média	159.04	13.61	6.80	1480.69	47.80

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(μm)	(μm^3)	(µm)
62	372,62	21,21	10,60	5267,70	71,94
154	221,82	19,29	9,65	2853,29	59,58
338	266,63	17,43	8,71	3098,13	61,54
76	297,22	20,19	10,10	4001,00	71,44
157	349,67	20,94	10,47	4880,72	74,30
106	268,81	18,52	9,26	3319,14	66,07
233	296,13	18,85	9,42	3720,94	78,85
65	257,88	17,67	8,83	3037,25	71,97
240	303,78	18,67	9,34	3781,11	63,13
30	362,79	21,00	10,50	5078,22	75,81
58	345,30	19,58	9,79	4506,65	81,10
78	446,93	22,74	11,37	6773,98	99,83
130	264,44	17,95	8,97	3164,44	58,52
75	302,69	19,16	9,58	3867,08	66,45
32	323,45	19,70	9,85	4248,70	74,02
260	314,71	19,73	9,87	4140,33	86,59
64	319,08	20,84	10,42	4433,04	81,78
335	255,70	17,21	8,60	2933,65	62,45
194	233,84	18,95	9,47	2953,61	57,82
509	405,40	22,04	11,02	5956,12	91,09
soma	6208,87	391,66	195,83	82015,09	1454,28
média	310,44	19,58	9,79	4100,75	72,71

(b) Faixa de diâmetro (17,1-23µm)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
339	431,63	24,59	12,29	7074,44	102,36
194	431,63	23,35	11,67	6718,15	89,11
34	537,62	25,45	12,72	9120,24	91,52
22	590,07	26,69	13,35	10501,25	106,83
109	543,09	26,81	13,41	9707,36	94,22
40	444,74	23,21	11,61	6882,48	83,37
233	515,77	24,51	12,26	8428,17	91,58
113	407,59	25,61	12,81	6959,35	93,38
96	667,66	27,73	13,86	12342,68	101,37
173	548,55	24,87	12,43	9094,36	104,36
472	572,59	26,06	13,03	9946,02	96,45
soma	5690,92	278,87	139,44	96774,51	1054,56
média	517,36	25,35	12,68	8797,68	95,87

Tabela A.50.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,8μm, para velocidade angular de compressão (*press-on*) de 2000rpm - 2ª corrida.

Objeto do		Diâmetro)	
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
90	147,52	12,48	6,24	1227,51	42,06
98	168,28	14,40	7,20	1615,48	46,89
284	161,72	14,80	7,40	1595,39	47,27
267	115,83	11,39	5,69	879,22	40,49
79	128,94	13,06	6,53	1122,60	43,20
213	190,13	14,59	7,30	1849,58	53,03
263	196,69	14,70	7,35	1927,11	52,50
41	203,25	15,09	7,55	2044,71	54,38
169	210,90	16,17	8,09	2273,63	60,70
139	193,41	16,42	8,21	2116,85	52,23
332	101,62	11,15	5,58	755,51	35,15
77	142,05	12,33	6,16	1167,56	47,30
301	186,86	15,42	7,71	1920,76	56,59
275	120,20	11,24	5,62	900,94	42,34
195	110,37	11,72	5,86	862,51	38,53
351	120,20	12,42	6,21	995,33	42,64
362	227,29	16,80	8,40	2545,59	58,32
420	122,39	11,69	5,84	953,52	38,54
139	221,82	15,88	7,94	2348,99	64,24
265	198,88	16,26	8,13	2155,64	52,67
377	226,19	16,36	8,18	2467,45	59,56
227	123,48	12,35	6,17	1016,28	38,80
206	168,28	13,62	6,81	1528,15	49,20
380	193,41	14,74	7,37	1900,98	55,58
120	203,25	14,91	7,46	2020,48	55,37
170	203,25	15,11	7,56	2047,74	51,05
141	192,32	15,25	7,62	1954,78	58,01
131	147,52	13,22	6,61	1300,41	43,83
143	199,97	15,51	7,75	2067,04	57,26
254	227,29	16,21	8,11	2456,92	55,49
soma	5153,30	425,29	212,65	50018,68	1493,21
média	171,78	14,18	7,09	1667,29	49,77

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
217	291,76	20,07	10,03	3903,67	77,94
304	380,27	20,71	10,36	5250,91	82,50
233	402,12	21,66	10,83	5807,86	77,07
258	434,91	21,27	10,64	6168,27	101,64
268	255,70	17,68	8,84	3013,61	62,72
259	277,55	17,75	8,88	3285,01	60,20
196	307,06	19,31	9,65	3952,66	68,95
28	325,63	19,86	9,93	4310,39	68,60
189	369,34	20,84	10,42	5132,05	71,67
241	267,72	17,30	8,65	3088,56	69,61
412	308,15	19,60	9,80	4026,11	67,42
201	380,27	20,84	10,42	5283,08	81,79
207	422,89	22,42	11,21	6321,13	86,54
360	317,98	19,68	9,84	4172,96	65,47
72	392,29	21,52	10,76	5628,92	80,09
56	274,27	17,59	8,80	3216,69	60,87
224	314,71	19,10	9,55	4006,51	75,60
272	359,51	20,60	10,30	4936,30	71,60
142	321,26	19,54	9,77	4185,18	74,95
87	347,49	20,05	10,03	4645,10	66,16
21	445,83	22,62	11,31	6722,51	86,23
123	241,49	17,76	8,88	2859,42	60,31
88	333,28	20,54	10,27	4563,44	77,58
197	261,16	17,14	8,57	2984,28	59,47
297	359,51	20,44	10,22	4898,30	69,35
71	440,37	22,76	11,38	6682,62	90,79
20	260,07	18,21	9,10	3156,63	63,89
158	301,59	19,46	9,73	3911,70	72,85
14	387,92	21,38	10,69	5530,30	74,92
soma	9782,09	577,71	288,86	131644,16	2126,79
média	337,31	19,92	9,96	4539,45	73,34

(b) Faixa de diâmetro (17,1-23µm)

(c)	Faixa	de	diâmetro	(23,1-29µn	I)
-----	-------	----	----------	------------	----

Objeto do Analisador	Área (μm²)	Diâmetro Médio (µm)	Raio (µm)	Volume (µm ³)	Perímetro (µm)
39	628,32	26,97	13,49	11298,66	100,57
236	614,11	28,07	14,03	11491,15	114,45
190	527,79	24,53	12,26	8630,72	97,09
225	661,10	27,88	13,94	12288,38	104,51
137	655,64	28,08	14,04	12275,29	98,89
360	462,22	23,17	11,59	7140,52	79,44
86	617,39	26,66	13,33	10973,28	100,29

148	520,14	24,94	12,47	8646,65	97,49
116	514,67	26,43	13,22	9069,29	105,56
151	561,66	26,48	13,24	9916,69	88,50
218	425,07	24,43	12,21	6922,07	89,71
77	528,88	24,94	12,47	8793,10	91,54
284	649,08	27,93	13,97	12087,15	97,79
40	486,26	23,52	11,76	7624,74	93,21
149	586,79	26,00	13,00	10172,41	98,36
241	566,03	25,56	12,78	9645,16	99,01
186	610,83	27,62	13,81	11249,52	107,22
259	526,69	24,99	12,49	8774,63	98,93
soma	10142,69	468,22	234,11	176999,42	1762,56
média	563,48	26,01	13,01	9833,30	97,92

Continuação da Tabela A.50.: (c)

Tabela A.51.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,8μm, para velocidade angular de compressão (*press-on*) de 2000rpm - 3ª corrida.

Objeto do		Diâmetro					
Analisador	Área	Médio	Raio	Volume	Perímetro		
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)		
46	115,83	12,36	6,18	954,41	39,57		
225	146,43	12,20	6,10	1191,32	45,00		
17	145,33	13,64	6,82	1321,80	44,98		
174	175,93	15,06	7,53	1766,85	54,67		
122	143,15	12,42	6,21	1185,43	42,32		
27	146,43	12,64	6,32	1233,45	40,90		
280	147,52	12,81	6,40	1259,60	46,48		
22	173,74	15,65	7,82	1812,71	52,37		
152	232,75	16,71	8,35	2592,10	62,59		
51	134,41	11,89	5,95	1065,73	40,10		
134	138,78	12,19	6,09	1127,52	45,16		
155	198,88	14,82	7,41	1964,53	51,28		
186	202,15	16,13	8,06	2173,63	51,70		
20	248,05	16,39	8,19	2709,95	69,95		
245	105,99	11,46	5,73	809,62	38,13		
291	127,85	11,50	5,75	979,97	42,60		
119	163,91	13,51	6,76	1476,76	44,12		
74	233,84	16,60	8,30	2588,23	64,31		
30	260,07	16,99	8,49	2944,87	59,61		
171	104,90	11,43	5,71	799,20	40,88		
19	118.01	11.66	5.83	917.33	38.29		

média	161,23	13,70	6,85	1517,54	47,39
soma	6449,27	547,87	273,93	60701,60	1895,50
145	140,96	13,13	6,56	1233,77	45,48
209	144,24	12,81	6,41	1232,15	41,60
262	146,43	12,77	6,38	1246,18	45,30
150	204,34	16,07	8,03	2188,84	55,34
143	225,10	16,06	8,03	2410,48	56,35
279	181,39	14,80	7,40	1789,51	47,87
212	194,51	14,51	7,25	1881,50	52,08
265	179,21	14,15	7,08	1690,89	47,19
16	165,00	13,74	6,87	1511,21	47,75
39	131,13	12,49	6,25	1092,17	42,49
247	115,83	11,19	5,60	864,44	36,92
87	163,91	14,81	7,40	1617,98	49,85
36	140,96	13,54	6,77	1272,73	46,80
139	97,25	12,04	6,02	780,86	39,28
236	98,35	11,84	5,92	776,21	37,81
70	109,27	11,75	5,88	856,09	38,50
168	195,60	14,75	7,38	1923,61	50,44
75	198,88	15,18	7,59	2011,98	50,32
36	152,98	14,18	7,09	1445,98	49,13

Continuação Tabela A.51.: (a)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do Analisador	Árag	Diâmetro Médio	Rajo	Volume	Porímetro
Anansauor		Wiculo	Kalu		I el inteti o
	(µm⁻)	(µm)	(µm)	(µm ^e)	(µm)
192	292,85	19,22	9,61	3752,86	67,57
79	333,28	20,35	10,18	4522,26	71,30
82	358,41	21,56	10,78	5151,69	80,84
86	444,74	22,71	11,36	6733,83	99,24
98	292,85	18,08	9,04	3529,57	84,99
215	252,42	18,23	9,12	3068,17	57,81
212	403,22	21,43	10,71	5759,42	75,51
191	246,96	18,69	9,34	3077,04	60,88
99	280,83	18,70	9,35	3500,33	77,14
152	288,48	18,47	9,24	3552,89	70,25
98	342,02	19,75	9,88	4503,65	69,57
162	404,31	21,78	10,89	5871,30	76,06
158	426,16	22,56	11,28	6409,87	86,09
172	370,43	20,87	10,43	5153,71	83,40
95	407,59	21,47	10,73	5833,61	77,53
169	352,95	20,71	10,35	4873,07	73,35
206	292,85	18,88	9,44	3685,07	61,42
143	321,26	19,17	9,58	4104,89	67,24
233	319,08	19,17	9,59	4078,21	73,81

153	389,01	20,97	10,48	5437,57	78,65
179	302,69	19,33	9,66	3899,81	69,39
99	337,65	22,03	11,02	4959,80	88,14
123	392,29	22,21	11,10	5808,04	73,62
291	332,19	20,39	10,19	4515,31	78,23
soma	8184,52	486,72	243,36	111781,96	1802,02
média	341,02	20,28	10,14	4657,58	75,08

Continuação Tabela A.51.: (b)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(μm)	(µm)	(μm^3)	(µm)
29	652,36	27,37	13,69	11905,26	120,48
60	632,69	27,63	13,81	11653,77	100,55
222	522,32	24,60	12,30	8565,44	110,85
140	548,55	25,20	12,60	9215,24	105,58
239	582,42	25,91	12,95	10058,72	94,76
64	549,64	25,26	12,63	9257,28	98,43
102	563,85	26,49	13,25	9958,88	93,70
69	603,19	26,56	13,28	10679,34	96,29
87	681,86	27,61	13,80	12549,21	109,48
182	485,17	24,19	12,10	7825,25	84,58
206	581,33	26,09	13,05	10111,61	93,91
220	642,52	28,02	14,01	12004,25	114,87
168	561,66	25,82	12,91	9668,05	87,81
252	579,15	26,32	13,16	10162,86	96,60
190	608,65	26,68	13,34	10827,67	107,51
136	543,09	25,03	12,51	9060,54	99,59
157	674,21	28,05	14,02	12606,45	97,78
258	543,09	25,51	12,75	9235,11	89,46
18	608,65	26,78	13,39	10867,12	103,61
soma	11164,39	499,12	249,56	196212,07	1905,82
média	587,60	26,27	13,13	10326,95	100,31

Tabela A.52.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,8μm, para velocidade angular de compressão (*press-on*) de 5000rpm - 1ª corrida.

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(μm)	(μm^3)	(µm)
69	118,01	11,92	5,96	937,59	41,97
95	121,29	12,05	6,02	974,19	40,03
40	146,43	14,67	7,33	1431,63	53,55
59	210,90	15,12	7,56	2125,16	57,29
98	213,08	16,42	8,21	2332,21	56,32
142	160,63	13,42	6,71	1436,86	44,45
136	224,01	16,58	8,29	2476,59	57,90
18	123,48	11,61	5,80	955,31	40,32
24	185,76	14,60	7,30	1808,12	67,99
170	174,84	14,71	7,36	1714,85	53,32
55	178,11	15,33	7,67	1820,70	56,88
172	208,71	16,22	8,11	2256,57	55,67
8	114,74	11,15	5,57	852,72	38,66
113	118,01	11,41	5,71	897,86	38,77
151	183,58	14,84	7,42	1816,22	50,91
188	227,29	16,28	8,14	2466,42	58,58
248	134,41	12,31	6,15	1102,72	40,83
150	163,91	13,35	6,68	1459,33	49,29
145	165,00	14,00	7,00	1539,95	53,78
211	236,03	15,79	7,89	2484,14	65,46
261	234,94	16,39	8,19	2567,04	58,76
196	224,01	16,53	8,27	2468,68	62,62
74	131,13	11,62	5,81	1016,14	42,66
31	118,01	12,46	6,23	980,43	45,59
247	196,69	15,31	7,65	2007,34	53,46
180	222,92	16,60	8,30	2466,35	55,12
105	139,87	12,49	6,25	1164,71	45,02
112	146,43	12,91	6,45	1260,17	46,00
57	160,63	13,51	6,76	1447,16	44,30
74	154,07	13,57	6,78	1393,67	47,58
112	123,48	11,70	5,85	963,12	41,51
219	151,89	13,99	6,99	1416,57	47,42
156	175,93	14,55	7,27	1706,17	47,72
100	136,59	12,33	6,16	1122,53	42,52
146	124,57	12,35	6,18	1025,73	41,52
178	137,68	12,58	6,29	1154,67	42,58
26	121,29	11,22	5,61	907,02	36,53

48	126,76	11,67	5,83	985,96	40,38
190	128,94	12,06	6,03	1036,46	42,04
108	146,43	13,23	6,62	1291,67	45,04
58	213,08	15,52	7,76	2204,74	52,55
28	236,03	16,58	8,29	2609,52	58,58
119	134,41	13,30	6,65	1191,62	43,77
soma	7093,98	594,22	297,11	67276,62	2105,23
média	164,98	13,82	6,91	1564,57	48,96

Continuação Tabela A.52.: (a)

(b) Faixa de diâmetro (17,1-23µm) Diâmetro

(D) Faixa de diametro (17,1-23µm)						
Objeto do Analisador	Área	Médio	Raio	Volume	Perímetro	
	(μm^2)	(um)	(um)	(um^3)	(um)	
170	299,41	18,76	9.38	3744.00	63.07	
115	251,33	17,71	8,86	2967,45	61,69	
149	319,08	19,18	9,59	4080,61	71,05	
56	387,92	22,16	11,08	5730,05	85,87	
156	287,39	18,53	9,27	3550,35	62,03	
70	280,83	17,92	8,96	3355,14	68,88	
10	366,06	20,77	10,39	5069,37	72,70	
60	414,14	21,28	10,64	5874,17	85,95	
277	280,83	18,34	9,17	3434,07	69,01	
226	300,50	18,17	9,08	3639,71	70,99	
198	390,10	21,38	10,69	5559,15	77,82	
94	389,01	21,59	10,79	5598,56	72,79	
129	258,98	17,17	8,58	2963,73	57,20	
87	280,83	18,15	9,08	3398,94	61,69	
102	273,18	18,37	9,18	3345,51	63,00	
79	301,59	19,12	9,56	3843,31	64,21	
240	356,23	20,76	10,38	4929,12	78,09	
266	264,44	17,31	8,66	3052,14	75,44	
137	285,20	18,38	9,19	3495,01	66,29	
179	278,65	19,10	9,55	3548,20	64,48	
247	389,01	21,83	10,91	5660,22	84,26	
314	253,51	17,12	8,56	2894,21	60,79	
27	222,92	17,46	8,73	2594,39	60,85	
158	299,41	20,46	10,23	4084,64	72,28	
61	444,74	22,99	11,50	6816,59	96,56	
soma	7875,28	484,00	242,00	103228,65	1766,98	
média	315,01	19,36	9,68	4129,15	70,68	

Objeto do	Ároo	Diâmetro Médio	Paio	Volumo	Dorímotro
Anansauor	(μm^2)	(μm)	(μm)	(μm^3)	μm)
128	468,78	23,19	11,60	7247,43	122,84
190	632,69	27,53	13,77	11612,36	119,33
22	480,80	23,53	11,76	7541,18	97,17
166	566,03	25,88	12,94	9764,97	91,30
36	621,76	27,72	13,86	11489,73	134,83
85	496,10	23,91	11,96	7908,21	99,38
313	450,20	24,51	12,26	7356,39	104,27
258	687,33	28,36	14,18	12997,19	136,72
soma	4403,69	204,63	102,32	75917,47	905,84
média	550,46	25,58	12,79	9489,68	113,23

(c)	Faixa	de diâmetro	$(23.1-29\mu m)$
	I aina	uc ulumento	$(a_{3}, a_{2}, a_{2}, a_{3})$

Tabela A.53.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,8μm, para velocidade angular de compressão (*press-on*) de 5000rpm - 2ª corrida.

(a) Faixa de diâmetro (11,1-17µm)							
Objeto do		Diâmetro					
Analisador	Área	Médio	Raio	Volume	Perímetro		
	(μm^2)	(μm)	(µm)	(μm^3)	(µm)		
233	100,53	11,40	5,70	763,74	36,23		
65	89,60	12,21	6,11	729,58	36,67		
182	138,78	12,75	6,37	1179,40	43,76		
48	134,41	12,99	6,49	1163,91	44,55		
231	158,45	13,87	6,94	1465,48	52,88		
117	148,61	14,35	7,17	1421,35	49,89		
150	172,65	14,76	7,38	1699,21	51,45		
216	222,92	16,02	8,01	2381,33	61,23		
122	127,85	11,39	5,70	971,18	44,06		
101	133,31	11,58	5,79	1029,03	45,16		
75	123,48	11,68	5,84	961,63	40,17		
147	119,11	12,27	6,14	974,48	37,67		
114	138,78	12,29	6,14	1136,64	42,13		
176	159,54	12,81	6,41	1362,50	46,15		
28	122,39	11,50	5,75	938,23	38,18		
272	135,50	12,59	6,29	1136,91	42,42		
42	198,88	15,20	7,60	2015,39	53,84		
124	168,28	15,47	7,74	1735,57	51,42		
115	105,99	11,16	5,58	788,61	37,35		
301	217,45	15,47	7,74	2242,92	63,82		

média	153.48	13.51	6.76	1428.13	46.86
soma	9515,46	837,81	418,90	88543,84	2905,51
274	130,03	12,20	6,10	1057,42	42,58
217	109,27	11,29	5,65	822,77	36,71
42	202,15	16,20	8,10	2183,20	56,22
130	194,51	15,82	7,91	2052,02	58,70
151	140,96	12,86	6,43	1208,30	44,90
233	93,97	11,24	5,62	704,13	35,43
211	111,46	11,19	5,60	831,80	37,70
135	174,84	14,18	7,09	1653,16	50,94
248	169,37	14,05	7,03	1586,62	46,93
203	101,62	12,35	6,18	836,75	38,00
209	227,29	16,07	8,04	2435,50	57,74
115	185,76	14,99	7,50	1856,42	55,21
135	172,65	13,83	6,91	1591,55	44,88
105	158,45	13,27	6,63	1401,44	46,76
80	119,11	11,31	5,65	897,98	37,70
90	245,86	16,99	8,49	2784,11	60,52
245	229,47	16,67	8,34	2550,47	58,31
74	138,78	13,34	6,67	1233,78	46,01
278	115,83	12,30	6,15	949,72	40,50
63	113,64	11,64	5,82	881,74	37,99
89	221,82	16,74	8,37	2475,35	56,46
65	163,91	13,92	6,96	1521,59	51,01
126	151,89	13,35	6,67	1351,71	47,17
105	132,22	13,01	6,51	1147,06	44,17
52	143,15	12,28	6,14	1172,14	42,03
39	103,81	11,40	5,70	789,11	37,25
47	174,84	14,56	7,28	1696,81	50,35
33	187,95	14,17	7,09	1775,62	64,39
57	139,87	12,71	6,35	1185,15	46,29
39	111,46	12,07	6,04	897,19	38,16
28	114,74	11,34	5,67	867,62	37,45
95	102,72	11,17	5,58	764,58	35,76
373	211,99	16,07	8,03	2270,80	52,91
308	218,55	16,03	8,01	2335,46	54,11
96	219,64	16,01	8,00	2343,75	53,75
340	124,57	14,17	7,08	1176,74	45,01
254	140,96	13,62	6,81	1279,51	44,80
26	149,70	13,46	6,73	1343,35	50,54
223	135,50	13,45	6,73	1215,28	45,37
323	102,72	12,25	6,12	838,53	36,28
181	237,12	16,75	8,38	2648,04	61,75
62	174,84	15,72	7,86	1832,48	57,80
(2	174.04	15.50	7.06	1022.40	F7 00

Continuação Tabela A 53.: (a)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(μm)	(µm)	(μm^3)	(µm)
141	380,27	21,70	10,85	5501,50	82,04
98	393,38	21,94	10,97	5753,58	96,61
124	383,55	22,41	11,21	5730,60	85,62
181	348,58	20,98	10,49	4876,02	75,94
190	326,73	20,65	10,33	4498,50	78,78
127	392,29	21,80	10,90	5701,99	76,51
57	254,61	17,84	8,92	3028,00	62,98
290	317,98	19,95	9,98	4229,80	69,70
26	445,83	22,78	11,39	6771,02	82,82
159	346,39	20,13	10,07	4648,75	67,44
143	296,13	18,74	9,37	3699,26	63,04
16	347,49	20,14	10,07	4665,42	69,89
181	238,21	17,16	8,58	2724,45	56,61
150	265,53	17,29	8,64	3060,13	66,73
48	299,41	18,02	9,01	3597,59	73,46
135	301,59	19,11	9,56	3843,19	67,86
206	384,64	21,28	10,64	5455,88	81,95
236	227,29	17,29	8,64	2619,47	58,29
248	397,75	21,30	10,65	5647,13	82,96
82	390,10	21,74	10,87	5653,21	87,82
102	260,07	17,57	8,78	3046,14	60,16
60	277,55	17,60	8,80	3256,12	66,42
274	273,18	18,01	9,01	3280,03	65,46
258	308,15	18,92	9,46	3887,12	67,91
260	308,15	19,29	9,64	3962,77	69,91
218	363,88	20,45	10,23	4961,04	68,95
270	385,73	20,73	10,36	5329,73	84,17
198	354,04	20,85	10,43	4922,11	77,42
180	391,20	21,29	10,65	5552,89	91,32
121	298,31	18,41	9,20	3660,65	73,21
252	386,83	21,10	10,55	5442,53	80,90
302	256,79	17,32	8,66	2965,49	60,80
71	279,74	18,33	9,16	3417,93	58,28
soma	10881,37	652,12	326,06	145390,08	2411,93
média	329,74	19,76	9,88	4405,76	73,09

(b) Faixa de diâmetro (17,1-23µm)

Objeto do	4	Diâmetro			
Analisador	Area	Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(µm)	(μm^3)	(µm)
238	650,17	27,82	13,91	12058,86	113,59
233	509,21	24,24	12,12	8227,35	95,21
155	535,44	25,25	12,62	9011,82	91,07
166	535,44	25,59	12,79	9134,09	92,78
156	602,09	26,32	13,16	10564,72	105,10
198	495,01	23,91	11,95	7890,20	83,62
139	538,71	25,40	12,70	9121,60	85,21
227	658,91	28,59	14,30	12560,63	111,22
8	701,53	28,77	14,39	13457,10	110,68
111	569,31	25,47	12,74	9668,70	96,69
95	538,71	25,97	12,99	9327,03	88,81
106	566,03	26,05	13,03	9830,55	119,61
249	676,40	28,12	14,06	12680,69	101,09
soma	7576,97	341,50	170,75	133533,35	1294,69
média	582,84	26,27	13,13	10271,80	99,59

(c) Faixa de diâmetro (23,1-29µm)

Tabela A.54.: Resultados obtidos do Analisador de Imagens (Image Pro-Plus 7.0) para o sistema carvão/membrana de éster-celulose 0,8μm, para velocidade angular de compressão (*press-on*) de 5000rpm - 3ª corrida.

	(a)	Faixa de diameti	ro (11,1-17µm)	
Objeto do	<i>.</i>	Diâmetro	_		
Analisador	Area	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(µm)
113	154,07	13,05	6,52	1340,21	51,02
184	166,09	13,14	6,57	1454,91	47,20
75	157,35	13,37	6,69	1402,97	47,15
137	213,08	15,58	7,79	2212,62	52,95
160	122,39	11,66	5,83	951,02	50,51
40	118,01	11,80	5,90	928,36	40,51
70	152,98	13,02	6,51	1327,73	48,87
255	186,86	15,28	7,64	1903,83	57,42
107	209,80	16,52	8,26	2310,88	57,61
164	225,10	16,65	8,32	2498,14	58,02
20	132,22	12,78	6,39	1126,08	46,59
22	96,16	12,37	6,19	793,17	37,28
116	205,43	15,64	7,82	2141,37	51,78
138	207,62	16,20	8,10	2241,72	63,28
194	115,83	11,42	5,71	881,66	39,62
240	199.97	16.02	8.01	2136.30	52.02

média	167,53	14,00	7,00	1609,13	49,31
soma	7036,07	588,08	294,04	67583,60	2071,06
129	168,28	14,20	7,10	1593,19	47,90
169	237,12	16,56	8,28	2617,83	56,94
82	198,88	14,99	7,50	1987,80	53,49
247	146,43	12,97	6,49	1266,26	43,93
170	135,50	12,40	6,20	1120,07	44,68
108	202,15	14,75	7,37	1987,51	52,40
44	162,82	13,74	6,87	1491,20	45,07
90	104,90	11,35	5,68	794,08	37,07
242	168,28	14,42	7,21	1618,16	49,01
29	123,48	12,32	6,16	1014,49	41,03
232	135,50	12,05	6,02	1088,13	40,75
274	132,22	11,53	5,77	1016,76	40,69
181	220,73	16,15	8,07	2376,27	54,41
73	197,78	15,69	7,84	2068,68	55,06
245	170,47	14,96	7,48	1699,70	50,53
103	172,65	14,74	7,37	1696,34	50,84
98	178,11	14,12	7,06	1676,13	52,32
160	136,59	13,45	6,73	1225,08	43,77
141	231,66	16,21	8,10	2502,99	57,53
95	151,89	12,98	6,49	1314,55	52,16
241	125,66	12,24	6,12	1025,01	41,67
203	104,90	11,45	5,73	800,91	41,02
59	221,82	16,10	8,05	2381,63	58,54
95	187,95	14,76	7,38	1849,13	53,88
170	104,90	12,57	6,29	879,31	42,87
64	252,42	16,88	8,44	2841,39	61,68

Continuação Tabela A 54.: (a)

(b) Faixa de diâmetro (17,1-23µm)

Objeto do Analisador	Área	Diâmetro Médio	Raio	Volume	Perímetro
	(μm ²)	(µm)	(µm)	(µm ³)	(µm)
240	246,96	18,59	9,30	3061,33	63,25
200	392,29	22,04	11,02	5762,93	77,89
59	399,94	22,28	11,14	5941,23	89,44
167	248,05	17,91	8,96	2961,81	59,85
262	328,91	19,61	9,81	4299,99	70,35
211	354,04	20,22	10,11	4772,51	69,41
28	423,98	21,84	10,92	6172,43	90,00
105	304,87	18,54	9,27	3767,21	65,29
125	277,55	18,94	9,47	3503,80	64,96
14	362,79	20,79	10,40	5028,26	72,27
113	265,53	17,28	8,64	3059,61	60,31

média	327,34	19,72	9,86	4380,15	71,21
soma	8183,43	493,12	246,56	109503,87	1780,19
153	401,03	22,26	11,13	5952,46	90,60
204	397,75	21,22	10,61	5626,22	92,06
104	350,77	20,36	10,18	4761,04	75,92
187	355,14	20,01	10,00	4736,82	69,13
56	321,26	18,81	9,41	4029,49	72,75
190	238,21	17,38	8,69	2760,00	60,43
149	442,55	22,81	11,41	6730,36	77,93
24	274,27	18,62	9,31	3404,26	71,11
120	272,09	17,84	8,92	3235,64	57,84
131	443,65	22,80	11,40	6744,61	77,69
146	293,94	18,11	9,05	3548,09	64,32
130	271,00	17,75	8,88	3207,06	59,84
225	234,94	17,17	8,58	2688,99	58,61
101	281,92	19,94	9,97	3747,72	68,93

Continuação Tabela A 54.: (b)

Objeto do		Diâmetro			
Analisador	Área	Médio	Raio	Volume	Perímetro
	(μm^2)	(µm)	(µm)	(μm^3)	(μm)
275	559,48	27,51	13,76	10260,84	102,29
193	469,87	24,26	12,13	7599,67	83,00
49	522,32	24,41	12,20	8498,95	104,90
208	521,23	24,88	12,44	8646,00	88,32
11	673,12	28,66	14,33	12859,12	122,73
63	668,75	27,75	13,87	12370,04	104,79
214	678,58	28,15	14,08	12736,76	100,71
146	644,71	27,37	13,69	11764,57	101,10
140	505,93	24,21	12,11	8166,03	90,02
112	510,30	24,53	12,27	8346,18	92,14
66	446,93	25,18	12,59	7501,20	89,49
87	618,48	27,14	13,57	11189,80	102,22
98	592,26	26,59	13,29	10497,88	92,11
171	654,54	27,87	13,94	12163,23	112,65
59	485,17	24,08	12,04	7787,55	99,27
242	467,69	24,31	12,15	7578,54	84,94
158	544,18	25,85	12,93	9379,19	103,98
233	694,97	28,62	14,31	13261,32	106,23
227	556,20	25,14	12,57	9322,72	107,58
141	555,11	27,39	13,70	10136,50	104,82
soma	11369,82	523,90	261,95	200066,08	1993,29
média	568,49	26,19	13,10	10003,30	99,66

APÊNDICE B

Resultados experimentais obtidos na microcentrífuga para os materiasi particulados fuligem e carvão ativado e o substrato membrana de éster-celulose nas porosidades 0,2µm, 0,4µm e 0,8µm, variando as velocidades angulares de compressão em 1000, 2000 e 5000rpm.

Dogião	Compressão			,1 1 /µ	Decee	mmmoor	ão		
Kegiao	1000	1000	2000	5000	7000	0000	11000	12000	14000
1	1000	1000	3000	5000	1	9000	11000	13000	14000
1	1	1	1	1	1	1	0	0	0
2	1	1	1	1	1	0	0	0	0
3	4	4	3	3	1	1	1	1	1
4	1	1	1	1	1	0	0	0	0
5	2	2	2	2	2	1	1	0	0
6	4	4	4	2	1	1	0	0	0
7	4	4	4	1	1	1	0	0	0
8	3	3	3	2	2	0	0	0	0
9	2	2	2	2	2	1	1	0	0
10	1	1	1	1	1	0	0	0	0
10	5	5	5	2	1	0	0	0	0
11	3	3	3	2	0	0	0	0	0
12	4	4	3	2	2	I	0	0	0
Total Partículas	32	32	30	20	15	7	3	1	1
% de partículas aderidas	100	100	92,75	62,50	47	22	9,40	6,30	6,30
L	(b)Faixa de	diâme	tro (17	,1-23μ	m)				
Região	Compressão		r		Desco	mpress	ão	1	1
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	0	0	0	0	0	0	0	0	0
2	3	3	3	2	2	1	0	0	0
3	1	1	1	0	0	0	0	0	0
4	3	3	2	0	0	0	0	0	0
5	2	2	2	2	0	0	0	0	0
6	2	2	2	1	0	0	0	0	0
7	2	2	2	2	1	1	0	0	0
8	0	0	0	0	0	0	0	0	0
9	1	1	1	0	0	0	0	0	0
10	1	1	1	0	0	0	0	0	0
11	2	2	2	0	0	0	0	0	0
12	2	2	1	1	0	0	0	0	0
Total Partículas	19	19	17	8	3	2	0	0	0
% de partículas aderidas	100	100	89,50	42	15,80	10,50	0	0	0
	(c)Faixa de	diâme	tro (23	, 1-29 μι	m)				
Região	Compressão				Desco	mpress	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	0	0	0	0	0	0	0	0	0
2	3	3	1	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	2	2	1	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	1	1	1	0	0	0	0	0	0
9	2	2	2	0	0	0	0	0	0
10	1	1	0	0	0	0	0	0	0
11	1	1	1	0	0	0	0	0	0
12	1	1	1	0	0	0	0	0	0
Total Partículas	12	12	7	0	0	0	0	0	0

% de partículas aderidas

Tabela B.1.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,2μm, para velocidade angular de compressão 1000rpm. 1ª CORRIDA (a)Faixa de diâmetro (11,1-17μm)

(a) Faixa de diametro (11,1-1/µm)									
Região	Compressão				Desco	mpres	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	3	3	3	3	1	0	0	0	0
2	2	2	2	0	0	0	0	0	0
3	2	2	2	0	0	0	0	0	0
4	3	3	3	0	0	0	0	0	0
5	2	2	2	0	0	0	0	0	0
6	2	2	2	1	1	0	0	0	0
7	1	1	1	0	0	0	0	0	0
8	1	1	1	0	0	0	0	0	0
9	3	3	3	1	1	1	1	0	0
10	2	2	1	0	0	0	0	0	0
11	1	1	1	0	0	0	0	0	0
12	2	2	2	0	0	0	0	0	0
Total Partículas	24	24	23	5	3	1	1	0	0
% de partículas aderidas	100	100	95,83	20,83	12,50	4,16	4,16	0	0
	(b) Faixa	de diâı	metro (17,1-23	βµm)				
Região	Compressão				Desco	mpres	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	2	2	1	1	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	1	1	1	0	0	0	0	0	0
4	1	1	1	0	0	0	0	0	0
5	1	1	1	0	0	0	0	0	0
6	2	2	2	1	1	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	1	1	1	0	0	0	0	0	0
9	1	1	0	0	0	0	0	0	0
10	3	3	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0
12	1	1	1	1	0	0	0	0	0
Total Partículas	13	13	8	3	1	0	0	0	0
% de partículas aderidas		100	61,54	23,07	7,69	0	0	0	0
D ! ? -	(c) Faixa	de diai	metro (23,1-25	μ m)		~ .		
Kegiao	Long	1000	2000	5000	Desco	onpres	540	12000	1 4000
1	1000	1000	3000	5000	/000	9000	11000	13000	14000
1	0	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4			0	0	0	0	0	0	0
5	2	2		0	0	0	0	0	0
0	1		0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0
8	1	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0
10		1	1	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

77,77 22,22

Tabela B.2.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,2µm, para velocidade angular de compressão 1000rpm. 2ª CORRIDA (a) Faixa de diâmetro (11.1-17um)

	(a)	гагла	ue ulai	neu o (11,1-1	/μ)			
Região	Compressão			1	Desco	mpres	são	1	
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	3	3	3	1	1	1	1	0	0
2	1	1	1	0	0	0	0	0	0
3	1	1	1	0	0	0	0	0	0
4	3	3	3	3	3	2	1	1	0
5	3	3	3	3	2	0	0	0	0
6	2	2	2	1	0	0	0	0	0
7	4	4	3	2	0	0	0	0	0
8	4	4	4	3	0	0	0	0	0
9	3	3	3	3	1	0	0	0	0
10	1	1	1	0	0	0	0	0	0
11	3	3	1	1	1	1	1	1	1
12	2	2	1	1	0	0	0	0	0
Total Partículas	30	30	28	18	8	4	3	2	1
% de partículas aderidas	100	100	93,33	60	26,66	13,33	10	6,66	3,33
	(b)	Faixa	de diâr	netro (17,1-2	3µm)	~		
Região	Compressão		1		Desco	mpres	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0
4	2	2	1	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	2	2	2	0	0	0	0	0	0
7	3	3	1	0	0	0	0	0	0
8	2	2	1	0	0	0	0	0	0
9	2	2	1	0	0	0	0	0	0
10	1	1	1	0	0	0	0	0	0
11	2	2	2	0	0	0	0	0	0
Total Partículas	18	18	10	0	0	0	0	0	0
% de partículas aderidas	100	100	55.60	0	ů 0	ů 0	0	0	0
	(c) Faixa	de diâ	metro (23,1-2	9µm)	Ŭ	Ũ	Ū	Ū
Região	Compressão				Desco	mpres	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	0	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0
3	1	1	1	0	0	0	0	0	0
4	2	2	2	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	2	2	1	0	0	0	0	0	0
8	1	1	1	0	0	0	0	0	0
9	1	1	1	1	0	0	0	0	0
10	1	1	0	0	0	0	0	0	0

Tabela B.3.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,2μm, para velocidade angular de compressão 1000rpm. 3ª CORRIDA
(a) Faixa de diâmetro (11.1-17um)

Total Partículas % de partículas aderidas 100 53,84 7,7

Região	Compressão				Descor	mpressã	0			
	2000	1000	3000	5000	7000	9000	11000	13000	14000	
1	5	5	4	4	2	1	1	1	1	
2	1	1	1	0	0	0	0	0	0	
3	1	1	1	1	0	0	0	0	0	
4	2	2	2	1	1	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	
6	0	0	0	0	0	0	0	0	0	
7	4	4	3	1	1	0	0	0	0	
8	1	1	1	1	1	1	1	0	0	
9	1	1	1	1	0	0	0	0	0	
10	0	0	0	0	0	0	0	0	0	
11	1	1	1	0	0	0	0	0	0	
12	0	0	0	0	0	0	0	0	0	
Total Partículas	16	16	14	9	5	2	1	1	1	
% de partículas aderidas	100	100	87,50	56,3	31,25	12,50	6,25	6,25	6,25	
(b) Faixa de diâmetro (17,1-23µm)										
Região	Compressão			_	Desco	mpressã	0			
	2000	1000	3000	5000	7000	9000	11000	13000	14000	
1	0	0	0	0	0	0	0	0	0	
2	1	1	1	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	
4	1	1	1	1	1	0	0	0	0	
5	2	2	1	1	0	0	0	0	0	
6	1	1	1	1	0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	
8	1	1	1	1	1	0	0	0	0	
9	1	1	1	1	0	0	0	0	0	
10	0	0	0	0	0	0	0	0	0	
11	1	1	1	0	0	0	0	0	0	
12	0	0	0	0	0	0	0	0	0	
Total Partículas	8	8	7	5	2	0	0	0	0	
% de partículas aderidas	100	100	87,50	62,50	25	0	0	0	0	
		(c) Faix	ka de diá	imetro	(23,1-29	9μm)				
Região	Compressão			1	Descor	npressã	0	1	<u>г</u>	
	2000	1000	3000	5000	7000	9000	11000	13000	14000	
1	0	0	0	0	0	0	0	0	0	
2	3	3	3	0	0	0	0	0	0	

Tabela B.4.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,2μm, para velocidade angular de compressão 2000rpm. 1ª CORRIDA
(a) Faixa de diâmetro (11,1-17μm)
Região	Compressão				Desc	ompres	são		
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	2	2	2	2	0	0	0	0	0
2	4	4	4	2	1	0	0	0	0
3	2	2	2	1	0	0	0	0	0
4	3	3	2	1	1	0	0	0	0
5	4	4	4	3	1	1	1	0	0
6	4	4	3	2	0	0	0	0	0
7	6	6	4	2	1	1	0	0	0
8	1	1	1	1	1	0	0	0	0
9	1	1	1	0	0	0	0	0	0
10	3	3	2	1	1	1	1	1	1
11	2	2	2	0	0	0	0	0	0
12	2	2	2	1	0	0	0	0	0
Total Partículas	34	34	30	17	6	3	2	1	1
% de partículas aderidas	100	100	88,24	50	17,65	5 8,82	5,88	2,94	2,94
	((b)Faix	a de d	iâmetr	o (17,1	-23µm)		-
Região	Compressão				Desco	mpres	são		
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	1	0	0	0	0	0
2	1	1	1	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	1	1	1	0	0	0	0	0	0
5	1	1	1	1	1	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	1	1	1	0	0	0	0	0	0
8	1	1	1	1	0	0	0	0	0
9	3	3	2	0	0	0	0	0	0
10	1	1	0	0	0	0	0	0	0
11	3	3	3	2	0	0	0	0	0
12	2	2	2	1	0	0	0	0	0
Total Partículas	15	15	12	6	1	0	0	0	0
% de partículas aderidas	100	100	80	40	6,67	0	0	0	0
	(c)Faix	a de d	liâmetr	•o (23,1	l-29μm)		
Região	Compressão		1		Desco	mpress	são		
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	0	0	0	0	0	0	0	0	0
2	1	1	1	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0
4	1	1	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	1	1	1	1	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	2	2	1	0	0	0	0	0	0
10	1	1	1	1	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

Tabela B.5.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,2μm, para velocidade angular de compressão 2000rpm. 2ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

Região	Compressão				Desco	mpress	são		
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	1	1	0	0	0	0
2	1	1	1	1	0	0	0	0	0
3	1	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
5	1	1	1	1	0	0	0	0	0
6	2	2	2	1	0	0	0	0	0
7	3	3	3	2	0	0	0	0	0
8	4	4	4	3	1	0	0	0	0
9	3	3	3	2	1	1	0	0	0
10	3	3	3	2	0	0	0	0	0
11	2	2	2	1	1	0	0	0	0
12	0	0	0	0	0	0	0	0	0
Total Partículas	21	21	21	15	4	1	0	0	0
% de partículas aderidas	100	100	100	71,4	19,05	4,76	0	0	0
	(b)) Faixa	de dia	metro	(17,1-	23µm)			
Região	Compressão	1000	• • • • •		Desco	mpress	são	1.000	1 1000
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	0	0	0	0	0	0	0
2	1		0	0	0	0	0	0	0
3	1		1	0	0	0	0	0	0
4	1	1	1	1	0	0	0	0	0
5	1	1	1	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0
8	0	1	1	0	0	0	0	0	0
9	1	1	1	0	0	0	0	0	0
10	1	1	0	0	0	0	0	0	0
11	2	2	0	0	0	0	0	0	0
12	3	3	1	0	0	0	0	0	0
Total Partículas	14	14	6	1	0	0	0	0	0
% de partículas aderidas	100	100	43,86	7,14	0	0	0	0	0
	(c)	Faixa	de diá	imetro	(23,1-	29µm)			
Região	Compressão		1		Descor	npress	ão		Т
	2000	1000	300	0 500	0 700	0 900	0 11000) 13000	14000
1	0	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0
3	1	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
5	1	1	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0
0	1	1	1			0	0	0	
<u> </u>	0	1		0		0	0	0	
10	0	0	0	0	0	0	0	0	0
11	1	1	0	0	0	0	0	0	0
12	1	1	1	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

42,86

Tabela B.6.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,2μm, para velocidade angular de compressão 2000rpm. 3ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

Região	Compressão				Desco	mpres	são		
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	2	2	2	1	1	0	0	0	0
2	2	2	2	1	1	0	0	0	0
3	2	2	2	2	1	0	0	0	0
4	2	2	2	2	2	0	0	0	0
5	1	1	1	1	0	0	0	0	0
6	1	1	1	1	1	0	0	0	0
7	2	2	2	2	0	0	0	0	0
8	1	1	1	1	1	0	0	0	0
9	1	1	1	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0
12	1	1	1	1	1	0	0	0	0
Total Partículas	15	15	15	12	8	0	0	0	0
% de partículas aderidas	100	100	100	80	53,33	0	0	0	0
	(b) 1	Faixa d	le diân	netro (17,1-23	βµm)			
Região	Compressão			1	Desco	mpres	são		1
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	0	0	0	0	0	0
2	3	3	3	1	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0
4	1	1	1	0	0	0	0	0	0
5	1	1	1	1	0	0	0	0	0
6	1	1	1	0	0	0	0	0	0
7	1	1	1	1	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	1	1	1	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0
12	2	2	2	1	0	0	0	0	0
Total Partículas	12	12	11	4	0	0	0	0	0
% de partículas aderidas	100	100	11,66	3,33	0	0	0	0	0
	(c)]	Faixa c	le diân	netro (23,1-29	µm)			
Região	Compressão				Desco	mpres	são		[
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	0	0	0	0	0	0
2	1	1	1	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
5	1	1	1	1	0	0	0	0	0
0				0		0	0	0	0
/	0	0	0	0	0	0	0	0	0
8	2	2	2	2	0	0	0	0	0
9	1	1			0	0	0	0	0

Tabela B.7.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,2µm, para velocidade angular de compressão 5000rpm. 1ª CORRIDA (a) Faixa de diâmetro (11,1-17µm)

Região	Compressão	Descompressão									
	5000	1000	3000	5000	7000	9000	11000	13000	14000		
1	1	1	1	0	0	0	0	0	0		
2	1	1	1	0	0	0	0	0	0		
3	0	0	0	0	0	0	0	0	0		
4	0	0	0	0	0	0	0	0	0		
5	1	1	1	1	0	0	0	0	0		
6	1	1	1	0	0	0	0	0	0		
7	0	0	0	0	0	0	0	0	0		
8	2	2	2	2	0	0	0	0	0		
9	1	1	1	1	0	0	0	0	0		
10	1	1	0	0	0	0	0	0	0		
11	0	0	0	0	0	0	0	0	0		
12	0	0	0	0	0	0	0	0	0		
Total Partículas	8	8	7	4	0	0	0	0	0		
% de partículas aderidas	100	100	87,50	50	0	0	0	0	0		

	(4)	- united v	ac anan		,	(participante)				
Região	Compressão				Desco	mpres	são			
	5000	1000	3000	5000	7000	9000	11000) 13000	14000	
1	2	2	2	2	1	1	0	0	0	
2	1	1	1	1	0	0	0	0	0	
3	5	5	5	1	1	1	1	0	0	
4	10	10	10	3	3	1	1	1	1	
5	2	2	2	0	0	0	0	0	0	
6	3	3	3	1	1	0	0	0	0	
7	3	3	3	3	2	2	1	1	1	
8	5	5	5	2	2	1	1	1	1	
9	2	2	2	1	0	0	0	0	0	
10	2	2	2	1	1	1	0	0	0	
11	3	3	3	2	0	0	0	0	0	
12	4	4	4	3	2	1	0	0	0	
Total Partículas	42	42	42	20	13	8	4	3	3	
% de partículas aderidas	100	100	100	47,62	30,95	19,05	5 9,52	7,14	7,14	
	(b) l	Faixa o	de diân	netro (17,1-23	Bµm)				
Região	Compressão				Desco	mpres	são			
	5000	1000	3000	5000	7000	9000	11000	13000	14000	
1	3	3	3	2	0	0	0	0	0	
2	1	1	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	
4	1	1	1	1	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	
6	1	1	1	1	0	0	0	0	0	
7	2	2	2	0	0	0	0	0	0	
8	2	2	2	1	0	0	0	0	0	
9	1	1	1	0	0	0	0	0	0	
10	1	1	0	0	0	0	0	0	0	
11	2	2	2	1	0	0	0	0	0	
12	0	0	0	0	0	0	0	0	0	
Total Partículas	14	14	12	6	0	0	0	0	0	
% de partículas aderidas	100	100	85,71	42,86	0	0	0	0	0	
	(c) l	Faixa o	de diân	netro (2	23,1-29	θµm)				
Região	Compressão	ssão Descompressão								
	5000	1000	3000	5000	7000	9000	11000	13000	14000	
1	1	1	1	0	0	0	0	0	0	
2	1	1	1	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	
4	1	1	1	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	
6	1	1	0	0	0	0	0	0	0	
7	3	3	3	0	0	0	0	0	0	

Tabela B.8.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,2µm, para velocidade angular de compressão 5000rpm. 2ª CORRIDA (a) Faixa de diâmetro (11,1-17µm)

Região	Compressão	Descompressão								
	5000	1000	3000	5000	7000	9000	11000	13000	14000	
1	1	1	1	0	0	0	0	0	0	
2	1	1	1	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	
4	1	1	1	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	
6	1	1	0	0	0	0	0	0	0	
7	3	3	3	0	0	0	0	0	0	
8	1	1	1	0	0	0	0	0	0	
9	0	0	0	0	0	0	0	0	0	
10	1	1	1	0	0	0	0	0	0	
11	0	0	0	0	0	0	0	0	0	
12	1	1	1	0	0	0	0	0	0	
Total Partículas	10	10	9	0	0	0	0	0	0	
% de partículas aderidas	100	100	90	0	0	0	0	0	0	

	()				,	r: /					
Região	Compressão		1		Desco	mpres	são	1			
	5000	1000	3000	5000	7000	9000	11000	13000	14000		
1	3	3	3	2	1	0	0	0	0		
2	0	0	0	0	0	0	0	0	0		
3	5	5	5	4	3	2	1	0	0		
4	3	3	3	2	1	1	1	1	1		
5	1	1	1	1	0	0	0	0	0		
6	3	3	3	1	0	0	0	0	0		
7	0	0	0	0	0	0	0	0	0		
8	4	4	4	4	1	1	0	0	0		
9	2	2	2	2	2	1	1	0	0		
10	2	2	2	2	1	0	0	0	0		
11	1	1	1	0	0	0	0	0	0		
12	2	2	2	2	0	0	0	0	0		
Total Partículas	26	26	26	20	8	5	3	1	1		
% de partículas aderidas	100	100	100	76,02	30,77	19,23	11,54	3,85	3,85		
	(b) l	Faixa d	le diân	netro (17,1-2	3µm)					
Região	Compressão	o Descompressão									
~	5000	1000	3000	5000	7000	9000	11000	13000	14000		
1	1	1	1	1	0	0	0	0	0		
2	0	0	0	0	0	0	0	0	0		
3	1	1	1	1	1	0	0	0	0		
4	2	2	2	2	2	0	0	0	0		
5	2	2	2	1	0	0	0	0	0		
6	2	2	2	0	0	0	0	0	0		
7	1	1	1	1	0	0	0	0	0		
8	4	4	4	3	0	0	0	0	0		
9	2	2	2	2	0	0	0	0	0		
10	2	2	2	1	1	0	0	0	0		
11	4	4	3	3	2	0	0	0	0		
12	2	2	2	0	0	0	0	0	0		
Total Partículas	23	23	22	15	6	0	0	0	0		
% de partículas aderidas	100	100	95,65	69,56	26	0	0	0	0		
	(c) l	(c) Faixa de diâmetro (23,1-29μm)									
Região	Compressão				Desco	mpres	são				
	5000	1000	3000	5000	7000	9000	11000	13000	14000		
1	2	2	2	0	0	0	0	0	0		
2	0	0	0	0	0	0	0	0	0		
3	1	1	0	0	0	0	0	0	0		
4	1	1	0	0	0	0	0	0	0		

Total Partículas

% de partículas aderidas

Tabela B.9.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,2μm, para velocidade angular de compressão 5000rpm. 3ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

Dogião	Compressão				Decee		ção		
Kegiao		1000	2000	5000	7000	npres	5a0	12000	1 4000
1	1000	1000	3000	5000	1	9000	11000	13000	14000
1	2		1	1	1	0	0	0	0
2	4	4		2	0	0	0	0	0
3	4	4	4	3	0	0	0	0	0
4	4	4	4	4	1	0	0	0	0
5	4	4	4	3	0	0	0	0	0
6	3	3	2	2	2	0	0	0	0
7	2	2	1	0	0	0	0	0	0
8	1	1	1	1	0	0	0	0	0
9	2	2	2	1	1	0	0	0	0
10	4	4	4	2	1	0	0	0	0
11	3	3	3	3	2	0	0	0	0
12	1	1	1	1	1	0	0	0	0
Total Partículas	34	34	29	23	9	0	0	0	0
% de partículas aderidas	100	100	85,30	67,65	26,47	0	0	0	0
	(b) l	Faixa d	le diân	netro (17,1-2	3µm)			
Região	Compressão				Desco	mpres	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	2	2	2	1	1	0	0	0	0
2	2	2	1	1	0	0	0	0	0
3	2	2	1	1	0	0	0	0	0
4	1	1	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	1	1	1	0	0	0	0	0	0
7	2	2	1	1	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	1	1	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
11	1	1	1	1	1	0	0	0	0
12	0	0	0	0	0	0	0	0	0
Total Partículas	12	12	7	5	2	0	0	0	0
% de partículas aderidas	100	100	58 33	41 67	16.67	0	0	0	0
10 de particulas aderidas	(c)	Faixa d	le diân	netro (23.1-2	9um)	v	v	v
Região	Compressão				Desco	mpres	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	2	2	1	1	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	2	2	1	1	0	0	0	0	0
8	1	1	1	0	0	0	0	0	0
9	2	2	2	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
11	1	1	0	0	0	0	0	0	0
12	1	1	0	0	0	0	0	0	0
Total Partículas	11	11	5	2	0	0	0	0	0

45,45 18,20

% de partículas aderidas

Tabela B.10.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,4μm, para velocidade angular de compressão 1000rpm. 1ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

	(a) 1	Γάιλα (ie ulai		-	/μΠ)	~		
Região	Compressão				Desco	mpres	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	4	3	1	0	0	0	0	0	0
2	4	4	3	1	1	0	0	0	0
3	8	8	5	0	0	0	0	0	0
4	4	4	4	3	1	0	0	0	0
5	5	5	2	1	0	0	0	0	0
6	3	3	2	0	0	0	0	0	0
7	5	5	3	2	0	0	0	0	0
8	4	4	3	0	0	0	0	0	0
9	1	1	1	0	0	0	0	0	0
10	2	2	2	2	1	1	1	0	0
10	2	2	2	2	1	1	1	0	0
12	0	0	1	1	0	0	0	0	0
12	3	3	1	1	0	0	0	0	0
Total Partículas	43	42	27	10	3	1	1	0	0
% de partículas aderidas	100	97,67	62,89	23,26	6,97	2,33	2,33	0	0
	(b) I	Faixa c	le diân	netro (17,1-2	3µm)			
Região	Compressão				Desco	mpres	são		r
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	2	1	1	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	3	3	1	0	0	0	0	0	0
5	3	3	0	0	0	0	0	0	0
6	2	2	2	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	1	1	1	0	0	0	0	0	0
9	1	1	0	0	0	0	0	0	0
10	3	3	2	0	0	0	0	0	0
11	1	1	1	0	0	0	0	0	0
12	2	2	1	0	0	0	0	0	0
Total Dartículas	10	17	0	0	0	0	0	0	0
Total Falticulas	10	17	50	0	0	0	0	0	0
% de particulas aderidas	100 (c)	94,44 Faiva d	50 le diân	U netro (23 1-2	00000000000000000000000000000000000000	U	U	U
Dogião	Compressão		ic ulai		Doceo	mnros	<u>.</u>		
Kegiao	1000	1000	3000	5000	7000		11000	13000	1/000
1	1	1000	0	0	1000	0000	0	13000	14000
1	1	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0
4	2	2	1	0	0	0	0	0	0
5	1	0	0	0	0	0	0	0	0
6	2	2	1	0	0	0	0	0	0
7	2	2	1	0	0	0	0	0	0
8	1	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0
10	1	1	1	0	0	0	0	0	0
11	2	2	1	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

33,33

Tabela B.11.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,4μm, para velocidade angular de compressão 1000rpm. 2ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

	(u) 1	anna (ie ului		<u></u>	<i>,</i> µ)	~		
Região	Compressão		1	1	Desco	mpres	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0
4	2	2	1	0	0	0	0	0	0
5	1	0	0	0	0	0	0	0	0
6	2	2	1	0	0	0	0	0	0
7	2	2	1	0	0	0	0	0	0
8	1	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0
10	1	1	1	0	0	0	0	0	0
11	2	2	1	0	0	0	0	0	0
12	1	0	0	0	0	0	0	0	0
Total Partículas	15	12	5	0	0	0	0	0	0
% de partículas aderidas	100	80	33.33	0	0	0	0	0	0
	(b) Faix	a de di	âmetr	o (17,1	-23µm)		, , ,	
Região	Compressão				Desco	mpres	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	2	2	1	1	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	2	1	1	1	1	0	0	0	0
4	2	2	2	0	0	0	0	0	0
5	2	2	1	1	0	0	0	0	0
6	2	2	2	0	0	0	0	0	0
7	2	2	1	0	0	0	0	0	0
8	2	2	2	0	0	0	0	0	0
9	1	1	0	0	0	0	0	0	0
10	1	1	0	0	0	0	0	0	0
11	3	3	1	0	0	0	0	0	0
12	1	1	1	1	1	0	0	0	0
Total Partículas	20	10	12	1	2	0	0	0	0
1 otal 1 al ticulas	100	05	60	20	10	0	0	0	0
70 de particulas adelluas	(c)]	- 25 Faixa (le diân	netro (23.1-2	900)	U	U	U
Região	Compressão				Desco	mpres	รลึก		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	1	0	0	0	0	0
2	2	2	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	2	2	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
, , ,	1	1	1	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0
10	2	2	1	0	0	0	0	0	0
11	2	2	1	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0
Total Partículas	10	10	4	1	0	0	0	0	0

% de partículas aderidas

Tabela B.12.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,4μm, para velocidade angular de compressão 1000rpm. 2ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

Região	Compressão				Desco	mpres	são		
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	4	4	4	4	3	2	2	0	0
2	1	1	1	1	1	0	0	0	0
3	3	3	3	3	1	0	0	0	0
4	1	1	1	1	1	1	0	0	0
5	4	3	2	2	0	0	0	0	0
6	1	1	1	1	0	0	0	0	0
7	3	2	2	2	1	1	0	0	0
8	4	4	3	2	1	0	0	0	0
9	3	3	3	2	2	1	0	0	0
10	2	2	2	1	0	0	0	0	0
11	3	3	3	1	1	1	1	1	1
12	1	1	0	0	0	0	0	0	0
Total Partículas	30	30	28	20	11	6	3	1	1
% de partículas aderidas	100	100	83	67	37	20	10	3	3
	(b) l	Faixa d	le diân	netro (17,1-2	3µm)			
Região	Compressão		1	1	Desco	mpres	são		
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	2	2	1	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	1	1	1	0	0	0	0	0	0
4	3	3	2	2	1	0	0	0	0
5	2	2	1	1	0	0	0	0	0
6	1	1	1	1	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	2	2	1	0	0	0	0	0	0
9	3	3	3	1	1	0	0	0	0
10	2	2	2	2	2	0	0	0	0
11	3	3	2	0	0	0	0	0	0
12	4	4	3	0	0	0	0	0	0
Total Partículas	23	23	17	7	4	0	0	0	0
% de partículas aderidas	100	100	74	36	17,40	0	0	0	0
D ''	(c) 1	aixa c	ie diar	netro (23,1-2	9µm)	~		
Kegiao	Compressao	1000	2000	5000	Desco	mpres	sao	12000	1 4000
1	2000	1000	3000	5000	/000	9000	11000	13000	14000
1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
5	2	2	1	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	1	1	1	0	0	0	0	0	0
8	2	2	1	0	0	0	0	0	0
9	1	1	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0
Total Partículas	8	8	4	1	0	0	0	0	0

12,50

% de partículas aderidas

Tabela B.13.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,4μm, para velocidade angular de compressão 2000rpm. 1ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

Dogião	Compressão		ie ulai		Docao	μiii) mnrog	.ã.		
Kegiao	2000	1000	2000	5000	7000	onn	5a0	12000	14000
1	2000	2	3000	2000	1	0000	0	0	0
2	1	1	1	2	0	0	0	0	0
2	1	1	1	1	0	0	0	0	0
3	1	1	1	1	1	0	0	0	0
5	1	1	1	1	1	1	0	0	0
5	1	1	1	1	1	1	0	0	0
6	3	5	5	2	1	1	1	1	0
1	5	5	5	2	1	0	0	0	0
8	2	2	2	2	2	2	1	0	0
9	0	0	0	0	0	0	0	0	0
10	6	6	6	2	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0
12	1	1	1	1	1	1	0	0	0
Total Partículas	24	24	24	14	8	5	2	1	0
% de partículas aderidas	100	100	100	58,33	33,33	20,83	8,33	4,17	0
	(b) Faixa	a de di	âmetro	o (17,1	<u>-23µm</u>)			
Região	Compressão				Desco	mpres	são		
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	0	0	0	0	0	0
2	2	2	2	1	1	0	0	0	0
3	1	1	1	0	0	0	0	0	0
4	1	1	1	0	0	0	0	0	0
5	3	3	3	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	4	4	3	0	0	0	0	0	0
8	1	1	1	1	1	0	0	0	0
9	0	0	0	0	0	0	0	0	0
10	5	5	4	2	1	0	0	0	0
11	1	1	1	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0
Total Partículas	19	19	17	4	3	0	0	0	0
% de partículas aderidas	100	100	89,47	21,05	15,78	0	0	0	0
	(c) Faix	a de di	âmetro	0 (23,1	-29µm)			
Região	Compressão		1	1	Desco	mpres	são		
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	0	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0
3	1	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
5	2	2	2	0	0	0	0	0	0
0 7	1	1	1	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	1	1	1	1	0	0	0	0	0
10	1	1	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0
12	1	1	0	0	0	0	0	0	0
Total Partículas	8	8	5	1	0	0	0	0	0

% de partículas aderidas

62,50 12,50

Tabela B.14.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,4μm, para velocidade angular de compressão 2000rpm. 2ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

2000 1000 3000 5000 7000 9000 11000 13000 14000 1 2 2 2 1 <t< th=""><th>Região</th><th>Compressão</th><th></th><th></th><th></th><th>Desco</th><th>mpres</th><th>são</th><th></th><th></th></t<>	Região	Compressão				Desco	mpres	são			
1 2 2 2 1		2000	1000	3000	5000	7000	9000	11000	13000	14000	
2 2 2 2 1 1 1 1 1 1 3 3 3 3 2 1 1 1 1 0 0 0 4 2 2 1 1 0 0 0 0 0 0 5 4 4 2 1 1 0	1	2	2	2	1	1	1	1	1	1	
3 3 3 2 1 1 1 0 0 4 2 2 2 1 0 0 0 0 5 4 4 2 1 1 0 0 0 0 6 2 2 1 1 1 0	2	2	2	2	2	1	1	1	1	1	
4 2 2 1 0 0 0 0 5 4 4 2 1 1 0 0 0 6 2 2 1 1 1 0 0 0 0 7 1 1 1 1 0 0 0 0 0 0 9 2 2 1 0 0 0 0 0 0 0 10 4 4 3 3 1 0 0 0 0 0 0 0 10 1 1 1 1 0	3	3	3	3	2	1	1	1	0	0	
5 4 4 2 1 1 0 0 0 0 6 2 2 1 1 1 0	4	2	2	2	1	0	0	0	0	0	
6 2 2 1 1 1 0 0 0 0 7 1 1 1 1 0	5	4	4	2	1	1	0	0	0	0	
7 1 1 1 0 0 0 0 0 8 1 1 1 0	6	2	2	1	1	1	0	0	0	0	
8 1 1 1 0 0 0 0 0 0 9 2 2 1 0	7	1	1	1	1	0	0	0	0	0	
9 2 2 1 0 0 0 0 0 10 4 4 3 3 1 0 0 0 0 11 3 3 1 1 0 0 0 0 0 0 12 1 1 1 0	8	1	1	1	0	0	0	0	0	0	
10 4 4 3 3 1 0 0 0 0 11 3 3 1 1 1 0	9	2	2	1	0	0	0	0	0	0	
11 3 3 1 1 1 0 0 0 0 12 1 1 1 0 0 0 0 0 0 0 Total Partículas 27 27 20 12 7 3 3 2 2 % de partículas aderidas 100 100 74 44,44 25.92 11,11 11,11 7,40 7,40 Kegião Compressão Descompressão 2000 1000 3000 5000 7000 9000 1100 13000 14000 1 1 1 1 0 <t< td=""><td>10</td><td>4</td><td>4</td><td>3</td><td>3</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	10	4	4	3	3	1	0	0	0	0	
12 1 1 1 0 0 0 0 0 0 Total Partículas deridas 27 20 12 7 3 3 2 2 % de partículas aderidas 100 100 74 44,44 25,92 11,11 11,10 7,40 7,40 Região Compressão Descompresso Descompresso Descompresso 2000 100 3000 5000 7000 9000 11000 13000 14000 1 1 1 1 0	11	3	3	1	1	1	0	0	0	0	
Total Partículas 27 20 12 7 3 3 2 2 % de partículas aderidas 100 74 44,44 25.92 11.11 1.11 7,40 7,40 Região Compressão Summa Summa <td>12</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	12	1	1	1	0	0	0	0	0	0	
% de partículas aderidas 100 74 44.44 25.92 11.11 11.11 7.40 7.40 Verticulas aderidas Compressão Verticulas aderidas Verticulas Região Compressão Verticulas Verticulas Verticulas 2000 1000 3000 700 9000 1100 1000 1000 1000 1000 1000 1000 10 1 1 100 0 0 11 11 11 0 0 0 0 0 0 0 0 0 10 10 10 10 0 0 0 0 0 0 10 <th c<="" td=""><td>Total Partículas</td><td>27</td><td>27</td><td>20</td><td>12</td><td>7</td><td>3</td><td>3</td><td>2</td><td>2</td></th>	<td>Total Partículas</td> <td>27</td> <td>27</td> <td>20</td> <td>12</td> <td>7</td> <td>3</td> <td>3</td> <td>2</td> <td>2</td>	Total Partículas	27	27	20	12	7	3	3	2	2
(b) Faixa de diâmetre (17,1-23µm) Região Compressão 2000 1000 3000 5000 7000 9000 11000 13000 14000 1 1 1 1 1 0	% de partículas aderidas	100	100	74	44,44	25,92	11,11	11,11	7,40	7,40	
Região Compressão Jono Jono Sono Formation Jono Jono <thjono< th=""> <thjono< th=""> Jono</thjono<></thjono<>		(b) Faixa d	le diâr	netro (17,1-2	3µm)					
2000 1000 5000 5000 7000 9000 11000 13000 14000 1 1 1 1 1 0 <t< th=""><th>Região</th><th>Compressão</th><th></th><th></th><th></th><th>Desco</th><th>mpres</th><th>são</th><th></th><th></th></t<>	Região	Compressão				Desco	mpres	são			
1 1 1 1 0 0 0 0 0 2 0		2000	1000	3000	5000	7000	9000	11000	13000	14000	
2 0	1	1	1	1	1	0	0	0	0	0	
3 0	2	0	0	0	0	0	0	0	0	0	
4 1 1 0 0 0 0 0 0 5 1 1 1 0	3	0	0	0	0	0	0	0	0	0	
5 1 1 1 0	4	1	1	0	0	0	0	0	0	0	
6 0	5	1	1	1	0	0	0	0	0	0	
7 1 1 1 0 <	6	0	0	0	0	0	0	0	0	0	
8 1 1 1 0 0 0 0 0 0 9 1 1 1 1 0	7	1	1	1	0	0	0	0	0	0	
9 1 1 1 0 0 0 0 0 10 2 2 2 1 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 12 2 2 1 1 1 0 0 0 0 70tal Partículas 10 10 8 4 1 0 0 0 0 % de partículas aderidas 100 100 80 40 10 0 0 0 0 (c) Faixa //>Edimetro (23,1-29µm) (c) Faixa //>Edimetro (23,1-29µm) 1000 1000 1000 1000 1000 1000 1000 0	8	1	1	1	0	0	0	0	0	0	
10 2 2 1 0 0 0 0 11 0	9	1	1	1	1	0	0	0	0	0	
11 0 <	10	2	2	2	1	0	0	0	0	0	
12 2 1 1 1 0 0 0 0 Total Partículas % de partículas aderidas 10 10 8 4 1 0 <td>11</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	11	0	0	0	0	0	0	0	0	0	
Total Partículas 10 10 8 4 1 0 0 0 0 % de partículas aderidas 100 100 80 40 10 0	12	2	2	1	1	1	0	0	0	0	
% de partículas aderidas 100 100 80 40 10 0 0 0 0 Região Compressão Source Compressão Descompressão 1000 3000 5000 7000 9000 11000 13000 14000 1 2 2 1 1 0 0 0 0 0 2 0	Total Partículas	10	10	8	4	1	0	0	0	0	
(c) Faixa de diâmetro (23,1-29µm) Região Compressão Descompressão 2000 1000 3000 5000 7000 9000 11000 13000 14000 1 2 2 1 1 0 0 0 0 2 0 0 0 0 0 0 0 0 3 2 2 1 0 0 0 0 0 0 4 0 <td>% de partículas aderidas</td> <td>100</td> <td>100</td> <td>80</td> <td>40</td> <td>10</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	% de partículas aderidas	100	100	80	40	10	0	0	0	0	
Região Compressão Descompressão 2000 1000 3000 5000 7000 9000 11000 13000 14000 1 2 2 1 1 0 0 0 0 0 2 0		(c) Faixa d	le diâr	netro (23,1-2	9µm)					
2000 1000 3000 5000 7000 9000 11000 13000 14000 1 2 2 1 1 0 <t< th=""><th>Região</th><th>Compressão</th><th></th><th>1</th><th>1</th><th>Desco</th><th>mpres</th><th>são</th><th>r</th><th>r</th></t<>	Região	Compressão		1	1	Desco	mpres	são	r	r	
1 2 2 1 1 0		2000	1000	3000	5000	7000	9000	11000	13000	14000	
2 0	1	2	2	1	1	0	0	0	0	0	
3 2 2 1 0	2	0	0	0	0	0	0	0	0	0	
4 0	3	2	2	1	0	0	0	0	0	0	
5 0	4	0	0	0	0	0	0	0	0	0	
6 0	5	0	0	0	0	0	0	0	0	0	
7 1 1 1 0 0 0 0 0 0 8 1 1 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 11 1 1 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 Total Partículas 7 7 3 1 0 0 0 0 % da partículas adaridas 100 42.85 14.28 0 0 0 0 0	6	0	0	0	0	0	0	0	0	0	
8 1 1 0	7	1	1	1	0	0	0	0	0	0	
9 0	8	1	1	0	0	0	0	0	0	0	
10 0 0 0 0 0 0 0 0 11 1 1 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 Total Partículas 7 7 3 1 0 0 0 0 % da partículas adaridas 100 100 42.85 14.28 0 0 0 0	9	0	0	0	0	0	0	0	0	0	
11 1 1 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 Total Partículas 7 7 3 1 0 0 0 0 0 % do partículas adoridos 100 42.85 14.28 0 0 0 0	10	1	1	0	0	0	0	0	0	0	
12 0	11	1	0	0	0	0	0	0	0	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12 Total Dartículas	7	7	2	1	0 0	0 0	0 0	0 0	0 0	
	1 utal FaluCulas % de partículas adaridas	100	/	3 47 85	14.28	0	0	0	0	0	

Tabela B.15.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,4μm, para velocidade angular de compressão 2000rpm. 3ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

Região	Compressão				Desco	mpres	são		
Ittgiuo	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	1	0	0	0	0	0
2	2	2	2	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
5	4	4	4	3	2	2	1	1	1
6	2	2	1	1	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	3	3	3	2	1	1	1	0	0
9	2	2	1	1	1	0	0	0	0
10	4	4	4	3	2	0	0	0	0
11	2	2	2	2	0	0	0	0	0
12	2	2	1	1	0	0	0	0	0
Total Partículas	22	22	19	14	6	3	1	1	1
% de partículas aderidas	100	100	86	63,60	27,30	13,60	4,50	4,50	4,50
	(b) Faixa	a de di	âmetr	o (17 , 1	-23µm)			
Região	Compressão		1	1	Desco	mpres	são	-	1
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	0	0	0	0	0	0	0	0	0
2	2	2	2	1	0	0	0	0	0
3	2	2	1	0	0	0	0	0	0
4	3	3	2	1	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	3	3	3	1	0	0	0	0	0
7	1	1	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0
10	3	3	3	1	0	0	0	0	0
11	2	2	2	1	0	0	0	0	0
12	1	1	1	1	1	0	0	0	0
Total Partículas	17	17	14	6	1	0	0	0	0
% de partículas aderidas	(c) Faive	100 2 do di	82,35 ômetr	$\frac{35}{0(23.1)}$	6 20µm		0	0	0
Região	Compressão	a ut ui	amen	0 (23,1	Desco) mnres	รจัก		
Regiuo	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	2	2	1	0	0	0	0	0	0
4	2	2	2	0	0	0	0	0	0
5	2	1	1	1	0	0	0	0	0
6	3	1	1	1	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	2	1	1	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0
12	1	1	1	0	0	0	0	0	0

92,3

Total Partículas

% de partículas aderidas

Tabela B.16.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,4μm, para velocidade angular de compressão 5000rpm. 1ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

Região	Compressão		it ulai		Desco	<u>πητος</u>	são		
Kegiao	5000	1000	3000	5000	7000		11000	13000	14000
1	1	1	1	1	0	0	0	0	0
2	5	5	5	2	1	0	0	0	0
3	2	2	2	- 1	1	0	0	0	0
4	1	1	1	1	1	0	0	0	0
5	3	3	3	2	1	0	0	0	0
6	2	2	2	2	2	0	0	0	0
7	1	1	1	1	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	6	6	6	4	2	1	1	0	0
10	4	4	4	3	1	0	0	0	0
11	1	1	1	1	1	0	0	0	0
12	2	2	2	2	1	0	0	0	0
Total Partículas	2	2	2	20	11	1	1	0	0
1 otal Falticulas	100	100	20 100	40 71 42	20.20	1 2 57	1	0	0
% de particulas aderidas	(b) Faixa de	liême diâme	100 tro (17	/1,45 1-23u	<u>39,29</u> m)	3,57	3,57	U	U
Região	Compressão		10 (17	,1-20µ	Desco	mnres	รลึก		
ittesiao	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	2	2	2	1	0	0	0	0	0
2	1	1	1	0	0	0	0	0	0
3	1	1	1	1	1	1	0	0	0
4	1	1	1	1	0	0	0	0	0
5	3	3	2	1	0	0	0	0	0
6	1	1	1	0	0	0	0	0	0
7	2	2	2	1	0	0	0	0	0
8	1	1	1	0	0	0	0	0	0
9	2	2	2	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
11	2	2	1	0	0	0	0	0	0
12	1	1	1	1	0	0	0	0	0
Total Partículas	17	17	15	6	1	1	0	0	0
% de partículas aderidas	100	100	88 23	35 30	5 88	5 88	0	0	0
70 de particulas aderidas	(c) Faixa de	diâme	tro (23	.1-29u	m)	5,00	U	U	U
Região	Compressão				Desco	mpres	são		
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	0	0	0	0	0	0
2	3	3	2	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	3	3	2	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	1	1	1	1	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	1	1	1	1	0	0	0	0	0
9	1	1	1	0	0	0	0	0	0
10	1	1	1	0	0	0	0	0	0
11	1	1	1	0	0	0	0	0	0
12	1	1	1	0	0	0	0	0	0
Total Partículas	13	13	11	2	0	0	0	0	0
% de partículas aderidas	100	100	84,61	15,38	0	0	0	0	0

Tabela B.17.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,4μm, para velocidade angular de compressão 5000rpm. 2ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

D **	(u) 1		at alun		<u>,</u>	<i>,</i> , , , , , , , , , ,	~			
Kegião	Compressão	1000	2000	=000	Desco	mpres		1.00		40.00
	5000	1000	3000	5000	7000	9000	11000	130	00 1	4000
1	3	3	3	3	0	0	0	0)	0
2	1	1	1	1	0	0	0	0)	0
3	3	3	3	2	0	0	0	0)	0
4	0	0	0	0	0	0	0	0)	0
5	1	1	1	0	0	0	0	0)	0
6	1	1	1	1	1	1	0	0)	0
7	0	0	0	0	0	0	0	0)	0
8	1	1	1	1	0	0	0	0)	0
9	1	1	1	1	0	0	0	0)	0
10	2	2	2	2	2	1	1	0)	0
11	2	2	2	1	1	0	0	0)	0
12	1	1	1	1	1	0	0	0)	0
Total Partículas	16	16	16	13	5	2	1	0)	0
% de partículas aderidas	100	100	100	81,25	31,25	12,50	6,25	0)	0
	(b) Faixa d	le diân	netro (17,1-2.	3µm)					
Região	Compressão		1	- <u>r</u>	Desc	ompre	ssão			r –
	5000	1000	3000	5000) 700	0 90	00 110	00 1	13000	14000
1	2	2	2	2	0	0) ()	0	0
2	2	2	2	1	0	0) ()	0	0
3	3	3	3	2	0	0) ()	0	0
4	4	4	3	2	1	0) ()	0	0
5	0	0	0	0	0	0) ()	0	0
6	4	4	4	3	2	0) ()	0	0
7	3	3	2	0	0	0) ()	0	0
8	3	3	3	1	1	0) ()	0	0
9	2	2	2	0	0	0) ()	0	0
10	2	2	1	0	0	0) ()	0	0
11	0	0	0	0	0	0) ()	0	0
12	1	1	1	1	1	0) ()	0	0
Total Partículas	26	26	23	11	5	0	0)	0	0
% de partículas aderidas	100	100	88,46	42,31	1 19,2	23 0	0)	0	0
[]	(c) Faixa (le diân	netro (23,1-2	9µm)					
Região	Compressão		1	-	Desc	ompre	ssão			1
	5000	1000	3000	5000) 700	0 90	00 110	00 1	13000	14000
1	1	1	1	0	0	0) ()	0	0
2	1	1	1	0	0	0) ()	0	0
3	0	0	0	0	0	0) ()	0	0
4	0	0	0	0	0	0) ()	0	0
5	0	0	0	0	0	0) ()	0	0
6	2	2	1	0	0	0) ()	0	0
7	0	0	0	0	0	0) ()	0	0
8	0	0	0	0	0	0) 0)	0	0
9	0	0	0	0	0	0) ()	0	0
10	1	1	1	0	0	0) ()	0	0
11	0	0	0	0	0	0) ()	0	0
12	0	0	0	0	0	() ()	0	0

Total Partículas

% de partículas aderidas

Tabela B.18.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,4μm, para velocidade angular de compressão 5000rpm. 3ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

	(a) Fai	xa de (diamet	ro (11,	1-1/µn	1)			
Região	Compressão				Desco	mpress	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	3	3	3	2	0	0	0	0	0
2	3	3	3	2	0	0	0	0	0
3	5	5	3	3	2	1	0	0	0
4	6	6	6	4	3	3	3	2	1
5	5	5	4	2	2	2	0	0	0
6	6	6	4	1	0	0	0	0	0
7	5	5	5	2	2	0	0	0	0
8	7	7	5		2	0	0	0	0
0	7	3	2	2	2	0	0	0	0
10	5	5	2	1	0	0	0	0	0
10	5	5	3	2	2	2	2	1	0
11	0	2	4 2	1	 	0	2	0	0
12 Tatal Dartículas	4	5 50		1	15	0	5	2	1
	58	30	41	46 55	15	0	5	5	1 50
% de particulas aderidas	(b) Fei	100 vo do	70,69 diâmat	40,55	20,80	13,79	8,62	5,17	1,72
Dogião		xa ue	ulamet	10 (17,	<u>1-23µп</u> Доссо	<u>1)</u>	ão		
Kegiao		1000	2000	5000	7000		11000	12000	1 4000
1	1000	1000	3000	5000	/000	9000	11000	13000	14000
1	2	2	1	0	0	0	0	0	0
2	2	2	2	1	0	0	0	0	0
3	5	5	1	0	0	0	0	0	0
4 	2	2	1	l	0	0	0	0	0
5	3	3	3	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	3	3	2	0	0	0	0	0	0
8	2	2	1	0	0	0	0	0	0
9	3	3	1	1	1	0	0	0	0
10	2	2	2	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0
12	5	5	4	1	0	0	0	0	0
Total Partículas	29	29	18	4	1	0	0	0	0
% de partículas aderidas	100	100	64,28	13,79	3,45	0	0	0	0
	(c) Fai	xa de (diâmet	ro (23,	1-29µn	1)			
Região	Compressão		1		Desco	mpress	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0
4	2	2	1	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	1	1	1	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	3	3	1	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0
10	2	2	1	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

26,66

Tabela B.19.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,8µm, para velocidade angular de compressão 1000rpm. 1ª CORRIDA

	(a) Fai	xa de (ilamet	ro (11,	1-1/μ η	1)			
Região	Compressão			1	Desco	mpress	são	1	
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	3	3	2	1	0	0	0	0	0
2	4	4	2	2	0	0	0	0	0
3	5	5	3	3	2	1	1	1	1
4	1	1	1	0	0	0	0	0	0
5	5	5	4	2	1	0	0	0	0
6	3	3	1	1	1	0	0	0	0
7	5	5	4	1	0	0	0	0	0
8	1	1	1	1	0	0	0	0	0
9	6	6	5	4	2	1	0	0	0
10	6	6	4	3	0	0	0	0	0
11	3	3	2	2	1	0	0	0	0
12	4	4	2	1	0	0	0	0	0
Total Partículas	46	46	31	21	7	2	1	1	1
% de partículas aderidas	100	100	67,39	45,65	15,27	4,35	2,17	2,17	2,17
•	(b) Fai	xa de (diâmet	ro (17,	1-23µn	1)		• •	<u> </u>
Região	Compressão				Desco	mpres	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	4	4	4	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	2	2	1	1	0	0	0	0	0
5	3	3	1	0	0	0	0	0	0
6	5	5	2	0	0	0	0	0	0
7	3	3	2	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	1	1	1	0	0	0	0	0	0
10	3	3	2	0	0	0	0	0	0
11	4	4	1	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0
Total Partículas	31	31	14	1	0	0	0	0	0
% de partículas aderidas	100	100	45,16	3,23	0	0	0	0	0
	(c) Fai	xa de (diâmet	ro (23,	1-29µn	1)			
Região	Compressão				Desco	mpres	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	0	0	0	0	0	0	0
2	1	1	1	0	0	0	0	0	0
3	2	2	0	0	0	0	0	0	0
4	2	2	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	1	1	0	0	0	0	0	0	0
7	1	1	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	2	2	0	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

13,33

Tabela B.20.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,8μm, para velocidade angular de compressão 1000rpm. 2ª CORRIDA

	(a) rai	xa ue o	nameu	ro (11,	ι-1/μπ	1)			
Região	Compressão				Desco	mpress	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	5	5	5	3	2	1	1	0	0
2	3	3	3	2	1	0	0	0	0
3	5	5	5	1	0	0	0	0	0
4	5	5	5	2	0	0	0	0	0
5	2	2	2	2	1	1	0	0	0
6	3	3	3	1	0	0	0	0	0
7	1	1	1	0	0	0	0	0	0
8	3	3	3	3	3	0	0	0	0
9	3	3	2	2	2	1	1	1	0
10	0	0	0	0	0	0	0	0	0
11	3	3	3	2	1	0	0	0	0
12	3	3	2	1	0	0	0	0	0
Total Partículas	36	36	31	19	10	3	2	1	0
% de partículas aderidas	100	100	86,71	52,78	27,78	8,33	5,55	2,78	0
	(b) Fai	xa de (diâmet	ro (17,1	1-23µn	n)	• •		•
Região	Compressão				Desco	mpres	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	3	3	2	1	0	0	0	0	0
2	2	2	1	1	0	0	0	0	0
3	1	1	1	0	0	0	0	0	0
4	3	3	3	0	0	0	0	0	0
5	2	2	1	0	0	0	0	0	0
6	1	1	1	0	0	0	0	0	0
7	1	1	0	0	0	0	0	0	0
8	4	4	2	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0
10	1	1	1	0	0	0	0	0	0
11	3	3	0	0	0	0	0	0	0
12	1	1	1	0	0	0	0	0	0
Total Partículas	22	22	13	2	0	0	0	0	0
% de partículas aderidas	100	100	59,10	9,10	0	0	0	0	0
ſ	(c) Fai	xa de (diâmet	ro (23,1	1-29µn	ı)			
Região	Compressão		1	1	Desco	mpres	são	r	
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	2	2	1	0	0	0	0	0	0
2	2	2	1	0	0	0	0	0	0
3	3	2	1	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
5	1	1	0	0	0	0	0	0	0
6	1	1	0	0	0	0	0	0	0
7	1	1	1	1	0	0	0	0	0
8	1	1	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

93,33 26,70 6,67

Tabela B.21.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,8μm, para velocidade angular de compressão 1000rpm. 3ª CORRIDA

	(a) Fai	xa de (diamet	ro (11,	l-17/μm	l)			
Região	Compressão				Desco	mpress	são		
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	3	3	2	1	0	0	0	0	0
2	3	3	3	2	1	0	0	0	0
3	3	3	3	1	1	0	0	0	0
4	2	2	2	1	0	0	0	0	0
5	2	2	2	1	1	1	0	0	0
6	2	2	2	2	1	1	0	0	0
7	1	1	1	1	0	0	0	0	0
8	3	3	3	2	0	0	0	0	0
9	4	4	3	2	1	1	0	0	0
10	2	2	2	1	0	0	0	0	0
11	2	2	2	2	2	1	0	0	0
12	1	1	1	1	1	1	1	1	0
Total Partículas	28	28	26	16	8	5	1	1	0
% de partículas aderidas	100	100	92,86	57,14	28,60	17,86	3,57	3,57	0
Γ	(b) Fai	xa de (diâmet	ro (17,1	l-23µm	l)			
Região	Compressão		r		Desco	mpres	são		
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	1	0	0	0	0	0
2	3	3	2	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0
4	3	3	2	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	2	2	2	2	1	0	0	0	0
7	1	1	1	0	0	0	0	0	0
8	1	1	1	1	1	0	0	0	0
9	3	3	2	0	0	0	0	0	0
10	2	2	2	0	0	0	0	0	0
11	2	2	2	0	0	0	0	0	0
12	1	1	1	1	0	0	0	0	0
Total Partículas	20	20	16	5	2	0	0	0	0
% de partículas aderidas	100	100	80	25	10	0	0	0	0
	(c) Fai	xa de (diâmet	ro (23,1	l-29µm	l)			
Região	Compressão		r	1	Desco	mpres	são		1
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	3	2	1	0	0	0	0	0	0
2	2	2	1	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	2	2	2	1	0	0	0	0	0
5	1	1	1	0	0	0	0	0	0
6	2	2	1	0	0	0	0	0	0
7		^	1			0	0	0	

Tabela B.22.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,8µm, para velocidade angular de compressão 2000rpm. 1ª CORRIDA

Região	Compressão				Desco	ompres	ssão		
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	3	2	1	0	0	0	0	0	0
2	2	2	1	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	2	2	2	1	0	0	0	0	0
5	1	1	1	0	0	0	0	0	0
6	2	2	1	0	0	0	0	0	0
7	2	2	1	0	0	0	0	0	0
8	1	1	0	0	0	0	0	0	0
9	5	5	1	1	0	0	0	0	0
10	1	1	1	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0
Total Partículas	19	18	8	2	0	0	0	0	0
% de partículas aderidas	100	95	42,10	10,53	0	0	0	0	0

	(a) Fa	xa de (llamet	ro (11,	1-1/μ	n)			
Região	Compressão			1	Desc	mpress	são	1	T
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	2	2	2	1	1	1	1	1	1
2	2	2	2	1	1	0	0	0	0
3	2	2	2	2	2	1	1	1	0
4	2	2	2	1	1	1	1	0	0
5	5	5	5	2	1	1	1	0	0
6	1	1	1	1	0	0	0	0	0
7	3	3	1	0	0	0	0	0	0
8	3	3	3	2	2	1	0	0	0
9	3	3	3	0	0	0	0	0	0
10	6	6	5	3	1	1	1	1	1
11	3	3	3	1	1	0	0	0	0
12	6	6	5	1	0	0	0	0	0
Total Partículas	38	38	36	15	10	6	5	3	2
% de partículas aderidas	100	100	94,74	39,48	26,32	2 15,80	13,16	7,90	5,26
	(b) Fai	xa de (diâmet	ro (17,	1-23µr	n)			
Região	Compressão				Desco	mpress	ão		1
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	0	0	0	0	0	0
2	1	1	1	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	3	3	2	1	1	1	1	1	0
5	3	3	2	1	0	0	0	0	0
6	2	2	2	2	2	1	1	1	0
7	0	0	0	0	0	0	0	0	0
8	1	1	0	0	0	0	0	0	0
9	2	2	2	0	0	0	0	0	0
10	2	2	1	0	0	0	0	0	0
11	2	2	2	0	0	0	0	0	0
12	3	3	3	1	0	0	0	0	0
Total Partículas	20	20	16	5	3	2	2	2	0
% de partículas aderidas	100	100	80	25	15	10	10	10	0
	(c) Fai	xa de (diâmet	ro (23,	1-29µr	n)			
Região	Compressão		-	1	Desco	mpress	ão		
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	2	2	2	0	0	0	0	0	0
2	2	2	2	1	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0
4	1	1	1	1	0	0	0	0	0
5	1	1	0	0	0	0	0	0	0
6	2	2	2	0	0	0	0	0	0
7	1	1	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

73,68 10,52

Tabela B.23.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,8μm, para velocidade angular de compressão 2000rpm. 2ª CORRIDA

Região	(a) Fai		ulanici	10 (11,		mnres	são		
Regiao	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	2.	2	1	1	1	1	1	0	0
2	2	2	2	2	1	1	0	0	0
3	2	2	2	1	1	0	0	0	0
4	3	3	1	1	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	2	2	2	2	2	2	1	1	1
7	0	0	0	0	0	0	0	0	0
8	2	2	2	2	2	0	0	0	0
9	4	4	4	2	1	1	1	1	1
10	3	3	3	2	1	0	0	0	0
11	1	1	1	1	0	0	0	0	0
12	4	4	4	4	3	2	1	1	1
Total Partículas	25	25	22	18	12	6	4	3	3
% de partículas aderidas	100	100	88	72	48	24	16	12	12
	(b) Fai	xa de (diâmet	ro (17,	, 1-23 μι	m)			
Região	Compressão				Desco	ompres	são	<u> </u>	<u> </u>
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	2	2	2	1	0	0	0	0	0
2	1	1	1	0	0	0	0	0	0
3	2	2	1	0	0	0	0	0	0
4	1	1	1	1	0	0	0	0	0
5	2	2	2	0	0	0	0	0	0
6	1	1	1	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	1	1	1	1	0	0	0	0	0
9	1	1	0	0	0	0	0	0	0
10	1	1		0	0	0	0	0	0
12	1	1	1	0	0	0	0	0	0
	4	4	4		0	0	0	0	0
Total Particulas	17	1/	15	4		0	0	0	0
% de particulas aderidas	100 (c) Fai	100 vo do	88,24 diâmat	23,53 ro (23) <u> </u>	<u> </u>	0	U	U
Região	Compressão	na uc	ulullici	10 (20)	Desco	mnres	รลึก		
Regiuo	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	0	0	0	0	0	0	0	0	0
2	1	1	1	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	1	1	1	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	1	1	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	1	1	0	0	0	0	0	0	0
9	1	1	1	0	0	0	0	0	0
10	3	3	1	0	0	0	0	0	0
11	1	1	1	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

100 66,67

Tabela B.24.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,8μm, para velocidade angular de compressão 2000rpm. 3ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

(a) Faixa de diametro (11,1-1/µm)										
Região	Compressão				Desco	mpres	são			
	5000	1000	3000	5000	7000	9000	11000	13000	14000	
1	2	2	2	2	2	0	0	0	0	
2	3	3	3	3	1	0	0	0	0	
3	1	1	1	1	0	0	0	0	0	
4	4	4	4	3	1	1	0	0	0	
5	2	2	2	2	2	2	1	1	1	
6	2	2	2	0	0	0	0	0	0	
7	5	5	5	4	0	0	0	0	0	
8	4	4	4	1	1	1	1	1	1	
9	3	3	3	1	0	0	0	0	0	
10	3	3	3	1	1	1	1	1	1	
11	0	0	0	0	0	0	0	0	0	
12	4	4	4	1	0	0	0	0	0	
Total Partículas	33	33	32	19	8	5	3	2	1	
% de partículas aderidas	100	100	97	60	24,3	15,15	9	6	3	
	(b) Fai	ixa de (diâmet	ro (17	,1-23μι –	m)				
Região	Compressão				Desco	mpress	são	1	1	
	5000	1000	3000	5000	7000	9000	11000	13000	14000	
1	2	2	2	0	0	0	0	0	0	
2	2	2	2	1	0	0	0	0	0	
3	4	4	4	0	0	0	0	0	0	
4	2	2	2	0	0	0	0	0	0	
5	1	1	1	1	0	0	0	0	0	
6	1	1	1	1	0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	
8	1	1	1	0	0	0	0	0	0	
9	3	3	3	2	0	0	0	0	0	
10	0	0	0	0	0	0	0	0	0	
11	2	2	2	2	1	0	0	0	0	
12	1	1	1	0	0	0	0	0	0	
Total Partículas	19	19	18	7	1	0	0	0	0	
% de particulas aderidas	100 (a) Fai	100 vo do	95 diâmat	36,84	1 20	<u> </u>	U	0	U	
Dogião	(C) Fai	laa ue	utamet	10 (23)	- <u>1-2</u> 9μι		~~~~			
Kegiao	Compressão 5000	1000	2000	5000	7000	loooo	11000	12000	14000	
1	5000	1000	3000	5000	/000	9000	11000	13000	14000	
1	0	1	0	0	0	0	0	0	0	
2	1	1	1	1	0	0	0	0	0	
<u> </u>	1	1	1	1	0	0	0	0	0	
4 5	1	1	1	0	0	0	0	0	0	
6	0	0	0	0	0	0	0	0	0	
7	2	2	2	1	0	0	0	0	0	
8	0	0	0	0	0	0	0	0	0	
9	1	1	1	0	0	0	0	0	0	
10	1	1	1	0	0	0	0	0	0	

Total Partículas

% de partículas aderidas

89,00

Tabela B.25.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,8µm, para velocidade angular de compressão 5000rpm. 1ª CORRIDA

[(a) Fai	xa de (diamet	ro (11,	$1 - 17 \mu r$	n)			
Região	Compressão				Desco	mpres	são	-	1
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	1	1	1	1	1	1
2	0	0	0	0	0	0	0	0	0
3	2	2	2	2	1	0	0	0	0
4	1	1	1	1	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	4	4	4	2	2	2	1	1	1
8	1	1	1	1	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0
10	1	1	1	1	0	0	0	0	0
11	2	2	2	0	0	0	0	0	0
12	1	1	1	1	1	1	0	0	0
Total Partículas	13	13	13	9	5	4	2	2	2
% de partículas aderidas	100	100	100	69,23	38,46	30,77	15,38	15,38	15,38
	(b) Fai	xa de (diâmet	ro (17,	1-23µr	n)			
Região	Compressão				Desco	mpres	são		
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	1	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	1	1	1	1	0	0	0	0	0
5	1	1	1	0	0	0	0	0	0
6	1	1	1	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	2	2	2	1	0	0	0	0	0
9	1	1	1	1	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
11	2	2	1	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0
Total Partículas	9	9	8	4	0	0	0	0	0
% de partículas aderidas	100	100	88,90	44,44	0	0	0	0	0
	(c) Fai	xa de (diâmet	ro (23,	1-29µr	n)			
Região	Compressão				Desco	mpres	são		
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	0	0	0	0	0	0	0	0	0
2	1	1	1	1	0	0	0	0	0
3	1	1	1	0	0	0	0	0	0
4	1	1	0	0	0	0	0	0	0
5	1	1	1	0	0	0	0	0	0
6	1	1	1	0	0	0	0	0	0
7	2	2	1	0	0	0	0	0	0
8	2	2	1	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0

Tabela B.26.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,8μm, para velocidade angular de compressão 5000rpm. 2ª CORRIDA

Total Partículas % de partículas aderidas

	(a) Faixa de diâmetro (11,1-17µm)										
Região	Compressão				Desco	mpress	são				
	5000	1000	3000	5000	7000	9000	11000	13000	14000		
1	2	2	2	1	1	1	1	1	1		
2	1	1	1	1	1	1	0	0	0		
3	2	2	2	0	0	0	0	0	0		
4	2	2	2	2	2	1	1	1	1		
5	3	3	3	2	2	2	0	0	0		
6	2	2	2	2	1	1	0	0	0		
7	1	1	1	1	1	1	1	0	0		
8	3	3	3	3	3	0	0	0	0		
9	3	3	3	3	2	1	1	0	0		
10	4	4	4	2	1	1	0	0	0		
11	1	1	1	1	1	0	0	0	0		
12	2	2	2	2	2	2	1	0	0		
Total Partículas	26	26	26	20	17	11	5	2	2		
% de partículas aderidas	100	100	100	76,92	65,39	42,31	19,23	7,69	7,69		
	(b) Fai	xa de (diâmet	ro (17,	1-23µn	1)					
Região	Compressão				Desco	mpres	são				
	5000	1000	3000	5000	7000	9000	11000	13000	14000		
1	0	0	0	0	0	0	0	0	0		
2	1	1	1	1	0	0	0	0	0		
3	1	1	1	0	0	0	0	0	0		
4	2	2	2	2	0	0	0	0	0		
5	3	3	3	2	0	0	0	0	0		
6	1	1	0	0	0	0	0	0	0		
7	0	0	0	0	0	0	0	0	0		
8	2	2	2	0	0	0	0	0	0		
9	1	1	1	0	0	0	0	0	0		
10	3	3	3	1	0	0	0	0	0		
11	0	0	0	0	0	0	0	0	0		
12	0	0	0	0	0	0	0	0	0		
Total Partículas	14	14	13	6	0	0	0	0	0		
% de partículas aderidas	100	100	92,86	42,86	0	0	0	0	0		
Γ	(c) Fai	xa de (diâmet	ro (23,	1-29µn	1)					
Região	Compressão				Desco	mpres	são				
	5000	1000	3000	5000	7000	9000	11000	13000	14000		
1	0	0	0	0	0	0	0	0	0		
2	2	2	1	1	0	0	0	0	0		
3	1	1	0	0	0	0	0	0	0		
4	0	0	0	0	0	0	0	0	0		
5	0	0	0	0	0	0	0	0	0		
6	0	0	0	0	0	0	0	0	0		
7	1	1	1	0	0	0	0	0	0		
8	0	0	0	0	0	0	0	0	0		
9	1	1	1	1	0	0	0	0	0		

Total Partículas

% de partículas aderidas

72,73 1,82

Tabela B.27.: Análise das partículas aderidas para o sistema fuligem/membrana de éster-celulose 0,8μm, paravelocidade angular de compressão 5000rpm. 3ª CORRIDA

D '~										
Regiao	Compressao				Desco	mpress	sao			
	1000	1000	3000	5000	7000	9000	11000	13000	14000	
1	3	3	2	1	1	1	1	1	1	
2	2	2	2	0	0	0	0	0	0	
3	3	3	2	1	0	0	0	0	0	
4	10	10	7	1	0	0	0	0	0	
5	6	6	6	2	1	0	0	0	0	
6	3	3	2	0	0	0	0	0	0	
7	6	6	5	2	2	1	0	0	0	
8	3	3	3	2	1	0	0	0	0	
9	5	5	4	1	0	0	0	0	0	
10	4	4	3	0	0	0	0	0	0	
11	6	6	4	3	3	0	0	0	0	
12	2	2	2	0	0	0	0	0	0	
Total Partículas	53	53	12	13	0 0	2	1	1	1	
10tal Farticulas	100	55 100	42	13	0	2	1 00	1 00	1 00	
% de particulas aderidas	100 (b) Fei	100 vo do	/9 diâmat	<u>24,55</u>	1 22	<u>3,11</u>	1,88	1,00	1,88	
Dogião	(D) Fai	sa ue	ulamet	10(17,	<u>1-23μι</u> Doc <i>o</i> ο	nnnog	200			
Kegiao	Long	1000	2000	5000	Desco	inpres	11000	12000	1 4000	
	1000	1000	3000	5000	7000	9000	11000	13000	14000	
1	1	1	0	0	0	0	0	0	0	
2	2	2	1	0	0	0	0	0	0	
3	3	3	2	0	0	0	0	0	0	
4	1	1	0	0	0	0	0	0	0	
5	4	4	3	0	0	0	0	0	0	
6	3	3	0	0	0	0	0	0	0	
7	2	2	1	0	0	0	0	0	0	
8	4	3	1	0	0	0	0	0	0	
9	6	5	2	0	0	0	0	0	0	
10	3	3	1	1	0	0	0	0	0	
11	1	1	0	0	0	0	0	0	0	
12	3	3	0	0	0	0	0	0	0	
Total Partículas	33	32	11	1	0	0	0	0	0	
% de partículas aderidas	100	97	33,33	3	0	0	0	0	0	
<u> </u>	(c) Fai	xa de	diâmet	ro (23,	1-29µr	n)				
Região	Compressão				Desco	mpress	são			
0	1000	1000	3000	5000	7000	9000	11000	13000	14000	
1	4	4	1	0	0	0	0	0	0	
2	1	1	0	0	0	0	0	0	0	
3	2	2	1	0	0	0	0	0	0	
<u> </u>	2	2	0	0	0	0	0	0	0	
5	2	2	1	0	0	0	0	0	0	
6	2	2	0	0	0	0	0	0	0	
7	2	2 2	1	0	0	0	0	0	0	
1	3	2		0	0	0	0	0	0	
ð C	<u> </u>	 1	1		0	0	0	0	0	
<u> </u>				0	0	0	0	0	0	
10	4	4	1	0	0	0	0	0	0	
11	1	1	1	· · ·						

Total Partículas

% de partículas aderidas

26.92

Tabela B.28.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,2μm, para velocidade angular de compressão 1000rpm. 1ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

	(a) Fa	LA UC	uramet	10 (11,		u <i>)</i>			
Região	Compressão			1	Desco	mpres	são	-	1
	1000	1000	3000	5000	7000	9000	11000) 13000	14000
1	4	4	4	4	2	1	1	1	1
2	5	5	5	4	1	1	1	0	0
3	1	1	1	1	0	0	0	0	0
4	2	2	2	1	0	0	0	0	0
5	2	2	2	0	0	0	0	0	0
6	3	3	2	1	1	0	0	0	0
7	2	2	2	1	0	0	0	0	0
8	2	2	2	0	0	0	0	0	0
9	2	2	1	1	1	0	0	0	0
10	2	2	2	2	2	1	0	0	0
11	1	1	1	1	1	0	-	0	0
12	1	1	1	1	1	1	1	0	0
Total Partículas	27	27	25	17	8	4	3	1	1
% de partículas aderidas	100	100	92.60	63	29.63	14.70	11.11	3.70	3.70
<i>to</i> uc pur riculus aderidus	(b) Fai	xa de (diâmet	ro (17.	1-23ur	n)			5,10
Região	Compressão				Desco	mpres	são		
8	1000	1000	3000	5000	7000	9000	11000) 13000	14000
1	1	1	1	0	0	0	0	0	0
2	1	1	1	1	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
5	1	1	1	0	0	0	0	0	0
6	1	1	1	1	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	1	1	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0
10	2	2	1	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0
12	2	2	2	1	1	0	0	0	0
Total Partículas	0	0	7	1	1	0	0	0	0
10tal 1 al ticulas	<u> </u>	- - 7 - 100	, 	22 22	11 11		0	0	0
70 ue particulas auci luas	(c) Fai	xa de i	diâmet	ro (23	1-29ur	n)	U	U	U
Região	Compressão			10 (20)	Desco	mnres	รลึก		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	2	1	1	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0
0	1	1		0	0	0	0	0	0
9	1	1	0	0	0	0	0	0	0
10	1	1	0	0	0	0	0	0	0
12	1	1	1	0	0	0	0	0	0
Total Partículas	7	7	3	0	0	0	0	0	0

% de partículas aderidas

Tabela B.29.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,2µm, para velocidade angular de compressão 1000rpm. 2ª CORRIDA (a) Faixa de diâmetro (11.1-17um)

Região	Compressão	inu uc	uiuiiie	10 (11)	<u>.</u> Ποςεο	mnros	- 		
Keglau	1000	1000	3000	5000	7000		11000	13000	1/000
1	1000	1000	1	2000	1	1	1	13000	0
2	4	4	4	2	0	1	1	1	0
2		1	1	0	0	0	0	0	0
3	1	1	1	1	0	0	0	0	0
5	4	4	4	1	1	0	0	0	0
5	3	2	2	3	1	0	0	0	0
0	2	 1	 1	1	0	0	0	0	0
0	1	1	1	1	0	0	0	0	0
0	1	1	2	1	0	0	0	0	0
9	3	2	2	1	0	0	0	0	0
10	2	2	2	0	0	0	0	0	0
11	2	2	2	1	1	0	0	0	0
	3	3	2	1	1	0	0	0	0
Total Particulas	30	30	27	15	3	1	1	1	0
% de particulas aderidas	100 (b) East	100	90 J: ô-m o 4	50	10	3,33	3,33	3,33	0
Dogião	(D) Fai	xa de (ulamet	ro (17,	<u>,1-23μ</u>	m)	~~~~		
Kegiao		1000	2000	5000	Descu		Sau 11000	12000	1 4000
1	1000	1000	3000	5000	/000	9000	11000	13000	14000
1	1	1	1	0	0	0	0	0	0
2	3	3	2	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0
4	2	2	2	1	0	0	0	0	0
5	2	2	2	1	0	0	0	0	0
6	1	1	l	1	0	0	0	0	0
7	2	1	0	0	0	0	0	0	0
8	1	0	0	0	0	0	0	0	0
9	2	2	2	0	0	0	0	0	0
10	3	3	0	0	0	0	0	0	0
11	3	3	3	0	0	0	0	0	0
12	2	2	2	0	0	0	0	0	0
Total Partículas	23	21	15	3	0	0	0	0	0
% de partículas aderidas	$\frac{100}{(2)}$	91,3	65,21	13	1 20		0	0	0
Destão	(c) Fai	xa ue (uramet	ro (23,	,1-29μ Deces	(III) 	~~~		
Kegiao		1000	2000	5000	Desco 7000	npres	sao 11000	12000	14000
1	2	2	1	5000	/000	9000	0	13000	14000
2	2	2	1	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
4	1	0	0	0	0	0	0	0	0
5	0	1	1	1	0	0	0	0	0
0	1	1	1	1	0	0	0	0	0
/	1	1	1	0	0	0	0	0	0
<u>ð</u>	1	1	1	1	0	0	0	0	0
10	1	1	1	1	0	0	0	0	0
10	1	1	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

Tabela B.30.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,2μm, para velocidade angular de compressão 1000rpm. 3ª CORRIDA
 (a) Faixa de diâmetro (11.1-17μm)

	(a) Faixa de diametro (11,1-1/µm)									
Região	Compressão				Desco	mpress	são			
	2000	1000	3000	5000	7000	9000	11000	13000	14000	
1	5	5	5	4	4	3	1	1	1	
2	5	5	5	3	0	0	0	0	0	
3	3	3	3	1	0	0	0	0	0	
4	4	4	4	2	1	0	0	0	0	
5	3	3	3	2	1	0	0	0	0	
6	2	2	2	0	0	0	0	0	0	
7	5	5	4	3	0	0	0	0	0	
0	2	2	4	3	0	0	0	0	0	
0	5	5	2	1	0	0	0	0	0	
9	3	2	2	1	1	1	1	1	0	
10	3	3	3	2	1	1	1	1	0	
11	3	3	2	0	0	0	0	0	0	
12	6	6	6	2	2	1	0	0	0	
Total Partículas	47	47	43	21	9	5	2	2	1	
% de partículas aderidas	100	100	91,5	44,68	19	10,64	4,25	4,25	2,13	
	(b) Fai	xa de o	diâmet	ro (17,	1-23µn	n)				
Região	Compressão		1		Desco	mpress	são	1		
	2000	1000	3000	5000	7000	9000	11000	13000	14000	
1	4	4	2	0	0	0	0	0	0	
2	5	4	2	0	0	0	0	0	0	
3	5	5	4	1	0	0	0	0	0	
4	1	1	0	0	0	0	0	0	0	
5	5	5	3	0	0	0	0	0	0	
6	3	1	0	0	0	0	0	0	0	
7	4	3	1	0	0	0	0	0	0	
8	3	3	1	1	0	0	0	0	0	
9	5	5	2	2	0	0	0	0	0	
10	7	7	4	1	0	0	0	0	0	
11	3	2	1	1	0	0	0	0	0	
12	1	1	1	0	0	0	0	0	0	
Total Partículas	46	41	21	6	0	0	0	0	0	
% de partículas aderidas	100	89,13	45,7	13,04	0	0	0	0	0	
^	(c) Fai	xa de o	diâmet	ro (23,	1-29µn	n)				
Região	Compressão				Desco	mpress	ão			
	2000	1000	3000	5000	7000	9000	11000	13000	14000	
1	3	2	0	0	0	0	0	0	0	
2	5	5	3	0	0	0	0	0	0	
3	1	1	0	0	0	0	0	0	0	
4	2	2	1	0	0	0	0	0	0	
5	2	2	0	0	0	0	0	0	0	
6	3	1	0	0	0	0	0	0	0	
7	3	3	2	0	0	0	0	0	0	
8	4	4	1	0	0	0	0	0	0	
9	5	5	1	0	0	0	0	0	0	
10	3	3	0	0	0	0	0	0	0	
11	2	1	0	0	0	0	0	0	0	

24.24

Total Partículas

% de partículas aderidas

Tabela B.31.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,2µm, para velocidade angular de compressão 2000rpm. 1ª CORRIDA (a) Faixa de diâmetro (11.1-17um)

	(a) Fai	ixa de	diamet	(a) Faixa de diâmetro (11,1-17µm)									
Região	Compressão				Desco	mpress	são						
	2000	1000	3000	5000	7000	9000	11000	13000	14000				
1	3	3	3	1	1	0	0	0	0				
2	3	3	3	2	0	0	0	0	0				
3	6	6	6	4	1	0	0	0	0				
4	5	5	3	1	1	1	1	0	0				
5	2	2	2	1	1	0	0	0	0				
6	3	3	3	2	1	0	0	0	0				
7	3	3	3	2	1	1	0	0	0				
8	4	4	2	2	1	1	0	0	0				
9	2	2	2	1	0	0	0	0	0				
10	4	4	3	1	1	1	0	0	0				
11	2	2	2	1	1	1	0	0	0				
12	4	4	4	2	1	1	1	0	0				
Total Partículas	41	41	36	20	10	7	2	0	0				
% de partículas aderidas	100	100	87,8	49	24,39	17	4,88	0	0				
	(b) Fai	ixa de	diâmet	ro (17,	1-23µn	n)							
Região	Compressão		1	r	Desco	mpres	são	1	1				
	2000	1000	3000	5000	7000	9000	11000	13000	14000				
1	1	1	1	0	0	0	0	0	0				
2	2	2	1	1	0	0	0	0	0				
3	1	1	1	1	0	0	0	0	0				
4	0	0	0	0	0	0	0	0	0				
5	2	2	2	1	0	0	0	0	0				
6	2	2	2	1	1	0	0	0	0				
7	1	1	1	1	0	0	0	0	0				
8	3	3	3	1	1	0	0	0	0				
9	3	3	2	1	0	0	0	0	0				
10	2	2	2	0	0	0	0	0	0				
11	3	3	3	1	0	0	0	0	0				
12	2	2	1	0	0	0	0	0	0				
Total Partículas	22	22	19	8	2	0	0	0	0				
% de partículas aderidas	100 (c) Est	100	86,40	36,36	9,09	0	0	0	0				
D !? .	(c) Fa	xa de	alamet	ro (23,	1-29μn D	n)	~ .						
Kegiao	Compressao	1000	2000	5000	Desco	npress	5a0	12000	1 40 00				
1	2000	1000	3000	5000	7000	9000	11000	13000	14000				
2	1	1	0	0	0	0	0	0	0				
2	0	0	0	0	0	0	0	0	0				
3	0	1	0	0	0	0	0	0	0				
5	0	0	0	0	0	0	0	0	0				
6	1	1	1	0	0	0	0	0	0				
7	0	0	0	0	0	0	0	0	0				
8	1	1	1	0	0	0	0	0	0				
9	0	0	0	0	0	0	0	0	0				
10	3	3	Ő	Ŏ	Ő	Ő	0	0	Ő				

Tabela B.32.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,2µm, para velocidade angular de compressão 2000rpm. 2ª CORRIDA (a) Faixa de diâmetro (11,1-17µm)

Região	Compressão	Descompressão									
	2000	1000	3000	5000	7000	9000	11000	13000	14000		
1	1	1	0	0	0	0	0	0	0		
2	0	0	0	0	0	0	0	0	0		
3	0	0	0	0	0	0	0	0	0		
4	1	1	0	0	0	0	0	0	0		
5	0	0	0	0	0	0	0	0	0		
6	1	1	1	0	0	0	0	0	0		
7	0	0	0	0	0	0	0	0	0		
8	1	1	1	0	0	0	0	0	0		
9	0	0	0	0	0	0	0	0	0		
10	3	3	0	0	0	0	0	0	0		
11	0	0	0	0	0	0	0	0	0		
12	0	0	0	0	0	0	0	0	0		
Total Partículas	7	7	2	0	0	0	0	0	0		
% de partículas aderidas	100	100	28,60	0	0	0	0	0	0		

	(a) Fa	Aa ue	ulamet	10 (11,	μ1-1/μ	II)			
Região	Compressão				Desco	mpres	são		
8	2000	1000	3000	5000	7000		1100	0 13000	1/000
1	2000	2	2	2000	////		0	0 13000	0
1	3	3	3	2	0	0	0	0	0
2	3	3	I	1	0	0	0	0	0
3	3	3	3	1	0	0	0	0	0
4	3	3	3	2	1	1	0	0	0
5	2	2	2	2	0	0	0	0	0
6	3	3	1	0	0	0	0	0	0
7	3	3	2	1	1	0	0	0	0
, ,	3	2	2	1	1	0	0	0	0
8	1	1	1	1	1	0	0	0	0
9	1	1	1	1	1	0	0	0	0
10	4	4	4	2	1	0	0	0	0
11	3	3	3	2	1	0	0	0	0
12	3	3	2	1	0	0	0	0	0
Total Partículas	34	34	28	16	5	1	0	0	0
% de partículas aderidas	100	100	82,40	47,05	14,7	0 2,94	0	0	0
	(b) Fai	xa de (diâmet	ro (17,	1-23µ	n)			
Região	Compressão				Desco	mpres	รลืด		
	2000	1000	3000	5000	7000	0000	11000	13000	1/000
1	1	1000	1	5000	/000	000	11000	0	14000
1	1	1	1	0	0	0	0	0	0
2	2	2	I	0	0	0	0	0	0
3	2	2	1	1	1	0	0	0	0
4	2	2	2	0	0	0	0	0	0
5	2	2	2	1	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	1	1	1	1	0	0	0	0	0
8	1	1	1	0	0	0	0	0	0
9	3	3	2	0	0	0	0	0	0
10	5	5	2	0	0	0	0	0	0
11	3	2	2	0	0	0	0	0	0
11	5	0	2	0	0	0	0	0	0
	0	0	17	0	1	0	0	0	0
Total Particulas	22	22	15	3	1	U	U	0	U
% de particulas aderidas	100	100	68,20	13,64	4,55		0	0	0
	(c) Fai	xa de (diamet	ro (23,	, 1-29μ ι	<u>n)</u>			
Região	Compressão				Desco	mpress	ão		
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	2	1	1	1	0	0	0	0	0
2	2	2	0	0	0	0	0	0	0
3	3	2	1	0	0	0	0	0	0
4	1	1	0	0	0	0	0	0	0
5	2	2	2	0	0	0	0	0	0
5	3	2	2	0	0	0	0	0	0
6	3	5	2	0	0	0	0	0	0
7	1	1	1	0	0	0	0	0	0
8	1	1	1	0	0	0	0	0	0
9	3	3	2	0	0	0	0	0	0
10	4	4	1	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0
12	2	2	1	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

Tabela B.33.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,2μm, para velocidade angular de compressão 2000rpm. 3ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

	(a) rai	xa de (uramet	ro (11	,1-1/μι	II)			
Região	Compressão				Desco	mpres	são		
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	1	1	1	1	1	1
2	3	3	3	1	0	0	0	0	0
3	4	4	4	3	2	2	0	0	0
4	2	2	2	1	0	0	0	0	0
5	3	3	3	3	1	1	0	0	0
6	5	5	5	3	1	1	0	0	0
7	4	4	4	3	1	1	0	0	0
8	4	4	4	3	0	0	0	0	0
9	3	3	3	2	2	2	1	0	0
10	2	2	2	1	0	0	0	0	0
11	3	3	3	1	0	0	0	0	0
12	2	2	2	1	0	0	0	0	0
Total Partículas	36	36	36	23	8	8	1	1	1
% de partículas aderidas	100	100	100	64	22.22	22.22	2.77	2.77	2.77
	(b) Fai	xa de (diâmet	ro (17	,1-23µı	<u>n)</u>	_,	_,	_,
Região	Compressão				Desco	mpres	são		
8	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	0	0	0	0	0	0	0	0	0
2	3	3	3	1	1	0	0	0	0
3	4	4	4	1	1	0	0	0	0
4	2	2	2	1	1	0	0	0	0
5	1	1	1	1	0	0	0	0	0
6	1	1	1	1	1	0	0	0	0
7	0	0	0	0	0	0	0	0	0
0	0	2	1	1	0	0	0	0	0
0	2	2	2	1	1	0	0	0	0
9	5	5	5	2	1	0	0	0	0
10	5	5	5		2	0	0	0	0
11	5	3	2	1	0	0	0	0	0
12	2	2	2	1	0	0	0	0	0
Total Partículas	28	28	27	11	6	0	0	0	0
% de partículas aderidas		100	96,43	39,30) 21,43	3 0	0	0	0
D ''		xa de (alamet	ro (23	,1-29μι Γ	n)	~		
Kegiao	Compressao	1000	2000	5000	Desc	onpres	11000	12000	14000
1	5000	1000	3000	5000	7000	9000	11000	13000	14000
<u> </u>	1	1	1	0	0	0	0	0	0
2	1	1	1	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0
4	3	3	2	0	0	0	0	0	0
5	2	2	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	1	1	1	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	2	2	2	0	0	0	0	0	0
10	2	2	2	0	0	0	0	0	0
11	2	2	2	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

Tabela B.34.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,2μm, para velocidade angular de compressão 5000rpm. 1ª CORRIDA
 (a) Faixa de diâmetro (11.1-17um)

	(a) f a	ina ue (uramet	10 (11,	, 1-1 /μι	u <i>)</i>			1
Região	Compressão		· · · · ·		Desco	mpress	ão		
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	3	3	2	1	1	1	0	0	0
2	3	3	3	3	3	2	1	0	0
3	2	2	2	1	1	0	0	0	0
4	2	2	2	1	0	0	0	0	0
5	1	1	1	0	0	0	0	0	0
6	4	4	4	2	1	0	0	0	0
7	3	3	3	3	3	2	2	0	0
8	4	4	4	2	1	0	0	0	0
9	5	5	5	2	2	1	1	1	1
10	3	3	3	1	1	0	0	0	0
11	3	3	3	2	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0
Total Partículas	33	33	32	19	15	7	5	2	2
% de partículas aderidas	100	100	97	58	45 50	21 21	15 15	6.06	6.06
70 ut particulas autritas	(b) Fai	xa de (diâmet	ro (17.	1-23un	21,21 n)	15,15	0,00	0,00
Região	Compressão			10 (17)	Desco	mnress	รลึก		
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	2	2	1	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	4	4	4	2	1	0	0	0	0
4	1	1	1	1	1	1	0	0	0
5	1	1	1	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	2	2	1	0	0	0	0	0	0
8	1	1	1	1	0	0	0	0	0
9	3	3	3	2	0	0	0	0	0
10	2	2	2	1	1	0	0	0	0
11	3	3	3	2	1	0	0	0	0
12	0	0	0	0	0	0	0	0	0
Total Partículas	19	19	17	ŷ	4	1	0	0	0
% de partículas aderidas	100	100	89.50	47.40	21.05	5.26	0	0	0
70 de pur reunits du crituis	(c) Fai	xa de (diâmet	ro (23.	1-29µn	n)	Ū	Ū	v
Região	Compressão			- (-)	Desco	mpres	são		
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	4	4	2	0	0	0	0	0	0
2	2	2	1	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	2	2	1	0	0	0	0	0	0
9		3	1	1	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

100 45,50

Tabela B.35.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,2μm, para velocidade angular de compressão 5000rpm. 2ª CORRIDA
(a) Faixa de diâmetro (11,1-17μm)

Região	Compressão			(11)	Desco	mpres	são		
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	2	2	2	1	1	1	0	0	0
2	2	2	2	2	0	0	0	0	0
3	3	3	3	3	2	1	0	0	0
4	3	3	3	2	1	1	0	0	0
5	2	2	2	1	0	0	0	0	0
6	3	3	3	3	0	0	0	0	0
7	4	4	4	2	2	0	0	0	0
8	3	3	3	3	1	0	0	0	0
9	3	3	3	1	1	1	0	0	0
10	1	1	1	1	1	0	0	0	0
11	4	4	4	3	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0
Total Partículas	30	30	30	22	9	4	0	0	0
% de partículas aderidas	100	100	100	73,33	30	13,33	0	0	0
	(b) Fai	ixa de	diâmet	tro (17,	, 1-23 μι	n)			
Região	Compressão			1	Desco	mpres	são		
	5000	1000	3000	5000	7000	9000	11000) 13000	14000
1	1	1	1	0	0	0	0	0	0
2	2	2	2	1	0	0	0	0	0
3	4	4	2	1	0	0	0	0	0
4	1	1	1	0	0	0	0	0	0
5	2	2	2	0	0	0	0	0	0
6	2	2	2	2	0	0	0	0	0
7	1	1	1	0	0	0	0	0	0
8	2	2	2	1	1	0	0	0	0
9	2	2	2	0	0	0	0	0	0
10	1	1		1	0	0	0	0	0
11	1	1		1	1	0	0	0	0
	3	3	3	1	1	0	0	0	0
Total Particulas	100	100	20	8	<u> </u>		0	0	0
10 ut particulas autridas	100 (c) Fai	100 xa de i	i 20,90 diâmet	<u> 30,30</u> tro (23	1-29m	<u>5 U</u> n)	U	U	U
Região	Compressão	ut			Desce	omnres	รลืด		
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	2	2	2	0	0	0	0	0	0
2	2	2	1	1	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	2	2	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	1	1	1	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	1	1	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
11	2	2	2	0	0	0	0	0	0
12	3	3	1	0	0	0	0	0	0
Total Partículas	13	13	7	1	0	0	0	0	0
% de partículas aderidas	100	100	54	7,69	0	0	0	0	0

Tabela B.36.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,2μm, para velocidade angular de compressão 5000rpm. 3ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

(a) raixa de diametro (11,1-1/µm)									
Região	Compressão	Descompressão							
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	9	9	7	3	1	1	0	0	0
2	3	2	2	0	0	0	0	0	0
3	5	4	3	1	0	0	0	0	0
4	3	3	3	3	0	0	0	0	0
5	4	4	4	1	0	0	0	0	0
6	3	3	2	2	0	0	0	0	0
7	3	3	2	1	0	0	0	0	0
8	3	3	2	2	1	1	0	0	0
9	4	4	1	1	0	0	0	0	0
10	3	3	3	2	0	0	0	0	0
11	1	1	1	1	0	0	0	0	0
12	1	1	1	0	0	0	0	0	0
Total Partículas	42	40	31	17	2	2	0	0	0
% de partículas aderidas	100	95,23	73,80	40,47	4,76	4,76	0	0	0
(b) Faixa de diâmetro (17,1-23µm)									
Região	Compressão		1	1	Desco	mpress	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	3	2	1	1	0	0	0	0	0
2	2	2	1	0	0	0	0	0	0
3	1	1	1	0	0	0	0	0	0
4	1	1	0	0	0	0	0	0	0
5	1	1	1	0	0	0	0	0	0
6	1	1	0	0	0	0	0	0	0
7	2	2	1	0	0	0	0	0	0
8	1	1	1	1	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0
10	2	1	0	0	0	0	0	0	0
11	2	2	1	0	0	0	0	0	0
12	3	2	1	0	0	0	0	0	0
Total Partículas	19	16	8	2	0	0	0	0	0
% de partículas aderidas	100	84,21	42	10,52	0	0	0	0	0
	(c) Fai	xa de c	liâmet	ro (23,1	l-29µr	n)			
Região	Compressão				Desco	mpres	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	0	0	0	0	0	0
			•	0	~	0	0		

Tabela B.37.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,4μm, para velocidade angular de compressão 1000rpm. 1ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

Região	Compressão	Descompressão									
	1000	1000	3000	5000	7000	9000	11000	13000	14000		
1	1	1	1	0	0	0	0	0	0		
2	2	2	2	0	0	0	0	0	0		
3	2	2	0	0	0	0	0	0	0		
4	0	0	0	0	0	0	0	0	0		
5	1	1	0	0	0	0	0	0	0		
6	2	2	1	0	0	0	0	0	0		
7	2	2	0	0	0	0	0	0	0		
8	2	1	0	0	0	0	0	0	0		
9	2	2	0	0	0	0	0	0	0		
10	2	1	0	0	0	0	0	0	0		
11	1	1	1	0	0	0	0	0	0		
12	3	2	1	0	0	0	0	0	0		
Total Partículas	20	17	6	0	0	0	0	0	0		
% de partículas aderidas	100	85	30	0	0	0	0	0	0		

(a) Faixa de diametro (11,1-1/µm)										
Região	Compressão	Descompressão								
	1000	1000	3000	5000	7000	9000	11000	13000	14000	
1	2	2	2	1	1	1	1	1	1	
2	2	2	2	0	0	0	0	0	0	
3	1	1	1	1	0	0	0	0	0	
4	1	1	1	0	0	0	0	0	0	
5	2	2	1	0	0	0	0	0	0	
6	5	5	3	1	0	0	0	0	0	
7	2	2	1	1	1	1	1	0	0	
8	4	4	4	2	0	0	0	0	0	
9	4	4	3	0	0	0	0	0	0	
10	2	2	2	0	0	0	0	0	0	
11	2	2	2	1	0	0	0	0	0	
12	1	1	1	1	0	0	0	0	0	
Total Partículas	28	28	23	8	2	2	2	1	1	
% de partículas aderidas	100	100	85,18	28,57	7,14	7,14	7,14	3,57	3,57	
	(b) Fai	xa de (diâmet	ro (17,1	l-23µn	I)				
Região	Compressão				Descor	npress	ão			
	1000	1000	3000	5000	7000	9000	11000	13000	14000	
1	2	2	2	1	0	0	0	0	0	
2	2	1	1	0	0	0	0	0	0	
3	3	3	0	0	0	0	0	0	0	
4	3	3	3	1	0	0	0	0	0	
5	1	1	1	0	0	0	0	0	0	
6	2	2	2	1	0	0	0	0	0	
7	2	2	2	0	0	0	0	0	0	
8	3	3	3	2	1	1	0	0	0	
9	1	1	1	0	0	0	0	0	0	
10	2	1	0	0	0	0	0	0	0	
11	0	0	0	0	0	0	0	0	0	
12	1	1	1	0	0	0	0	0	0	
Total Partículas	22	20	16	5	1	1	0	0	0	
% de partículas aderidas	100	99	72,72	22,72	4,54	4,54	0	0	0	
	(c) Fai	xa de (diâmet	ro (23,1	l-29µn	I)				
Região	Compressão		-	1	Descoi	npress	ão	0	1	
	1000	1000	3000	5000	7000	9000	11000	13000	14000	
1	1	1	1	1	0	0	0	0	0	
2	3	3	2	0	0	0	0	0	0	
3	1	1	0	0	0	0	0	0	0	
4	2	2	1	0	0	0	0	0	0	
5	3	3	1	0	0	0	0	0	0	
6	3	2	1	1	0	0	0	0	0	
7	1	1	0	0	0	0	0	0	0	
8	2	1	1	0	0	0	0	0	0	
9	2	2	1	0	0	0	0	0	0	
10	0	0	0	0	0	0	0	0	0	

89,50

Total Partículas

% de partículas aderidas

10,52

Tabela B.38.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,4μm, para velocidade angular de compressão 1000rpm. 2ª CORRIDA

D !? -		LA UC	mannet	10 (11,	<u>.1-1/μ</u>	<u> </u>	~ ~ .		
Regiao	Compressao				Desco	mpres	sao		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	3	3	1	0	0	0	0	0	0
2	5	5	2	1	0	0	0	0	0
3	5	5	3	2	2	0	0	0	0
4	6	6	3	0	0	0	0	0	0
5	6	6	0	0	0	0	0	0	0
6	3	3	2	0	0	0	0	0	0
7	3	3	3	0	0	0	0	0	0
8	7	7	4	0	0	0	0	0	0
9	5	5	4	1	0	0	0	0	0
10	5	5	3	2	2	0	0	0	0
11	0	0	0	0	0	0	0	0	0
12	6	6	2	0	0	0	0	0	0
Total Partículas	54	54	27	6	4	0	0	0	0
% de partículas aderidas	100	100	50	11,11	7,40	0	0	0	0
•	(b) Fai	xa de (diâmet	ro (17,	1-23µı	n)	•		
Região	Compressão				Desco	mpres	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	0	0	0	0	0	0	0	0	0
2	2	2	0	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0
4	2	2	1	0	0	0	0	0	0
5	2	2	0	0	0	0	0	0	0
6	1	1	0	0	0	0	0	0	0
7	3	3	0	0	0	0	0	0	0
8	2	2	2	0	0	0	0	0	0
9	1	1	0	0	0	0	0	0	0
10	4	3	1	0	0	0	0	0	0
11	2	2	0	0	0	0	0	0	0
12	2	2	1	0	0	0	0	0	0
Total Partículas	22	21	5	0	0	0	0	0	0
% de partículas aderidas	100	95,45	22,7	0	0	0	0	0	0
	(c) Fai	xa de (diâmet	ro (23,	1-29μι	n)			
Região	Compressão				Desco	mpress	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
5	2	1	1	0	0	0	0	0	0
6	1	1	0	0	0	0	0	0	0
7	3	1	1	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
11	2	2	0	0	0	0	0	0	0
	2	2	0	0	0	0	0	0	0
i otal Particulas	12	9	2	U	U	U	U	U	U

% de partículas aderidas

Tabela B.39.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,4µm, para velocidade angular de compressão 1000rpm. 3ª CORRIDA (a) Faixa de diâmetro (11,1-17µm)

(a) F aixa de diametro (11,1-1/µm)										
Região	Compressão	pressão Descompressão								
	2000	1000	3000	5000	7000	9000	11000	13000	14000	
1	6	6	6	4	1	1	0	0	0	
2	6	6	6	2	0	0	0	0	0	
3	4	4	3	3	2	1	0	0	0	
4	4	4	4	4	2	1	0	0	0	
5	3	3	3	2	1	1	0	0	0	
6	5	5	4	2	2	1	1	1	0	
7	4	4	3	2	1	0	0	0	0	
8	2	2	1	1	1	0	0	0	0	
9	4	4	3	2	1	0	0	0	0	
10	4	4	3	1	1	0	0	0	0	
11	2	2	2	1	1	0	0	0	0	
12	6	6	5	2	1	1	0	0	0	
Total Partículas	50	50	43	- 26	14	6	1	1	0	
% de partículas aderidas	100	100	86	52	28	12	2	2	0	
<i>h</i> ut pur riculus autriuus	(b) Fai	xa de o	diâmet	ro (17.	1-23u	n)	-		0	
Região	Compressão			- ()	Desco	mpres	são			
	2000	1000	3000	5000	700			0 13000	14000	
1	2000	2	2	0	0		0	0	0	
2	3	3	1	0	0	0	0	0	0	
3	3	3	2	1	0	0	0	0	0	
4	4	4	<u>_</u>	1	0	0	0	0	0	
5	4		2	1	0	0	0	0	0	
6	3	3	2	0	0	0	0	0	0	
7	8	7	5	0	0	0	0	0	0	
8	3	3	2	2	1	0	0	0	0	
9	3	3	3	1	0	0	0	0	0	
10	4	4	3	1	0	0	0	0	0	
10		-	0	0	0	0	0	0	0	
11	5	4	2	1	0	0	0	0	0	
Total Dartículas	12	40	2	1	1	0	0	0	0	
10tal 1 al ticulas	42	40	40 66 66	10.05	1 2 2 6		0	0	0	
70 de particulas adelluas	(c) Fai	73,23 va de (liâmet	$r_{0}(23)$	1-29m	<u>, v</u> n)	U	U	U	
Região	Compressão			-0 (20)	Desco	mnree	รลึก			
Kegiao	2000	1000	3000	5000	7000		11000	13000	1/000	
1	1	1	0	0	000	000	0	0	14000	
2	2	2	1	0	0	0	0	0	0	
2	2	1	1	0	0	0	0	0	0	
3	1	1	0	0	0	0	0	0	0	
4	1	1	1	1	0	0	0	0	0	
5	2	2	1		0	0	0	0	0	
6	1	1	0	0	0	0	0	0	0	
1		1	1		0	0	0	0	0	
8	1				0	0	0	0	0	
10	1	1	0	0	0	0	0	0	0	
10	0	0	0	0	0	0	0	0	0	

Total Partículas

% de partículas aderidas

100 28,57 14,29

Tabela B.40.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,4μm, para velocidade angular de compressão 2000rpm. 1ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)
	(a) Fai	xa de o	ilamet	ro (11,	l-1/μn	1)			
Região	Compressão		I	Descom	pressâ	ío			
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	1	0	0	0	0	0
2	5	5	5	4	2	1	1	0	0
3	5	5	4	2	1	0	0	0	0
4	4	4	4	1	1	1	1	0	0
5	1	1	1	1	0	0	0	0	0
6	3	3	2	0	0	0	0	0	0
7	3	3	3	2	0	0	0	0	0
8	1	1	1	1	1	1	0	0	0
9	3	3	3	0	0	0	0	0	0
10	4	4	3	1	0	0	0	0	0
10	4	т Л	1	3	1	0	0	0	0
11	1	1	1	1	1	1	0	0	0
12 Tatal Dantianlas	1	1	1	17	1	1	0	0	0
	35	35	32	1/	/	3	2	0	0
% de particulas aderidas	100 (b) Fei	100 vo do 4	91,43 Jiômot	48,57	20	<u>8,5/</u>	5,/1	U	U
Dogião		ina ue (mannet	10(1/,	<u>-23μΠ</u> Dococ	1) mnros	são		
Regiau	2000	1000	2000	5000	7000		11000	12000	1 4000
1	2000	1000	3000	5000	/000	9000	11000	13000	14000
1	6	6	0	1	0	0	0	0	0
2	3	3	1	0	0	0	0	0	0
3	1	1	1	0	0	0	0	0	0
4	3	3	0	0	0	0	0	0	0
5	2	1	0	0	0	0	0	0	0
6	5	5	2	2	1	0	0	0	0
7	2	2	2	1	0	0	0	0	0
8	3	3	1	1	0	0	0	0	0
9	2	2	1	0	0	0	0	0	0
10	2	2	1	1	0	0	0	0	0
11	1	1	0	0	0	0	0	0	0
12	2	2	0	0	0	0	0	0	0
Total Partículas	32	31	15	6	1	0	0	0	0
% de partículas aderidas	100	96,88	46,88	18,75	3,13	0	0	0	0
	(c) Fai	xa de o	diâmet	ro (23,1	l-29µn	1)			
Região	Compressão			· · · · ·	Desco	mpres	são	1	
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	4	4	1	1	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	1	1	0	0	0	0	0	0	0
7	1	1	1	1	0	0	0	0	0
8	1	1	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0
10	2	2	1	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

100 33,33

Tabela B. 41.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,4μm, para velocidade angular de compressão 2000rpm. 2ª CORRIDA

	(a) Fai	ixa de (lamet	ro (11,	ι-1/μn	1)			
Região	Compressão				Desco	mpress	ão		
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	5	5	5	1	0	0	0	0	0
2	4	4	1	1	0	0	0	0	0
3	5	5	4	1	0	0	0	0	0
4	3	3	2	1	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1
6	3	3	1	1	1	0	0	0	0
7	3	3	2	2	1	0	0	0	0
8	8	8	5	2	0	0	0	0	0
9	5	5	3	1	1	0	0	0	0
10	3	3	3	1	0	0	0	0	0
11	1	1	1	1	1	0	0	0	0
12	7	7	6	3	1	1	0	0	0
Total Partículas	48	48	34	16	6	2	1	1	1
% de partículas aderidas	100	100	70,83	33,33	12,50	4,16	2,08	2,08	2,08
	(b) Fai	ixa de (diâmet	ro (17,1	l-23µm	n)			
Região	Compressão				Desco	mpress	ão		
_	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	0	0	0	0	0	0
2	6	5	3	0	0	0	0	0	0
3	2	2	2	0	0	0	0	0	0
4	4	4	2	1	0	0	0	0	0
5	1	1	1	0	0	0	0	0	0
6	2	2	1	1	0	0	0	0	0
7	2	2	1	0	0	0	0	0	0
8	2	1	0	0	0	0	0	0	0
9	2	2	1	0	0	0	0	0	0
10	2	2	2	1	0	0	0	0	0
11	2	2	1	0	0	0	0	0	0
12	2	2	1	0	0	0	0	0	0
Total Partículas	28	26	16	3	0	0	0	0	0
% de partículas aderidas	100	92,86	57,14	10,71	0	0	0	0	0
	(c) Fai	ixa de (diâmet	ro (23,1	l-29µm	I)			
Região	Compressão				Desco	mpress	são	<u> </u>	
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	2	2	0	0	0	0	0	0	0
4	1	1	0	0	0	0	0	0	0
5	2	2	2	0	0	0	0	0	0
6	2	1	1	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	1	1	0	0	0	0	0	0	0
9	1	1	0	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

41,66

Tabela B.42.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,4μm, para velocidade angular de compressão 2000rpm. 3ª CORRIDA

	(a) Fai	xa ue o	mannet	10 (11,	,1-1/μι	u)			1
Região	Compressão				Desco	mpres	são		
	5000	1000	3000	5000	7000	9000	11000) 13000	14000
1	2	2	2	2	1	1	0	0	0
2	4	4	4	3	3	2	1	0	0
3	3	3	3	3	3	2	0	0	0
4	6	6	6	4	4	2	1	0	0
5	3	3	3	2	2	1	1	1	0
6	3	3	3	2	1	1	0	0	0
7	4	4	4	2	1	0	0	0	0
8	6	6	6	5	2	1	0	0	0
9	2	2	2	2	2	1	0	0	0
10	2	2	2	1	1	0	0	0	0
11	0	0	0	0	0	0	0	0	0
12	4	4	4	3	1	0	0	0	0
Total Partículas	39	39	39	29	21	11	3	1	0
% de partículas aderidas	100	100	100	74,36	53,85	28,20	7,70	2,56	0
•	(b) Fai	xa de (diâmet	ro (17,	1-23µn	n)			
Região	Compressão				Desco	mpres	são		
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	2	2	1	0	0	0	0	0	0
2	2	2	2	1	0	0	0	0	0
3	2	2	2	1	0	0	0	0	0
4	3	3	3	2	0	0	0	0	0
5	2	2	2	1	0	0	0	0	0
6	1	1	1	0	0	0	0	0	0
7	1	1	1	0	0	0	0	0	0
8	1	1	1	1	1	0	0	0	0
9	2	2	2	1	0	0	0	0	0
10	1	1	1	0	0	0	0	0	0
11	3	3	3	1	1	0	0	0	0
12	0	0	0	0	0	0	0	0	0
Total Partículas	20	20	19	8	2	0	0	0	0
% de partículas aderidas	100	100	95	40	10	0	0	0	0
	(c) Fai	xa de (diâmet	ro (23,	1-29µn	n)			
Região	Compressão				Desco	mpres	são	1	
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	0	0	0	0	0	0	0
2	1	1	1	1	0	0	0	0	0
3	3	3	2	1	0	0	0	0	0
4	2	2	2	1	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	1	1	1	0	0	0	0	0	0
7	1	1	0	0	0	0	0	0	0
8	2	2	1	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

66,67

Tabela B.43.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,4μm, para velocidade angular de compressão 5000rpm. 1ª CORRIDA

	(a) rai	xa ue (uiainet	ro (11,	1-1/μ Π	1)			
Região	Compressão				Desco	mpres	são	•	
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	0	0	0	0	0	0	0
2	1	1	1	1	0	0	0	0	0
3	3	3	2	1	0	0	0	0	0
4	2	2	2	1	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	1	1	1	0	0	0	0	0	0
7	1	1	0	0	0	0	0	0	0
8	2	2	1	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0
10	1	1	1	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0
12 Tatal Dautéeralan	0	10	0	0	0	0	0	0	0
Total Particulas	12	12	8	3	0	U	0	U	0
% de particulas aderidas		100	66,67	25		0	0	0	0
D **	(b) Fai	xa de (ulamet	ro (17,	<u>1-23μn</u>	<u>1)</u>	~ .		
Kegiao	Compressao				Desco	mpres	sao		
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	3	3	2	1	0	0	0	0	0
2	3	3	3	0	0	0	0	0	0
3	3	3	2	1	0	0	0	0	0
4	3	3	3	2	1	1	0	0	0
5	5	5	5	1	1	1	1	0	0
6	1	1	1	1	0	0	0	0	0
7	4	4	4	1	0	0	0	0	0
8	2	2	2	2	0	0	0	0	0
9	2	2	2	2	1	0	0	0	0
10	4	4	4	3	1	1	0	0	0
11	4	4	3	1	0	0	0	0	0
12	2	2	2	1	0	0	0	0	0
Total Partículas	31	31	28	16	4	3	1	0	0
% de partículas aderidas	100	100	90.32	51.61	12.90	9.67	3.22	0	0
	(c) Fai	xa de (diâmet	ro (23,	1-29µn	n)	- /		-
Região	Compressão			. /	Desco	mpress	são		
	5000	1000	3000	5000	7000	9000	11000	13000	14000
1	2	2	2	0	0	0	0	0	0
2	4	4	4	1	0	0	0	0	0
3	3	3	3	1	0	0	0	0	0
1	3	3	2	1	0	0	0	0	0
5	1	1	1	0	0	0	0	0	0
6	1	1	1	1	0	0	0	0	0
7	3	3	3	1	0	0	0	0	0
8	1	1	1	0	0	0	0	0	0
9	1	1	1	0	0	0	0	0	0
10	2	2	1	0	0	0	0	0	0
11	1	1	1	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

100 90,91 22,72

Tabela B.44.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,4μm, para velocidade angular de compressão 5000rpm. 2ª CORRIDA
 (a) Faixa de diâmetro (11.1-17um)

	(a) Faixa de diametro (11,1-17µm)										
Região	Compressão				Desco	mpress	ão				
	5000	1000	3000	5000	7000	9000	11000	13000	14000		
1	4	4	4	2	2	1	0	0	0		
2	6	6	6	4	2	1	0	0	0		
3	4	4	4	3	1	0	0	0	0		
4	5	5	5	1	1	1	0	0	0		
5	3	3	3	2	2	0	0	0	0		
6	6	6	6	5	4	3	1	0	0		
7	7	7	7	3	3	1	1	0	0		
8	4	4	4	2	2	2	2	0	0		
9	3	3	3	3	1	0	0	0	0		
10	2	2	2	2	1	0	0	0	0		
10	3	3	3	2	1	0	0	0	0		
12	6	6	5	4	3	1	0	0	0		
Total Partículas	53	53	52	33	23	10	4	0	0		
% de partículas aderidas	100	100	98.11	62.26	43.39	18.87	7.55	0	0		
	(b) Fai	ixa de (diâmet	ro (17,	1-23µm	1)	.,	Ŭ	Ū		
Região	Compressão				Desco	mpress	ão				
8	5000	1000	3000	5000	7000	9000	11000	13000	14000		
1	1	1	1	0	0	0	0	0	0		
2	2	2	2	1	0	0	0	0	0		
3	2	2	1	1	0	0	0	0	0		
4	2	2	2	1	0	0	0	0	0		
5	4	4	4	1	0	0	0	0	0		
6	1	1	1	1	0	0	0	0	0		
7	3	3	3	2	0	0	0	0	0		
8	4	4	4	3	1	0	0	0	0		
9	1	1	1	1	0	0	0	0	0		
10	1	1	1	1	0	0	0	0	0		
11	4	4	3	2	1	0	0	0	0		
12	1	1	1	1	1	0	0	0	0		
Total Partículas	26	26	24	15	3	0	0	0	0		
% de partículas aderidas	100	100	96	57,69	11,54	0	0	0	0		
	(c) Fai	ixa de (diâmet	ro (23,	1-29µm	l)					
Região	Compressão		1	r	Desco	mpress	ão	r			
	5000	1000	3000	5000	7000	9000	11000	13000	14000		
1	1	1	1	0	0	0	0	0	0		
2	2	2	2	0	0	0	0	0	0		
3	2	2	1	0	0	0	0	0	0		
4	1	1	1	0	0	0	0	0	0		
5	2	2	1	0	0	0	0	0	0		
6	2	2	2	0	0	0	0	0	0		
7	1	1	1	0	0	0	0	0	0		
8	2	2	2	1	0	0	0	0	0		
9	3	3	2	1	0	0	0	0	0		
10	3	3	3	2	1	0	0	0	0		

Total Partículas

% de partículas aderidas

100 86,36 18,18 4,54

Tabela B.45.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,4μm, para velocidade angular de compressão 5000rpm. 3ª CORRIDA
(a) Faixa de diâmetro (11,1-17μm)

		ina ut t	nameti	0 (11,1	-1/μΠ	l)	~		
Região	Compressão		1	1	Desco	mpres	são		
	1000	1000	3000	5000	7000	9000) 1100	0 1300	0 14000
1	2	2	2	2	1	1	0	0	0
2	4	4	3	2	1	0	0	0	0
3	7	6	6	3	2	0	0	0	0
4	3	3	3	3	2	0	0	0	0
5	7	7	7	4	1	1	0	0	0
6	2	2	2	1	1	0	0	0	0
7	6	6	6	3	3	1	1	0	0
8	5	5	5	3	2	1	0	0	0
9	4	3	2	2	2	1	0	0	0
10	4	4	3	2	1	1	0	0	0
11	4	4	4	3	3	2	0	0	0
12	6	6	6	3	2	1	1	0	0
Total Partículas	54	53	49	31	21	9	2	0	0
7 do portículos adoridos	100	09 15	90.70	57.40	38.00	167		0	
70 ue particulas autilitas	(b) Fai	70,13 va de d	1jâmetr	0 (17 1	-23um	<u>, 10,7</u>	5,70	U	U
Região	(b) Fai		namen	0 (17,1	Desco	mnros	são		
Kegiau	1000	1000	2000	5000	7000	ann	11000	12000	14000
1	2	2	2000	1	/000	9000	0	13000	14000
1	3	3	3	2	1	1	0	0	0
2	4	4	4	2	1	1	0	0	0
3	3	3	3	1	0	0	0	0	0
4	7	7	3	0	0	0	0	0	0
5	2	2	1	1	0	0	0	0	0
6	2	1	1	0	0	0	0	0	0
7	1	1	1	0	0	0	0	0	0
8	3	3	3	1	0	0	0	0	0
9	3	3	3	1	0	0	0	0	0
10	2	2	2	1	1	1	0	0	0
11	6	6	4	3	1	0	0	0	0
12	3	2	2	1	0	0	0	0	0
Total Partículas	39	37	30	12	3	2	0	0	0
% de partículas aderidas	100	95	76,90	30,80	7,70	5,13	0	0	0
[(c) Fai	xa de c	liâmetı	ro (23,1	l-29μm	l)			
Região	Compressão		. <u> </u>		Desco	mpres	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	0	0	0	0	0	0	0	0	0
2	3	2	1	0	0	0	0	0	0
3	2	2	2	0	0	0	0	0	0
4	1	1	1	0	0	0	0	0	0
5	1	1	1	0	0	0	0	0	0
6	1	1	0	0	0	0	0	0	0
7	2	2	2	0	0	0	0	0	0
8	1	1	1	0	0	0	0	0	0
9	1	1	1	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0
12	2	2	1	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

92,86 71,40

Tabela B.46.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,8μm, para velocidade angular de compressão 1000rpm. 1ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

	(a) Fa	LAA UC L	namet		ι-1/μι	u)			
Região	Compressão				Desco	mpres	são	1	
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	3	3	3	0	0	0	0	0	0
2	1	1	1	1	0	0	0	0	0
3	4	4	2	1	0	0	0	0	0
4	2	2	2	1	0	0	0	0	0
5	1	1	0	0	0	0	0	0	0
6	2	2	2	1	0	0	0	0	0
0	3	2	2	1	1	0	0	0	0
/	2	2	2	1	1	0	0	0	0
8	3	3	3	1	1	0	0	0	0
9	3	3	3	2	2	0	0	0	0
10	3	3	2	1	1	0	0	0	0
11	2	2	2	2	1	0	0	0	0
12	2	2	1	1	1	0	0	0	0
Total Partículas	29	28	24	13	7	0	0	0	0
% de partículas aderidas	100	96,55	82,80	44,80	24,1	0 0	0	0	0
	(b) Fai	ixa de c	liâmet	ro (17,1	1-23µn	n)			
Região	Compressão				Desco	ompres	são		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	0	0	0	0	0	0
2	2	1	1	1	0	0	0	0	0
3	4	3	3	0	0	0	0	0	0
4	4	4	4	0	0	0	0	0	0
5	1	1	0	0	0	0	0	0	0
6	1	1	1	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	3	3	3	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0
10	2	2	1	0	0	0	0	0	0
10	2	2	1	1	0	0	0	0	0
11	2	2 1	1	1	0	0	0	0	0
	1	1	1	0	0	0	0	0	0
Total Particulas	22	20	16	2	0	0	0	0	0
% de particulas aderidas	100 (a) East	90,90	12,70	9,09	0		0	U	U
D *** -	(c) Fa	ixa ue t	nameu	10 (23,	<u>1-29μη</u>	1)	~ .		
Kegiao	Compressao	1000	2000	=000	Desco	ompres	sao	12000	1 40 00
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	0	0	0	0	0	0	0	0	0
2	1	1	1	0	0	0	0	0	0
3	1	1	1	0	0	0	0	0	0
4	3	3	3	0	0	0	0	0	0
5	2	1	1	0	0	0	0	0	0
6	2	1	1	0	0	0	0	0	0
7	2	2	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	3	3	1	0	0	0	0	0	0
10	1	1	1	0	0	0	0	0	0
11	2	2	1	0	0	0	0	0	0
12	2	2	1	0	0	0	0	0	0

Total Partículas

% de partículas aderidas

89,50

Tabela B.47.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,8μm, para velocidade angular de compressão 1000rpm. 2ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

	(a) г а	ixa ue t	namet	0 (11,1	ι-1/μπ	1)			
Região	Compressão				Descor	mpress	ão		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	3	3	2	1	0	0	0	0	0
2	5	5	4	1	0	0	0	0	0
3	2	2	2	1	0	0	0	0	0
4	2	1	1	1	0	0	0	0	0
5	3	3	1	0	0	0	0	0	0
6	5	5	5	2	1	0	0	0	0
7	3	2	2	1	1	0	0	0	0
0	5	5	2	1	1	0	0	0	0
8	3	2	3	1	1	0	0	0	0
9	5	3	1	0	0	0	0	0	0
10	1	1	1	0	0	0	0	0	0
11	1	l	1	1	0	0	0	0	0
12	1	1	1	1	0	0	0	0	0
Total Partículas	34	33	25	10	3	0	0	0	0
% de partículas aderidas	100	97	73,60	29,40	8,80	0	0	0	0
	(b) Fai	ixa de c	liâmet	ro (17,1	l-23µn	ı)			
Região	Compressão				Descoi	npress	ão		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	1	1	1	0	0	0	0	0	0
2	3	2	2	1	0	0	0	0	0
3	1	1	1	0	0	0	0	0	0
4	3	3	3	0	0	0	0	0	0
5	1	1	1	0	0	0	0	0	0
6	2	2	2	0	0	0	0	0	0
7	1	1	1	1	0	0	0	0	0
8	2	2	1	0	0	0	0	0	0
9	1	1	1	0	0	0	0	0	0
10	2	1	1	0	0	0	0	0	0
11	1	1	1	1	0	0	0	0	0
12	3	3	1	0	0	0	0	0	0
Total Partículas	21	19	16	3	0	0	0	0	0
% de partículas aderidas	100	90.50	76	14 30	0 0	0 0	ů 0	Ő	0
to de pur reduius adorradis	(c) Fai	ixa de o	liâmet	ro (23.1	-29un	1)	Ŭ	Ŭ	Ū
Região	Compressão				Descoi	npress	ão		
	1000	1000	3000	5000	7000	9000	11000	13000	14000
1	0	0	0	0	0	0	0	0	0
2	1	1	1	0	0	0	0	0	0
2	2	1	1	0	0	0	0	0	0
3	2	1	1	0	0	0	0	0	0
4 5	1	1					0	0	0
5	1	1	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	l c	1	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	1	1	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
11	1	1	0	0	0	0	0	0	0

87,50 37,50

Total Partículas

% de partículas aderidas

Tabela B.48.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,8µm, para velocidade angular de compressão 1000rpm. 3ª CORRIDA (a) Faixa de diâmetro (11,1-17µm)

D :~			ulanici	10 (11	<u>,1-1/μ</u>	uu <i>)</i>	~		
Kegião	Compressão				Desco	mpres	sao		
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	4	4	4	0	0	0	0	0	0
2	4	4	3	2	2	0	0	0	0
3	4	4	3	1	1	0	0	0	0
4	2	2	2	1	1	0	0	0	0
5	3	3	3	3	1	0	0	0	0
6	2	2	2	1	1	1	0	0	0
7	1	1	1	1	0	0	0	0	0
8	6	6	6	3	2	2	0	0	0
9	0	0	0	0	0	0	0	0	0
10	1	1	1	1	1	0	0	0	0
11	6	6	4	4	2	1	0	0	0
12	4	4	4	3	2	0	0	0	0
Total Partículas	41	41	33	20	13	4	0	0	0
% de partículas aderidas	100	100	80	<u> </u>	31	9.76	0	0	0
70 de particulas aderidas	(b) Fai	iva de i	diâmet	ro (17	1-23m),/U	U	U	U
Região	Compressão		uiuiiiei	10 (17)	Desco	mnrese	รลึก		
ingino	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	2000	2	2000	1	0	0	0	0	0
2	1	1	1	1	0	0	0	0	0
2	2	2	2	1	0	0	0	0	0
3	2	2 1	 1	1	0	0	0	0	0
5	2	2	2	0	0	0	0	0	0
5	2	2	 1	0	0	0	0	0	0
7	1	5	1	1	0	0	0	0	0
0	1	1	1	1	0	0	0	0	0
0	2	2	2	2	1	0	0	0	0
10	3	0	0	0	0	0	0	0	0
10	2	2	1	1	0	0	0	0	0
11	2	2	1	1	0	0	0	0	0
12 Total Dartículas	3	3 21		7	1	0	0	0	0
10tal Particulas	<u> </u>	21 100	1/ 00	/	1	0	0	0	0
% de particulas aderidas	100 (c) Fai	UUI Ab evi	00 diâmet	33 ro (23	4,70 1.29m	U m)	U	U	U
Dogião	(c) Fa		ulainet	10 (23)		mnno	são		
Regiau	2000	1000	2000	5000	7000		11000	12000	14000
1	2000	1000	3000	5000	7000	9000		13000	
1	1	1	1	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
5	2	2		1	1	0	0	0	0
6	1				0	0	0	0	0
7	1	1	1	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	3	3	2	0	0	0	0	0	0
10		1		0	0	0	0	0	0
11	2	2	1	0	0	0	0	0	0

100 66,67 16,67 8,33

Total Partículas

% de partículas aderidas

Tabela B.49.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,8µm, para velocidade angular de compressão 2000rpm. 1ª CORRIDA (a) Faixa de diâmetro (11,1-17µm)

		ie ulali		11,1-17	µIII)				
Região	Compressão				Desco	mpress	são		
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	4	4	4	3	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
	7	7	7	3	1	0	0	0	0
5	7	2	2	3	1	0	0	0	0
4	3	3	3	2	1	0	0	0	0
5	4	4	4	2	1	0	0	0	0
6	4	4	4	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	2	2	2	1	1	0	0	0	0
9	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0
11	4	4	4	2	2	0	0	0	0
12	3	3	2	2	1	0	0	0	0
Total Partículas	31	31	30	15	7	0	0	0	0
% de partículas aderidas	100	100	97	48 40	22.60	Ô	0	ů 0	0
10 ut particulas autiluas	(h) Faiva d	e diân) netro (1	-10, 1 0 17 1_23	<u>22,00</u>	U	U	v	v
Dogião	Compressão			L/91-20	Docas	mnear	são		
Kegiao		1000	2000	5000	Jest		11000	12000	1 4000
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	4	4	2	1	0	0	0	0	0
2	1	1	1	0	0	0	0	0	0
3	5	5	3	1	0	0	0	0	0
4	4	3	0	0	0	0	0	0	0
5	2	2	1	0	0	0	0	0	0
6	3	3	1	0	0	0	0	0	0
7	3	3	1	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	2	2	1	1	1	0	0	0	0
10	0	0	0	0	0	0	0	0	0
11	3	2	1	0	0	0	0	0	0
11	3	2	1	1	0	0	0	0	0
Tatal Dantíoulas	30	20	10	1	1	0	0	0	0
	30	<u>40</u>	12	4	1	0	0	0	0
% de particulas aderidas		93,33 Io diân	4U	13,33	3,33	U	U	U	U
D 17		le ulali	letro (2	23,1-29	μm) 		~		
Kegiao	Compressão				Desco	mpres	sao		
	2000	1000	3000	5000	7000	9000	11000	13000	14000
1	3	3	1	0	0	0	0	0	0
2	2	2	1	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	2	2	0	0	0	0	0	0	0
7	3	2	1	0	0	0	0	0	0
8	1	1	1	1	0	0	0	0	0
9	2	2	0	0	0	0	0	0	0
10	2	2	0	0	0	0	0	0	0
11	2.	1	0	0	0	0	0	0	0
12	1	1	0	0	0	0	0	0	0

21,05 5,28

Total Partículas

% de partículas aderidas

Tabela B.50.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,8µm, para velocidade angular de compressão 2000rpm. 2ª CORRIDA (a) Faixa de diâmetro (11,1-17µm)

Dogião											
negiao		1000	2000	5000	7000	annes	5aU 11000	12000	14000		
1	2000	1000	2000	1	1	1	11000	13000	14000		
1	2	2	2	1	1	1	0	0	0		
2	5	5	5	3	1	1	1	0	0		
3	5	5	2	1	1		1	0	0		
4	5	5	3	0	0	0	0	0	0		
5	0	0	0	0	0	0	0	0	0		
6	3	3	3	2	2	0	0	0	0		
1	2	2	2	0	0	0	0	0	0		
8	4	4	4	4	3	1	1	0	0		
9	I	1	Ī	0	0	0	0	0	0		
10	5	5	5	2	1	1	0	0	0		
11	8	8	6	3	2	0	0	0	0		
12	3	3	3	0	0	0	0	0	0		
Total Partículas	41	41	37	16	11	4	2	0	0		
% de partículas aderidas	100	100	90	39	26,83	9,76	4,88	0	0		
	(b) Faixa d	le diân	<u>netro (</u>	17,1-2	<u>3μm)</u>				1		
Região	Compressão				Desco	mpress	são				
	2000	1000	3000	5000	7000	9000	11000	13000	14000		
1	5	5	3	0	0	0	0	0	0		
2	3	3	2	0	0	0	0	0	0		
3	2	2	2	1	1	0	0	0	0		
4	4	4	2	0	0	0	0	0	0		
5	2	2	1	0	0	0	0	0	0		
6	1	1	1	1	0	0	0	0	0		
7	4	4	2	0	0	0	0	0	0		
8	0	0	0	0	0	0	0	0	0		
9	2	2	1	1	0	0	0	0	0		
10	1	1	1	0	0	0	0	0	0		
11	0	0	0	0	0	0	0	0	0		
12	1	1	1	1	0	0	0	0	0		
Total Partículas	25	25	16	4	1	0	0	0	0		
% de partículas aderidas	100	100	64	16	4	0	0	0	0		
Γ	(c) Faixa d	le diân	netro (23,1-2	9µm)						
Região	Compressão				Desco	mpress	são	-			
	2000	1000	3000	5000	7000	9000	11000	13000	14000		
1	3	3	2	0	0	0	0	0	0		
2	3	3	2	0	0	0	0	0	0		
3	0	0	0	0	0	0	0	0	0		
4	4	4	0	0	0	0	0	0	0		
5	3	3	0	0	0	0	0	0	0		
6	0	0	0	0	0	0	0	0	0		
7	3	2	2	0	0	0	0	0	0		
8	0	0	0	0	0	0	0	0	0		
9	2	2	0	0	0	0	0	0	0		
10	1	1	0	0	0	0	0	0	0		

Total Partículas

% de partículas aderidas

Tabela B.51.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,8μm, para velocidade angular de compressão 2000rpm. 3ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

Dogião	Compressão										
Keglau	5000	1000	2000	5000	7000	0000	11000	12000	14000		
1	1	1000	1	1	1	1	0	0	0		
2	5	5	1	2	0	0	0	0	0		
2	2	2	+ 2	1	0	0	0	0	0		
3	5	2 5	5	1	1	0	0	0	0		
	3	3	3	1	1	0	0	0	0		
5	4	4	4	4	1	1	0	0	0		
0	6	6	0	0	2	1	0	0	0		
1	4	4	4	3	0	0	0	0	0		
8	4	4	4	3	1	0	0	0	0		
9	3	3	3	3	0	0	0	0	0		
10	3	3	3	2	0	0	0	0	0		
11	6	6	6	6	1	0	0	0	0		
12	1	1	1	1	1	l	I	1	0		
Total Partículas	44	44	43	33	8	3	1	1	0		
% de partículas aderidas		100	97,72	75	18,18	6,82	2,27	2,27	0		
D. 17	(b) Faixa d	le dian	netro ()	17,1-23	<u>βμm)</u>		~				
Regiao	Compressao	1000	2000	-000	Descoi	npress	ao	12000	1 1000		
	5000	1000	3000	5000	7000	9000	11000	13000	14000		
1	2	2	2	1	0	0	0	0	0		
2	1	1	1	1	0	0	0	0	0		
3	2	2	0	0	0	0	0	0	0		
4	1	1	1	1	0	0	0	0	0		
5	3	3	3	1	0	0	0	0	0		
6	1	1	1	1	0	0	0	0	0		
7	2	2	2	1	0	0	0	0	0		
8	1	1	0	0	0	0	0	0	0		
9	5	5	4	1	1	0	0	0	0		
10	4	4	4	3	1	0	0	0	0		
11	0	0	0	0	0	0	0	0	0		
12	4	4	4	3	1	1	0	0	0		
Total Partículas	26	26	22	13	3	1	0	0	0		
% de partículas aderidas	100	100	84,61	50	11,53	3,84	0	0	0		
Γ	(c) Faixa d	le diân	netro (2	23,1-29	μm)						
Região	Compressão				Desco	mpress	são				
	5000	1000	3000	5000	7000	9000	11000	13000	14000		
1	0	0	0	0	0	0	0	0	0		
2	1	1	1	1	1	0	0	0	0		
3	0	0	0	0	0	0	0	0	0		
4	2	2	1	0	0	0	0	0	0		
5	1	1	1	0	0	0	0	0	0		
6	0	0	0	0	0	0	0	0	0		
7	1	1	1	0	0	0	0	0	0		
8	1	1	1	0	0	0	0	0	0		
9	1			0	0	0	0	0	0		
10	0	0	0	0	0	0	0	0			
11	2	2	2	0	0	0	0	0	0		
12 Total Partículas	<u> </u>	0	7	1	1	n	0	<u> </u>	<u> </u>		
i viai i ai ticulas	7		/	⊥	1 1	U U	U U	U U	U U		

100 77,80 11,11 11,11

% de partículas aderidas

Tabela B.52.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,8µm, para velocidade angular de compressão 5000rpm. 1ª CORRIDA (a) Faixa de diâmetro (11,1-17μm)

				11,1-17	μ					
Região	Compressão				Desco	mpress	ão			
	5000	1000	3000	5000	7000	9000	11000	13000	14000	
1	9	9	9	9	6	4	2	1	1	
2	6	6	6	6	3	2	1	1	1	
3	4	4	4	2	1	0	0	0	0	
3	4	4	4	2	1	0	0	0	0	
5		۲ و	T Q	4	2	0	0	0	0	
6	6	6	6	4	2	0	0	0	0	
7	0	6	6	4	2	0	0	0	0	
0	5	5	5	3	1	0	0	0	0	
0	5	5	5	2 5	1	2	1	0	0	
9	3	3	2	3	3	3	1	0	0	
10	3	3	3	2	2	1	0	0	0	
11	5	5	5	5	2	2	l	0	0	
12	2	2	2	2	1	1	0	0	0	
Total Partículas	63	63	63	46	27	13	5	2	2	
% de partículas aderidas	100	100	100	73	42,86	20,64	7,94	3,17	3,17	
	(b) Faixa de diâmetro (17,1-23μm)									
Região	Compressão	ssão Descompressão								
	5000	1000	3000	5000	7000	9000	11000	13000	14000	
1	4	4	4	1	0	0	0	0	0	
2	1	1	1	1	1	0	0	0	0	
3	2	2	2	1	1	0	0	0	0	
4	3	3	3	0	0	0	0	0	0	
5	1	1	1	0	0	0	0	0	0	
6	2	2	2	2	1	0	0	0	0	
7	5	5	5	0	0	0	0	0	0	
8	2	2	2	2	2	0	0	0	0	
9	1	1	1	1	0	0	0	0	0	
10	9	9	9	4	1	0	0	0	0	
10	2	2	2	- - 1	1	0	0	0	0	
11	2	2	1	0	0	0	0	0	0	
Total Dartículas	2	24	1	12	7	0	0	0	0	
	34	34	33	13	20 (0		0	0	0	
% de particulas aderidas	(c) Foiyo d	100 la diân	97,00 aotro ('	<u> </u>	20,00	U	U	U	U	
Doctor		ue mametro (25,1-29µm)								
regiao	compressao	1000	2000	5000	Desco	npress	11000	12000	1 4000	
	5000	1000	5000	5000	7000	9000	11000	13000	14000	
	0	0	0	0	0	0	0	0	0	
2	1	1	1	0	0	0	0	0	0	
3	1	1	1	1	0	0	0	0	0	
4	1	1	1	1	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	
6	3	3	3	1	0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	
8	1	1	1	0	0	0	0	0	0	
9	3	3	2	1	0	0	0	0	0	
10	3	3	3	0	0	0	0	0	0	
11	1	1	1	0	0	0	0	0	0	
12	0	0	0	0	0	0	0	0	0	

Total Partículas

% de partículas aderidas

100 92,86 28,60

Tabela B.53.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,8μm, para velocidade angular de compressão 5000rpm. - 2ª CORRIDA
 (a) Faixa de diâmetro (11,1-17μm)

D :~											
Kegião	Compressão		Descompressão								
	5000	1000	3000	5000	7000	9000	11000	13000	14000		
1	5	5	5	4	2	1	0	0	0		
2	6	6	6	4	2	1	0	0	0		
3	1	1	1	1	1	1	0	0	0		
4	3	3	3	2	1	1	1	0	0		
5	3	3	3	2	2	1	1	0	0		
6	3	3	3	2	2	2	1	0	0		
7	4	4	4	2	2	1	0	0	0		
8	6	6	5	2	1	0	0	0	0		
9	4	4	4	2	2	2	1	1	1		
10	3	3	3	3	0	0	0	0	0		
11	4	4	4	2	1	1	0	0	0		
12	1	1	1	1	1	0	0	0	0		
Total Partículas	1	13	12	27	17	11	4	1	1		
1 otal 1 al ticulas	100	100	44	41 () 90	17	25 60		1 2 2 2	1		
% de particulas aderidas	(b) Faiya d	100 le diân	97,70 notro (1	02,00	40 um)	25,00	9,50	2,33	2,55		
Rogião											
Regiau	5000	1000	2000	5000	7000	0000	11000	12000	14000		
1	5000	1000	3000	5000	/000	9000	11000	13000	14000		
1	1	1	1	0	0	0	0	0	0		
2	1	1	l	l	l	0	0	0	0		
3	2	2	1	0	0	0	0	0	0		
4	4	4	3	0	0	0	0	0	0		
5	2	2	1	1	0	0	0	0	0		
6	1	1	1	0	0	0	0	0	0		
7	2	2	1	0	0	0	0	0	0		
8	4	4	4	2	0	0	0	0	0		
9	3	3	3	1	0	0	0	0	0		
10	4	4	4	1	0	0	0	0	0		
11	1	1	1	1	0	0	0	0	0		
12	1	1	1	0	0	0	0	0	0		
Total Partículas	26	26	22	7	1	0	0	0	0		
% de partículas aderidas	100	100	84.62	27	3.85	0	0	0	0		
	(c) Faixa d	le diân	netro (2	23,1-29	μm)	-		-			
Região	Compressão										
	5000	1000	3000	5000	7000	9000	11000	13000	14000		
1	2	2000	2	0	0	0	0	0	0		
2	3	3	2	0	0	0	0	0	0		
3	1	1	1	0	0	0	0	0	0		
4	2	2	1	0	0	0	0	0	0		
5	0	0	0	0	0	0	0	0	0		
6	1	1	1	0	0	0	0	0	0		
7	4	4	4	2	0	0	0	0	0		
8	0	0	0	0	0	0	0	0	0		
9	2	2	2	0	0	0	0	0	0		
10	0	0	0	0	0	0	0	0	0		
11	4	4	3	1	0	0	0	0	0		

Total Partículas

% de partículas aderidas

100 85,71 19,05

Tabela B.54.: Análise das partículas aderidas para o sistema carvão/membrana de éster-celulose 0,8μm, para velocidade angular de compressão 5000rpm. 3ª CORRIDA
 (a) Faixa de diâmetro (11.1-17μm)