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ABSTRACT

The growth and characterization of semiconductor quasi-one-dimensional heterostruc-

ture systems have attracted increasing interest due to their potential technological ap-

plication, like photo-detectors, optoelectronic devices and their promising features for

quantum information processing and photonic applications. The goal of this thesis is the

study of electronic and spin transport properties on quasi-one-dimensional semiconduc-

tor systems; speci�cally, homogenous nanowires (NWs), coupled NW's, twin-plane (TP)

NWs, resonant tunneling diodes (RTDs), and quantum dot chains (QDCs). The k · p

method, in particular the Luttinger Hamiltonian, was chosen to describe the e�ects of bi-

axial con�nement and strain. This suggested a modulation of the ground state character

that, complemented with the phonon dynamics provided by Molecular Dynamics (MD)

simulations, allowed the description of the hole mobility modulation by either phonon

emission or absorption.

Regarding the coupled NW's system, the electron and spin transport properties af-

fected by a Rashba spin-orbit interaction (SOI) at the joined region were unveiled through

the Transfer Matrix Method (TMM). Various con�gurations of gate voltages (Vg), applied

on the wire structure, were considered. We were able to understand the modulation of

the spin transport projected in the z-direction trough the combination of the SOI and the

system dimensionalities. Likewise, the combination of SOI and applied Vg gave rise to a

modulation of the polarization, when the measured spin is projected in the same direction

where the Rashba SOI acts, the y-direction.

The transport properties of a DBS and the e�ect of a resistance in series was explored

within the TMM to prove the nature of a bistability of the I − V characteristics and its

enhanced area with temperature provided by the experiment. The model indicates that

increasing the resistente by decreasing the temperature, the bistable area enhances. The

presence of an additional heterojunction induces a sheet charge at its interfaces. Under

this con�guration, the total voltage drop of the RTD changes and can be con�rmed
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experimentally.

The formation of the peculiar strain �elds and their in�uence on the electronic struc-

ture and transport properties of a TP superlattice was systematically studied. Hence,

the transport properties of both electrons and holes could be e�ectively tuned even in

the case of Γ-electrons of zincblende systems, contrasting to the predicted transparency

of Γ-electrons in heterolayered III-V semiconductor superlattices. Also, the transmission

probability for holes at valence band could also be e�ectively modi�ed by applying an

external stress.

Finally, using molecular-beam-epitaxy and skillful strain engineering, systems of In-

GaAs QDCs were successfully synthesized by collaborators. The QDCs with di�erent

doping concentrations showed an anisotropic behavior of the conductance, measured along

and across the QDCs, with temperature. The theoretical 1D hopping model developed

found that the presence of 0D states shapes the anisotropic response of the conductance

in this system.

Keywords: transport phenomena, spin-orbit interaction, k·pmethod, transfer matrix

method, electron-phonon interaction, semiconductor nanowires, twin-plane nanowires,

resonant tunneling diodes, quantum dot chains.



RESUMO

O crescimento e caracterização de sistemas de heteroestruturas semicondutoras quasi-

unidimensionais têm atraído grande interesse devido à sua potencial de aplicação tec-

nológica, como foto-detectores, dispositivos opto-eletrônicos assim como seu para o pro-

cessamento de informação quântica e aplicações em fotônica. O objetivo desta tese é o

estudo das propriedades de transporte eletrônico e de spin em sistemas semicondutores

quasi-unidimensionais, especi�camente trataremos de nano�os (NWs) homogêneos, NWs

acoplados, NWs do tipo plano-geminado (TP), diodos de tunelamento ressonante (RTD)

e cadeias de pontos quânticos (QDCS). Escolhemos o método k · p, particularmente o

Hamiltoniano de Luttinger, para descrever os efeitos de con�namento e tensão biaxial.

Este sugeriu uma modulação do caráter do estado fundamental que, complementada com

a dinâmica fônons fornecidas pelas simulações da Dinâmica Molecular (MD), permitiu a

descrição da modulação da mobilidade de buracos por emissão ou absorção de fônons.

Em relação ao sistema de NWs acoplado,estudamos, através do método da matriz de

transferência (TMM), as propriedades de transporte de elétrons e spin sob a interação

de spin-órbita (SOI) de Rashba, localizada na região de acoplamento entre �os. Foram

consideradas várias con�gurações de tensões de gate (Vg) aplicadas nos �os. Desse modo,

compreendemos a modulação do transporte de spin quando esse é projetado no direção-z

através da combinação do SOI e das dimensionalidades do sistema. Da mesma forma, a

combinação de SOI e da Vg aplicada deu origem a modulação da polarização, quando o

spin medido é projetado na mesma direção em que o SOI de Rashba atua, a direção y.

Usando o TMM, exploramos as propriedades de transporte de um DBS e o efeito

de uma resistência em série com o intuito de provar a natureza da biestabilidade das

curvas características I − V bem como o aumento de sua área com temperatura, resul-

tados fornecidos por experimentos. O modelo indicou que aumentando da resistência

pela diminuição sa temperatura aumenta a área biestável. A presença de uma hetero-

junção adicional ao sistema induz uma densidade de carga nas suas interfaces. De acordo



Resumo xv

com esta con�guração, a queda de tensão total do RTDS muda, podendo ser con�rmada

experimentalmente.

A formação dos peculiares campos de deformação e sua in�uência sobre a estrutura

eletrônicas e propriedades de transporte em superredes de TP foi estudada sistematica-

mente. Assim, as propriedades de transporte, de ambos os elétrons e buracos, pode ser

sintonizada e�cientemente, mesmo no caso de elétrons Γ em sistemas de blenda de zinco,

contrastando com a prevista transparência de elétrons Γ em superredes de semicondutores

III-V heteroestruturados. Além disso, constatamos que a probabilidade de transmissão

para buracos da banda de valência também poderia ser efetivamente modi�cada através

de uma tensão externa.

Por �m, colaboradores sintetizaram com sucesso sistemas de QDCs de InGaAs através

da epitaxia de feixe molecular e engenharia de tensão. Um comportamento anisotrópico

da condutância com a temperatura foi observado em QDCs com diferentes concentrações

de dopagem, medida realizada ao longo e entre os QDCs. O modelo teórico 1D de hopping

desenvolvido mostrou que a presença de estados 0D modela a resposta anisotrópica da

condutância neste sistemas.

Palavras-chave: fenômenos de transporte, interação spin-órbita, método de matriz

transferência, método k ·p, interação elétron-fônon, nano�os semicondutores, nano�os de

planos-geminados, diodos de tunelamento ressonante, cadeias de pontos quânticos.



1. INTRODUCTION

In the last decade, the growth technics of quasi-one-dimensional semiconductor struc-

tures considerably improved. Such a development in the �eld allowed the appearance of

a great variety of these systems. For example, using molecular-beam epitaxy and strain

engineering, a unique system of aligned quantum dots, i.e., quantum dot chains, was suc-

cessfully synthesized [1, 2] opening up new �eld of research while new physics is unveiled.

Also, just recently, the controlled synthesis of stacking fault heterostructures of III-

V compound semiconductor nanowires (NWs) has been reported [3, 4]. Improvements

in NW synthesis, including chemical technics, allow a thorough control of their shape,

size, and composition [5, 6, 7, 8, 9]. All these advances led to the discovery of new

phenomena, as well as to new outstanding applications in optically active devices [10],

as building blocks for nanocircuits [11], electrically driven lasing [12], which can be used

in telecommunications, for medical diagnostics and therapeutics [13], and information

storage. Likewise, exploring all-electrical spin transport has motivated a search for new

con�gurations of nanostructures [14, 15, 16, 17, 18] in order to make feasible spin-orbit

quantum bit devices [19].

The technological advantage of NWs is related to the ability of engineering and con-

trolling their quantum properties which can be achieved, for instance, through the modi�-

cation of the NW geometry and strain �elds, also theoretically predicted [20]. Simultane-

ously, the development of theoretical models allowed a better understanding of the physics

of quasi-one-dimensional heterostructures. For instance, the plausibility of building inho-

mogeneous heterostructures of a single semiconductor material was long ago theoretically

predicted when stacking faults and the creation of layered systems of semiconductor seg-

ments between twin-planes were simulated [21].

At the �eld frontier, the interest in hybrid semiconductor nanostructures based on NWs

and heterostructured systems allowed foreseing new physicals phenomena. The prediction

of Majorana fermions, �half-fermion� that is its own antiparticle, brought together two
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�elds in physics: condensed matter and elementary particles [22, 23]. The outstanding

synthesis and fabrication techniques of these structures, as well as their reproducibility

and capability of electrical modulation properties made possible the observation of this

prediction. They also anticipate this kind of state of matter as a building block for

quantum computation [24, 25].

The demand for solving challenging questions in this area and the plausibility of exper-

imental testing of theoretical predictions allowed the de�nition of the objectives tackled in

this thesis. That is the main motivation for this work to focus on a sequence of theoreti-

cal studies of transport phenomena in quasi-one-dimensional (1D) heterostructures in the

quantum regime. The transport regime in semiconductor heterostructures is associated

with the time and length scales of the particles in the system. For a semiconductor nanos-

tructure, the de Broglie wavelength of a carrier is comparable with its size, L(Lx, Ly, Lz),

and that is the reason why one should take in consideration quantum phenomena in the

transport properties. The combination of both, a strong experimental, supported by col-

laborators, and theoretical expertise o�ered the possibility for a roadmap strategy starting

from basic fundamental properties of quantum transport phenomena of these structures

towards the realization and applications of nano-scale devices. In this way, by building

this thesis we have transited throughout established fundamental properties, modeled

processes of carrier transport in 1D devices, found optimal regimes to amplify desired

responses, and developed new concepts. Some problems have an experimental interface

that strengthened the impact of our theoretical endeavors for potential applications.

The thesis has been organized as follows. In Chapter 2 the model for the electronic

structure calculations of two semiconductor systems, cylindrical and semi-cylindrical NWs

is presented. The study that correlates transport behavior and structural properties,

as geometry and composition, through the electronic structure of NWs, allows a better

understanding of electromagnetic �eld and strain e�ects. [26, 9, 27]

The previous knowledge about the NWs morphological details is important for the

electronic structure description and we have illustrated this by using the example of

available data of InP NWs. These structures can be grown via the vapor-liquid-solid

method in a CBE (�Chemical Beam Epitaxy�) machine and the veri�cation that the NWs

are strained can be done through the Fourier transform analysis of scanning electron

microscopy (SEM) and transmission electron microscopy (TEM). [9] The reported values
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of the deformation are: ϵ∥ = −0.9%, biaxial strain, and ϵzz = 1.00%, strain along the axis

of the wire. [26]

Given its versatility, the formalism chosen to calculate the electronic structure of

these systems is based on the k · p method. This method is grounded on the idea that

the in�uence of a periodic potential over an electron in a crystal lattice can be taken into

account through the concept of e�ective mass. [28] The presence of a periodic crystalline

potential makes the Bloch theorem valid which describes, in �rst approximation, the

electron state as a charge carrier with e�ective mass m∗, di�ering from the free electron

mass. This approach allows exploring the con�nement e�ects, strain modulation, and

elector-phonon interactions within the same theoretical framework.

The Chapter 3 describes the transport mechanisms in place within the systems under

consideration: ballistic transport, quantum tunneling, and hopping. The ballistic trans-

port regime is available when the sample dimensionality is much smaller than the electron

mean free. In this regime, the conductance depends on the band structure and on the

device geometry. According to Landauer, [29] the current is proportional to the transmis-

sion probability of an electron [30], related to the linear response of the conductance. A

ballistic conductor has its transmission probability close to the unity value which could

lead to an in�nite current, not observed in experiments.

In turn, the Quantum Mechanics wave-like description of carriers provides conditions

for the tunneling e�ect of an electron through potential barriers. This Quantum Mechan-

ical e�ect made possible the discovery of the tunnel diode by L. Esaki [31], which gave rise

to a revolution in electronics and many other theoretical �elds. Our goal was to analyze

the quantum tunneling impact in the carriers transport through 1D layered systems and

describe how this can be tuned by external �elds, strain and temperature.

A model based on hopping transport can also describe the temperature dependence

of the carriers mobility through a system involving localized states. This approach is

suitable for simulating charge transfer in quantum dot chains [32, 33, 34, 35, 36] and we

have provided a description motivated by experimental evidences available for this kind

of structure. This is a semiclassical theory determined by inelastic transitions of electrons

from full states to neighboring empty states assisted by phonons.

Subsequently, speci�c problems are tackled. The knowledge of the valence band struc-

ture combined with Molecular Dynamic (MD) simulations, performed by the group of
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Prof. Jose P. Rino at UFSCar, enabled the transport calculation of an homogeneous NW.

Thus, Chapter 4 describes the e�ects of shape and temperature on the hole wavefunction

and mobility taking into account the phonon occupation and strain e�ects. This choice

was based on the fact that considerable e�orts have been devoted to the description of

carriers in the conduction band of NWs, [37, 38, 39, 40, 41, 42, 43] while similar endeavors

are not so common for holes in the valence band. [44] As the mobility is inversely propor-

tional to the carrier e�ective mass, one may naturally expect that considering carriers in

the valence band may result in a drop in mobility when compared to the light electrons

in the conduction band. This could certainly be the case for heavy-holes (HH) transport;

however, light-holes (LH) under certain conditions may be promoted to be the top valence

band by tuning structural parameters of NWs. [27] This atypical circumstance is the result

of con�nement e�ects and HH-LH mixing, a�ected as well by strain and the presence of

surfaces. [9, 27] As one will see, this results in signi�cant mobility enhancement for LH

in suitable NWs. We can also take advantage of valence band mass anisotropy to attain

resonant conditions that allow sharp variations of the hole mobility with external pa-

rameters, especially when the leading scattering process involve LO-phonons through the

deformation potentials. [45] In order to provide realistic estimates of the expected mobility

changes in the NWs of interest, we consider the e�ects of dimensionality reduction on the

LO-phonon dispersion and lifetime, using MD simulations for di�erent NWs size and at

various temperatures. These latter e�ects were characterized by our collaborators and the

results used by us as input parameters for the subsequent calculation of the hole-phonon

interaction terms. Subsequently, we �nd that for certain widths, resonant behaviors are

triggered that reduce the hole mobility and can be strongly a�ected by temperature and

strain. Moreover, the mobility changes in a non-monotonic fashion according to the NW

width, strain �elds, and temperature.

The nature of processes that combine both electron and spin transport mechanisms was

explored in Chapter 5. In particular, we report the spin transport properties of parallel

NWs, in a directional �H-shape� coupler connected through a region of the same material

but locally gated, as displayed in Fig. 1.1(a). The realization of a directional coupler in the

early 90's gave rise, through proximity and tunneling e�ects,[46, 47] to the modulation of

quantum transport in a phase-coherent system.[48] Also, the spin modulation in a single

NW via spin-orbit interaction (SOI) has been proposed [49] and re�ned [50, 51, 52, 53, 54]
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(a)

Fig. 1.1: (a) Scheme of the proposed system where we have two parallel nanowires connected
in a middle region by the same material.(b) Polarization in the y-direction vs the SOI
strength, α, and applied gate voltage on the bottom right wire, (V g2), for the top right
wire (P y

1 ) with incident energy from the top left wire of E = 100 meV.

to achieve a spin-orbit quantum bit device. [19] Exploring all-electrical spin transport has

motivated a search for new con�gurations of nanostructures [14, 15, 16, 17, 18]. Thus,

exploring the properties of coupled NWs in order to unveiled the nature of electron and

spin transport mechanisms, a spin-wave guide directional coupler appears as a promising

device geometry.

Therefore, the application of a gate �eld in the connecting region generates a Rashba

spin-orbit interaction, which breaks spin degeneracy. We �nd that, while being able to

control the electronic �ux through the di�erent wires across the mixing region, as expected,

it is also possible to electrically control the spin �ux across the device whenever spin-

polarized injection is considered. Moreover, we �nd that there is a net spin-polarized �ux

perpendicular to the current, which can be controlled by the gate potential in the mixing

region, as well as by local gates at the NWs, as illustrated in Fig. 1.1(b). This overall

control of charge and spin �ux in a directional coupler appears promising for spintronics,

as well as in hybrid devices combined with superconducting or magnetic materials.

Chapter 6 is devoted to the description of 1D transport through hetero-layered sys-

tems. The transfer matrix formalism will be applied to two di�erent problems and the

modulation of the transport response to structural factors and charge con�nement will be

analyzed. Describing the 1D transport in resonant tunneling diodes (RTDs) requires the

use of some of the main concepts condensed within this thesis. Additionally, it has been

demonstrated the relevance of such structures as sensors with characteristics such as high

internal gain and aptitude for single photon detection. [55, 56, 57] The basic principle of

these detectors is the local and sensitive variation of the electric �eld, caused by accumu-

lated carriers at the intrinsic tunneling structure. [58, 59, 60] E�ectively, the transmission
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probability of majority carriers can be also altered by accumulation of photo-generated

ones.

To exploit the RTDs full potential, the best working point has to be identi�ed, which

is a highly complex matter that correlates e�ciency, carrier accumulation dynamics, and

system gain. Recently, AlGaAs/GaAs based double barrier structure (DBS) with a nearby

and lattice matched GaInNAs absorption layer was proposed for high sensitive photo

detection at the telecommunication wavelength λ = 1.30 µm [61, 62]. These devices are

the inspiration of the studied subject presented here. The experimental results on the

RTD's provided by the group of Prof. Lukas Worschech from University of Wuerzburg,

showed a bistability of the I − V characteristics and its enhanced area with temperature,

as well as its linear threshold shift whenever a nearby and latticed matched GaInNAs

absorption layer was considered. In the �rst case, the theoretical model, based on the

TMM, indicates that by increasing the resistente, while decreasing the temperature, the

bistable area enhances. In the latter case, the presence of a GaInNAs layer lead to a

additional sheet charge formed at the GaInNAs/GaAs interface. Under this con�guration,

the total voltage drop of the RTD changes due to a charge accumulation increase.

The plausibility of building inhomogeneous heterostructures of a single semiconduc-

tor material was long ago theoretically predicted when stacking faults and the creation

of layered systems of semiconductor segments between twin-planes were simulated. [21]

There is however a major shortcoming in the e�ective use of twin-planes for quantum ef-

fects in zincblende heterostructures: the mere presence of a twin stacking fault would not

practically a�ect the transmission of Γ-electrons and these interfaces would remain mostly

transparent. [63, 64] Just recently, the controlled synthesis of stacking fault heterostruc-

tures of III-V compound semiconductor NWs has been reported. [3, 4] It was shown that

by controlling either the growth temperature and diameter of InAs NWs [3] or the amount

of impurity dopants in analogous InP systems [4], a twin-plane superlattice can be ex-

perimentally realized. Such a microscopic control of the crystalline structure during the

NW synthesis would open up opportunities for a thorough modulation of their electronic

structure, thus increasing the potential use of these NWs as quantum heterodevices.

A systematic study about the microscopic structure of twin-plane NWs, Fig. 1.2(a), the

formation of their peculiar strain �elds a�ected by the surface and twin-plane interfaces,

and how they in�uence the electronic structure and transport properties of Γ-electrons
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(a)

(b)

(c)

Fig. 1.2: (a) Scheme of the twin-plane nanowire. (a) and (b) Transmission probability for carriers
at the top of the valence band as a function of the hole energy for relaxed NWs or
under tension. The dashed (solid) line is the transmission for a NW composed of 2 (50)
segments. The full transparency condition occurs when the transmission probability is
equal to 1. In all cases the energy has been measured from the corresponding band
minimum.

and holes will also be described here, as exempli�ed in Fig. 1.2(b) and (c). In collabora-

tion with the group of Prof. Jose P Rino, we studied the properties of InP zincblende type

NWs by employing their MD simulations combined with a multiband electronic structure

calculation. The electronic transport was analyzed within the envelope function approx-

imation. We show that exploring twin-plane superlattices as active part of nanocircuits

can be successfully achieved if the external control of such strain dependency is mastered.

Finally, Chapter 7, in direct connection with experimental results, provided by collab-

orators, presents the study of electron transport in a system of quantum dot chains within

the framework of 1D hopping model. The progress in nano-scale electronics architecture

and the continuous search for ultra-small circuit components have resulted in increased

interest in the unique properties of low-dimensional systems such as coupled quantum

dots (QDs) and quantum dot chains (QDCs) [1, 2]. In previous reports, using structural

and optical characterization techniques, it was shown that the QDC systems have a com-

plex band structure caused by the combination of two-dimensional (2D), one-dimensional

(1D) and zero-dimensional (0D) densities of states [65, 66]. In this regard, systems of 1D

coupled QDs have attracted much attention both in order to understand the underlying

physics [67] and to develop novel devices. The co-existence of 2D and 1D states, that

are important for enhanced electrical conductivity, as well as 1D and 0D states, that can

play a role in the suppression of thermal conductivity, also makes this system a potential

target for development of thermoelectric applications [68].

In collaboration with the experimental group of Prof. Greg Salamo from University of
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Arkansas, where electron mobility in a system of QDCs was investigated, we developed a

1D hopping model in order to characterize the carrier transport is this kind of system. The

presence of 0D states on top of a 1D wetting layer makes the electron transport in QDCs

di�erent from a system of continuous wires. This results in a di�erent anisotropic response

as well as enhanced hopping at low temperatures. Detailed studies of the mechanisms

of conductance in a system of quantum dot chains as a function of temperature and

under the in�uence of a remote doping level was performed by collaborators where they

demonstrated that the behavior of the conductance is complex due to the availability of

states of di�erent dimensionalities. Thus, we �nd that the presence of 0D states plays a

key role in the anisotropic behavior of the conductance in this system and compare the

experimental response to a 1D hopping model.

In all the problems tackled, our contribution was to provide theoretical predictions or

answer to challenging questions posed by experimental evidences. Original results were

attained in every topic and the work resulted in the following publications:

(1) H. Tsuzuki, D. F. Cesar, M. Rebello de Sousa Dias, L. K. Castelano, V. Lopez-

Richard, J. P. Rino, G. E. Marques, Tailoring Electronic Transparency of Twin-Plane 1D

Superlattices. ACS Nano, v. 5, p. 5519, 2011.

(2) M. Rebello Sousa Dias, A. Picinin, V. Lopez-Richard, S. E. Ulloa, L. K. Castelano,

J. P. Rino, G. E. Marques, Tuning hole mobility in InP nanowires. Applied Physics

Letters, v. 101, p. 182104, 2012.

(3) V. P. Kunets, M. Rebello Sousa Dias, T. Rembert, M. E. Ware, Y. I. Mazur,

V. Lopez-Richard, H. A. Mantooth, G. E. Marques, G. J. Salamo, Electron transport

in quantum dot chains: Dimensionality e�ects and hopping conductance, Journal of

Applied Physics, v. 113, p. 183709, 2013.

(4) M. Rebello Sousa Dias, V. Lopez-Richard, G. E. Marques, S. E. Ulloa, Spin �ltering

in nanowire directional coupler, Europhysics Letters, v. 106, p. 17002, 2014.



2. ELECTRONIC STRUCTURE OF SEMICONDUCTOR NANOWIRES

2.1 The 1D con�nement and strain e�ects within the k · p model

The study that correlates transport behavior and structural properties, as geometry

and composition, through the electronic structure of NWs, allows a better understanding

of electromagnetic �eld and strain e�ects. [26, 9, 27] The 1D con�nement in this system

leads to quantum peculiarities that become clear in this type of analysis.

The knowledge about morphological details of NWs is very important for the electronic

structure description and we will illustrate this by using the example of available data

of InP NWs. These structures have been grown via the vapor-liquid-solid method in a

CBE (�Chemical Beam Epitaxy�) machine. Fig. 2.1(a) shows the morphology and crystal

structure of a sample through scanning electron microscopy (SEM) and Fig. 2.1(b) shows

the corresponding transmission electron microscopy (TEM) results. [9] The veri�cation

that the NWs are strained was done through the Fourier transform analysis of the high

resolution images (Fig. 2.1(c)) with the electron di�raction of a selected area (Fig. 2.1(d)).

The reported values of the deformation are: ϵ∥ = −0.9%, biaxial strain, and ϵzz = 1.00%,

strain along the axis of the wire. [26]

In the following section, the electronic structure calculations of the valence band, which

take into account the e�ects detected of con�nement and strain, are going to be discussed.

2.1.1 k · p model: Luttinger Hamiltonian

The theoretical simulation of electronic and transport properties of semiconductor

materials is always subjected to approximations due to the di�culty of treating systems

of many particles. The band structure calculation of semiconductor systems follows this

standard. The formalism chosen in this work is based on the idea that the in�uence of a

periodic potential over an electron in a crystal lattice can be taken into account through

the concept of e�ective mass. [28] The presence of a periodic crystalline potential makes
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Fig. 2.1: (a) Scanning Electron Microscopy (SEM) of InP nanowires (NWs) on [001] direction.
(b) Transmission Electron Microscopy (TEM) image of a InP NW. (c) High resolution
TEM image of the NW base corner. (d) High resolution TEM image of the NW parte
side [9].

the Bloch theorem valid which describes, in �rst approximation, the electron state as a

charge carrier with e�ective mass m∗, di�ering from the free electron mass. This approach

is based on a Hamiltonian model called the k ·p method and various approximations can

be used according to the electronic state and the semiconductor materials. In this thesis,

we have used two kinds: the parabolic approximation and the Luttinger model.

The k·p method allows the band structure calculation in a vicinity of symmetry points

of the Brillouin zone. For semiconductors with zinc blende type symmetry, an important

point is located at k = 0 (Γ-point) which is the reciprocal lattice center where the states

responsible for the optical recombination belong. In summary, we followed three steps for

the e�ective band structure calculations of the systems of interest: (i) transformation of

the crystal Hamiltonian to the k · p representation, (ii) reduction of the problem to the

eigenvalues calculation, and (iii) introduction of approximations.

In order to accomplish the �rst step, we started from the Schrödinger equation

H0Ψ(r) = EΨ(r), (2.1)

where the Hamiltonian that determines the total charge carrier energy has the kinetic and

the potential (U(r)) energy terms. The latter has the crystal lattice periodicity

H0 =
p2

2m0

+ U(r). (2.2)
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In this equation, p = −i~∇ is the linear momentum operator and m0 is the free electron

mass.

The Bloch theorem can be used due to the periodicity of U(r). [69] This allows the

restriction of the eigenvalue spectrum of p which characterize the carrier in the �rst

Brillouin zone of the reciprocal space. Being En(k) the total particle energy for a certain

wave vector k, where n enumerates the possible energy bands, we can write the wave

functions of the Eq. (2.1) as

Ψnk(r) = eik.runk(r), (2.3)

where unk(r) are functions with the same periodicity of U(r). The system has translational

symmetry which allowed the canonical transformation of H0,

H(k) = e−ik.rH0e
ik.r. (2.4)

Expanding the Hamiltonian above in Taylor series, we have

H(k) = H0 − ik.[r,H0]−
1

2

∑
ij

kikj[ri, [rj,H0]] + ... (2.5)

Using the commutation relation between the position and momentum operators, [r,H0] =

i~p/m0 and [r, [r,H0]] = −i~2δij/m0, one can write the Hamiltonian as

H(k) =
p2

2m0

+ U(r) +
~2k2

2m0

+
~
m0

k · p, (2.6)

which is the operator where eigenfunctions and eigenvalues are de�ned for the Bloch

function of the periodic part, unk(r). In this way, Eq. (2.1) becomes

[
p2

2m0

+ U(r) +
~2k2

2m0

+
~
m0

k · p
]
unk = Enkunk. (2.7)

The terms k-dependent in Eq. (2.7) vanishes at k = 0. Thus, the solution for k close to

the Γ-point can be described as

unk =
∑
m

Cm(k)um0. (2.8)

Inserting the solution (2.8) in Eq. (2.7), multiplying by the complex conjugated, um0∗,
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and integrating over the unitary cell volume, one has

∑
m

[(
En0 − Enk +

~2k2

2m0

δnm

)
+

~k
2m0

· ⟨n0|p|m0⟩
]
Cm(k) = 0. (2.9)

The diagonalization of Eq. (2.9) gives the dispersion relation, En(k), and the expansion

coe�cients, Cm(k), for all k in all energy bands n.

Using perturbation theory on the non-degenerated nth band with energy equal to En0,

for small values of k, one has

Cn ∼ 1; Cm =
~k
2m0

· pnm

En0 − Em0

. (2.10)

Inserting this result in Eq. (2.9), the energy second order correction can be obtained as

Enk = En0 +
~2k2

2m0

+
~2

m2
0

∑
m̸=n

|pnm · k|2

En0 − Em0

. (2.11)

The non-degenerated band dispersion relations are parabolic for k ∼ 0. Close to the

Γ-point, one has

Enk = En0 +
~2

2

∑
i,j

ki
1

mij
n

kj, (2.12)

where i, j indexes are the cartesian coordinates x, y, z, andmij
n is the e�ective mass tensor.

Using Eq. (2.11), mij
n is de�ned as [69]

1

mij
n

=
1

m0
δij +

2

m2
0

∑
n ̸=m

pipj

En0 − Em0

(2.13)

Notice that the e�ective mass tensor obtained takes in consideration only the kinetic

and the periodic potential of the system. However, one can introduce the spin-orbit

relativistic correction. This new term replaces the operator p with

π = p+
~

4m0c2
(σ ×∇U), (2.14)

where σ are the Pauli matrices. [69, 70]

The simplest model for the structure of both conduction (c) and valence (v) bands of
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a semiconductor is the parabolic one. Here, the e�ective mass tensor is isotropic

Ec/v(k) = ±

(
Eg
2

+
~2k2

2m∗
(c/v)

)
, (2.15)

where k is the wave vector from the Brillouin zone center, Eg is the energy gap, and m∗
c/v

are the e�ective masses of the conduction and valence bands. [71]

For the conduction band of wide gap semiconductors (Eg ≥ 500 meV), such approxi-

mation is reasonable and was used in our approach to calculate the electronic structure of

electrons. However, the e�ective mass tensor in the valence band of these semiconductor

materials has a marked anisotropic character and such approximation cannot be consid-

ered. Therefore, e�ects of non-parabolicity, anisotropy, and coupling between light holes

(LH) and heavy holes (HH) must be taken into account.

The description of the electronic structure above is based on the Bloch theorem, rel-

evant to volumetric systems (bulk). In this case, due to translational invariance, the

wave vector components (linear momentum) are good quantum numbers. Nevertheless,

its scope can be extended to nanoscopic systems, such as quantum wells, nanowires and

quantum dots, where the crystal symmetry properties still exist. In these systems, the

wave vector components (linear momentum) become di�erential operators.

To study the valence band, the Luttinger model is going to be used [72]. The Eq. (2.9)

has in�nite dimension and it is impossible to solve it exactly. However, our region of

interest is restricted to the energy states in the vicinity of k = 0 where k · p method is

suitable. In order to solve the Eq. (2.9), the method developed by Löwdin [73] was used.

This method use perturbation theory and exact diagonalization. Luttinger [72], using

this approach, derived an e�ective Hamiltonian (HL) for the valence band calculation

considering only symmetry aspects. [74] In this case, one can write the representation of

the Hamiltonian (2.9) on the basis of the total angular momentum eigenstates, |J,mJ⟩

|3/2,+3/2⟩ = 1
2
|(x+iy) ↑⟩, |3/2,+1/2⟩ = 1√

6
|(x+iy) ↓ −2z ↑⟩, |3/2,−3/2⟩ = 1

2
|(x−iy) ↓⟩,
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|3/2,−1/2⟩ = 1√
6
|(x− iy) ↑ +2z ↓⟩, as

HLΨn′,p(ρ, θ, z) =
~2

m0


D+

HH A− 0 B−

D+
LH B− 0

D−
HH A+

D−
LH


∑
p,n′


C1,n′Φn′,p(ρ, θ, z)

∣∣3
2
,+3

2

⟩
C2,n′Φn′,p(ρ, θ, z)

∣∣3
2
,+1

2

⟩
C3,n′Φn′,p(ρ, θ, z)

∣∣3
2
,−3

2

⟩
C4,n′Φn′,p(ρ, θ, z)

∣∣3
2
,−1

2

⟩



= E
∑
n′,p


C1,n′Φn′,p(ρ, θ, z)

∣∣3
2
,+3

2

⟩
C2,n′Φn′,p(ρ, θ, z)

∣∣3
2
,+1

2

⟩
C3,n′Φn′,p(ρ, θ, z)

∣∣3
2
,−3

2

⟩
C4,n′Φn′,p(ρ, θ, z)

∣∣3
2
,−1

2

⟩

 , (2.16)

where

D±
HH = −

(
γ1 + γ2

2

)
{k̂+, k̂−} −

(
γ1 − 2γ2

2

)
k̂2z , (2.17)

D±
LH = −

(
γ1 − γ2

2

)
{k̂+, k̂−} −

(
γ1 + 2γ2

2

)
k̂2z , (2.18)

A± = −
√
3γ3k̂±k̂z, (2.19)

B± = −
√
3

2

γ2 + γ3
2

k̂2±, (2.20)

and γα (α = 1, 2, 3) are the Luttinger parameters, responsible for the e�ective mass

anisotropy of holes, and coupling between the light and heavy holes, {A,B} = 1
2
(AB +

BA), and k̂± = k̂x± ik̂y. The values used for the e�ective valence band calculations of an

InP NW were γ1 = 4.95, γ2 = 1.65, and γ3 = 2.35. [75]

The description of NWs with cylindrical and semi-cylindrical 1D con�nement is more

suitable in polar coordinates, where

k̂± = −ie±iθ

(
∂

∂ρ
± i

ρ

∂

∂ρ

)
, (2.21)

k̂2± = e±2iθ

(
− ∂2

∂ρ2
± 2i

ρ2
∓ 2i

ρ

∂

∂ρ

∂

∂θ
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂θ2

)
, (2.22)

and

{k̂+, k̂−} = −
[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂θ2

]
. (2.23)
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Using hard wall con�nement for the boundary conditions, one can expand the wave func-

tion in the basis of eigenfunctions of the in�nite cylinder with radius a (Fig. 2.2 (a)).

Thus, for a cylinder

Φn,p(ρ, θ) =
Jn
(µnpρ

a

)
einθ

√
πa|Jn+1(µnp)|

, with n = ±1,±2,±3, ..., (2.24)

and for a semi-cylinder (Fig. 2.2 (b))

Ψn,p(ρ, θ) =
2Jn

(µnpρ

a

)
sin(nθ)

√
πa|Jn+1(µnp)|

, with n = 1, 2, 3, ..., (2.25)

where Jn are the Bessel functions and µnp is the p-th zero of the Bessel function with

order n.

(a) (b)

Fig. 2.2: (a) Cylindrical InP NW with radius a. (b) Semi-cylindrical InP NW with radius a.

To build the Hamiltonian matrix it is necessary calculate the terms ⟨n, p|{k̂+, k̂−}|n′, p′⟩,

⟨n, p|k̂±|n′, p′⟩ and ⟨n, p|k̂2±|n′, p′⟩. Using the wavefunction (2.24) one can demonstrate

that

⟨n, p|{k̂+, k̂−}|n′, p′⟩ =
µ2
n,p

a2
δn′,nδp′,p, (2.26)

⟨n, p|k̂±|n′, p′⟩ = ∓2i

a
T n,p
n′,p′δn′,n∓1 , and

⟨n, p|k̂2±|n′, p′⟩ = ∓4(n∓ 1)

a2
T n,p
n′,p′δn′,n∓2

with

lim
n−→∓1

{±(n+ 1)T n,p
n±2,p′} = 2µ2

n,pδp′,p, (2.27)

where T n,p
n′,p′ =

µn,p/µn′,p′

(µn,p/µn′,p′ )
2−1

.

In a similar way, using the wavefunction (2.25) one have

⟨n, p|k̂+|n′, p′⟩ = isgn(n− n′)T n,p
n′±1,p′ if n′ = n± 1, and (2.28)
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⟨n, p|k̂+|n′, p′⟩ = 2n

µn,pπ

1 + (−1)n+n′

Jn′+1(µn′,p′)Jn′+1(µn,p)

F n,p
n′,p′ if n′ ̸= n± 1

where sgn(x) = 1 if x > 0 and sgn(x) = −1 if x < 0, and F n,p
n′,p′ is given by

F n,p
n′,p′ =

∫ µn′,p′

0

zJn

(
µn,pz

µn′,p′

)[
Jn′−1(z)

(1− n′)2 − n2
−

Jn′+1(z)

(1 + n′)2 − n2

]
dz. (2.29)

for n = n′ and p = p′ one have F n,p
n′,p′ =

2n
(2n)2−1

∫ µn,p

0
d
dz
zJn(z)

2dz. Also, ⟨n, p|k̂−|n′, p′⟩ =

(−1)n
′+n+1⟨n, p|k̂+|n′, p′⟩. The other matrix elements are evaluated numerically.

The analytical solution of the Luttinger Hamiltonian matrix elements, showed above,

in the function basis of Eq. (2.24) and Eq. (2.25) allowed a compact representation of

the Hamiltonian and its separation into orthogonal Hilbert subspaces. This facilitates

the representation of eigenfunctions and the application of numerical methods for the

eigenvalue problem diagonalization. [27]

Besides the quantization e�ects, the strain produced by the presence of surfaces, in-

terfaces, and/or external stress, contributes to the electronic structure of quantum wires

and requires its inclusion within the Hamiltonian model. These e�ects will be detailed in

the next section.

2.1.2 Strain

Taking into account the deformation of the crystalline structure, due to tensions, like

the ones observed experimentally, [26] one must add terms to the Hamiltonian HL that

consider these e�ects. In the case of a biaxial deformation on structures grown along to

the [001] direction, such as NWs, the strain e�ect appear as displacements of the top of

the bands modi�ed by parameters associated with the deformation potentials. [76]

Using a diagonal Hamiltonian, one can write HL with the strain displacement

HD
L =

~2

m0


D+

HH +∆EHH 0 0 0

D+
LH +∆ELH 0 0

D−
HH +∆EHH 0

D−
LH +∆ELH

 .
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For the HH subband the displacement is given by,

∆EHH = −P −Q, (2.30)

and for the LH,

∆ELH = −P +Q+
2(Q)2

∆SO

, (2.31)

where P = 2(av + ac)(
c11−c12

c11
)ϵ∥, and Q = −b( c11+2c12

c11
)ϵ∥. The parameters required for the

displacement calculation are displayed in Table 2.1.

Tab. 2.1: Parameters for ∆ELH , and ∆EHH . [77, 78]

Deformation potential (dyn cm−2)

c11 10.11 ×1011

c12 5.61 ×1011

Elastic modulus (eV)

ac − 7.0
av − 0.6

∆SO (eV)

0.108

Introducing the stain e�ects, one may notice that a negative energy displacement for

both LH and HH subbands occurs. The valence band ground state has a LH character

for a system with no stain, whereas a biaxial strain can change this character to HH. [27]

2.1.3 InP nanowire valence band calculation

Based on the analytical results for the matrix elements we proceed and set the complete

Hamiltonian, HL. The valence band energy levels of a cylindrical InP NW with no strain

e�ects are shown in Fig. 2.3(a)

Figure 2.3(b) shows the valence band energy levels including strain e�ects, where the

biaxial strain, ϵ∥ = −0.9%, is in agreement with experimental results. [9] The di�erence

in energy, at kz = 0, between the HH and LH subbands is |∆EHH−LH | = 73, 87 meV with

strain and |∆EHH−LH | = 28, 61 meV, with no strain.

Through the coe�cient calculation of the expansion of the wave function one can

assess the character of the valence band. [27] As one can see, for a NW with no strain,
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Fig. 2.3: Energy dispersion for a cylindrical InP NW with radius a = 185Å. (a) Without strain
and (b) with strain. [9]

Fig. 2.3(a), the LH(0,1) character is highlighted in gray while the HH(0,1) is in black

(the notation corresponds to the quantum numbers (n,p) described above). Considering

strain e�ects, a reordering takes place in the ground states. The HH(0,1) becomes an

almost pure state and appears at the top of the band (black line on Fig. 2.3(b)), while

the LH(0,1) character is still present in many excited states (grey line on Fig. 2.3(b)).

These results show the main con�nement e�ect in a quasi-one-dimensional system.

With no strain, the ground state has a LH character, close to kz = 0, as opposed to

the quasi-bi-dimensional (quantum well) nanostructures, where the ground state has a

HH character. This peculiar result on the e�ective mass anisotropy of the valence band,

pointed in the diagonal elements of the Luttinger Hamiltonian, are related with the e�ec-

tive masses of the HH and LH in the plane perpendicular to the NW axis, proportional

to (γ1+γ2)
−1 and (γ1−γ2)−1 respectively. Thus, the smaller mass in this plane is the one

from the HH, and this is more sensitive to the con�nement e�ects, as shown in Figs. 2.3(a)

and (b). The strain e�ects provoke the inversion of this behavior.

Following the same procedure as in the cylindrical case, one can write all matrix

elements in the function basis of Eq. (2.25) in order to obtain analytical expressions that

allow a compact Hamiltonian representation for the semi-cylinder. The valence band
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energy levels of a semi-cylindrical InP NW with no strain e�ects are shown in Fig. 2.4(a).
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Fig. 2.4: Energy dispersion for a semi-cylindrical InP NW without strain (a) and with strain (b)

Figure 2.4(b) shows the valence band energy levels including strain e�ects, where

ϵ|| = −0.9%. The di�erence in energy, at kz = 0, between the HH and LH subbands

is |∆EHH−LH | = 39.85 meV with stain and |∆EHH−LH | = 5.4 meV with no strain. In

comparison with the cylindrical case, one can see the same behavior but the con�nements

e�ects are more evident, higher density of state in a smaller energy window, this is due

to the rotational symmetry breakdown.

The next step will introduce the electron-phonon interaction. This scattering mech-

anism may play a crucial role in the modulation of carrier transport. Although the

carrier-phonon interaction can be of various natures, we will consider the e�ects of the

hole coupling with longitudinal-optical (LO) phonons via deformation potentials.

2.2 Electron-phonon interaction

The mobility is a quantity that depends on the charge carrier lifetime,µ = e
m∗ τ , that

is a�ected by the electron-phonon scattering and de�ned as,

1

τ(k)
=
∑
q

S(k, q), (2.32)
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with the transition rate given by

S(k, k′) =
2π

~
[
|⟨Ψl′|Ha

e−p|Ψl⟩|2δ(Ef (k′)− Ei(k)− ~ωq)+

|⟨Ψl′|He
e−p|Ψl⟩|2δ(Ef (k′)− Ei(k) + ~ωq)

]
, (2.33)

where k and k′ refer to the initial and �nal states responsible for the transition probability

of the scattering processes, Ha
e−p and He

h−p refer to the phonon absorption and emission

processes, characterized by the phonon energy ~ωq, and Ef (k′) and Ei(k) correspond to

the energy of the inicial (i) state and �nal (f), respectively.

The hole-phonon interaction Hamiltonian is given by

He−p =
∑
q

MqUe−i(q)[âqe
ir.q + â†qe

−ir.q], (2.34)

with Mq = (q · εq)
(

~
2ρωqV

) 1
2
, where q is the phonon wave vector for polarization vector

εq, ρ is the mass density, V is the system volume, and Ue−i(q) is given in terms of the

deformation potential, [79, 80] where a0 is the lattice parameter. Thus,

⟨Ψl′|Ha
e−p +He

e−p|Ψl⟩ =
∑
q

Mq[⟨Ψl′|Ue−i(q)âqe
ir.q|Ψl⟩+ ⟨Ψl′ |Ue−i(q)â

†
qe

−ir.q|Ψl⟩].(2.35)

Considering an in�nite NW, the wave function has the form

|Ψl⟩ = |ψl⟩|nq⟩|J,mj⟩ (2.36)

where |ψl⟩ is the envelope function, which depends on the cross section, |nq⟩ is the phonon

eigenstate, and |J,mj⟩ is the total angular momentum eigenstate. The following Table

shows the envelope functions for the three cases considered in this work.

Tab. 2.2: Envelope function for three di�erent cross sections: circular (c) and semicircular (sc)
of radius a, and square (s) of width W. µn,p is the p-th zero of the n-th order Bessel
function and C = (

√
πa|Jn+1(µn,p)|)−1.

ψ
(c)
n,p,k = CJn(µn,p

r
a
)einθeikz, n = 0,±1,±2...

ψ
(sc)
n,p,k = 2CJn(µn,p

r
a
) sin(nθ)eikz, n = 1, 2...

ψ
(s)
nx,ny,k

= 2
W

sin(nxπx
W

) sin(nyπy

W
)eikz, nx, ny = 1, 2...
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In order to calculate the matrix element displayed on Eq. (2.35), one can use Eq. (5.2)and

obtain ⟨Ψl′|Ha
e−p +He

e−p|Ψl⟩ =

∑
q

Mq[⟨ψn′,p′,k′|eir.q|ψn,p,k⟩⟨nq−1|âq|nq⟩⟨J ′,m′
j|Ue−i(q)|J,mj⟩

+⟨ψn′,p′,k′ |e−ir.q|ψn,p,k⟩⟨nq+1|â†q|nq⟩⟨J ′,m′
j|Ue−i(q)|J,mj⟩] (2.37)

The annihilation and creation operators act into the phonon eigenstate as âq|nq⟩ =
√
nq|nq−1⟩ and â†q|nq⟩ =

√
nq + 1|nq+1⟩, where the phonon occupation factor depends on

temperature like, nq = (e~ωq/kBT − 1)−1. The matrix elements, in terms of the envelope

wave function, for a NW with cylinder cross section are

⟨ψn′,p′,k′|eir.q|ψn,p,k⟩ =
∫ ∞

−∞

∫ 2π

0

∫ a

0

Jn′(µn′,p′
ρ
a
)e−in′θe−ik′z

√
πa|Jn′(µn′,p′)|

eir.q ×

Jn(µn,p
ρ
a
)einθeikz

√
πa|Jn(µn,p)|

ρdρdθdz, (2.38)

where eir.q = eiρ.qteiz.qz , qt being the transversal component of the phonon wave vector

and qz the component along the z direction. Therefore,

⟨ψn′,p′,k′ |eir.q|ψn,p,k⟩ = 2δn′,nIp′,pδk′,k+qz , (2.39)

where

Ip′,p =

∫ a

0

Jn′(µn′,p′
ρ
a
)

a|Jn′(µn′,p′)|
eiρ.qt

Jn(µn,p
ρ
a
)

a|Jn(µn,p)|
ρdρ. (2.40)

Equation (2.40) has analytical solution for qt = 0, Ip′,p = 1
2
δp′,p. Within the range qt ≃

1/a, where qt ̸= 0, the matrix element does not change signi�cantly. Hence, one can

approximate this result by the analytical one, obtained for qt = 0.

The deformation potential operator for electrons (e) and holes (h) is given by [79, 80]

Ue−i(q) =

√
3

2a0
[De(z)−Dh(z)]. (2.41)

Considering long wavelength processes where q is small and the interaction is in the

short range regime, we have Uh−i(q) ∝ u, where u is the relative displacement between

atoms inside the primitive unit cell. By symmetry, there are no allowed transitions due to

interaction with LO-phonons in conduction band via deformation potential. On the other
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hand, in the valence band, states with HH character couple with those of LH character

along the direction [001] [80, 79]. As this coincides with the wire axis, along which the

carrier transport takes place, we �nd

⟨HH±|Uh−i(z)|LH∓⟩ = ⟨LH∓|Uh−i(z)|HH±⟩ = ±id0
2a0

, (2.42)

where d0 = 35 eV Å is the deformation constant, a0 = 5.87Å, and ρ = 26.98
c2

1011meV/Å3. [81]

Rewriting the complete matrix element, we have

⟨Ψl′|Ha
e−p +He

e−p|Ψl⟩ =
∑
q

Mqδn′,nδp′,p
∓id0
2a0

[√
nqδk′,k+qz +

√
nq + 1δk′,k−qz

]
. (2.43)

The compact form of the matrix element on Eq. (2.43) is the �rst step to calculate carrier

life time. As follows, the transition rate calculation will be shown in order to calculate

the life time.

2.2.1 Lifetime calculation

The transition probability per unit time from one energy eigenstate of a quantum

system is given by Eq. (2.33), the Fermi golden's rule. The phonon density is assumed to

be given by a Lorentzian centered at ωLO with width Γ. Thus, the Dirac delta function

can be replaced by a Lorentzian,

δ(∆E ± ~ωq) →
1

π

Γ/2

(∆E ± ~ωq)2 + (Γ/2)2
. (2.44)

In the limit where Γ → 0 the delta function is recovered. According to the energy

conservation selection rules described on Eq. (2.43), ∆E ±~ωq = Ef (k± qz)−Ei(k)±~ωq,

where se subindex f and i refer to the �nal and inicial states, respectively. Therefore, the

valence band transition energy conservation, in units of ~2
2m0

, is given by

ca,e
2m0

~2
= Λ

(
1

λf
− 1

λi

)
+ k2

(
1

λzf
− 1

λzi

)
+

q2z
λzf

± 2kqz
λzf

∓ ~ωq

σ
, (2.45)

where Λc =
µ2
n,p

a2
, Λsc =

µ2
n,p

a2
, and Λs =

2π2n2

W 2 . λβ and λzβ are the e�ective hole masses for

the transverse and z-direction, respectively. The mass factors are given by the Luttinger

parameters, with λ−1
LH = γ1 − γ2, λ−1

zLH = γ1 + 2γ2, λ−1
HH = γ1 + γ2, and λ−1

zHH = γ1 − 2γ2.



2. Electronic structure of semiconductor nanowires 23

Replacing Eq. (2.44) into Eq. (2.33), we have

S(k, qz) =
πd20q

2
z

ρωqV 4a20

[
nq

π

Γ/2

(∆E + ~ωq)2 + (Γ/2)2
+

(nq + 1)

π

Γ/2

(∆E − ~ωq)2 + (Γ/2)2

]
(2.46)

The carrier lifetime, which enables the description of the mobility in semiconductor

NWs with cylindrical cross section is given by,

1

τ(k)
=
∑
q

S(k, qz) =
V

(2π)3

∫ 2π

0

∫ 1
a

0

∫ ∞

−∞
S(k, qz)qtdqz.dqtdθ (2.47)

Using Eq. (2.46), and performing the integration over qt and θ direction, the integral along

qz remains as

1

τ(k)
=

d20
ρωqV 4a20

V

a28π2

[
nq

∫ ∞

−∞

q2zΓ/2

(∆E + ~ωq)2 + (Γ/2)2
dqz+

(nq + 1)

∫ ∞

−∞

q2zΓ/2

(∆E − ~ωq)2 + (Γ/2)2
dqz

]
. (2.48)

The procedure above is analogous for the two remanent cross sections, semi-cylindrical

and squared. Fortunately these cases have analytical solutions. Hence,

1

τ(k)
=

d20
ρωqV 4a20

V

a28π2
d [nqΞa + (nq + 1)Ξe] , (2.49)

where

Ξa,e =
π

2aa,e

(
b2a,e + i2aa,ed− 2aaca,e√
b2a,e − 4aa,eca,e + 4iaa,ed

+
b2a,e − i2aa,ed− 2aaca,e√
b2a,e − 4aa,eca,e − 4iaa,ed

)
, (2.50)

with aa,e = ~2
2m0

1
γzf

, ba,e = ± ~2
2m0

2k
γzf

, and d = Γ
2
.

This study made possible the characterization of the mobility, mostly de�ned by the

carrier-phonon interaction and phonon-lifetime, through structural parameters. Tuning

NW structural properties may result in the possibility of �nding optimal conditions for

carrier transport. This will be discussed in more detail in the Chapter 4. The next

Chapter is devoted to the description of transport mechanisms analyzed in this thesis.



3. TRANSPORT MECHANISMS

The transport regime in semiconductor heterostructures is associated with the funda-

mental time and length scales available in the system and those attained by the carriers.

The wave-particle duality behavior of the carriers de�nes the regime where the transport

takes place, from the quantum to the classical limit. As already stated, for a semicon-

ductor nanostructures the de Broglie wavelength (λdb) of an electron can be comparable

with the system length. The value of λdb for a carrier in a semiconductor material also

depends on the e�ective mass, m∗, usually smaller than the free electron mass. [82] In

other words, a three dimensional material with all three geometrical dimensions much

larger than λdb will have its carrier behaving as a free electron. The reduction of the

geometrical length below the value of λdb results in the quantization of the carrier motion.

The quasi-one-dimensional heterostructures belong to this limit; sometimes with only one

length quantized, quantum wells (QW), other with 2D quantization, nanowires (NWs),

and when all the three directions are quantized one has the quantum dots (QDs).

The transport taking place along the direction of quantized dimensions requires a

quantum approach, as one will see in Section 3.2. Also, in the case where the carrier does

not lose its wavelike behavior, due to electron scattering for example, one still keeps the

quantum approach and this is characterized by the ballistic transport regime (Section 3.1).

The lost of the carrier wavelike behavior leads to a classical transport approach, where

the carrier has a particle-like behavior.

The transition between these two regimes can be characterized by the time and length

scales of processes present in a real material, as the electron scattering mentioned above.

The scattering processes occur due to impurities, defects, lattice vibration, etc. One

can classify them as elastic, when there is a change in momentum conserving energy, or

inelastic, involving energy change. The mean time between elastic scattering processers,

τe, determines the mean free path, le = vτe, where v is the average electron velocity.

Hence, the quantum transport regime has le >> λdb. In the ballistic regime, le is greater
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than the dimension of the system. In other words, the particle moves with no collisions

during its way through the structure. On the opposite side, a di�usive regimes takes place

when the dimension of the system is much greater than le.

The system can also be characterized by a coherence length, lϕ, where the wave-

function phase is preserved and the quantum mechanical description endures. If it is

smaller than the dimension of the system, the coherence is lost during the carrier transport

and the classical picture is recovered.

3.1 Ballistic transport

The sample dimensionality being much smaller than le characterizes a ballistic trans-

port regime. In this regime, the conductance depends on the band structure and on the

device geometry. According to Landauer, [29] the current is proportional to the transmis-

sion probability of an electron [30], related to the linear response of the conductance. A

ballistic conductor has its transmission probability close to the unity value which could

lead to an in�nite current, not observed in experiments. In what follows, we are going to

discuss this controversial result and also derive the conductance formula for this regime.

Lets consider a quantum point contact, i. e. a conductor between two contacts,

with length L and width d. Assuming a conductor operating in the Ohmic regime, the

reduction of L would generate a in�nite conductance, G. However, experiments show that

G has a limited value when L << le. This resistance is explained due to the interface

between the conductor and the contacts. The contacts have in�nite transverse modes

while the conductor has only a few modes. At the interface, a redistribution to balance

this di�erence appears as a resistance.

The states that characterize the conductor belong to di�erent subbands (E(n, k)),

where En = E(n, 0) is the minimum of the subband n. Thus, below E1, the channel is

closed and G = 0. At a given energy, E , the number of subbands is

N(E) =
∑
N

ϑ(E − En). (3.1)

Evaluating the current for only one band with an occupation function f(E), yields

I =
e

L

∑
k

vf(E), (3.2)
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where f(E)
L

is related to electron density. Then, replacing v = 1
~∂E/∂k, assuming periodic

boundary conditions, and converting the sum over k to an integral,
∑

k → 2
∫

L
2π
dk, one

has

I =
2e

h

∫ ∞

En
f(E)dE . (3.3)

For one occupied state, I = 2|e|
h
, and for a multi-mode system

I =
2e

h

∫ ∞

−∞
f(E)N(E)dE . (3.4)

In order to calculate the conductance of the system with an applied voltage, ∆V =

(µ1 − µ2), between the contacts where µ1 > E > µ2, and assuming N(E) constant, the

current becomes

I =
2e2

h
N
∆V

e
, (3.5)

which leads to

G =
2e2

h
N. (3.6)

The result above provides a resistance, G−1 that, as an extensive magnitude, is inversely

proportional to the number of modes N (or the lateral size of the system). For a in�nity

number of modes in the conductor G−1 → 0, while for one mode G−1 = 12.9KΩ.

The Landauer formula includes the fact that small conductors have a resistance due

to interfaces and that the conductance depends on the transverse modes, number of

subbands, but also on the average probability of the electron to be transmitted, T , G =

2e2

h
N · T . When T = 1, the conductance of the ballistic regime is recovered.

3.2 Quantum tunneling

The Quantum Mechanics wave-like description provides information about the prob-

ability amplitude of position, momentum, and other physical properties of a particle.

This probabilistic nature predicts the tunneling e�ect of an electron through a potential

barrier; in other words, there is a non zero probability for this e�ect happened. On the

contrary, in the Classical Mechanics, a con�ned electron does not pass a potential barrier

unless its energy overcomes the latter.

This Quantum Mechanical e�ect made possible the discovery of the tunnel diode by

L. Esaki [31], which gave rise to a revolution in electronic and theoretical �elds. In what



3. Transport mechanisms 27

follows, a theoretical description of these systems will be presented.

3.2.1 Transfer Matrix Method

To characterize carrier transport properties in 1D superlattices, a method based on

the formalism of multibarrier tunneling was developed: the Transfer Matrix Method

(TMM) [83]. Therefore, the 1D time-independent Schrödinger equation must be solved

for the the rectangular potential pro�le, V , as shown in Fig. 3.1, ergo

− ~2

2m∗(x)

d2Ψ(x)

dx2
+ V (x)Ψ(x) = EΨ(x), (3.7)

where m∗ is the e�ective mass and E is the energy. The general solution of Eq. (3.7) can

be expressed as

Ψj(x) = Aje
ikjx +Bje

−ikjx, (3.8)

where kj =
√

2m∗(E − V )/~ is imaginary inside the barriers and real within the wells

regions.

Fig. 3.1: Schema of the potential pro�le.

Considering the boundary conditions at the aj interface and rewritten the solution of

Eq. (3.8) as a vector product one have

Mj(aj)

 Aj

Bj

 =Mj+1(aj)

 Aj+1

Bj+1

 , (3.9)

where

Mj(aj) =

 eikjaj e−ikjaj

ikj
m∗

j
eikjaj

−ikj
m∗

j
e−ikjaj


.

Thus, one can relate the particle �ux that leaves an interface with the �ux of incident
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particles for any number of barriers, through the transmission coe�cient, A1

B1

 =
n∏

j=1

Mj(aj)
−1Mj+1(aj)

 An+1

Bn+1

 (3.10)

where n is the number of the interfaces (twice the number of barriers) and the product is

the Transfer Matrix

M =
1

2

n∏
j=1

 e−iaj(kj−kj+1)v+ e−iaj(kj+kj+1)v−

eiaj(kj+kj+1)v− eiaj(kj−kj+1)v+

 ,

where v± =
(
1± kjm

∗
j+1

m∗
jkj+1

)
. Considering just the left to right incident wave, where the in-

cident amplitude is A1 = 1, the re�ection amplitude is B1 = R, and the right-left incident

amplitude is Bn+1 = 0; one can calculate the transmission coe�cient, T , related to the

transmitted amplitude An+1 by T = |An+1|2, T = 1
|M11|2 , and the re�ection coe�cient,

R = |M21|2
|M11|2 .

The net tunneling current can be calculate through

J =
e

4π3~

∫ ∞

0

dkl

∫ ∞

0

dkt[f(E)− f(E ′)]T
∂E
∂kl

, (3.11)

where kt/l is the transverse/longitudinal momentum. Due to the system planar geometry

the transmitted coe�cient depends only on kt, since kt is conserved. Thus, performing

the integral over kt, one have

J =
em∗

β2π2~3

∫ ∞

0

dElLn
[

1 + eβ(Ef−El)

1 + eβ(Ef−El−eV )

]
T, (3.12)

where Ef is the fermi energy and V is the bias voltage applied in the system. For β → ∞

(temperature→ 0),

J =
em∗

β2π2~3

∫ Ef

0

dEl(Ef − El)T, eV ≥ Ef (3.13)

J =
em∗

β2π2~3

(∫ Ef−eV

0

dEl(eV )T +

∫ Ef

Ef−eV

dEl(Ef − El)T
)
, eV ≤ Ef (3.14)
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3.3 Hopping

A model based on hopping transport can describe the temperature dependence of

the carriers mobility through a system involving localized states, suitable for describing

charge transfer in quantum dot chains. [32, 33, 34, 35, 36] This is a semiclassical theory

determined by inelastic transitions of electrons from full states to neighboring empty

states assisted by phonons. Localized states are centered on �xed sites between which the

transitions take place. In what follows, a rate equation formalism will be developed that

accounts for this kind of process.

Assuming an array on N sites occupied by one electron in an applied electric �eld,

where nk is the probability of the site k being occupied, one can write the system of rate

equations
dnk

dt
=
∑
n

[nl(1− nk)Rlk − nk(1− nl)Rkl], (3.15)

where Rkl in the transition rate from a full site, k, to an empty site, l.

In a system on uniform thermal equilibrium, the occupation density is given by the

Fermi-Dirac distribution

n0
k =

1

1 + eβ(Ek−ζ)
, (3.16)

where β = (kbT )
−1, kB is Boltzmann's constant, ζ = µ + kbT ln(2), ln(2) due to spin de-

generacy, Ek is the hopping energy state, and µ the Fermi energy. Moreover, in Eq. (3.15)

at equilibrium, dnk

dt
= 0, in this way,

R0
kl

R0
lk

= eβ(Ek−El). (3.17)

Applying a small external potential �eld, U(r, t), one can rewrite the energies as Ek,l =

Ek,l + Uk,l, where
Rkl

Rlk

=
R0

kl

R0
lk

(1 + β(Uk − Ul)). (3.18)

In this approach, nk su�ers a perturbation, nk = n0
k + n1

k, leading to a linearized system

of rate equations

dn1
k

dt
=
∑
n

[n1
lR

e
lk − n1

kR
e
kl] + β

∑
n

[FlUlR
e
lk − FkUkR

e
kl], (3.19)

where Re
kl = Γkl/Fk with Γkl = n0

k(1− n0
l )R

0
kl, and Fk = n0

k(1− n0
k).
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According to Miller and Abrahams [32], the transition rate for hops from one site to

another with relative position vector rkl is given by

Rkl =
{
ν0e

−a|rkl|−β(El−Ek), El > Ekν0e−a|rkl|, El < Ek (3.20)

where ν0 is an intrinsic transition rate, a = 2/α with α being the localization radius,

and E is the energy which includes the contribution of U . Therefore, the mobility can be

calculated as

µξ =
r0

E < n0
k >

∑
k

∑
l

[
rklR

(ξ)
kl nk(1− nl) + rklR

(ξ)
kl nl(1− nk)

]
, (3.21)

where E is an applied electric �eld, r0 is the lattice constant, and n0
k is the equilibrium

Fermi-Dirac distribution (rkl and α are given in units of r0).

The quantum and semiclassical models developed here will be fundamental for the

electronic transport description in quasi-1D heterostructures problems described below.



4. HOMOGENEOUS NANOWIRES

The importance of semiconductor NWs is related to their appearance as building blocks

in a wide range of nanoscopic devices. As described before, progress in NW synthesis,

including chemical technics, allows a thorough control of their shape, size, and composition

[5, 6, 7, 8, 9] along with detailed microscopic characterization of built-in strain �elds. [9, 84]

As the conductivity is mostly de�ned by the carrier-phonon interaction and phonon-

lifetime, tuning the NW structural properties could result in the possibility of �nding

optimal conditions for carrier transport.

Considerable e�orts have been devoted to the description of carriers in the conduction

band of NWs, [37, 38, 39, 40, 41, 42, 43] while similar endeavors are not so common

for holes in the valence band. [44] As the mobility is inversely proportional to the carrier

e�ective mass, one may naturally expect that considering carriers in the valence band may

result in a drop in mobility when compared to the light electrons in the conduction band.

This could certainly be the case for heavy-holes (HH) transport; however, light-holes

(LH) under certain conditions may be promoted to be the top valence band by tuning

structural parameters of NWs, as calculated on Chapter 2. [27] This atypical circumstance

is the result of con�nement e�ects and HH-LH mixing, a�ected as well by strain and the

presence of surfaces. [9, 27] As we will show here, this results in signi�cant mobility

enhancement for LH in suitable NWs. We can also take advantage of valence band mass

anisotropy to attain resonant conditions that allow sharp variations of the hole mobility

with external parameters, especially when the leading scattering process involve LO-

phonons through the deformation potentials. [45] Additional hole-phonon interactions, [85]

such as deformation potential and piezoelectric coupling to acoustic phonons and polar

coupling to optical phonons, [86] have weaker e�ects and will not be considered here. [85,

80] In order to provide realistic estimates of the expected mobility changes in the NWs of

interest, we consider the e�ects of dimensionality reduction on the LO-phonon dispersion

and lifetime, using MD simulations for di�erent NWs size and at various temperatures.
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Tab. 4.1: The parameters of the InP interaction potential. Zi is the e�ective ionic charge, and
αi the electronic polarizability. η is the steric repulsion exponent, Wij is the van der
Waals strength, and Hij is the strength of the steric repulsion. Bjik = 4.1744 is the
three-body strength, λ1 = 4.5Å and λ4 = 2.75Å are the screening lengths for Coulomb
and charge-dipole interactions, while rc = 6Å is the two-body cuto� radius; r0 = 3.55Å,
θjik = 109.47◦, and Cjik = 10 are the three-body range, bond angle and saturation
parameter, respectively.

Zi (e) αi

(
Å3
)

In 1.1575 0
P -1.1575 6

η Wij

(
eV Å6

)
Hij

(
eV Åη

)
In-In 7 0 97.6585
In-P 9 251.4607 5009.8747
P-P 7 0 3830.8784

These latter e�ects were characterized by the group of Prof. Jose P. Rino from UFSCar,

and the results used as input parameters for the subsequent calculation of the hole-phonon

interaction terms.

To describe the e�ect of NW shape on the hole wavefunction, we consider di�erent

cross sections, shapes, while temperature e�ects are included in the mobility calculation

through the phonon occupation and strain e�ects in a multiband Luttinger Hamiltonian.

4.1 Molecular dynamics simulations

The interaction potentials used in the MD simulations consist of two- and three-body

interaction terms, as described by Branicio et al. [87, 88, 89, 90, 91] The two-body term

is composed of the Coulomb interaction due to charge transfer between ions, a steric

repulsion due to size e�ects, a charge-induced dipole due to the electronic polarizability of

ions, and a van der Waals attraction. The three-body contribution is necessary to describe

the covalent character of the bonds and applies to groups of atoms which are connected by

cohesive interaction. The parameters of the interatomic potential are determined using

the cohesive energy, density, bulk modulus and elastic constant C11 of the material as

described before, [91] with some slight adjustments, as presented in Table 4.1.

This potential provides excellent estimates for melting temperature, structural phase

transformation induced by pressure, and speci�c heat [88] and it is also suitable to describe
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the vibrational density of states of the material, as one will see below. Within this model

the phonon density of states in InP NWs at di�erent temperatures was obtained. The

NWs are simulated cutting a block of a perfect crystal with the z-axis along the [001]

direction; periodic boundary conditions are applied in the z-direction. The x- and y-

directions are surrounded by a vacuum region much larger than rc. The system consisted

typically of nine unit cells along x- and y-directions and forty unit cells along the z-

direction (53Å× 53Å× 234.5Å); the total number of atoms is 25,920 (12,960 In + 12,960

P) (Fig. 5.1). The NW is allowed to relax during a long simulation run (25,000 time

steps, one time step=1.5fs) at each temperature. After this relaxation time, a few surface

defects can be observed (Fig. 5.1(b)).

Fig. 4.1: Simulated InP NW structure by molecular dynamics. Green (grey) dots represent
Indium (Phosphorous) atoms and W is the NW width. (a) T=10 K and (b) T = 300 K.

The velocity-velocity auto correlation function is de�ned by

Zi (t) =
⟨v⃗i (t) .v⃗i (0)⟩
⟨v⃗i (0) .v⃗i (0)⟩

, (4.1)

where v⃗i (t) is the velocity of particle i at time t and the brackets are averages over

ensembles and particles. The vibrational phonon density of states (VDOS) is determined

through the Fourier transform [92]

Gi (ω) =
6Ni

π

∫ ∞

0

Zi (t) cos (ωt) dt, (4.2)

where the subindex i is the atom In or P.

Figure 4.2(a) compares the VDOS computed from MD calculations for a bulk system

(solid curve) to the VDOS extracted from the rigid ion model (dashed curve) based on

experimental results [93, 94]. As one can observe in Fig. 4.2(a), the results from MD

reproduce very well the main characteristics of the experimental results by predicting
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the existence of the transversal optical (TO, ∼ 43 meV) and longitudinal optical (LO,

∼ 38 meV) modes, and a gap between 22 meV and 36 meV.

The e�ect of the surfaces on the VDOS of the NW is also shown in Fig. 4.2. The main

NW characteristics in the VDOS resemble the bulk results; however, some di�erences can

be observed. The NW surfaces appreciably increases the amount of modes in the gap

region, between 22 meV and 36 meV. Although the TO and LO modes are the dominant

ones, the NW surface play an important role by inducing surface modes that appear in

the gap region. To extract more information about the origin of the modes, the VDOS

contribution from di�erent atoms was separated. Thus, in Fig. 4.2(b) (Fig. 4.2(c)) the

partial VDOS for bulk and the NW, considering the Indium (Phosphorus) contribution,

are depicted. By comparing Fig. 4.2(b) to Fig. 4.2(c), we notice that the P atoms give the

main contribution to the optical modes in the gap, a larger VDOS, and an overall large

mode width for the NW. The optical modes are characterized by the relative displacement

between ions and the lighter atoms usually dominate such modes, as shown in Figs. 4.2(b)-

(c). Moreover, one can observe in Fig. 4.2 a slight blue shift of the LO mode (∼ 1 meV)

with respect to the bulk.

The e�ect of temperature on the VDOS for both NW and bulk structure is shown in

Fig. 4.3. A general broadening of the modes and a shift in the peaks position to lower

frequencies with increasing temperature can be observed. Although the gap region keeps

a similar pro�le, the VDOS in the gaps increase with temperature. We notice also that

the temperature a�ects the contrast between LO and TO modes, especially in the NW,

Fig. 4.3(b), by slightly increasing the LO width.

Notice that the mode broadening is slightly weaker for the NW than for the bulk.

Based on the MD results, one veri�es that the TO and the LO modes are the most impor-

tant vibrational modes and the surface modes can be disregarded in a �rst approximation

to the mobility calculation. Also, the e�ects of the temperature in the NW reveal a

shift in the LO mode, which is an important fact to be considered when calculating the

contribution of hole-phonon scattering to the mobility.
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Fig. 4.2: VDOS for NW and bulk InP. (a) Total VDOS; rigid ion model (RIM) VDOS for bulk
from data.[94] (b) and (c) Partial VDOS for bulk and NW at 300 K: (b) indium con-
tribution and (c) phosphorus contribution

4.2 The valence band calculation and hole mobility

As already discussed, the valence band Hamiltonian for the NW can describe con�ne-

ment e�ects, mass anisotropy, and strain �elds within the same framework, with [72]

HHH = −
(
γ1 + γ2

2

)
{k̂+, k̂−} −

(
γ1 − 2γ2

2

)
k̂2z , (4.3)

and

HLH = −
(
γ1 − γ2

2

)
{k̂+, k̂−} −

(
γ1 + 2γ2

2

)
k̂2z , (4.4)

for the heavy- and light-holes, where γα (α = 1, 2, 3) are the Luttinger parameters,

{A,B} = 1
2
(AB + BA), and k̂± = k̂x ± ik̂y. Notice that the subband with HH char-

acter along the wire has a low e�ective mass in the transverse direction ≈ (γ1 + γ2)
−1,

while the LH subband has a large transverse mass ≈ (γ1 − γ2)
−1; as described before,

the di�erent transverse masses result in the possible inversion of the LH and HH sub-
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Fig. 4.3: VDOS for bulk and NW at 10 K and 300 K. In (b) the NW results at T=10 K shown
that surfaces introduce new states in the region of gap and at T=300 K further increases
new states.

band ordering, due to the NW con�nement e�ects. Strain e�ects lead to modulation of

the valence subbands, [9] introducing a subband displacement given by Eq. (2.30) and

Eq. (2.30). [76]

The mobility is given by µ = e
m0λzβ

τ , in terms of the hole-phonon scattering time, τ ,

obtained on Eq. (2.49). The phonon density was assumed to be given by a Lorentzian

centered at ωLO with width Γ. Both of these values shift with temperature, as discussed

in the �rst section of this Chapter and we may now analyze the e�ects of strain and

temperature on the hole mobility.

4.3 Results and discussion

To characterize the initial and �nal states involved in the scattering processes that

a�ect the mobility, Fig. 4.4 shows the relevant valence band structure for two di�erent

cases. For thin NWs, with or without strain, the �nite NW width leads to a picture similar

to Fig. 4.4(a), where the LH subband is promoted to the top given its higher transverse

e�ective mass, as discussed before. Thus, under such conditions, a HH can be scattered
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to the subband with LH character through phonon emission (process E1), and at T > 0

the LH can be excited to the HH subband via phonon absorption (process A1). In the

presence of lateral compressive strain, the subbands may switch their relative positions

with the HH assuming the top at large NW width. Then, a LH might be scattered via

phonon emission (process E2) while a HH can be a�ected by phonon absorption at T > 0

(process A2). Fig. 4.4(c) shows the energy di�erence between the ground state and the

�rst excited state (∆Evb) without strain, this remains for intersubband transitions with

the pro�le in Fig. 4.4(a), where the ground state is always the LH subband. In this sense,

by changing the wire radius one can reach a resonant condition (∆Evb = ~ωLO). On the

other hand, with strain, depending on the value of the NW width, the ground state can

have a character LH (thin NW) or HH (thick). This may result in reaching the resonant

condition twice (Fig. 4.4(d)). This behavior is similar for all NW cross sections since it

a�ects the transversal quantization.
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Fig. 4.4: Valence band ground states for square cross section NW of width W. (a) When the LH
occupies the ground state, a HH is scattered by phonon emission (process E1) while a
LH is a�ected by phonon absorption at T > 0 (process A1). (b) When the HH occupies
the ground state, a LH is scattered by phonon emission (process E2) and the HH is
a�ected by phonon absorption at T > 0 (process A2). (c) Energy di�erence between
the ground state and the �rst excited state (∆Evb), at kz = 0, versus NW width without
strain, ∆Evb = ELH −EHH ; in this case the ground state is always the LH subband. (d)
System with strain; depending on the value of the NW width, the ground state is the
LH (thin NW) or HH (thick NW) subband.
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Fig. 4.5: Hole mobility versus NW width W for states with kz = 0. (a) System at T= 70 K
without strain. (b) System at T= 300 K without strain. (c) System at T= 70 K with
strain (ϵ|| = 0.9%). (d) System at T= 300 K with strain (ϵ|| = 0.9%). Notice, the onset
of resonant A and E processes results in sharp changes in mobility with W.

The relative position of the valence subbands is extremely important for the carrier

transport in NWs. Given the mobility dependence on the longitudinal e�ective mass,

which modulates the hole-phonon interaction, valence subbands shifts may produce sharp

�uctuations of the mobility as temperature or structural parameters change. Fig. 4.5

shows the mobility for di�erent strain and temperature values as function of the NW

width. In Figs. 4.5(a) and (b), the mobility re�ects a band con�guration similar to the

one depicted in Fig. 4.4(a). At T= 70 K, in Fig. 4.5(a), the enhanced e�ect of phonon

absorption leads to the monotonic decrease of the LH mobility with increasing NW width.

In turn, the HH displays a monotonic mobility increase, as the intersubband separation

decreases with increasing NW width. Also, a sharp variation near the region where

∆Evb ∼ ~ωLO is seen, the resonant condition greatly enhances the LO-phonon emission by

a HH in Panel (a). At higher temperatures, Fig. 4.5(b), when thermal phonons are present

in large numbers, the resonant condition also a�ects the carriers in the LH subband,

producing a sharp drop in mobility (triggered by A1 processes).

Given the band structure modulation with strain, the condition |∆Evb| ∼ ~ωLO can

be attained twice by varying the NW width (corresponding to the cases displayed in
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Figs. 4.4(a) and (b)). Thus, two resonant regions appear in Fig. 4.5(c) where phonons

can be emitted by both the HH and LH subbands (E1 an E2 processes, respectively). At

higher temperatures, the phonon absorption features appear as additional jumps in the

mobility picture shown in Fig. 4.5(d), processes A1 and A2. Notice that the LH and HH

subband inversion with increasing NW width, in the presence of strain, is accompanied

by crossing of the mobility curves, Figs. 4.5(c) and (d).
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Fig. 4.6: Hole mobility in a square cross section NW versus hole momentum at T= 70 K. (a)
without strain. (b) and (c) with strain . In each case, the NW width was chosen so as
to provide the resonant condition when ∆Evb = ~ωLO.

The results shown so far describe the mobility of carriers at the center of the Brillouin

zone, with kz = 0. However, transport carriers may have �nite kz values, corresponding

to higher Fermi energies. To explore the e�ect of increasing hole momentum, Fig. 4.6

shows the hole mobility as function of kz for two values of strain. The NW width has

been chosen to meet the resonant condition, where the subband tops are separated by

the energy of one LO-phonon (∆Evb = ~ωLO). Thus, the minimum obtained for the HH

mobility in Figs. 4.6(a) and (b) and the maximum for the LH in Fig. 4.6(c) are induced

by resonant phonon emission processes. Notice, in Fig.s 4.6(a) and (b), that the carrier

mobility changes rapidly for a certain value of kz, corresponding to the subband crossing

where the valence band ground state changes character. Under strain, at the NW size

in Fig. 4.6(c), the crossing results in much smoother variation of the mobility with kz.
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Although it is interesting to consider the possibility of tuning the mobility of a hole system

via in-situ changes of the NW strain �elds, this is not an easy experimental task. As we

will see below, however, one can achieve drastic in-situ mobility changes for NWs close to

the resonance condition by suitable changes in temperature.
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Fig. 4.7: Hole mobility for two values of NW width for states with kz = 0: (a) and (b) as
function of strain for T= 70K and T= 300K, respectively, and (c) and (d), as function
of temperature for ϵ|| = 0% and ϵ|| = 0.9%, respectively.

To study how the carrier mobility changes due to the continuous variations of strain

and temperature, we show results for two values of the NW width. In Fig. 4.7 for a square

NW width of W= 20Å, no resonant signatures appear in the strain and temperature range

analyzed, while for thicker NWs such conditions become evident for both kind of holes.

This situation follows the trends described in Fig. 4.4, since for thinner NWs, the valence

band con�guration corresponds to that presented in Fig. 4.4(a), with ∆Evb > ~ωLO. In

turn, by rising the temperature, the process of phonon absorption becomes more e�cient,

reducing the LH mobility at higher temperatures; as displayed in Figs. 4.7(c) and (d), such

e�ect is present for all the NWs, although with di�erent features for various W values, as

we now discuss.

Figure 4.8 shows the strong non-monotonic mobility variation with temperature for
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certain NW widths with energies close to the resonant condition, ∆Evb ≃ ~ωLO. This

�gure shows the LH mobility ratio of high and low temperatures, ∆µLH/µLH [70 K], where

∆µLH = (µLH [70 K]− µLH [300 K]), as function of the NW width for di�erent values of

strain. For LH, the mobility at low temperatures is high (Fig. 4.7(c)-(d)) and according to

the radius and strain one can observe a drastic or minimal change at high temperatures.

For a system with no strain, for example, a large but monotonic change in the mobility is

seen for NWs with large width (larger than 100Å). In real systems, however, free standing

NWs grow with built-in strain, [9] which has a direct impact on the dependence of µ

on the temperature and width. As the strain increases, the LH-HH subband reversal is

possible as the NW width grows, resulting in highly sensitive mobility on temperature

and/or width. For example, for the reported value, ϵ|| = 0.9% [9], one can see that a

range of ideal width values, between 50Åand 60Å, exhibits a sharp change in the mobility

with temperature.

Fig. 4.8: Light hole mobility ratio, where ∆µLH = (µLH [70 K]− µLH [300 K]), versus wire width
for di�erent values of strain at kz = 0.

4.4 Conclusions

In summary, we have presented the results of hole mobility behavior in InP semicon-

ductor NWs for di�erent geometries and under various strain and temperature conditions

a�ected by the hole-phonon interaction. Using molecular dynamics with realistic force

potentials, we simulated NW structures and calculated the associated phonon density of

states. This allowed the characterization of the LO phonon energy renormalization due

to the reduced dimensionality and variations of the phonon lifetimes at di�erent temper-

atures, essential ingredients for the evaluation of carrier mobility. We have also emulated
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the valence band structure with a model that includes the con�nement and strain condi-

tions, calculated on Chapter2.

We showed that the mobility changes according to the NW width, strain �elds, and

temperature in a non-monotonic fashion for certain parameters. In particular, we show

that for certain NW widths, one �nds resonant behavior that greatly suppresses the hole

mobility. This is explained by the fact that the electronic structure changes drastically

with strain and/or size, with the ground state switching character between heavy and

light hole, while the temperature changes of the LO peak position and size are also

important. Furthermore, we have characterized the resonant behavior of the mobility

when the energy separation between the two valence subbands equals the optical phonon

energy. These conditions can be tuned by size variation or strain �elds and are also

a�ected by temperature, and should be taken into careful consideration when designing

possible NW-based device.



5. PARALLEL COUPLED NANOWIRES AND SPIN TRANSPORT

The realization of a directional coupler in the early 90's gave rise, through proximity

and tunneling e�ects,[46, 47] to the modulation of quantum transport in a phase-coherent

system.[48] Likewise, the spin modulation in a single NW via spin-orbit interaction (SOI)

has been proposed [49] and re�ned [50, 51, 52, 53, 54] to achieve a spin-orbit quantum

bit device. [19] Exploring all-electrical spin transport has motivated a search for new

con�gurations of nanostructures [14, 15, 16, 17, 18]. Therefore, exploring the properties

of coupled NWs in order to unveiled the nature of electron and spin transport mechanisms,

a spin-wave guide directional coupler appears as a promising device geometry.

In this Chapter, we study the spin transport properties of parallel NWs, in a directional

�H-shape� coupler geometry, connected through a region of the same material but locally

gated, Fig. 5.1. The application of a gate �eld (E) in the connecting region generates a

Rashba SOI, which breaks spin degeneracy, [95] Fig. 5.2. While the Rashba �eld does

not break time reversal symmetry, the symmetries of the con�guration impose additional

constraints on the transport characteristics. [54, 17, 96]

We �nd that, while being able to control the electronic �ux through the di�erent wires

across the mixing region, as expected (section 2.4.1), it is also possible to electrically

control the spin �ux across the device, whenever spin-polarized injection is considered.

Moreover, we �nd that there is a net spin-polarized �ux perpendicular to the current,

which can be controlled by the gate potential in the mixing region, as well as by local gates

at the NWs. This overall control of charge and spin �ux in a directional coupler appears

promising for spintronics, as well as in hybrid devices composite with superconducting

or magnetic materials. Furthermore, the transmission and re�ection amplitudes (the

entire scattering matrix) will be shown below and exhibit oscillations arising from the

expected interference among the various channels, as they mix in the coupling region.

This interference has characteristic energy (or length) scales associated with the di�erent

e�ects producing it. We will also see that the onset of spin-orbit coupling in the mixing
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region further complicates the pattern of oscillations as SOI e�ectively duplicates the

number of available channels at a given energy.

Fig. 5.1: Scheme of the proposed system where we have two parallel nanowires connected in a
middle region by the same material. r1 is the radius on the upper wire, r2 in the radius
of the bottom wire, d is the distance between the wires, L is the width of the middle
region, and E(z) it is a electric �el on the z-direction applied only in the middle region.

The Chapter is organized in the following way. The �rst section presents the exact

solution for the electronic structure of con�ned states in the middle region with Rashba

SOI. The second one, the solution for the whole system in terms of a Perturbation Theory

is developed. The third section, the transmission end re�ection probabilities of the system

via the transfer matrix method, described before, are calculated. Finally, the results and

discussion are presented in the last section.

5.1 Exact solution with Rashba interaction

The single-particle Hamiltonian with SOI on the (x, y) plane can be written as

H =
p2

2m∗ + Vc(y, z) +
1

2~
[α(r) · (σxpy − σypx)]ẑ, (5.1)

where pi = −i~∇j, σi are the components of the Pauli matrices, α(r) is the SOI constant,

and Vc(y, z) is the hard wall con�ned potential in the y- and z-direction. This con�gura-

tion can be achieved by applying external gates on the z-direction, perpendicular to the

e�ective SOI plane.

Searching for solutions, the systems displayed in Fig. (5.1) required two di�erent

Hamiltonians. The �rst one refers to the wires with no SOI, since for vanishing α(r)

the Hamiltonian (5.10) eigenvalue problem can be exactly solved. Thus, the solution for



5. Parallel coupled nanowires and spin transport 45

a squared NW cross section is

|ϕσ
j ⟩ =

√
2

r1,2
sin

(
nj
yπy

r1,2

)√
2

r
sin
(nzπz

r

)
eikxx|σ⟩, (5.2)

where the index j refers to the upper (bottom) left wire UL (BL) or right UR (BR)

branch, and |σ⟩ is the spin.

In this section, the solution within the region which is referred as middle part, is

sought. This region is similar to a Rashba 2D electron gas (2DEG) except for the fact

that we do have a con�nement in both directions, x and y. The strategy adopted here is

�nding the solution for the case with no con�nement (Rashba 2DEG), then a hard wall

boundary conditions will be considered. Consequently, for a system with no con�nement,

the wave-function with positive energy is

|ψ⟩ = ei(kxx+kyy+kzz)

 C↑

C↓

 , (5.3)

where C↑,↓ are the spinors. Applying the Hamiltonian (5.10) in the non con�ned wave-

function (5.2), Ĥ|ψ⟩ = E|ψ⟩, leads to

 ~2
2m

(k2x + k2y + k2z)− E iα
2
(−kx + iky)

−iα
2
(kx + iky)

~2
2m

(k2x + k2y + k2z)− E

 C↑

C↓

 ei(kxx+kyy) = 0. (5.4)

One can notice that the z-component of the wave-function is separable. Hence, the

solution in the z-direction remains the same as with no SOI. To simplify the notation,

the z-component solution will be omitted.

In other to solve the eigenvalue problem of Eq. (5.4) for the remaining components,

more assumptions should be taken into account. Thus, considering the system energy

constant and the x-component of the wave-vector positive (Fig. 5.2), two eigenvalues are

obtained

E± =
~2

2m
(k2x + k2y)±

α

2

√
k2x + k2y, (5.5)

with their correspondent eigenvectors being

|ψ⟩ = 1√
2
eikxx

Aeik+ sin(θ)y

 1

−ieiθ

+Beik− sin(ϕ)y

 1

ieiϕ

+ (5.6)
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Fig. 5.2: Spectrum of the 2DEG with SOI at �xed positive energy (E). For positive �xed x-
component we address the four possible values of ky (k− sin(θ), k+ sin(ϕ), k− sin(−θ),
k+ sin(−ϕ)).

Ce−k+ sin(θ)y

 1

−ie−iθ

+Be−ik− sin(ϕ)y

 1

ie−iϕ

 .
The solution (5.6) is written in terms of the two spin modes (+ and −), where ky =

k− sin(θ) = k+ sin(ϕ) = k− sin(−θ) = k+ sin(−ϕ). In a similar way, a solution for the

negative x-component can also be obtained but for the case with hard wall con�nement

we might assume the case with positive x-component only. The next step will be the

introduction of boundary conditions.

The hard wall boundary condition imposes that the wave-function is zero on the

borders (y = 0 and y = r1 + d + r2 = L). Thus, the exact eigenvalue equation for the

Rashba NW is

[
e2ık+ sin(θ)L + e2ık− sin(ϕ)L

]
cos(θ + ϕ)−

[
1 + e2ıL(k+ sin(θ)+k− sin(ϕ))

]
cos(θ − ϕ) + (5.7)

4 [sin(θ) sin(ϕ) + sin(k+L sin(θ)) sin(k−L sin(ϕ))]

[cos(L(k+ sin(θ) + k− sin(ϕ))) + ı sin(L(k+ sin(θ) + k− sin(ϕ)))] = 0.

Unfortunately, no explicit selection rules for the quantum numbers can be extracted from

this equation but in the limit where θ = ϕ and k+ = k−, in case of no SOI, the well known

solution is recovered

sin(k−L sin(ϕ)) = 0. (5.8)

This leadis to k−L sin(ϕ) = nπ, where n it is a positive integer number.



5. Parallel coupled nanowires and spin transport 47

5.2 Perturbation theory

Since the exact solution for a NW with no SOI is known, Eq. (5.2), with their corre-

spondent eingenvalues

E0
kx,ny ,nz ,σ =

~2

2m

(
k2x +

π2n2
y

(r1 + r2 + d)2
+
π2n2

z

r2

)
, (5.9)

one can consider the part of the Hamiltonian (5.10) proportional to α as a perturbation,

H = H0 + α(r)H1 =
p2

2m∗ + Vc(y, z) +
1

2~
[α(r) · (σxpy − σypx)]ẑ. (5.10)

Once again, the z-component does not change due to the applied gate, and it is not

going to be explicitly shown in the next steps. Performing a �rst order correction on the

eigenenergies and eigenvectors of the unperturbed system, we obtain

αH1|ψ⟩ =
−iα
2

√
2

r1 + r2 + d

∑
kx,ny ,σ

[(
nyπ

r1 + r2 + d

)
cos

(
nyπy

r1 + r2 + d

)
eikxx| − σ⟩−(5.11)

sin

(
nyπy

r1 + r2 + d

)
(ikx)e

ikxx(iσ)| − σ⟩
]
,

and

⟨ψ′|αĤ1|ψ⟩ =
−iα

(r1 + r2 + d)

∑
n′
yny

[
n′
y, ny(cos (nyπ) cos (n

′
yπ)− 1)

(ny − n′
y)(ny + n′

y)
+ (5.12)

σkx(r1 + r2 + d)

2
δn′

y ,ny

]
δσ′,−σ,

where, σ = ±1 for spin up and down respectively.

The matrix element calculated above is the �rst order perturbation correction of the

eigenenergy. The term where n′
y = ny is the intra-level correction,

−iσαkx
2

δn′
y,nyδσ′,−σ, (5.13)

whereas the inter-level correction term, n′
y ̸= ny, is given by

iαn′
yny

(
1− (−1)|n

′
y−ny|

)
(r1 + r2 + d)(n2

y − n′2
y )

δσ′,−σ (5.14)
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The inter-level correction is negligible in comparison to the intra-level one. Hence, taking

into account only Eq.(5.13), the eigenvalue equation becomes

 0 iαkx
2

−iαkx
2

0

 C↑

C↓

 = E (1)

 C↑

C↓

 , (5.15)

which gives the �rst order correction to the energy levels

E (1)
± =

±αkx
2

, (5.16)

and their eigenvectors

|ψσ
n⟩

(0)
+ =

1√
2

[
|ψσ

n⟩+ i|ψ−σ
n ⟩
]

(5.17)

|ψσ
n⟩

(0)
− =

1√
2

[
|ψσ

n⟩ − i|ψ−σ
n ⟩
]
.

Therefore, the wave number component in the mixing region for the x-direction at a given

energy E can be written as

k±n =

√
2mE
~2

− π2n2

(d+ r1 + r2)2
− π2

r2
+
α2m2

4~4
∓ αm

2~2
. (5.18)

Since all wave functions were well de�ned through the perturbation theory, the Trans-

fer Matrix Method presented in Chapter 3 [83] will be employed in order to study the

transport properties of the system described in Fig. (5.1).

5.3 Transport

The system was divided in three regions: (i) the regions where x < 0 (left), (ii)

x > L (right), both with no SOI, α = 0, and (iii) in the middle region 0 < x < L,

with α ̸= 0. The interfaces between these regions are considered sharp walls with �nite

potential steps. Thus, one must calculate the current relation between the regions. [100]

The system Schrödinger equation has the form

~2

2m

∂2Ψ

∂x2
− ı

2

[
α(x)

(
−σy

∂

∂x

)
+

(
−σy

∂

∂x

)
α(x)

]
Ψ = EΨ. (5.19)
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Integrating at the boundary

∫ ϵ0

−ϵ0

∂2Ψ

∂x2
dx+

∫ ϵ0

−ϵ0

mıσy
~2

[
α(x)

∂

∂x
+
∂α(x)

∂x

]
Ψdx =

∫ ϵ0

−ϵ0

EΨdx, (5.20)

where the second term of the left side will be integrated by parts

∂Ψ

∂x

∣∣∣∣ϵ0
−ϵ0

+
mıσy
~2

[
(α(x)Ψ)ϵ0−ϵ0

−
∫ ϵ0

−ϵ0

∂α(x)

∂x
Ψdx+

∫ ϵ0

−ϵ0

∂α(x)

∂x
Ψdx

]
= 0, (5.21)

the current relation between regions with and without SOI is

∂Ψ(ϵ0)

∂x
− ∂Ψ(−ϵ0)

∂x
+
mıσy
~2

[α(ϵ0)Ψ(ϵ0)− α(−ϵ0)Ψ(−ϵ0)] = 0 (5.22)

Schematically, in order to build the Transfer Matrix, the set of matrices (Eq. (3.9))

at x = 0 (Fig. (5.1)) will follow the conditions below: the eigenstates for the left and

middle region are continuous and their �rst derivative are governed by the relation given

in Eq. (5.22), where α(−ϵ0) = 0. The mass on both sides are the same since they are

constituted by the same material. Therefore,

MLeft(0)

 I

R

 = MMiddle(0)

 A

B

 , (5.23)

where A = Aσ′σ
n and B = Bσ′σ

n are the four vector components of the the energy level

(n = {ny, nz}), with incident spin σ′ and outgoing spin σ. In turn, I = Iσ
′σ

j , and R = Rσ′σ
j

are the four dimensional vectors for the transmitted and incident amplitudes at di�erent

NW branches, with incident spin σ′ and outgoing spin σ.

MLeft(0) =



1 1 0 0 0 0 0 0

ik↑UL −ik↑UL 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 ik↑BL −ik↑BL 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 ik↓UL −ik↓UL 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 ik↓BL −ik↓BL


,
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and Mσ
Middle(0) =.


(0)
± ⟨ψσ

1 |ϕσ
′

UL⟩
(0)
± ⟨ψσ

1 |ϕσ
′

UL⟩
(0)
± ⟨ψσ

2 |ϕσ
′

UL⟩
(0)
± ⟨ψσ

2 |ϕσ
′

UL⟩
(0)
± ⟨ψσ

1 |ϕσ
′

UL⟩i(kσ1 + mασ
~2 )

(0)
± ⟨ψσ

1 |ϕσ
′

UL⟩i(mασ
~2 − kσ1 )

(0)
± ⟨ψσ

2 |ϕσ
′

UL⟩i(kσ2 + mασ
~2 ) ⟨ϕσ′

UL|ψσ
2 ⟩

(0)
∓ i(mασ

~2 − kσ2 )

(0)
± ⟨ψσ

1 |ϕσ
′

BL⟩
(0)
± ⟨ψσ

1 |ϕσ
′

BL⟩
(0)
± ⟨ψσ

2 |ϕσ
′

BL⟩
(0)
± ⟨ψσ

2 |ϕσ
′

BL⟩
(0)
± ⟨ψσ

1 |ϕσ
′

BL⟩i(kσ1 + mασ
~2 )

(0)
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At x = L, one has a similar condition for Eq. (3.9) but, unlike the previous current

continuity condition, now α(ϵ0) = 0. Thus,

MMiddle(L)

 A

B

 = MRight(L)

 T

I′

 , (5.24)

where T = T σ′σ
j , and I′ = I

′σ′σ
j are all four dimensional vectors for the transmitted, and

incident amplitudes at di�erent NW branches, with incident spin σ′ and outgoing spin σ.
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As one can see, the functions overlaps in the y− and z−directions at the boundaries

were taken into account in the matrix elements of the Transfer Matrix, since the transport

takes place along the x-direction. Hence, in what follows we will show their calculation.

The similarity of our model with the one dimensional transport case ends with the

inclusion of the remaining two dimensions in the overlap terms. This may result in a

quasi-one-dimensional system. The spin degenerated overlaps, presented in the matrices

Mσ
Middle(0) and Mσ

Middle(L), are responsible for a full 8× 8 non-singular matrix.

The wire eigenvector has the form of Eq. (5.2) while in the middle region assumes the

form of Eq. (5.17). The overlaps can be calculated as

(0)
± ⟨ψσ

n|ϕσ′

j ⟩ =
∫ r

0

∫ D

C

√
2

r1,2
sin

(
nj
yπy

r1,2

)√
2

r
sin

(
nj
zπz

r

)
× (5.25)

1√
2

√
2

r1 + r2 + d
sin

(
nyπy

r1 + r2 + d

)√
2

r
sin
(nzπz

r

)
⟨σ′|σ⟩dydz.

Integrating along the z-direction, one obtain δnj
z ,nz

. Depending on the wire branch, the

integration limits in the y-direction changes. For the upper wire, C = 0 and D = r1, and

for the bottom wire C = r1 + d and D = r1 + r2 + d. The inner product between the

latter case and the �rst level is equal

(0)
± ⟨ψ1|ϕσ′

U ⟩ =
sin
(

π(d+r2)
d+r1+r2

)
d+r2

−
sin
(

π(d+2r1+r2)
d+r1+r2

)
d+2r1+r2

π
√

1
r1

√
1

d+r1+r2

1√
2
[↑ ∓i ↓] , (5.26)

and between the second level

(0)
± ⟨ψ2|ϕσ′

U ⟩ =
sin
(

π(d−r1+r2)
d+r1+r2

)
d−r1+r2

−
sin
(

π(d+3r1+r2)
d+r1+r2

)
d+3r1+r2

π
√

1
r1

√
1

d+r1+r2

1√
2
[↑ ∓i ↓] . (5.27)

Likewise, the inner product between last case and the �rst level equals

(0)
± ⟨ψ1|ϕσ′

B ⟩ =
sin
(

πr2
d+r1+r2

)
d+r1+2r2

−
sin
(
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)
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π
√

1
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√
1
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1√
2
[↑ ∓i ↓] , (5.28)
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and between the second level,

(0)
± ⟨ψ2|ϕσ′

B ⟩ =
sin
(

π(−d−r1+r2)
d+r1+r2

)
d+r1+3r2

−
sin
(
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)
d+r1−r2

π
√

1
r2

√
1

d+r1+r2

1√
2
[↑ ∓i ↓] . (5.29)

Therefore, an 8× 8 Transfer Matrix relating the 16 coe�cients (incident waves, transmis-

sions, and re�ections), spin up and down, from the bottom and upper wire, was built in

a similar way to Eq. (3.10). The results are going to be presented in the next section.

5.4 Results and discussion

5.4.1 With no spin orbit interaction

Figure 5.3 shows the transmission (T1, T2, and T3) and re�ection (R) probabilities

versus the incident particle energy (E) for wires with the same radius (r1 = r2 = 100 Å),

L = 400 Å, and d = 100 Å. The incident wave is on the right side of the upper wire. T1 is

the transmission on the upper wire right side, T2 is the transmission on the bottom wire

right side, T3 is the transmission on the bottom wire left side, and R is the re�ection.
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Fig. 5.3: Transmission probability versus energy for wires with same radius (r1 = r2 = 100 Å),
L = 400 Å, and d = 100 Å. The incident wave is on the upper wire right side. T1 is the
transmission on the upper wire right side, T2 is the transmission on the bottom wire
right side, T3 in the transmission on the bottom wire left side, and R is the re�ection.

Figure 5.4 shows the transmission and re�ection probabilities versus L and d for a

�xed value of energy, E = 50 meV, with one incident wave at the upper wire on the left

side. In this case, we notice that, as we separate the wires from each other, by increasing
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the distance d, the transmission T1 (Figure 5.4 (a)) results almost the unit. In other

words, the proposed solution reached the isolated wire limit.

Fig. 5.4: Transmission probability versus L and d for wires with same radius r1 = r2 = 100 Åand
energy E = 50 meV, where the incident wave is on the upper wire, right side. (a)
Transmission on the upper wire right side, T1. (b) Transmission on the bottom wire
right side, T2. (c) Transmission on the bottom wire left side, T3, and Re�ection, R,

Considering values of d where the coupling between the wires is strong, one can see

in Fig. 5.4 (a) and (b) that the maximum transmission alternates between T1 and T2,

depending on the distance L. The transmissions and re�ection oscillations with respect

to L are periodic and correspond to the wavelength related to the middle region.

The re�ection, R, and transmission, T3, (bottom wire at the left side) have features

related to re�ected waves, as one can see on the oscillations due to L, but they do not

attain expressive values in any possible con�guration obtained by varying distances. In

order to change this picture, one can think in the following way: applying a gate voltage

in one of the wires, avoiding transmission in this one, one can force these waves to assume

higher amplitudes, promoting R and T3. Thus, Fig. 5.5 shows the transmissions and

re�ection coe�cients versus the gate voltage (V g2) applied at the bottom wire on the left

side (inset Figure 5.5 (a)).

In the chosen con�guration, where r1 = r2 = 100 Å, L = 400 Å, d = 100 Å, and

E = 50 meV, the transmission probability is almost equally split between T1 and T2
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whenever V g2 = 0. For small values of V g2, a slight decrease of T2 and an increase

of the other coe�cients is noticed. At the moment when T2 is totaly suppressed, with

V g2 = E = 50 meV, meaning that the channel is completed closed, an expressive increase

of R and T3 (Fig. 5.5 (a)) occurs. Likewise, Fig. 5.5 (b) shows the transmission probability

versus V g2 for E = 10meV. In this energy con�guration, T2 is predominant for V g2 = 0. By

suppressing the transmission T2, using the same mechanism described above, R enhances.
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Fig. 5.5: Transmission probability versus the gate voltage at the bottom wire, left side, V g2.
r1 = r2 = 100 Å, L = 400 Å, and d = 100 Å. (a) E = 50 meV. (b) E = 10 meV. Inset:
Con�guration scheme.

The results described till now belong to the no SOI case. It has been presented as

a way to prove the validity of the model, since the directional coupler has been realized

previously. [46, 47] Therefore, the next section will present the case with SOI, where an

electric �eld on the z-direction, E, is applied in the middle region (Fig. 5.1).

5.4.2 Spin orbit interaction e�ects

The quantum transport properties of interconnected parallel wires through a poten-

tial barrier [46, 48, 99, 98] can be controlled by changing the barrier height and length.

Similarly, one can modulate the carrier and spin transport by varying the length L of

the middle mixing region and the separation d between wires. This formalism enables

the study of di�erent spin polarization con�gurations for the incident waves and we shall
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present results for an incident wave in one of the wires with up or down spin-polarization

along the z-direction.

Figure 5.6 shows the transmission and re�ection coe�cients vs. the length of the mix-

ing region, L, for an incident spin-down polarized wave (inset Fig. 5.6), where d = 100 Å,

and r1 = r2 = 100 Å. We can see, in Fig. 5.6(d), that the spin-preserving transport coe�-

cient T ↓↓
2 can be suppressed or enhanced with a characteristic periodicity ≃ L∆k = 2π/∆k.

For a given incident energy E , the corresponding wave vectors k±n along each given chan-

nel, n = 1, 2, are given through Eq. (5.18). The momentum di�erence ∆k = kσ1 − kσ2 ,

is responsible for the long period oscillations as the two (±) channels interfere with one

another. For E = 50 meV, one �nds L∆k = 2π/∆k ≃ 120 nm, a value that coincides

with the oscillation period. Moreover, whenever T σ′σ
2 is enhanced, T σ′σ

1 is suppressed as

displayed in Fig. 5.6(b) and (d)�i.e, they oscillate out of phase, illustrating their com-

petition. Opposite phase oscillations between the NWs result for a symmetric system

such as the one characterized here, with an initial condition corresponding to an incident

wave in only one of the NW's branches as represented in the inset of Fig. 5.6. The co-

e�cients also show fast oscillations characterized by LE =
√
π2~2/2mE , in analogy with

the transmission above a quantum well. For E = 50 meV, these fast oscillations have the

corresponding length scale LE ≃ 10 nm. Thus, one is able to adjust the transmission by

changing sizes, widths, and lengths of mixing regions, as expected from the directional

coupler geometry of the system.[46, 47, 99]

The introduction of SOI provides an additional control on the overall transmission

amplitudes, as well as on the spin polarized transmission. The SOI length scale, given

by the period over which the spin precesses from ↑ to ↓ (and vice versa) due to the

e�ective Rashba �eld, is LSO = π~2/αm (≃ 230 nm, in Fig. 5.6). One can clearly see the

e�ect of this precession in Fig. 5.6(b), where the incident spin down is fully transmitted

in the up-projection at L ≃ LSO, T
↓↑
1 , while the spin-preserving channel is nearly fully

blocked, T ↓↓
1 ≃ 0. Figure 5.6(a) and (c) show the re�ection, R↓σ, and transmission in

the bottom left NW, T ↓σ
3 , respectively. These coe�cients are characterized by oscillations

with shorter periods due to the fact that the wave travels twice the distance L. Moreover,

in this con�guration, the length scale LSO becomes comparable to 2L∆k, resulting in a

more complex interference pattern such as the beating behavior evident on R↓↓. These

results correspond to a spin-polarized incident wave; reversing the incident spin produces
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the spin reversal of the transmitted and re�ected amplitudes, as expected from the time-

reversal invariance of the Hamiltonian, as well as from the spatial symmetries of the

system.[54, 17]

Fig. 5.6: Transmission probabilities vs length of the mixing region L for incident spin-down
polarized �ux (I↓), where r1 = r2 = 100 Å, d = 100 Å, E = 50 meV, α = 0.4 eV·Å,
and m = 0.026m0. (a) Re�ection on the left top wire (R↓σ). (b) Transmission on the
right top wire (T ↓σ

1 ). (c) Transmission on the left bottom wire (T ↓σ
3 ). (d) Transmission

on the right bottom wire (T ↓σ
2 ). Notice that re�ection values in (a) and (c) are much

smaller than the transmission in (b) and (d).

To better characterize how the system responds to the injection of an unpolarized

superposition of spin-up and spin-down �uxes, we calculate the spin persistence ratio

Cj ≡
[
T ↑↑
j + T ↓↓

j − (T ↓↑
j + T ↑↓

j )
]
/T , where T = T ↑↑

j + T ↓↓
j + T ↓↑

j + T ↑↓
j , for each NW

branch, j. Note that, if T ↑↑
j = T ↑↓

j and T ↓↓
j = T ↓↑

j , then Cj = 0, a signature of a

�memoryless� channel. On the other hand, Cj = 1 (−1), for a full spin-preserving (or

reversing) channel. Figure 5.8 shows the color map of characteristic Cj vs α and L for

each wire branch, j. The spin reversing regions are identi�ed by the dark (blue) color and

evolve with both α and length L, such that αL ≃ L/LSO = constant, as expected from

the Rashba precession length. Alternatively, pale gray regions indicate spin-preserving

characteristics. One can also identify nearly α-independent oscillations, more visible in

Fig. 5.8(a) and (c) within this area, associated with L/L∆k = constant.

One cannot expect a net spin polarization for the current, even when the system sym-

metry is broken by applying a gate voltage di�erence between the wires or making the
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Fig. 5.7: Transmission probability versus the incident spin polarized particle (I↑) energy for wires
with same radius (r1 = r2 = 100 Å), L = 400 Å, and d = 100 Å. I↑is on the upper
wire right side. T ↑,↓

1 are the spin up and down transmissions on the upper wire right
side, respectively, T ↑,↓

2 are the transmissions on the bottom wire right side, T ↑,↓
3 are

in the transmissions on the bottom wire left side, and R↑,↓ are the re�ections. (b)
Transmission probability versus the Rashba strength parameter (α)

device asymmetric in other ways. This is due to the fact that for transport along the x-

direction, the electric �eld on the z-direction, and the corresponding Rashba SOI, will pro-

duce spin precession of the z-spin for both spin components in a symmetric fashion. [101,

17] The degree of spin polarization is de�ned by Pj ≡
[
T ↑↑
j + T ↓↑

j − (T ↓↓
j + T ↑↓

j )
]
/T . As

expected, there is no net polarization in the z-direction. However, the e�ective Rashba

magnetic �eld is along the y-direction, which suggests one to explore the possibility of

tuning this quantity along that axis, P y
j . The application of a gate voltage in one of the

branches to raise the local energy of the subbands, as well as the strength of the Rashba

SOI, can further help to tune the polarization in the remaining output wires. Figure 5.9

shows P y
j as a function of the Rashba SOI strength, α, and an applied gate voltage on the

bottom right wire, V g2. Panels (a) and (c) correspond to the incident energy E = 50 meV,

and panels (b) and (d), to E = 100 meV. One can see that Fig. 5.9(a) displays two regions

where the y-polarization is well de�ned. Around α = 0.12 eV·Å and V g2 = 0.14 eV we

notice full spin-down polarization, while for the same V g2 but at α = 0.48 eV·Å, one has

the opposite polarization. These features change location and sign as the incident energy

varies. These results demonstrate the possibility of spin-inversion of the current �ux by



5. Parallel coupled nanowires and spin transport 59

(b)

(c) (d)

(a)

C C

C C

C1

C3
C2

Fig. 5.8: Map of spin persistence ratio Cj vs α and L, where r1 = r2 = 100 Å, d = 100 Å, and
E = 50 meV. Panels show results for di�erent NWs: (a) top left re�ection, (b) top right,
(c) bottom left, and (d) bottom right transmissions. Spin-reversal regions (dark blue)
occur for αL ≃ L/LSO = constant.

controlling α (via E) or V g2 (via applied gates). Figure 5.9(c) and (d) correspond to T3,

and one may note that they present similar behavior, but the features have a smoother

(not as sudden) variations with α or V g2.

5.5 Conclusion

In conclusion, we have studied the spin transport properties of a NW directional

coupler implemented by parallel wires joined by a mixing region which generates Rashba

spin-orbit interaction. Using the Transfer Matrix approach allowed us to understand the

modulation of electronic and spin transport arising from the combination of SOI and

the system geometrical features. Likewise, SOI and applied gate voltages give rise to a

modulation of the polarization when the spin is projected in the same direction as the

e�ective Rashba magnetic �eld. The versatility of this device may be useful in all-electrical

spintronic devices.
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(a) (b)

(c) (d)

Vg2=

Fig. 5.9: Polarization in the y-direction vs α and applied gate voltage on the bottom right wire,
(V g2), where r1 = r2 = 100 Å, d = 100 Å, and L = 300 nm. (a) Polarization for
the top right wire (P y

1 ) with E = 50 meV. (b) Polarization for the top right wire (P y
1 )

with E = 100 meV. (c) Polarization for the bottom left wire (P y
3 ) with E = 50 meV.

(d) Polarization for the bottom left wire (P y
3 ) with E = 100 meV. Red dashed lines

indicate V g2 = E in each panel.



6. 1D TRANSPORT THROUGH HETEROSTRUCTURED SYSTEMS

Exploring functional nanotechnology has become a central task in recent research

endeavors given the advances attained in the synthesis of nanomaterials. The techno-

logical advantage of heterostructured systems is related to the ability of engineering and

controlling their quantum properties which can be achieved, for instance, through the

modi�cation of NW geometry and strain �elds, giving rise to twin-plane NW, and by

exploiting the e�ect of new materials. In what follows two main heterostructured objects

will be presented. First we shall discuss the double barrier, as resonant tunneling diodes,

which is a basic conceptual milestone for 1D quantum transport. In this case, we will

demonstrate how the transport properties can be tuned by external factors such as tem-

perature and charge accumulation. Then, the results obtained for Twin-Plane superlatices

will be presented.

6.1 Double barrier - Resonant tunneling diodes

Describing the 1D transport in resonant tunneling diodes (RTDs) requires the use

of some of the main concepts condensed within this thesis. Additionally, it has been

demonstrated the relevance of such structures as sensors with characteristics such as

high internal gain and aptitude for single photon detection. [55, 56, 57]. The basic

principle of these detectors is the local and sensitive variation of the electric �eld, caused

by accumulated carriers at the intrinsic tunneling structure. [58, 59, 60]. E�ectively, the

transmission probability of majority carriers is altered by accumulation of photo-generated

ones. In particular, the process of modulation of the transport response of RTDs due to

charge accumulation has become a problem to be tackled within an ongoing collaboration

with experimental groups with relevant technological implications.

To exploit the RTDs full potential, the best working point has to be identi�ed, which

is a highly complex matter that requires knowledge of each quantity and the correla-

tion between e�ciency, carrier accumulation dynamics, and system gain. Recently, Al-
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Fig. 6.1: Design and working principle of the resonant tunneling diode (RTD) photosensor. (a)
Schematic layer sequence of the RTD with an electron microscopy image of the top ring
contact. (b) Schematic conduction (Ecb) band pro�le for a bias voltage Vb.

GaAs/GaAs based double barrier structure (DBS) with a nearby and lattice matched

GaInNAs absorption layer was proposed for high sensitive photo detection at the telecom-

munication wavelength λ = 1.30 µm [61, 62]. These devices are the inspiration of the

studied subject presented here, as well as its experimental results provided by the group

of Prof. Lukas Worschech from UW. First, the transport properties of a DBS, like Al-

GaAs/GaAs, is going to be explored (Fig. 6.1). Later, we will discuss the e�ect of a

nearby GaInNAs layer in this system (Fig. 6.4).

Figure 6.1, left side, shows the layer sequence of the RTD structure. The samples

were grown by molecular beam epitaxy on an n-doped GaAs substrate with doping con-

centration n = 3 · 1018cm−3. First, 300 nm GaAs with decreasing doping concentration

from n = 1 · 1018cm−3 to 1 · 1017cm−3 is deposited and is followed by the undoped double

barrier structure, which consists of 15 nm GaAs, two 3 nm Al0.6Ga0.4As barriers and a

4 nm wide GaAs quantum well. The structure is completed with a 556 nm thick GaAs

contact cap with n = 1 · 1018cm−3. RTD mesas with a diameter d = 5 µm are fabricated

by dry chemical etching and the top contact of each mesa is formed by a ring shaped Au

contact (see electron microscopy image in Fig. 6.1). The bottom Ni/Au-Ge/Au contact

is evaporated at the substrate.

The schematic conduction band pro�le (Ecb) of the RTD for a applied bias voltage

Vb is shown in Fig. 6.1, right side. Using this 1D pro�le, one can calculate the trans-

port properties applying the transfer matrix method described in Chapter 3. Therefore,
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Fig. 6.2: Double barrier system. (a) Transmission coe�cientes (T ) vs. the electron energy in eV
for the case where the applied bias voltage, Vb is: 0 V (solid black curve), 0.1 V (dashed
red curve), and 1 V (dotted blue curve). (b) Natural log of the current density in units
of
(

em∗

2π2~3
)−1

vs. Vb for two di�erent fermi energies, Ef : 1 meV (dashed red curve), and
10 meV (solid black curve).

Fig. 6.2 (a) shows the transmission coe�cientes, T , vs. the electron energy for di�erent

applied Vb (Vb = 0 V, solid black curve, Vb = 0.1 V, dashed red curve, and Vb = 1 V,

dotted blue curve). As one can see, there are two bound states inside the well for a system

in equilibrium (Vb = 0 V) but increasing the bias voltage these levels red shift and their

transmission probability decreases, Fig. 6.2 (a). Figure 6.2 (b) shows the natural log of

the current density in units of
(

em∗

2π2~3
)−1

vs. Vb for two di�erent fermi energies, Ef , where

a shift towards small bias voltages is seen while increasing Ef .

The experimental I−V -characteristics are shown in Fig. 6.3 (a). The RTD is bistable

with a resonance peak current Ipeak, a valley current Ivalley, and threshold voltages Vup,down

for the up and down sweep, respectively. The I−V characteristics in the low temperature

regime, black curve, and under room temperature, red curve (Fig. 6.3 (a)), show that while

increasing the temperature the bistable area decreases. In order to probe this e�ect, one

must include in the result obtained in Fig. 6.3 (b) the e�ect of a resistance in series,

V = Vb + I(Vb)R. Thus, Fig. 6.3 shows the current density vs. the applied voltage, V for

three di�erent resistances, R, given in units of
(

em∗

2π2~3V

)
. As onde can see, increasing the

resistance the bistable area enhances.

Thus, the theoretical model indicates that the sheet resistance across the drain and

source regions must increase by lowering the temperature while the voltage drop at the

double barrier that de�nes the resonance condition in the I − V curve should be inde-

pendent on its variation. This is observed in the experimental results in Fig. 6.3 (a) for

which the resonant position is almost una�ected by the temperature change. However, a
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Fig. 6.3: (a) Experimental results. I − V characteristics for two di�erent temperatures: 4.2 K
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small contribution of the sheet resistance is expected by the load line e�ect. If the total

resistance of the RTD increases drastically, the voltage drop across the contact regions is

enhanced and only a fraction of the applied bias e�ectively modulates the band pro�le

at the DBS (Fig. 6.3 ( b)). Herby, the resonance condition shifts to larger bias voltages

but one would observe also a signi�cant enlargement of the width of this hysteretic-like

region, V up− Vdown.

Let us discuss what happens if an additional layer of InGaNAs is included. This

has been achived experimentally integrating the GaAs/AlGaAs double barrier resonant

tunneling diode with a 160 nm thick InGaNAs layer. At the GaInNAs/GaAs interface,

a temperature dependent sheet charge is formed which induces changes in the internal

voltage resulting in a threshold voltage shift of the bistable transition.

The top panel of Fig. 6.4 shows a scheme of the conduction (cb) and valence (vb) band

pro�le for the biased RTD. As depicted in Fig. 6.4, electrons are injected from the source

and tunnel resonantly through the DBS when their energy are equal to the quantum

well layer subband energy. Additionally, a sheet charge with density ni is formed at the

GaInNAs/GaAs interface, as displayed in the bottom of Fig. 6.4. Under this con�guration,
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Fig. 6.4: Sample band pro�le, the corresponding diagram with the charge distribution along the
growth direction, and the corresponding electric �eld pro�le.

the electric �eld within the structure follows the equation

E(x) =



Π+

ε
x; 0 ≤ x < l1

Π+

ε
l1; l1 ≤ x < a+ l1

Π+

ε
l1 − nac

ε
; a+ l1 ≤ x < b+ l1

Π+

ε
l1 − nac

ε
+ p

ε
+

N+
D

ε
(x− (b+ l1)); b+ l1 ≤ x < c+ l1

Π+

ε
l1 − nac

ε
+ p

ε
+

N+
D

ε
(x− (b+ l1))− ni

ε
; c+ l1 ≤ x < l + l1

, (6.1)

where Π+ is the 3D ionized donor concentration at the source, N+
D is the 3D donor

impurities concentration at the drain, nac is the 2D charge density accumulated at the

DB, ni is the 2D charge density accumulated ate the GaInNAs/GaAs interface, and p is

charge density in the valence band. If nac > N+
D (c − b) + Π+l1, with the condition for

neutrality yielding E(0) = E(l + l1) = 0. This function has been represented in Fig. 6.4.

Thus, the total voltage drop of the RTD, VT , is given by

VT = ∆Vab −
nac

ε
(l − b) +

N+
D

2ε
(l − b)2 − Π+

ε
l1(b− a) +

+
ni

ε
(c+ l1)−

ni − Π+l1
ε

(l + l1)−
Π+

2ε
l21 +

p

ε
(l − b), (6.2)
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with the neutrality condition

Π+l1 − (nac + ni) + p+N+
D (l − b) = 0 (6.3)

and the voltage drop at the DBS, between a and b, being

∆Vab = −nac − Π+l1
ε

(b− a). (6.4)

Combining all the e�ects, as depicted in Fig. 6.4, with the charge balance provided by

nac − p = N+
D (l − b) and ni = Π+l1, we obtain a total voltage drop as

VT = ∆Vab +
n2
i

2εΠ+
+
ni[c− (b− a)]

ε
− (nac − p)2

2εN+
D

. (6.5)

Using Eq. (6.4), one can write

VT = −|∆Vab|+
n2
i

2ε

(
1

Π+
− 1

N+
D

)
+
ni

ε

[
c− (b− a)− |∆Vab|

N+
D (b− a)

]
−

− 1

2εN+
D

[
|∆Vab| · ε
(b− a)

− p

]2
+
p · ni

εN+
D

. (6.6)

The experimental results, displayed in Fig. 6.5 (a), shows the RTD I−V characteristics

plotted for di�erent temperatures ranging from T = 10 K up to T = 300 K. The room

temperature I − V curve, in Fig. 6.5 (a), shows a clear resonance with a peak current

Ipeak = 0.86 mA and a valley current Ivalley = 0.23 mA. The RTD is bistable with a

threshold voltage for the up-sweep Vup = 5.085 V and Vdown = 4.790 V for the down-

sweep. The peak-to-valley current ratio PV R = Ipeak = Ivalley is 3.7 mA. As seen in

Fig. 6.4 (a), the threshold voltages Vup,down shift to greater values when the temperature

is lowered. For T = 10 K, the up- and down-sweep thresholds are Vup = 8.820 V and

Vdown = 7.850 V, respectively. The threshold voltage shift also holds in the temperature

range where the peak and valley currents remain constant, i.e. below T = 100 K.

Figure 6.5 (b) shows the calculated current density vs. applied voltage for three

di�erent values of charge accumulation, according to Eq. (6.6). One may see that both

an increase of ni or p will lead to the desired shift of the absolute voltage drop towards

lower values.
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6.1.1 Conclusion

In conclusion, modeling the 1D charge �ow through hetherostructured systems may

present unexpected challenges once experimental observations are involved. At this point,

we are dealing with sequential studies based on the samples described above and several

intriguing problems continue to appear. As being ongoing e�orts we were not able to

present them in the �nal version of this thesis.

In the particular problem described here we proved that also a resistance variation

could lead to some threshold shift, it can be neglected as the dominant e�ect observed

in the experiments on the sample with the InGaNAs layer. We thus demonstrated that

the pronounced threshold voltage shift with temperature was caused by a variation of the

sheet charge density ni at the GaInNAs/GaAs interface. In the next section, we will show

that the modulation of strain �elds can also become an additional important e�ect in the

1D transport through an hetherostructure.

6.2 Twin-plane superlatice

The plausibility of building inhomogeneous heterostructures of a single semiconduc-

tor material was long ago theoretically predicted when stacking faults and the creation

of layered systems of semiconductor segments between twin-planes were simulated. [21]

There is however a major shortcoming in the e�ective use of twin-planes for quantum ef-

fects in zincblende heterostructures: the mere presence of a twin stacking fault would not
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Fig. 6.6: Molecular dynamics simulation of NWs after undergoing relaxation and thermalization
processes. The results for the NW1 (NW2) is shown in the upper (lower) panel. The
cross section area of the NW1 and NW2 are 3189.5 Å2 and 30973.4 Å2, respectively.
These NWs have periodic segments of size 2Lz, where Lz = 20.435Å for NW1 and
Lz = 61.067Å for NW2. Gray (green) dots represent Indium (Phosphorous) atoms.
Notice that the twin-planes are composed by alternate layers of di�erent atoms.

practically a�ect the transmission of Γ-electrons and these interfaces would remain mostly

transparent. [63, 64] Just recently, the controlled synthesis of stacking fault heterostruc-

tures of III-V compound semiconductor NWs has been reported. [3, 4] It was shown that

by controlling either the growth temperature and diameter of InAs NWs [3] or the amount

of impurity dopants in analogous InP systems [4], a twin-plane superlattice can be ex-

perimentally realized. Such a microscopic control of the crystalline structure during the

NW synthesis would open up opportunities for a thorough modulation of their electronic

structure, thus increasing the potential use of these NWs as quantum heterodevices. In

this section, we report a systematic study about the microscopic structure of NWs, the

formation of their peculiar strain �elds a�ected by the surface and twin-plane interfaces,

and how they in�uence the electronic structure and transport properties of Γ-electrons

and holes.

There is a vast literature about simulations of InP NWs. For instance, ab initio

calculations were performed to study the stability of the NWs grown along [111] direction

as a function of the diameter [104], the change on the total energy due to defects [105],

the in�uence of hydrogen and oxygen on the surface of InP NWs [106], and the stability

of InP NWs with zincblende and wurtzite structures [107]. Furthermore, Monte Carlo

calculations were used by Sano et al. [108] to understand the formation of the twin-planes

and the tight-binding model was applied by Persson and Xu [109] to study InP NWs with
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orientation [100]. More recently, the band structure of twin-plane NWs was theoretically

obtained within the framework of density functional theory. [110, 111] These calculations

also show that there is indeed a possibility of band engineering on polytypic superlattices

with alternate zincblende and wurtzite crystalline phases, with band-o�sets up to 90 meV.

Once again, the partnership with the theoretical group of Prof. Jose P. Rino, experts

in MD simulations, allowed the study of the properties of InP zincblende type NWs. By

employing MD simulations combined with a multiband electronic structure calculation,

we analyzed the electronic transport within the envelope function approximation. The

advantage of using MD is related to the capacity to simulate real size NWs and to ex-

tract mechanical properties, which are used as input data to the multiband calculation.

Interestingly, the variation of the band structure in this work is only due to strain �elds

caused by the formation of the twin-planes and the peculiar surface, di�erently from the

case where polytypic phases are present. [110, 111] Based on the band structure results,

we are able to calculate the transport properties of the twin-plane superlattice through

the transfer matrix method [83]. Furthermore, we analyze the transport of both type of

carriers: electrons and holes. This consideration is important because the transparency

or opaqueness of a twin-plane superlattice is directly associated to the carrier character

(controlled by the strain conditions), as it will be demonstrated by our results.

In this way, two InP NWs with di�erent cross sections and with the same shape

as reported in Refs. [3, 4] are simulated by the MD group. From the computationally

simulated atomic structure of these NWs, the values of the elastic properties (elastic

constants at T=0 K) and strain pro�les (with and without external stress) are extracted.

Such results were used as input parameters for the electronic structure calculation and

the subsequent simulation of the electronic transport within the conduction and valence

bands. In the following subsections, we describe how molecular dynamics is used to

simulate InP NWs and how the interface e�ects is extract, which cannot be obtained

through empirical methods (e.g. tight-binding and k · p). Also, we show how the strain

�elds are included in the k ·p Hamiltonian along [111] direction. After that, the electronic

structure of the twin-planed InP NWs is calculated, which is the basis to determine the

transport properties. Along with the description of the methods employed in this work,

we also present and discuss the results in the subsections.
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6.2.1 Molecular dynamics

Indium phosphide, as several other III-V semiconductors, crystallizes in a cubic zincblende

structure, where each atom is tetrahedrally bonded to their nearest neighbor through

di�erent percentages of covalent and ionic bonds. In order to simulate a twin-planed

nanowire, the atomic positions for a given number of atoms were generated considering

the x, y and z axis parallel to the crystallographic directions [21̄1̄], [011̄], and [111], re-

spectively. To make an atomistic simulation of the NWs, an e�ective interatomic potential

that considers two- and three-body interactions having the same functional form was as-

sumed, as proposed by Ebbsjo et al. [113]. By using this interaction potential, Branicio

et al. [88] were able to describe the thermodynamical properties, structural phase trans-

formation induced by pressure, elastic constants, stacking faults and surface energies for

bulk InP. However, to reproduce the experimental elastic constants and bulk modulus at

300 K (the only experimental value available in the literature) by keeping other thermo-

dynamical and structural properties for InP adequately reported before, it was necessary

to perform a small modi�cation in a few parameters used in Ref. [88]. Otherwise, the sim-

ulations would lead to an underestimation of the elastic constants for bulk InP. Periodic

boundary conditions were applied in z-direction with a vacuum region of 60Å created in

the perpendicular directions. The whole system was allowed to relax in order to eliminate

stress and was led to a thermal equilibrium at temperatures close to 0 K.

Figure 6.6 (a) shows the NW1 simulated by molecular dynamics, which has a cross

section area of 3189.5 Å2, a total length of 408.7 Å, totalizing 51320 atoms (25660 In

+ 25660 P). In Fig. 6.6 (b) we display the results for NW2, which was simulated by

considering a cross section area of 30973.4 Å2, a total length of 366.4 Å, and totalizing

449244 atoms (224622 In + 224622 P). Both NWs consist of periodic segments of size

2Lz, as depicted in Fig. 6.6, where Lz = 20.435 Å for NW1 and Lz = 61.067 Å for NW2.

One can notice, in Fig. 6.6, that the twin-plane structure remains after undergoing the

thermalization and relaxation processes, what con�rms the stability of this con�guration.

Due to the �nite cross section size and the twin-plane, the positions of the atoms at these

interfaces will be modi�ed. The size of the cross section has a strong in�uence on this

deformation and, depending on surface size, the mere presence of the surface may lead

to a distribution of strain over the whole structure. However, in the range of parameters

used to simulate the two NWs, the relative strain variation between consecutive core
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segments and the interfaces near the twin-planes remains practically unaltered. For this

reason, we present the results of strain distribution only for NW2, which has a size more

compatible with typical experiments. [3, 4] The local stress distribution was calculated

using the algorithm supplied in Ref. 21. Because the NW is not uniform, the local stress

at the center of the NW2 was obtained by averaging the computed local stress for 70

atoms within the same plane around each point.

Figure 6.7 shows the distribution of the diagonal components σ11, σ22 and σ33 of

the stress tensor for a longitudinal cut taken in the middle region of the NW2, where

the color coding stress threshold is saturated at the surface for a better contrast in the

central region. The right panels (Fig. 6.7 (a)) correspond to [21̄1̄] cut plane view, whereas

the left panels (Fig. 6.7 (b)) correspond to the [011̄] cut plane view. Note that only σ11,

σ22, and σ33 diagonal stress tensor components reveal the interface in�uence along the

wire once the o�-diagonal stress components have negligible values. Figure 6.8 shows the

stress distribution for the same components, but for cross section cuts in the NW2 taken

along [111] direction. The top panels display the stress distributions for the cut plane

taken at the twin-plane interface and the bottom panels, for cuts taken in the middle of

the segment between two consecutive twin-planes. The stress distribution in the region

between two twin-planes depends on the NW cross section size. By increasing the cross

Fig. 6.7: Visualization of the local stress tensor components of the NW2. The left panels corre-
spond to longitudinal cut view in the middle region of the NW2 at the plane [211]. The
right panels are distributions for cut at the plane [011]. Color coding of stress threshold
was saturated at the surface in order to get a better contrast in the central region.
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Fig. 6.8: Visualization of the local stress tensor components of the NW2. Upper panels show
distribution of stress components for a transversal cut taken at the twin-plane interface.
Lower panels show the stress distribution for a transversal cut taken at the middle of the
segment. Columns (a), (b), and (c) show the distribution of the diagonal components
of the stress tensor σ11, σ22, and σ33, respectively.

section, the in�uence of the surface on the twin-plane strain �eld becomes less e�ective

and the stress distribution becomes �at and goes to zero in these regions.

The linear approximation is adequate to characterize the correlation between stress

and strain �elds in a NW, which is given by Hooke's law: σ′
ij = −C ′

ijklε
′
kl, where σ

′
ij labels

a stress tensor component, C ′
ijkl is a component of the fourth order elastic sti�ness tensor,

and ε′kl is the strain tensor component.

In order to determine the strain tensor components for wires grown as shown in Fig. 6.6,

a rotation from ([100], [010], [001]) to ([21̄1̄], [011̄], [111]) crystalline directions is required.

The general relations between new and old coordinate systems are [115] σαβ = UiαUjβσ
′
ij,

εαβ = UiαUjβε
′
ij, Cγδkl = UαγUβδUikUjlC ′

αβij, where the summation over repeated indices is

assumed and the elements of the rotational matrix Umn are given by

U =


cosα cos β − sinα cosα sin β

sinα cos β cosα sinα sin β

− sin β 0 cos β

 , (6.7)

where β = arccos
(
l/
√
h2 + k2 + l2

)
, α = arccos

(
h/

√
h2 + k2

)
, and h, k and l designate
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the Miller indexes. In the new axis, the Hooke's law, can be rewritten as

σγδ = −Cγδklεkl (6.8)

that is given in terms of the 36 components of the elastic sti�ness tensor, [116]

Cγδkl = C ′
11

3∑
α=1

UαγUαδUαkUαl + C ′
12

3∑
β=2

β−1∑
α=1

(UαγUαδUβkUβl + UβγUβδUαkUαl)

+ C ′
44

3∑
β=2

β−1∑
α=1

(UαγUβδ + UβγUαδ) (UαkUβl + UβkUαl) , (6.9)

For materials which crystallize in cubic symmetry, such as the zincblende structure, the

sti�ness tensor can be reduced from 36 to only three nonzero components labeled as C11,

C12, and C44 elastic constants.

The electronic structure calculation that will be presented below simulates the system

behavior at T = 0 K. However, only room temperature values of the elastic constants

are found in the literature [77]. Thus, besides the strain �eld mapping, the MD simula-

tions was used to deliver the elastic constants at zero temperature: C ′
11 = 107.68 GPa,

C ′
12 = 60.65 GPa and C ′

44 = 41.10 Gpa. The six components of the stress tensor along

[111] direction as a function of the position was also obtained from the MD calculations.

Thus, Eq. (6.8) was used to calculate the strain potential pro�le along this direction.

Figures 6.9 (a) and (b)shows the calculated strain distribution for the relaxed NW2 dis-

played along its longitudinal direction (by relaxed, we mean a wire not subjected to any

external deformation). Two main characteristics can be observed in Fig. 6.9(a) and (b):

(i) the NW core (plateau regions) appears positively strained in all directions; (ii) drastic

�uctuations of strain take place at the twin-plane interfaces. In order to probe the e�ects

of an external deformation, tension and compression were applied on the NW2 along the

z-direction, to obtain deformations ranging from -1.0% to +1.0% in their longitudinal

length at T ∼ 0 K. The resulting diagonal strain components for the externally strained

wires are displayed in Fig. 6.9 (c) and (d). Notice that the diagonal strain components

perpendicular to the longitudinal direction (ε11 and ε22) are shifted to positive (negative)

values due to positive (negative) uniaxial strain applied in the nanowire. Nevertheless,

the diagonal strain components ε33 has an opposite behavior and is shifted to negative

(positive) values under positive (negative) uniaxial applied stress.
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Fig. 6.9: Average values of the central strain distributions along longitudinal direction [111] of
the NW2 showing the possible types of twin-plane superlattice structures. Panels (a)
and (b) are for relaxed NW; Panels (c) and (d) are for externally strained NW. In panel
(c) the wire is under compression and in panel (d) the wire is under tension. In panels
(c) and (d), the black solid line represents ε11, the red line is ε22 and the dark cyan line
is ε33.

6.2.2 Electronic properties

The most common superlattices [117] are formed by alternating layers of two di�erent

semiconductors. Because di�erent materials have a distinct band gap, there will be a

discontinuity in the potential pro�le at the interfaces. As a result, the electronic structure

of a superlattice behaves as a sequence of quantum wells separated by barriers. This

periodic sequence of quantum wells and barriers creates a miniband structure, which is

constituted of alternated regions of allowed and forbidden energies. The regions of allowed

energies correspond to hybridization of quasi-bound states that are localized between

the barriers. Therefore, carriers can e�ciently tunnel through the superlattice when

their energy reaches these allowed regions and the structure becomes transparent for the

electronic transport. Obviously, these phenomena are observed if the quantum wells have

a minimum size and height capable of forming quasi-bound states. In addition, the heavier

the e�ective mass of the carrier, the easier the formation of a quasi-bound state.

In this section, we use the calculated intrinsic strain �elds of NWs, which appear

due to the arrangement of atoms during the formation of the wired structure, together

with external deformations to show that twin-planes NWs behave as 1D superlattices.

Mainly, the impact of strain �elds on the band structure will be given by a shift in the
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Fig. 6.10: Calculated e�ective superlattice potential along [111] direction at the NW2 core. Panel
(a) is the conduction band pro�le for the relaxed NW2. Panel (b) is the conduction
band pro�le for the externally strained NW2, considering the wire subjected to +1%
tension (upper trace) and subjected to −1% compression (lower trace). Panel (c) is
the valence band pro�les for the relaxed NW2. The solid red lines describe the heavy-
hole pro�le and the dashed blue line the light-hole pro�le. Panel (d) is the valence
band pro�les for the externally strained NW2 under +1% tension (upper traces) and
for −1% compression (lower traces). In all panels we adopted the point of view of a
valence band electron as the reference to describe the potential pro�le.

conduction and valence-band edges and a split of the degeneracy of the heavy- and light-

hole subbands.

The change on the e�ective potential pro�le for conduction and valence bands can be

ascribed to the in�uence of the deformation potentials: a, b, and d, for a given strain

�eld con�guration. [103] In particular, the e�ect on the conduction band is isotropic [118]

Hcond = ac (ε11 + ε22 + ε33), where ac is the conduction band deformation potential. In

turn, the potential pro�le for the valence band is anisotropic, and a rotation in the

Bir-Pikus Hamiltonian [119] should be performed. [120] For [111] direction, the energy

shifts for heavy- and light-hole subbands are respectively Hh = −av (ε11 + ε22 + ε33) −
dv√
3
(ε11 + ε22 − ε33) and Hl = −av (ε11 + ε22 + ε33) +

dv√
3
(ε11 + ε22 − ε33), where the va-

lence band deformation potentials are labeled by av and dv.

The calculated potential pro�le induced by strain for electrons along [111] direction

for the relaxed and for the externally strained NW2 are displayed in Fig. 6.10 (a) and

(b), respectively. It can be noted in both cases that there are �uctuating potentials at
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the positions where an interface between the twin-planes occurs. Such �uctuations act

as potential barriers for electrons alternated by quantum wells, thus constituting a 1D

superlattice. The di�erence provided by external strain is a shift in the bottom of the

conduction band, which is positive (negative) for the compressive (tensile) case. For

NW2, the thickness of the quantum wells is approximately 45 Å separated by barriers of

thickness approximately 15 Å. The potential pro�les for NW1 (results not shown here)

and NW2 are very similar and the only di�erence between them is related to the size of

the barriers and wells. For NW1, the thickness of the barriers is approximately 5 Å and

the thickness of the quantum wells is close to 15 Å. For both NW1 and NW2, the average

height of the barriers have the same value, which is approximately 15 meV (see Fig. 6.10).

For the valence band, we have two distinct situations to consider according to the

heavy- or light-hole subband character of the carrier. Here, the pro�le corresponds to the

potential from the point of view of a valence band electron. According to Fig. 6.10 (c) and

(d), we can observe that the heavy-hole and conduction subbands have similar pro�les

and follow a sequence of quantum wells separated by barriers (positive �uctuating poten-

tials). On the other hand, the light-hole subband pro�le presents an inverted sequence of

quantum wells (negative �uctuating potentials) and barriers. Therefore, depending on the

characteristic of the valence band ground-state, the holes can be con�ned into di�erent

layers of the structure when compared to electrons at the conduction band. Such a tun-

ing of the ground-state can be performed by applying an external strain (Fig. 6.10 (d)).

Furthermore, one can notice, in Fig. 6.10 (c) and (d), that the valence band ground-state

has a heavy-hole character for both relaxed and under tension (+1%) wires while the

light-hole character dominates for NWs under compression (-1%). As we will see bellow,

this alternation will also a�ect the transport properties of the NWs.

6.2.3 Transport properties

To characterize carrier transport properties in the 1D superlattice described by the cal-

culated potential pro�les, we use the formalism based on the transfer matrix method [83].

The transmission probability was calculated for di�erent combinations of wire sizes and

strain con�gurations. In this work, we consider the transport of both type of carriers:

electrons at the bottom of the conduction band and holes at the top of the valence band.

Figure 6.11 shows the transmission probability for electrons at the conduction band of
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Fig. 6.11: Transmission probability for carriers at the conduction band as a function of the
electron energy for NW2, which forms a twin-planed superlattice constituted of (a) 2
(dashed line) and 30 segments (solid line) and (b) 100 segments. The full transparency
condition for the system is achieved when the transmission probability reaches 1. In
all cases the energy has been measured from the corresponding band minimum.

the NW2 considering di�erent number of superlattice segments. Also, one can observe in

Fig. 6.11 (a) and (b) that the transmission probability is very close to 1 when electron

energy is higher than 15 meV. Such a result indicates that the twin-plane superlattice is

almost fully transparent for electrons. Because the external strain only shifts the con-

duction band edge (see Eq. (6.8)), we can a�rm that the transmission probability for

electrons does not depends on the external deformation. The e�ects of the potential pro-

�le are stronger when the electron energy is smaller than 20 meV. In this case, we can

observe quantum interference features (see Fig. 6.10) depending on the number of seg-

ments, but there is no observation of a resonant peak due to the small electron e�ective

mass. The qualitative picture for electron transmission probability for both NW1 (results

are not shown here) and NW2 is practically the same. This conclusion comes from the

fact that electronic structure of both NWs only di�ers from each other by the thickness

of the quantum wells and barriers. Therefore, if there is no quasi-bound state for wider

quantum wells (NW2), there will not be one for narrower wells (NW1).

In contrast, the transmission probability for holes at the valence band can be e�ectively

modi�ed by applying an external strain, as depicted in Fig. 6.12 and Fig. 6.13. In both

�gures, NW1 and NW2 were probed by increasing the number of twin-plane segments.

When the NW is subjected to compression (Fig. 6.12), the light-hole is the preferential

type of carrier and the transparency of the superlattice is evident since the transmission
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probability is close to 1 and there is no observation of a resonant peak. Again, this e�ect

is a characteristic of the small mass of this type of carrier. The transmission probability is

also quite similar for NW1 (results are not shown here) and NW2, when the NWs are under

compression. On the other hand, clear resonant transmission conditions are achieved for

either relaxed NWs or under tensile stress at some energy values, because now the heavy-

hole is the preferential carrier type. For the NW1, we observe only one sharp peak at the

energy ∼ 20 meV (Fig. 6.13 (a)). Alternatively, for the NW2, two very sharp peaks in

Fig. 6.13 (b) can be noticed, with energies at ∼ 15.5 meV and ∼ 22 meV, respectively. In

these both cases, the states with the heaviest mass along the [111] direction are promoted

to the top of the valence band (ground-state) and the full transparency of the twin-plane

superlattice is no longer observed. Thus, transparent energy bands are alternated between

opaque energy gaps. According to the number of twin-plane segments, the transparency

contrast can be enhanced as shown in Figs. 6.11-6.13.

6.2.4 Conclusion

In summary, the transport properties can be tuned in twin-plane superlattices within

semiconductor NWs even in the case of the Γ-electrons of zincblende like systems in con-

trast to the apparent transparency expected for 2D heterostructures. [21] The application

of external stress or any other mechanism that induces strain, such as temperature, [67]
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Fig. 6.12: Transmission probability for carriers at the top of the valence band as a function
of the hole energy for the NW2 under compression. The twin-plane superlattice is
constituted of (a) 2 (dashed line) and 30 segments (solid line) and (b) 100 segments.
The full transparency condition occurs when the transmission probability is equal to
1. In all cases the energy has been measured from the corresponding band minimum.
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Fig. 6.13: Transmission probability for carriers at the top of the valence band as a function of the
hole energy for relaxed NWs or under tension: (a) for the NW1 and (b) for the NW2.
The dashed (solid) line is the transmission for a NW composed of 2 (50) segments.
The full transparency condition occurs when the transmission probability is equal to
1. In all cases the energy has been measured from the corresponding band minimum.

can be an e�ective tool to reach alternate conditions between almost full transparency and

opaqueness. The increment of twin-plane segments is de�nitively a way of increasing the

contrast between these situations. To conclude, we have shown that to explore twin-plane

superlattices as active part of nanocircuits can be successfully achieved if the external

control of such strain dependency is mastered.



7. QUANTUM DOT CHAINS

Progress in nano-scale electronics architectures and the continuous search for ultra-

small circuit components have resulted in increased interest in the unique properties

of low-dimensional systems such as quantum wires (QWRs) and coupled quantum dots

(QDs). Recently, using molecular-beam epitaxy and strain engineering, a unique system

of aligned quantum dots, i.e., quantum dot chains (QDCs), were successfully synthesized

[1, 2]. In previous reports, using structural and optical characterization techniques, it was

shown that the QDC systems have a complex band structure caused by the combination of

two-dimensional (2D), one-dimensional (1D) and zero-dimensional (0D) densities of states

[65, 66]. In this regard, systems of 1D coupled QDs have attracted much attention both

in order to understand the underlying physics [67] and to develop novel devices. The co-

existence of 2D and 1D states, that are important for enhanced electrical conductivity, as

well as 1D and 0D states, that can play a role in the suppression of thermal conductivity,

also makes this system a potential target for development of thermoelectric applications

[68].

In collaboration with the experimental group of Prof. Greg Salamo from University of

Arkansas, where electron transport in a system of QDCs was investigated, we developed

a 1D hopping model in order to characterize the transport in this kind of system. The

presence of 0D states on top of a 1D wetting layer (WL) makes the electron transport in

QDCs di�erent from a system of continuous wires. This results in a di�erent anisotropic

response as well as enhanced hopping at low temperatures. Also, the transport was probed

with respect to band �lling phenomena by supplying various concentrations of free carriers

through remote doping in the GaAs barriers. Thus, the e�ect of changing the relative

position of the Fermi level can be determined.

Figure 7.1 presents representative atomic force microscope (AFM) images of the QDCs

in the samples. The long chains of InGaAs QDs are well organized parallel (∥) to the [1̄10]

crystallographic direction over long distances and perpendicular (⊥) to the [110] direction
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Fig. 7.1: (a) 5× 5 µm2 AFM topography image of QDC sample C. The chains are aligned along
the [1̄10] crystallographic direction; (b) 1 × 1 µm2 AFM image of the same sample;
Statistical distribution with Gaussian �ts of the: (c) QD height; (d) Distance between
QDs, din, within the chains (peak-to-peak) measured along [1̄10] direction; and (e)
Distance between neighboring chains, dbc, measured peak-to-peak; (f) Hall bar structure
used for electrical characterization with a channel width of 25 µm. [123]

which runs across the chains. AFM analysis of the surface QDCs, Figs. 7.1c-e, has revealed

the average height of the QDs, the average radius of the QDs, the average spacing of

the QDs within a chain, and the average chain to chain spacing to be: h ∼ 7.6 nm,

r ∼ 27 nm, dic ∼ 57 nm, and dbc ∼ 137 nm respectively. These dimensions are important

for understanding the electronic structure of the system and the underlying anisotropy.

All of these structural parameters of the QDC systems have a normal distribution and

are well �t by Gaussians.

The conductance in this system is governed by two main factors: (i) available states

of di�erent dimensionality and (ii) the position of the Fermi surface across the entire

structure. In order to understand the role of these factors, let us �rst discuss possible

conduction mechanisms through the states of di�erent dimensionalities that lead to chan-
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nels with di�erent transmission probabilities. The total conductivity in the system of

QDCs can be written as

σξ = σ3DGaAs + σ2DWL + σ1DWL
ξ + σ0D

ξ , (7.1)

where ξ denotes the [1̄10] and [110] directions. The conductivity in bulk GaAs, σ3DGaAs,

and in the 2D InGaAs wetting layer, σ2DWL, are considered to be isotropic. The main

source of anisotropy will be that due to the 1D wetting layer, σ1D,WL
ij , formed due to the

strain �elds developed in-plane and along the growth direction [65, 66]. The di�erence,

∆σ1DWL = σ1DWL
[1̄10] −σ1DWL

[110] > 0, is determined not only by the lateral con�nement in the

[110] direction but also by lateral chain spacing in the [110] direction, dbc. Indeed, due to

the high lateral spacing, dbc = 137 nm, transport through 1D states in the [110] direction

is only possible with the participation of the 2D states of the InGaAs WL and the 3D

states of GaAs [122].

To study the conductance in the samples, conduction was forced through di�erent di-

mensionality of the systems by moving the Fermi surface across it. Experimentally, they

used temperature dependent Hall e�ect measurements. Figures 7.2 (a) and (b) present

the Hall mobility and electron sheet density, respectively. These measurements were per-

formed for each sample using Hall bars (see Fig. 7.1 (f)) aligned along the [110] or [1̄10]

crystallographic directions, i.e., across the QDCs or along them. Here, several distinct,

noteworthy features were found: (i) the absolute value of the mobility is strongly depen-

dent on remote doping concentration; (ii) the anisotropy (η = σ[1̄10]/σ[110]) is dependent

on the temperature (Fig.7.2 (c)); and (iii) the low temperature mobility (T < 90 K) pro-

gressively decreases with doping. At high temperatures, mobility along the chains shows

only a slight variation with doping. At the same time, the high-temperature mobility

across the QDC is obviously a�ected by the doping levels. This observed di�erence is

small but is the result of the anisotropy in the conductivity of the 1D WL and of the

QD chains. This is only observable due to the lowering of the Fermi energy with the

decreasing doping level into the states of the lower dimensional systems. In other words,

if the doping level was very high, into the GaAs conduction band, no anisotropy in the

conductivity was expected to be seen.

At higher temperatures, they found that the mobilities decrease as the temperature

rises. There are two e�ects which contribute to this decrease: the modulation of QD
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Fig. 7.2: (a) The Hall mobilities and (b) the electron sheet densities measured as a function of
temperature for samples A, B, and C along the QDCs ([1̄10] direction, solid symbols)
and across the QDCs ([110] direction, open symbols); (c) Anisotropy as function of
temperature and remote doping for samples A, B, and C. The inset shows a schematic
band diagram in the (100) plane for [1̄10] (along QDCs) and [110] (across QDCs)
crystallographic directions as well as the density of states diagrams.

occupancy which inhibits hopping, as described before, and the increase in scattering rate

by phonon interaction [124]. At temperatures below 100 K, the electron mobility reaches

the maximum and starts to decrease again towards lower T . This decrease of mobility

cannot be associated with enhanced scattering on ionized impurities at low temperatures

because the thick spacer layers at 17.5 nm prevent it [124]. Instead, the mobility decrease

here is due to the cross-over between 1D states in the InGaAs WL [122] and 0D states in

the QDs. The decrease of doping and temperature makes these states dominant in charge

transport. Hopping conduction becomes a dominant mechanism at lower temperatures

which results in the observed drastic mobility decrease as T decreases.

Figure 7.2 (c) presents the experimental results of the anisotropy, η, as functions of

temperature and doping level. Notably the QDCs behave di�erently with temperature and

doping than a QWR system [122]. For QDCs, an interference of channels of a di�erent
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nature may occur. The presence of QDs with 0D states e�ectively localizes carriers,

reduces the charge transport in both [1̄10] and [110] directions, and leads to the peculiar

behavior displayed in Figure 7.2 (c). At room temperature, for the highest remote doping

of 1× 1012 cm−2, Sample A, the anisotropy is less than for the moderately doped Sample

B, N2D = 7.5×1011cm−2. This is an indication that the isotropic 2D states of the InGaAs

WL and even the GaAs contribute to the conductance in Sample A, while for sample B

the lower Fermi energy enhances conduction in the anisotropic 1D states. However, for

Sample C, the Fermi level is lowered further into the 0D states of the QDs where hopping

conduction dominates. This leads to lower anisotropy.

For all samples, decreasing the temperature leads to an increase in anisotropy as

expected due to pinning of the Fermi energy in the 1D states. However, for Samples B

and C at ∼ 110 K, the anisotropy reaches its maximum and decreases slightly.

7.1 Hopping transport

In order to assess the anisotropy and the temperature dependence of the mobility of

carriers through the QDs, we will consider a model based on hopping transport [32, 33, 34,

35, 36] that will take into account the structural parameters of the real samples. Using

the QDs as localization centers for charge carriers, the dot-to-dot transport along the

chain or from chain-to-chain occur when an electron gains enough energy to escape into

the barrier by absorbing phonons. Here, we consider a system of 10 chains with 1724 QDs

each, in other words, we have calculated the mobility of a system of 10 by 1724 con�ning

sites (QDs) by considering hoping between them. Labeling the QDs with an index, k,

their occupation density is given by the Fermi-Dirac distribution

nk =
1

1 + eβ(∆+(k−1)V )
, (7.2)

where β = (kbT )
−1, kB is Boltzmann's constant, V is the drop in energy of each site due

to an applied voltage, and ∆ = E −Ef is the energy di�erence between the hopping energy

state and the Fermi energy.

According to Miller and Abrahams [32], the transition rate for hops from one site to



7. Quantum dot chains 85

another with relative position vector rkl is given by

Rkl =

 ν0e
−a|rkl|−β(El−Ek), El > Ek

ν0e
−a|rkl|, El < Ek

(7.3)

where ν0 is an intrinsic transition rate, a = 2/α with α being the localization radius,

and ϵ is the energy which includes the contribution of V . Therefore, the mobility can be

calculated as

µξ =
r0

E < n0
k >

∑
k

∑
l

[
rklR

(ξ)
kl nk(1− nl) + rklR

(ξ)
kl nl(1− nk)

]
, (7.4)

where E is an applied electric �eld, r0 is the lattice constant, and n0
k is the equilibrium

Fermi-Dirac distribution (rkl and α are given in units of r0).

Within a strictly hopping formalism using a uniform 1D chain, there are only two

mechanisms which can cause the transport properties to vary with direction resulting

in anisotropy: the anisotropic e�ects of the electron-phonon interaction and the e�ective

number of parallel sites contributing to the hoping mobility in each direction. The e�ect of

increasing the number of distant hops is displayed in Figs. 7.3 (a) and (b) using the sample

parameters as measured in Fig. 7.1. We calculated the mobility for both directions, across

and along the chains, Figs. 7.3 (a) and (b) respectively, with di�erent numbers of neighbors

contributing to the hopping mechanism. The index l, in Eq. (7.4), runs through the values

1 to lmax as indicated along each curve in Fig. 7.3, and where lmax is the maximum number

of neighbors considered in the calculations. As we can see, the mobility increases as we

include more nearest neighbor hopping sites in the calculations. By �xing the number of

neighbors involved in the hopping, the role of the parameter ∆, i.e., the Fermi level, in

the mobility is assessed in Figs. 7.3 (c) and (d), across and along the chains, respectively.

The farther the Fermi level is from the energy level of state which is being considered

for hopping, the higher the temperature where the maximum mobility is attained. Such

a behavior is attributed to the temperature dependence of the relative occupancy of the

sites.

As predicted by the 1D model, the change in the Fermi level position by varying the

doping density leads to the systematic shift of the mobility maximum, Fig. 7.2. This

non-monotonic behavior is a signature which is expected for hopping (see Fig. 7.4). This
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Fig. 7.3: Mobility versus temperature for α = 27 nm. (a) Across the chains and (b) along the
chains, both showing the e�ects of changing the number of neighbors involved in hop-
ping. (c) Across the chain, for hops between the 3rd closest neighbors, varying ∆. (d)
Along the chain, for hops between the 10th closest neighbors, varying ∆.

behavior is enhanced in the lightly doped sample C, N2D = 5 × 1011 cm−2. This sample

shows the smallest conductance anisotropy between the three samples, however its tem-

perature dependence is completely di�erent than the one obtained for QWRs, [122] where

the highest η was measured for the sample with the lowest doping level. This suggests

that for conduction in the QDC system the 0D states dominate over the 1D and 2D states.

In sample C, at T ∼ 110 K the anisotropy rapidly starts to decrease with temperature,

similarly to sample B. This decrease of anisotropy with temperature as well as the sharp

drop in mobility at low temperatures indicates that QDs dominate the transport. As

shown by the schematic diagram in the inset of Fig. 7.2, when the Fermi energy is low

enough and is in the 0D states of QDs, the transport will be governed by electron hopping

in both the [110] and [1̄10] directions.

Now, we will demonstrate that this relative position of the Fermi energy impacts the

anisotropic transport response in a system of 1D QDCs. We can calculate the conductance

by considering just the �rst neighbor hopping [33]. The conductance in a 1D system of

con�ning sites, the QDs, is equivalent to a model of conductors connected in series. The
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conductivity would then be:

σξ = Nαe2β

[ ∑
k

(
nk(1− nk)R

(ξ)
k,k+1

)−1
]−1

, (7.5)

where N is the number of sites. The anisotropic behavior will be assessed through the

anisotropy ratio de�ned as η = σ[1̄10]/σ[110], using Eq.( 7.5) for the σ. Figure 7.4 shows

the anisotropy ratio as a function of temperature and the relative position of the hopping

state with respect to the Fermi energy, ∆. Note that this result is merely qualitative, since

no attempt was made to include realistic values of the constants that enter Eqs. (7.3) and

(7.5). A continuous increase of ∆ produces qualitative changes on the anisotropy as a

function of temperature. For lower values of ∆, the anisotropy ratio with temperature

decreases monotonically while for higher values, the behavior becomes non-monotonic with

a de�nite maximum. In the model, the Fermi energy and temperature appear combined

within the Fermi-Dirac distribution. Thus, as expected for high temperatures, the carrier
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distribution is smeared and no essential di�erences can be observed in the occupation of

neighboring sites, leading to a thermalized picture.

Even though, the response of the samples matches qualitatively with the model of elec-

tron hopping, we would like to investigate the possibility of �nding evidence of variable-

range hopping [125] in our conductivity data. Ideally, this would obey Mott's law, which

is given by

σ0D
ξ (T ) = σ

(ξ)
0 e

−
(

T
(ξ)
0
T

)x

. (7.6)

Here, T (ξ)
0 = 13.8/kBN(Ef)α2, is determined by material properties, N(Ef) is the den-

sity of states at the Fermi level, and x = 1/3 for phonon assisted hopping conductivity.

The parameter σ(ξ)
0 = γ(ξ)Tm, with γ(ξ) - the temperature independent parameter re�ect-

ing the characteristic frequency of hopping "attempts" and m = −1 [125, 126, 127]. To

characterize the temperature dependence of this variable-range hopping component of the

conductivity σ0D
ξ (T ), we followed the di�erential method proposed in [128, 129], in which

σ
(ξ)
0 is allowed to vary. In order to analyze the data, we consider the function [128]

Wξ(T ) =
∂ log σξ(T )

∂ log T
= m+

(
T

(ξ)
0

T

)x

. (7.7)

For m≪ x(T
(ξ)
0 /T )x, we can write logWξ(T ) = Aξ − x log T , where Aξ = x log T

(ξ)
0 . The

plots of logWξ(T ) vs. log T are shown in Fig. 7.5, for conduction both along and across

the QDCs.

Certainly, a uniform 1D chain, as modeled before, cannot be �tted into the random

picture of a disordered system where the variable-range hopping takes place. Thus, it

is not surprising that the calculated values of logWξ(T ) vs. log T di�er from the Mott

law already at low temperatures, as depicted in Figs. 7.5(a)-(d). The behavior does not

depend on the number of distant hops involved in the calculations, Figs. 7.5 (a) and

(b). Also, by varying ∆, the uniform chain response still deviates from the Mott law,

as depicted in Figs. 7.5 (c) and (d), and the curves shift for each value of the relative

hopping state position with respect to the Fermi energy.
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Fig. 7.5: log(Wξ) versus log(T ). (a) and (b) along and across QD chain, respectively, with dif-
ferent number of hopping neighbors. The 1D Mott behavior (x = 1/2) is shown by
solid line. (c) and (d) along and across QD chain, respectively, where ∆ is varying. (e)
and (f) are experimental data.

7.2 Conclusions

In summary, detailed studies of the mechanisms of conductance in a system of quantum

dot chains as a function of temperature and remote doping level have been performed. We

demonstrated that the behavior of the conductance is complicated due to the availability

of states of di�erent dimensionalities. We found that the presence of 0D states plays a

key role in the anisotropic behavior of the conductance in this system and compared the

experimental response to a 1D hopping model. At low temperatures, the experimental

response of all samples deviates from Mott's law of conduction.

Figures 7.5 (e) and (f) show the experimental values of the mobility analyzed using

Eq. (7.7). Deviations from the Mott behavior are predicted for variable-range hopping at



7. Quantum dot chains 90

low temperatures and obtained where a 1D ordering of sites in the chain creates a system

size that is comparable to the typical length of a hop [130, 131, 132, 133]. However, in

our case, the divergence at lower temperatures does not �t into these predictions. Yet, as

the carrier concentration varies, the curves in Figs. 7.5 (e) and (f), are shifted analogously

to the prediction of the theoretical calculations in Figs. 7.5 (c) and (d). Thus, one may

conclude that the qualitative discrepancy between experiments at low temperature with

the Mott law and the 1D hopping model does not depend on the position of the Fermi

energy. We were not able to determine the reason for such a behavior and this has

opened an intensive search for a more systematic study of the conductivity in these QDCs.

Certainly, the combination of various channels masks each other and assessing the nature

of the main transport mechanisms within the whole temperature range is a task that

requires further work.

For high doping levels, the conduction through energy states of 1D and 2D systems

may interfere. However, even for this case, the conductivity, σξ, is modulated by a hopping

component of σ0D
ξ through localized levels in the QDs. For low doping, when the Fermi

surface is mainly located in these 0D states, the hopping conductance is dominant and

conduction through the 1D and 2D states is only possible through electrons scattered

into higher energy states. Further decrease of sample temperature could bring our system

into the regime of long-range Coulomb interaction, where hopping conduction is possible

without phonon assistance. This will be a subject of our further studies.



8. FINAL CONSIDERATIONS

In this thesis, we have studied the transport properties in quasi-one-dimensional het-

erostructures. Speci�cally, we have characterized the transport of semiconductor NWs,

coupled NWs, twin-plane NWs, heterolayered systems, and quantum dot chains and stud-

ied the theoretical grounds, both semiclassical and quantum, to support these analyzes.

Initially, through the k ·p approach, we have studied the electronic structure of NWs and

their quantization e�ects for di�erent geometries. The structure of the valence band was

calculated from the diagonalization of the Luttinger Hamiltonian [72]. The calculation of

its matrix elements was obtained analytically, which provided well determined selection

rules that enabled us to split the Hilbert space into orthogonal subspaces. All these math-

ematical results facilitated the numerical diagonalization and the subsequent qualitative

discussions. Adding strain e�ects to the model, allowed tuning the character of the valence

band ground state. This became a very important result since we were able to promote

light-holes to the ground state and make this carrier as important as the electron in terms

of mobility. Then, by tuning adequate structural parameters, the heavy-holes may attain

the valence band top and were able to obtain transport opaqueness in structures where

full transparency was predicted. [63, 64]

The hole mobility, a�ected by the hole-phonon interaction in InP semiconductor NWs,

for di�erent geometries, and under various strain and temperature conditions, was sys-

tematically studied. We showed that the mobility changes according to the NW width,

strain �elds, and temperature in a non-monotonic fashion for certain parameters. This is

explained by the fact that the electronic structure changes drastically with strain and/or

size, with the ground state switching character between heavy- and light-hole, while the

temperature changes of the LO peak position and size, supported by the molecular dy-

namics calculations, are also important. Furthermore, we have characterized the resonant

behavior of the mobility when the energy separation between the two valence subbands

equals the optical phonon energy. These conditions can be tuned by size variation or strain
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�elds and are also a�ected by temperature, and should be taken into careful consideration

when designing possible NW-based device.

Inspired on the idea of designing new devices, we revisited a well developed concept:

the waveguide directional coupler, [46, 47]. We proposed and developed the study of the

spin transport properties of a nanowire directional coupler (�H-shap� geometry) imple-

mented by parallel wires joined by a mixing region, locally gated, which generates Rashba

spin-orbit interaction. Moreover, various con�gurations of gate voltages applied on the

wire structure were considered. Under this con�guration, we were able to analyze the

modulation of the spin transport through the combination of SOI and system dimensions.

The combination of SOI and gate voltages allows a modulation of the polarization, when

the measured spin is projected along the direction of the Rashba spin-orbit �eld. The

overall control of charge and even spin �ux in this system appears promising for spin-

tronics, as well as in hybrid devices that include nearby superconducting or magnetic

materials.

The amazing recently advances in growing nanostructures technics allowed the con-

trolled synthesis of stacking fault heterostructures of III-V compound semiconductors

NW. [3, 4] Such microscopic control of the crystalline structure, during the nanowire

synthesis, open up opportunities for a thorough modulation of their electronic structure

and thus their potential use as quantum heterodevices. We systematically analyzed the

structural properties of twin-plane superlattices in InP NWs by join e�orts. Through

molecular dynamics, a NW in [111] direction was simulated to determine the strain �elds

produced by the formation of twin-planes and surface e�ects. Changes on the electronic

structure of these NWs due to the stress tensor obtained from molecular dynamics simu-

lations were described. Based on these results, we have con�rmed that a one-dimensional

superlattice is indeed formed in quantum level. The application of external stress or any

other mechanism that tunes the strain, such as temperature, can be an e�ective tool to

reach alternate transport conditions between almost full transparency and opaqueness. In

this way, we have describe the transport properties of both electrons and holes in theses

structures. In contrast to the predicted transparency of Γ-electrons in heterolayered III-V

semiconductor superlattices, we veri�ed that transport properties can be e�ectively tuned

in twin-plane superlattices within semiconductor NWs even in the case of Γ-electrons of

zincblende systems. The increment of the number of twin-plane segments is de�nitively
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a way of increasing the contrast between these situation and open up possibilities of

electronic structure engineering and the modulation of transport and optical responses.

Following the trend of the �eld, collaborators brought to our attention some interests

results on quantum dot chains (QDCs), where electron transport was investigated. In this

systems, the presence of 0D states on top of a 1D wetting layer (WL) makes the electron

transport di�erent from the case of continuous wires. This results in a di�erent anisotropic

response as well as enhanced hopping at low temperatures. Moreover, the transport was

probed with respect to band �lling phenomena by supplying various concentrations of free

carriers through remote doping in the GaAs barriers. Thus, the e�ect of changing the

relative position of the Fermi level can be determined. With this background, we have

performed detailed studies of the mechanisms of conductance in a system of quantum dot

chains as a function of temperature and remote doping level. We have developed a 1D

hopping model in order to characterize the transport in this system. In this way, we have

demonstrated that the behavior of the conductance is complex due to the availability of

states of di�erent dimensionalities. We have found that the presence of 0D states plays a

key role in the anisotropic behavior of the conductance in this system and compared the

experimental response to a 1D hopping model. At low temperatures, the experimental

response of all samples deviates from Mott's law of conduction.

This proposal, to characterize the transport properties of semiconductor nanostruc-

tures, will continue in conjunction with experimental collaborations (both in transport

characterization as in the synthesis and growth of these structures). We intend to develop

methods for the characterization of the electro-optical transport phenomena as light sensi-

tive photo-detectors and light emitting diodes, as well as low dimensional ballistic electron

waveguides integrated with site-controlled quantum dots as state dependent information

transmission and storage devices. The combination of both, a strong experimental and

theoretical expertise of our partners, o�ered the possibility for a roadmap strategy starting

from basic fundamental properties of quantum transport phenomena of these structures

towards the realization and applications of nano-scaled devices. We are grateful that this

thesis, the published, and still unpublished results relayed on the strong collaboration

between experimental growth, electro-optical spectroscopy, and theoretical groups with

an expertise on the fabrication and modeling of low dimensional structures and devices.
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