UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA

Involuções fixando muitas componentes e melhorias para o 5/2-Teorema de J. Boardman

Patrícia Elaine Desideri¹

Tese apresentada ao PPG-M da UFSCar como parte dos requisitos para a obtenção do título de Doutora em Matemática.

Orientador: Prof. Dr. Pedro Luiz Queiroz Pergher

São Carlos - SP Março - 2012

¹Bolsista FAPESP - Processo n° 2007/58383-1.

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária/UFSCar

D457if	Desideri, Patrícia Elaine. Involuções fixando muitas componentes e melhorias para o 5/2-Teorema de <i>J. Boardman</i> / Patrícia Elaine Desideri São Carlos : UFSCar, 2012. 132 f.
	Tese (Doutorado) Universidade Federal de São Carlos, 2012.
	1. Topologia algébrica. 2. Involuções. 3. Classes de Stiefel-Whitney. 4. Fixed data. 5. Teoria de cobordismo. 6. Grau de decomponibilidade. I. Título.
	CDD: 514.2 (20 ^a)

Banca Examinadora:

Redro Luiz Queiroz Pergher Prof. Dr. Pedro Luiz Queiroz Pergher

DM - UFSCar

21 Prof. Dr. Dirceu Penteado

DM - UFSCar

Allruch barde

Profa. Dra. Alice Kimie Miwa Libardi IGCE- UNESP

Ducikery Lima Son Julias Prof. Dr. Daciberg Lima Gonçalves

IME - USP

ar int

Prof. Dr. Oziride Manzoli Neto ICMC - USP

À minha mãe Aparecida.

Agradecimentos

Primeiramente a Deus, pois sem Ele nada somos.

Ao Professor Dr. Pedro Luiz Queiroz Pergher, pelo apoio e pela imensa dedicação na orientação desse trabalho.

Aos professores do DM-UFSCar, pelos ensinamentos.

Aos meus amigos e familiares, pelo carinho e pela força. Ao Willer Costa, pelo carinho, compreensão e apoio.

Ao CNPq, pelo suporte científico fornecido ao meu orientador. À Universidade Federal de São Carlos e à FAPESP², pela concessão da bolsa de estudos e apoio financeiro a esse projeto de doutorado.

Resumo

Sejam (M^m, T) uma involução suave em uma variedade *m*-dimensional, fechada e suave M^m e $F = \bigcup_{i=0}^{n} F^j$ (n < m) o seu conjunto de pontos fixos, onde F^j denota a união das componentes de F com dimensão j. O famoso 5/2-Teorema de J. Boardman, anunciado em 1967, estabelece que, se F é não bordante, então $m \leq \frac{5}{2}n$; além disso, esta estimativa é a melhor possível. Neste trabalho, nós obtemos melhorias para este teorema, impondo certas condições sobre F. O resultado principal se encontra no Capítulo 4, onde as melhorias em questão são obtidas levando-se em conta o grau de decomponibilidade das componentes de F. Especificamente, seja $\omega = (i_1, i_2, ..., i_t)$ uma partição não diádica de $j, 2 \leq j \leq n$, e seja $s_{\omega}(x_1, x_2, ..., x_j)$ a menor polinomial simétrica sobre \mathbb{Z}_2 , nas variáveis de grau um $x_1, x_2, ..., x_j$, contendo o monômio $x_1^{i_1} x_2^{i_2} ... x_t^{i_t}$. Escreva $s_{\omega}(F^j) \in$ $H^{j}(F^{j},\mathbb{Z}_{2})$ para a classe usual de cohomologia correspondente a $s_{\omega}(x_{1},x_{2},...,x_{j})$. O grau de decomponibilidade de F^{j} , denotado por $l(F^{j})$, é o menor comprimento de uma partição não diádica $\omega \operatorname{com} s_{\omega}(F^j) \neq 0$ (aqui, o comprimento de $\omega = (i_1, i_2, ..., i_t) \notin t$). Suponhamos que o conjunto de pontos fixos de (M^m, T) tem a forma $F = (\bigcup F^k) \cup F^n$, onde $2 \le j < j$ n < m e F^j é não bordante. Escreva $n - j = 2^p q$, onde $q \ge 1$ é ímpar e $p \ge 0$, e tome m(n-j)=2n+p-q+1, se $p\leq q,$ e $m(n-j)=2n+2^{p-q},$ se $p\geq q.$ Então, provamos que $m \leq m(n-j) + 2j + l(F^j)$. Em adição, dada uma partição não diádica $\omega = (i_1, i_2, \dots, i_t)$ de $j, 2 \leq j < n$, desenvolvemos um método para construir involuções (M^m, T) com F da forma $F = (\bigcup_{k \in \mathcal{F}} F^k) \cup F^j \cup F^n$, onde m = m(n-j) + 2j + t e $s_{\omega}[F^j] \neq 0$, para valores especiais de $n, j \in \omega$. Em alguns casos específicos, este método mostra que o limitante acima é o melhor possível. Por exemplo, tal método fornece a seguinte melhoria para o 5/2-Teorema de J. Boardman: se o conjunto de pontos fixos $F = \bigcup_{j=0}^{n} F^{j}$ de (M^{m}, T) possui $F^{n-1} \in F^n$ não bordantes, então $m \leq \min\{2n + l(F^{n-1}), 2n + l(\tilde{F^n})\}$; além disso, os limitantes $m \leq 2n + l(F^{n-1})$ e $m \leq 2n + l(F^n)$ são separadamente os melhores possíveis. Outra consequência: se o conjunto de pontos fixos $F = \bigcup_{i=0}^{m} F^{i}$ de (M^{m}, T) tem n = 2k,

 $k\geq 3$ e F^{n-1} não bordante, então $m\leq 5k-2,$ e este limitante é o melhor possível (o 5/2-Teorema diz que $m\leq 5k,$ nesse caso).

Nós também trabalhamos com alguns casos envolvendo fenômenos de baixa codimensão, caracterizados pelo fato que, para específicos conjuntos de pontos fixos F, a codimensão m - n é muito pequena; aqui, os avanços obtidos nos casos considerados relacionam-se à circunstância do número de componentes de F não ser limitado como uma função de n (na literatura, encontramos resultados dessa natureza onde F possui 2, 3 ou 4 componentes). Como exemplo dos resultados obtidos, temos o seguinte: se F tem a forma $F = F^3 \cup (\bigcup_{\substack{j=0\\ j \text{ par}}}^{n} F^j)$, com $n \ge 4$ par, e tal que todos os fibrados normais envolvidos

são não bordantes, então $m \le n+4$; além disso, esta estimativa é a melhor possível.

Finalmente, trabalhamos com limitantes para o caso $F = F^n \cup F^4$, considerandose que na literatura atual temos alguns resultados envolvendo $F = F^n \cup F^i$, para i = 0, 1, 2, 3. Por exemplo, nós mostramos que se o conjunto de pontos fixos de (M^m, T) tem a forma $F = F^n \cup F^4$, com n ímpar, e o fibrado normal sobre F^4 é não bordante, então $m \le n + 5$; além disso, esse limitante é o melhor possível.

Abstract

Let (M^m, T) be a smooth involution on a closed smooth *m*-dimensional manifold and $F = \bigcup_{i=0} F^{j}$ (n < m) its fixed point set, where F^{j} denotes the union of those components of F having dimension j. The famous Five Halves Theorem of J. Boardman, announced in 1967, establishes that, if F is nonbounding, then $m \leq \frac{5}{2}n$; further, this estimative is best possible. In this work, we obtain improvements of this theorem, by imposing certain conditions on F. The main result of the work is in Chapter 4, where the improvements in question are obtained by taking into account the *decomposability degree* of the components of F. Specifically, let $\omega = (i_1, i_2, ..., i_t)$ be a non-dyadic partition of j, $2 \leq j \leq n$, and $s_{\omega}(x_1, x_2, ..., x_j)$ the smallest symmetric polynomial over \mathbb{Z}_2 on degree one variables $x_1, x_2, ..., x_j$ containing the monomial $x_1^{i_1} x_2^{i_2} ... x_t^{i_t}$. Write $s_{\omega}(F^j) \in H^j(F^j, \mathbb{Z}_2)$ for the usual cohomology class corresponding to $s_{\omega}(x_1, x_2, ..., x_j)$. The decomposability degree of F^{j} , denoted by $l(F^{j})$, is the minimum length of a non-dyadic partition ω with $s_{\omega}(F^j) \neq 0$ (here, the length of $\omega = (i_1, i_2, ..., i_t)$ is t). Suppose the fixed point set of (M^m, T) has the form $F = (\bigcup_{i=0}^{j} F^k) \cup F^n$, where $2 \leq j < n < m$ and F^j is nonbounding. Write $n - j = 2^p q$, where $q \ge 1$ is odd and $p \ge 0$, and set m(n - j) = 2n + p - q + 1 if $p \leq q$ and $m(n-j) = 2n + 2^{p-q}$ if $p \geq q$. Then we prove that $m \leq m(n-j) + 2j + l(F^j)$. In addition, given a non-dyadic partition $\omega = (i_1, i_2, \dots, i_t)$ of $j, 2 \le j < n$, we develop a method to construct involutions (M^m, T) with F of the form $F = (\bigcup F^k) \cup F^j \cup F^n$, where m = m(n-j) + 2j + t and $s_{\omega}[F^j] \neq 0$, for special values of n, j and ω . In some special cases, this method shows that the above bound is best possible. For example, this gives the following improvement of the Five Halves Theorem: if the fixed point set $F = \bigcup F^{j}$ of (M^m, T) has F^{n-1} and F^n nonbounding, then $m \leq \min\{2n + l(F^{n-1}), 2n + l(F^n)\};$ further, the bounds $m \leq 2n + l(F^{n-1})$ and $m \leq 2n + l(F^n)$ are separately best possible. Other consequence: if the fixed point set $F = \bigcup_{j=0}^{n} F^j$ of (M^m, T) has $n = 2k, k \geq 3$ and F^{n-1} nonbounding, then $m \leq 5k - 2$, and this bound is best possible (the Five Halves Theorem says that $m \leq 5k$).

We also deal with the *low codimension phenomenon*, which is expressed by the fact that for certain F the codimension m - n is too small; here, the advances obtained are concerned with the fact that, in the considered cases, the number of components of F is not limited as a function of n (in the literature one finds results of this nature with F having two, three or four components). For example, among the results obtained one has: if F has the form $F = F^3 \cup (\bigcup_{\substack{j=0 \ j \text{ even}}}^{j=0} F^j)$, with $n \ge 4$ even, and all involved normal bundles are nonbounding, then $m \le n + 4$; further, this estimative is best possible.

Finally, we also study bounds for the case $F = F^n \cup F^4$, considering that in the literature one has results involving $F = F^n \cup F^i$ for i = 0, 1, 2, 3. For example, we show that if the fixed set of (M^m, T) has the form $F = F^n \cup F^4$, n is odd and the normal bundle over F^4 is not a boundary, then $m \leq n + 5$; further, this bound is best possible.

Sumário

In	Introdução					
1	Con	Conceitos preliminares				
	1.1	Introdução	1			
	1.2	Bordismo de variedades	1			
	1.3	Bordismo de aplicações	3			
	1.4	Bordismo de fibrados vetoriais	4			
	1.5	Bordismo de ações de grupos	6			
	1.6	O grupo de \mathbb{Z}_2 -bordismo principal	7			
	1.7	Sequência exata de <i>Conner</i> e <i>Floyd</i>	9			
	1.8	O Princípio <i>Splitting</i>	15			
	1.9	O limitante $m(n)$ de Stong e Pergher	16			
	1.10	A fórmula de <i>Conner</i>	18			
	1.11	A classe de Wu	19			
	1.12	Funções simétricas	21			
	1.13	Teorema de <i>Lucas</i>	23			
2	Involuções fixando $F^n \cup F^4$					
2.1 Introdução		Introdução	25			
2.2 Classes de bordismo estáveis de fibrados vetoriais sobre varieda		Classes de bordismo estáveis de fibrados vetoriais sobre variedades fechadas				
		4-dimensionais	26			
	2.3	Classes características especiais	36			
	2.4	Prova do Teorema 2.1.1	39			
		2.4.1 Caso n impar	56			
		2.4.2 Caso n par	64			
3	Invo	oluções fixando várias componentes	74			
	3.1	Introdução	74			
	3.2	Obtenção dos limitantes	75			

		3.2.1	Notações e preliminares	
		3.2.2	Caso $F = \{ponto\} \cup \left(\bigcup_{\substack{j=1\\ j \text{ impar}}}^{n} F^{j}\right) \dots \dots$	
		3.2.3	Caso $F = F^1 \cup (\bigcup_{\substack{j=0\\j \text{ par}}}^n F^j) \dots \dots$	
		3.2.4	Caso $F = F^2 \cup \left(\bigcup_{\substack{j=1\\ j \text{ impar}}}^n F^j\right)$	
		3.2.5	Caso $F = F^3 \cup (\bigcup_{j=0}^n F^j)$ 82	
	3.3	Constr	ução dos exemplos maximais	
		3.3.1	Notações e preliminares	
		3.3.2	Caso $F = \{ponto\} \cup \left(\bigcup_{\substack{j=1\\ i \text{ form}}}^{n} F^{j}\right) \dots \dots$	
		3.3.3	Caso $F = F^1 \cup (\bigcup_{j=0}^n F^j)$	
		3.3.4	Caso $F = F^2 \cup \left(\bigcup_{\substack{j=1\\ i \text{ begin{subarray}}}^{j \text{ par}}} F^j\right) \dots \dots$	
		3.3.5	Caso $F = F^3 \cup (\bigcup_{\substack{j=0\\j \text{ par}}}^{n} F^j) \dots \dots$	
4	Lim	itantes	envolvendo o grau de decomponibilidade de componentes	
	fixa	das		
	4.1 Introdução			
	4.2	4.2 Prova do Teorema 4.1.1 11		
	4.3	Constr	ução do exemplo maximal	
	4.4	Algum	as melhorias para o 5/2-Teorema de J. Boardman	

Introdução

Neste trabalho, focalizaremos a nossa atenção em objetos do tipo (M^n, T) , onde M^n é uma variedade fechada, suave e *n*-dimensional, e $T: M^n \to M^n$ é uma involução suave definida em M^n , isto é, $T^2 = Id$. É conhecido o fato de que o conjunto de pontos fixos de $T, F_T = \{x \in X \mid T(x) = x\}$ (quando não houver margem para confusão, denotaremos tal conjunto apenas por F), é ou vazio ou uma união finita e disjunta de subvariedades fechadas de M^n , com a dimensão de qualquer uma dessas subvariedades podendo em princípio assumir qualquer valor entre 0 e n. As componentes 0-dimensionais constituem um conjunto finito de pontos, enquanto as componentes n-dimensionais são componentes conexas de M^n onde T atua como a identidade.

Antes de mencionarmos os principais objetivos e resultados obtidos neste trabalho, faremos uma breve abordagem histórica sobre as ferramentas matemáticas que nos serviram de motivação e nos permitiram realizá-lo. Tais ferramentas inserem-se no contexto iniciado com o famoso trabalho de R. Thom de 1954 sobre a teoria de bordismo, Quelques propriétés globales des variétés differentiables (|28|), o qual proporcionou aomesmo a Medalha Fields em 1958. Em seu trabalho, R. Thom transformou a questão de classificar todas as variedades fechadas, a menos de bordismo, em uma questão de homotopia, o que lhe permitiu mostrar que a classe de bordismo de uma variedade fechada e suave é completamente determinada por invariantes algébricos denominados números de Stiefel-Whitney ou números característicos. Dez anos depois (1964), em Differentiable Periodic Maps ([8]), P. E. Conner e E. E. Floyd estenderam o trabalho de Thom introduzindo os grupos de bordismo singular n-dimensionais de um espaço topológico $X, \mathcal{N}_n(X)$, cujos elementos são as classes de bordismo de pares (M^n, f) , onde M^n é uma variedade suave, fechada e n-dimensional, e $f: M^n \to X$ é uma função contínua. A extensão é devida ao fato de que, quando $X = \{ponto\}, \mathcal{N}_n(X)$ reduz-se ao grupo de bordismo não orientado de Thom, \mathcal{N}_n . Semelhantemente ao que ocorre com $X = \{ponto\},\$ Conner e Floyd mostraram que, quando X é um CW-complexo finito em cada dimensão, então a classe de bordismo do par (M^n, f) é completamente determinada por números característicos, os quais são oriundos das classes de Stiefel-Whitney do fibrado tangente a M^n e da \mathbb{Z}_2 -cohomologia de X.

Nesse contexto, um detalhe importante é que, quando G é um grupo de Lie compacto e X = B(G), onde B(G) é o espaço classificante para G-fibrados principais, então o bordismo singular de X reduz-se ao bordismo das ações suaves e livres de Gem variedades fechadas, ou bordismo G-equivariante. Tal fato deu margem à original estratégia de se estudar ações de certos grupos em variedades usando métodos de bordismo. Dessa forma, um amplo estudo sobre involuções foi levado a cabo por Conner e Floyd em [8], através do seguinte método: quando X = BO(r) = o espaço classificante para fibrados vetoriais r-dimensionais, $\mathcal{N}_n(X)$ converte-se no grupo de bordismo de fibrados r-dimensionais sobre variedades n-dimensionais e, desse modo, tais objetos são completamente determinados por números característicos. Em particular, esse estudo teve um enfoque especial para as propriedades referentes ao conjunto de pontos fixos de involuções. Especificamente, se M^n é uma variedade fechada, suave e *n*-dimensional e $T: M^n \to M^n$ é uma involução suave, então o conjunto de pontos fixos de T pode ser descrito como $F = \bigcup_{i=1}^{n} F^{i}$ (conforme mencionamos no início dessa Introdução), onde F^{i} denota a união (disjunta) das componentes i-dimensionais de F. O fibrado normal de F em M (que é a união disjunta dos fibrados sobre as componentes F^i), o qual denotaremos por $\eta \mapsto F$, é chamado o *fixed-data* da involução (M^n, T) . Um dos resultados mais importantes de Conner e Floyd foi mostrar que o bordismo do fixed-data determina completamente o bordismo equivariante do par (M^n, T) . Em outras palavras, se (M^n, T) e (N^n, S) são duas involuções com fixed-data $\eta \mapsto F_T \in \nu \mapsto F_S$, respectivamente, então eles mostraram que (M^n, T) e (N^n, S) são equivariantemente cobordantes se, e somente se, $\eta \mapsto F_T$ e $\nu \mapsto F_S$ são cobordantes como fibrados.

A conveniência desse resultado é que o bordismo de fibrados é completamente determinado por números característicos, por ser o bordismo singular dos espaços classificantes; enquanto que o bordismo de involuções sem restrições não é determinado por números característicos (a não ser no caso especial em que as involuções em jogo são livres de pontos fixos; esse caso se reduz ao bordismo singular do espaço classificante BO(1), que é determinado por números característicos).

Uma ocorrência observada por *Conner* e *Floyd* foi o fato que, se uma involução suave T atua sobre uma variedade m-dimensional de tal sorte que o conjunto de pontos fixos $F = \bigcup_{i=0}^{n} F^{i}$ não borda (isto é, alguma F^{i} não borda), então m não pode ser muito grande em relação a n, onde n é a dimensão da componente maximal de F; e tal fato não ocorre quando F borda. O resultado de *Conner* e *Floyd* que trouxe à tona esse fenômeno foi o seguinte: para cada natural $n \geq 1$, existe um natural $\varphi(n) > n$ tal que, se uma involução (M^m, T) tem conjunto de pontos fixos F, cuja componente maximal fixada é *n*-dimensional, e se $m > \varphi(n)$, então (M^m, T) borda equivariantemente; o que, em particular, implica que F borda.

A prova do resultado acima possui caráter apenas existencial; posteriormente, J. Boardman completou tal resultado através de seu famoso 5/2-Teorema de J. Boardman (ou Five Halves Theorem de [2]; Bulletin of the American Math. Soc., 1967), onde mostrou o seguinte: se uma involução (M^m, T) não borda equivariantemente e se o conjunto de pontos fixos F é tal que a sua componente maximal tem dimensão n, então $m \leq \frac{5}{2}n$. Adicionalmente, e através de exemplos explícitos, Boardman mostrou que a estimativa em questão é a melhor possível nas condições gerais em que a mesma foi formulada. Tal generalidade independe de n e abrange a possibilidade do conjunto fixado F possuir componentes com todas as dimensões possíveis, de 0 a n; por essa razão, esse resultado possui embutido em si um leque de problemas interessantes, que se revelam mediante a observação simultânea de dois resultados posteriores da literatura. O primeiro é o seguinte resultado de C. Kosniowski e R. Stong ([17]; Topology, 1978): se (M^m, T) fixa $F = F^n$ e se m > 2n, então (M^m, T) borda equivariantemente. Isso implica que o fixed-data de (M^m, T) borda e, em particular, F borda; assim, se F não borda, então $m \leq 2n$. O exemplo dado pela involução twist $((F \times F, T); T(x, y) = (y, x))$ ilustra essa situação e mostra que essa estimativa é a melhor possível, o que fornece um limitante para m melhor que o de Boardman para o caso especial em que F possui dimensão constante igual a n.

O segundo resultado é um teorema de Royster ([27]; Indiana Univ. Math. J., 1980), segundo o qual, se (M^m, T) é uma involução fixando a união de um ponto com uma variedade F de dimensão n ímpar, então (M^m, T) é equivariantemente cobordante a uma específica involução definida em $\mathbb{R}P^{n+1}$, onde $\mathbb{R}P^{n+1}$ denota o espaço projetivo real (n + 1)-dimensional. Em particular, $m \leq n + 1$ (na verdade, é igual a n + 1) e devido à involução sobre $\mathbb{R}P^{n+1}$ citada, tal estimativa é a melhor possível. Evidentemente, isso também fornece um limitante para m melhor que o de Boardman para o caso especial em que F possui, além da componente maximal n-dimensional (com n ímpar), componentes 0-dimensionais (quando componentes 0-dimensionais efetivamente ocorrem, a quantidade das mesmas deve ser ímpar, o que é equivalente a um único ponto, via bordismo).

Reunindo os fatos acima, surge naturalmente o problema de se estabelecer um limitante para m (em termos de n) melhor que o de *Boardman*, quando alguma restrição sobre n é imposta; ou quando, adicionalmente, algumas dimensões envolvidas em F (que em princípio seriam de 0 a n) são omitidas. Tal problema foi introduzido por P. Pergher em [22] (*Math. Contemp.*, 1996), onde o resultado de *Royster*, citado acima, foi estendido da seguinte forma: se (M^m, T) é uma involução fixando o conjunto $F = F^n \cup \{ponto\},$ onde n = 2p, com p ímpar, então $m \leq n + p + 3$. O caso $F = F^n \cup \{ponto\}$ foi depois completamente estabelecido por R. Stong e P. Pergher em [26] (Transformation Groups, 2001): para cada número natural n, escreva $n = 2^p q$, com $p \ge 0$ e q ímpar, e seja

$$m(n) = \begin{cases} 2n + p - q + 1, & \text{se } p \le q + 1, \\ 2n + 2^{p-q}, & \text{se } p \ge q. \end{cases}$$

Então, se (M^m, T) é uma involução que fixa o conjunto $F = F^n \cup \{ponto\}$, temos que $m \leq m(n)$. Além disso, tal limitante é o melhor possível.

A técnica utilizada por R. Stong e P. Pergher para mostrar que $m \leq m(n)$ foi obtida utilizando-se algumas classes características especiais e a teoria de *Conner* e *Floyd.* Em linhas gerais, a classe de bordismo de um fibrado $\nu \mapsto F$ dá origem à classe de bordismo equivariante de uma involução sem pontos fixos, dada por uma involução A que atua como antipodal nas fibras do fibrado em esferas $S(\nu)$. Segundo Conner e Floyd, se $\nu \mapsto F$ é o fixed-data de alguma involução, então $(S(\nu), A)$ borda como elemento do grupo de bordismo de involuções livres de pontos fixos. Ocorre que tal grupo de bordismo pode ser identificado ao grupo de bordismo singular de X = BO(1), o qual consiste das classes de bordismo de fibrados unidimensionais. Essa identificação é obtida associando-se $(S(\nu), A)$ ao fibrado linha canônico $\lambda \mapsto S(\nu)/A$. Por outro lado, as classes de bordismo de fibrados unidimensionais são completamente determinadas por números característicos, conforme citado anteriormente. Tomando-se a situação particular na qual uma involução possui fixed-data do tipo $\nu \mapsto F = \eta \mapsto F^n \cup \mu \mapsto F^j$, j < n, isso dá origem a uma coleção de equações obtidas igualando-se cada número característico de $\lambda \mapsto S(\eta)/A$ ao correspondente número característico de $\lambda \mapsto S(\mu)/A$. Quando j = 0, $\mu \,\mapsto\, F^0$ é o fibrado trivial sobre um ponto
e $\lambda \,\mapsto\, S(\mu)/A$ é o fibrado linha canônico sobre $\mathbb{R}P^{m-1}$, cujos números característicos são explicitamente conhecidos. Manipulando as equações acima mencionadas, com o auxílio de certas classes características especiais e com o conhecimento explícito dos números de $\lambda \mapsto \mathbb{R}P^{m-1}$, obtém-se os limitantes para o caso $F = F^n \cup \{ponto\}.$

Com os casos $F = F^n \in F = F^n \cup \{ponto\}$ estabelecidos, o próximo passo natural é considerar o conjunto fixado como sendo $F = F^n \cup F^j$, com 0 < j < n. Nessa direção, para o caso j = 1, S. Kelton, em sua tese de doutorado orientada por R. Stong em 2001 e posteriormente publicada na revista Topology Appl. ([15] e [16]), analisou limitantes para as dimensões de variedades com involução cujo conjunto de pontos fixos é da forma $F^n \cup \mathbb{R}P^j$. Essa é uma linha de generalização para o caso $F = F^n \cup \{ponto\}$, uma vez que o ponto é igual a $\mathbb{R}P^0$. Entre os diversos resultados obtidos, S. Kelton mostrou que se (M^m, T) fixa $F^n \cup \mathbb{R}P^1$, então

$$m \leq \begin{cases} m(n-1)+1, & \text{se } n \text{ \'e impar}\\ m(n-1)+2, & \text{se } n \text{ \'e par.} \end{cases}$$

O caso j = 2 foi estudado por *F. Figueira* em sua tese de doutorado (2004), sob a orientação de *P. Pergher*, e posteriormente publicado nas revistas *Glasgow Math. J.* ([11], 2008), *Arch. Math.* ([12], 2006) e *Topology Appl.* ([13], 2006). *F. Figueira* mostrou que o limitante para esse caso é m = m(n-2)+4 e é o melhor possível. Em sua tese, também foi analisado o caso $F = F^n \cup F^{n-1}$, cujo limitante é m = 2n = m(n - (n - 1)) + 2(n - 1); tal caso foi publicado na revista *Geom. Dedicata* ([14], 2006). O caso j = 3 foi estudado por *E. Barbaresco* em sua tese de doutorado (2010), também sob a orientação de *P. Pergher*. O limitante para esse caso é m = m(n - 3) + 6 e também é o melhor possível.

Um dos objetivos desse trabalho é mostrar que m(n-4) + 8 é um limitante para o caso j = 4, e isso será feito no Capítulo 2. Assim como nos casos j = 2 e j = 3, a técnica utilizada para mostrar esse resultado é baseada naquela feita por R. Stong e P. Pergher no caso $F = F^n \cup \{ponto\}$. A diferença crucial, reside no fato de que, enquanto existe somente uma classe não nula de bordismo estável sobre o ponto, sobre variedades bidimensionais e tridimensionais existem 7 e 15, respectivamente; e veremos que sobre variedades 4-dimensionais, existem 511 classes não nulas, o que dificulta bastante a análise do problema.

No Capítulo 3, trataremos casos de involuções que fixam muitas componentes. Mais especificamente, mostraremos o seguinte resultado: seja (M^m, T) uma involução cujo conjunto de pontos fixos tem uma das seguintes formas

(i)
$$F = \{ponto\} \cup (\bigcup_{\substack{j=1 \ \text{impar}}} F^j)$$
, onde $n \ge 3$ é ímpar;
(ii) $F = F^1 \cup (\bigcup_{\substack{j=0 \ j \text{ par}}}^n F^j)$, onde $n \ge 2$ é par;
(iii) $F = F^2 \cup (\bigcup_{\substack{j=0 \ j \text{ par}}}^n F^j)$, onde $n \ge 3$ é ímpar;
(iv) $F = F^3 \cup (\bigcup_{\substack{j=0 \ j \text{ par}}}^j F^j)$, onde $n \ge 4$ é par.

Suponhamos que o fibrado normal sobre cada componente fixada F^j é não bordante. Então, se k é a codimensão de F^n em M^m , temos que $k \leq 1$ em (i), $k \leq 2$ em (ii), $k \leq 3$ em (iii) e $k \leq 4$ em (iv). Além disso, tais limitantes são os melhores possíveis.

É importante ressaltar que, comparando-se com os casos de uma ou duas

componentes fixadas onde temos fontes padrões de exemplos, a dificuldade com mais componentes está na construção de exemplos para detectar o quão próximos de serem os melhores possíveis estão os limitantes encontrados; além disso, neste último caso, os cálculos envolvendo números característicos para encontrar limitantes requerem maior sofisticação. O ponto crucial deste capítulo será então a apresentação de um método para a construção de involuções maximais, o qual se constitui de uma combinação de métodos já conhecidos com uma involução especial, definida sobre os espaços totais de fibrados projetivos associados às somas de *Whitney* de dois fibrados vetoriais.

Os resultados que consideramos serem os principais estão concentrados no Capítulo 4, onde serão apresentadas algumas melhorias para o 5/2-Teorema de J. Boardman levando-se em conta o grau de decomponibilidade (decomposability degree) de componentes de $F = \bigcup_{i=1}^{n} F^{i}$. Especificamente, sejam $\omega = (i_1, i_2, ..., i_t)$ uma partição não diádica de j, $2 \leq j \leq n$, e $s_{\omega}(x_1, x_2, ..., x_j)$ a menor polinomial simétrica sobre \mathbb{Z}_2 , com variáveis $x_1, x_2, ..., x_j$ de grau um contendo o monômio $x_1^{i_1} x_2^{i_2} ... x_t^{i_t}$. Denotemos por $s_{\omega}(F^j) \in H^j(F^j, \mathbb{Z}_2)$ a classe de cohomologia correspondente a $s_{\omega}(x_1, x_2, ..., x_j)$. O grau de decomponibilidade de F^{j} , denotado por $l(F^{j})$, é o menor comprimento de uma partição não diádica ω tal que $s_{\omega}(F^j) \neq 0$ (aqui, o comprimento de $\omega = (i_1, i_2, ..., i_t)$ é t). O principal resultado deste capítulo nos diz o seguinte: suponhamos que o conjunto de pontos fixos de (M^m, T) tem a forma $F = (\bigcup_{k=0}^{j} F^k) \cup F^n$, onde $2 \le j < n < m$ e F^j é não bordante. Então, $m \le m(n-j) + 2j + l(F^j)$. Em adição, dada uma partição não diádica $\omega = (i_1, i_2, \dots, i_t)$ de $j, 2 \leq j < n$, nós desenvolveremos um método para construir involuções (M^m, T) com F da forma $F = (\bigcup_{k < j} F^k) \cup F^j \cup F^n$, onde m = m(n-j) + 2j + t e $s_{\omega}[F^j] \neq 0$, para valores específicos de n,je $\omega.$ Em alguns casos especiais, este método mostrará que o limitante acima é o melhor possível. Por exemplo, tal método nos fornece a seguinte melhoria do 5/2-Teorema de J. Boardman: se o conjunto de pontos fixos de (M^m, T) tem a forma $F = \bigcup_{i=1}^{n} F^{j} \operatorname{com} F^{n-1} e F^{n} \operatorname{n ilde{a}o} \text{ bordantes, ent ilde{a}o} m \leq \min\{2n + l(F^{n-1}), 2n + l(F^{n})\};$ além disso, os limitantes $m \leq 2n + l(F^{n-1})$ e $m \leq 2n + l(F^n)$ são separadamente os melhores possíveis. Isso melhora um recente resultado de P. Pergher ([25]; a aparecer no Israel J. Math) que estabelece que, se F^n não borda, então $m \leq 2n + l(F^n)$; e tal limitante é o melhor possível. Outra consequência: se conjunto fixado $F = \bigcup_{i=0}^{j} F^{j}$ de (M^{m}, T) tem $n = 2k, k \ge 3$ e F^{n-1} não bordante, então $m \le 5k-2$, e este limitante é o melhor possível (o 5/2-Teorema nos diz que $m \leq 5k$ para este caso).

Capítulo 1

Conceitos preliminares

1.1 Introdução

Nesse capítulo, reuniremos alguns fatos básicos, ferramentas e resultados presentes na literatura, os quais serão necessários para o desenvolvimento dos capítulos subsequentes. Incluiremos nesse particular, tópicos básicos da teoria de bordismo equivariante, conforme desenvolvida por *Conner* e *Floyd* em [8]. Admitiremos que o leitor tenha noções de homologia, cohomologia, teoria de fibrados e classes de *Stiefel-Whitney*.

Quando mencionarmos variedades e aplicações entre variedades, ficará subentendido que tais variedades e aplicações são diferenciáveis de classe C^{∞} .

1.2 Bordismo de variedades

Dada uma variedade *n*-dimensional M^n compacta e com bordo, denotaremos por ∂M^n o bordo de M^n , o qual sabemos ser uma variedade (n-1)-dimensional *fechada*, isto é, compacta e sem bordo.

Definição 1.2.1. Dizemos que uma variedade fechada *n*-dimensional M^n borda se existe uma variedade compacta W^{n+1} tal que $\partial W^{n+1} = M^n$. Dizemos que duas variedades fechadas M^n e V^n são cobordantes se a união disjunta $M^n \sqcup V^n$ borda.

Para cada n, a relação de bordismo dada pela definição acima é uma relação de equivalência no conjunto das variedades fechadas n-dimensionais. Denotamos por $[M^n]$ a classe de equivalência a qual M^n pertence, denominada a *classe de bordismo de* M^n , e por \mathcal{N}_n o conjunto de tais classes.

Com a operação $[M^n] + [V^n] = [M^n \sqcup V^n]$ (união disjunta), \mathcal{N}_n tem estrutura de grupo abeliano (onde todo elemento possui ordem 2). O elemento neutro é a classe de bordismo $[M^n] = 0$ das variedades que bordam. A soma direta $\mathcal{N}_* = \bigoplus_{n=0}^{\infty} \mathcal{N}_n$ possui estrutura de anel graduado comutativo com unidade, conhecido como o anel de bordismo não orientado de Thom. O produto dos elementos homogêneos $[M^n]$ e $[V^m]$ é dado por $[M^n] \cdot [V^m] = [M^n \times V^m]$ (produto cartesiano). A unidade é a classe de bordismo das variedades 0-dimensionais que são formadas por um número ímpar de pontos.

Os elementos de \mathcal{N}_* podem ser manipulados através de certos invariantes algébricos, os *números de Stiefel-Whitney*; mas, antes de defini-los, faremos algumas considerações:

- Fixada uma variedade fechada Mⁿ, existe uma única classe fundamental de homologia módulo 2 em H_n(Mⁿ, Z₂), a qual denotamos por [Mⁿ]₂. Portanto, para qualquer classe de cohomologia v ∈ Hⁿ(Mⁿ, Z₂), está definido o índice de Kronecker v[Mⁿ]₂ ∈ Z₂.
- Sejam τ → Mⁿ o fibrado tangente à Mⁿ (eventualmente denotaremos τ por T(Mⁿ)) e W(Mⁿ) = 1+w₁+w₂+···+w_n a classe de Stiefel-Whitney de Mⁿ. Assim, tomando inteiros não negativos r₁, r₂,..., r_n, com r₁ + 2r₂ + ··· + nr_n = n, podemos formar o monômio (via produto cup) w₁(τ)^{r₁} · w₂(τ)^{r₂} ··· w_n(τ)^{r_n}, o qual é uma classe de cohomologia em Hⁿ(Mⁿ, Z₂).

Observação 1.2.1. Nos próximos capítulos, dada uma variedade fechada M^n , denotaremos a sua classe fundamental de homologia simplesmente por $[M^n]$, omitindo-se o número subscrito 2.

Definição 1.2.2. O inteiro módulo 2,

$$w_1(\tau)^{r_1} \cdot w_2(\tau)^{r_2} \cdots w_n(\tau)^{r_n} [M^n]_2,$$

ou resumidamente $w_1^{r_1} \cdot w_2^{r_2} \cdots w_n^{r_n} [M^n]_2$, é chamado o *número de Stiefel-Whitney* (ou o *número característico*) de M^n associado ao monômio $w_1^{r_1} \cdot w_2^{r_2} \cdots w_n^{r_n}$.

Dessa maneira, associada a uma variedade fechada M^n , existe uma coleção de inteiros módulo 2 (ou seja, uma família formada por 0's e 1's), obtida ao considerarmos todos os possíveis monômios $w_1^{r_1} \cdot w_2^{r_2} \cdots w_n^{r_n}$ em $H^n(M^n, \mathbb{Z}_2)$.

Dizemos que duas variedades fechadas, $M^n \in V^n$, possuem os mesmos números de Stiefel-Whitney se

$$w_1^{r_1} \cdot w_2^{r_2} \cdots w_n^{r_n} [M^n]_2 = w_1^{r_1} \cdot w_2^{r_2} \cdots w_n^{r_n} [V^n]_2,$$

para todos os monômios $w_1^{r_1} \cdot w_2^{r_2} \cdots w_n^{r_n}$ de dimensão n.

A relação entre os números acima e os elementos de \mathcal{N}_* é dada pelo seguinte resultado:

Teorema 1.2.1. (Thom, [28]) Uma variedade fechada M^n borda se, e somente se, todos os números de Stiefel-Whitney de M^n são nulos.

Exemplo 1.2.1. Consideremos o espaço real projetivo *n*-dimensional $\mathbb{R}P^n$. Usando o teorema acima, a estrutura multiplicativa do anel de cohomologia $H^*(\mathbb{R}P^n, \mathbb{Z}_2)$ e o fato de que $W(\mathbb{R}P^n) = (1 + \alpha)^{n+1}$, onde α é o gerador de $H^1(\mathbb{R}P^n, \mathbb{Z}_2)$, verifica-se que $\mathbb{R}P^n$ borda se, e somente se, *n* é ímpar.

Corolário 1.2.1. Duas variedades fechadas $M^n \in V^n$ são cobordantes se, e somente se, possuem os mesmos números de Stiefel-Whitney.

Em outras palavras, um elemento de \mathcal{N}_* é completamente caracterizado pelos números de *Stiefel-Whitney* de qualquer um de seus representantes.

A estrutura de \mathcal{N}_* foi completamente determinada por *Thom* em [28] e é dada pelo seguinte

Teorema 1.2.2. \mathcal{N}_* é uma álgebra polinomial graduada sobre \mathbb{Z}_2 , com um gerador $x_n \in \mathcal{N}_n$ em cada dimensão $n \neq 2^j - 1$ $(n \geq 0)$.

Para cada *n* par, *Thom* mostrou que uma possibilidade para x_n é a classe de bordismo do espaço projetivo $\mathbb{R}P^n$. Posteriormente, *Dold* exibiu (em [10]) representantes para os geradores nas dimensões ímpares, a saber, variedades do tipo $P(i,k) = \frac{S^i \times \mathbb{C}P^k}{\sim}$ (chamadas variedades de Dold), com *i* e *k* apropriados e ~ sendo a identificação

 $((x_1, x_2, \ldots, x_{i+1}), [z_1, z_2, \ldots, z_k]) \sim ((-x_1, -x_2, \ldots, -x_{i+1}), [\bar{z}_1, \bar{z}_2, \ldots, \bar{z}_k]),$

onde \bar{z} denota o conjugado complexo de z. Geometricamente, isso significa que toda variedade fechada (que não borda) é cobordante a uma união disjunta de certos produtos cartesianos envolvendo espaços reais projetivos pares e variedades de *Dold*.

1.3 Bordismo de aplicações

Fixemos um espaço topológico X. Uma variedade singular em X é um par (M^n, f) , constituído por uma variedade fechada M^n e uma função contínua $f : M^n \longrightarrow X$.

Definição 1.3.1. Dizemos que uma variedade singular (M^n, f) borda se existem uma variedade W^{n+1} compacta, com bordo $\partial W^{n+1} = M^n$, e uma função contínua $F: W^{n+1} \longrightarrow X$, com restrição $F|_{M^n} = f$. Dizemos que duas variedades singulares em $X, (M_1^n, f_1) \in (M_2^n, f_2)$, são cobordantes se a união disjunta $(M_1^n \sqcup M_2^n, f_1 \sqcup f_2)$ borda (aqui, $(f_1 \sqcup f_2)|_{M_i} = f_i, i = 1, 2$).

A definição acima estabelece uma relação de equivalência na coleção das variedades singulares *n*-dimensionais em X. Denotamos por $[M^n, f]$ a classe de bordismo da variedade singular (M^n, f) em X e por $\mathcal{N}_n(X)$ o conjunto de todas tais classes.

Com a operação $[M^n, f] + [N^n, g] = [M^n \sqcup N^n, f \sqcup g]$ (união disjunta), podemos introduzir em $\mathcal{N}_n(X)$ uma estrutura de grupo abeliano: o grupo de bordismo n-dimensional não orientado de X. A variedade singular $(M^n, f) \in \mathcal{N}_n(X)$, tal que M^n borda e f é constante, é um representante para o elemento neutro.

O grupo $\mathcal{N}_*(X) = \bigoplus_{n=0}^{n=0} \mathcal{N}_n(X)$ possui uma estrutura de \mathcal{N}_* -módulo graduado com a operação $\mathcal{N}_* \times \mathcal{N}_*(X) \longrightarrow \mathcal{N}_*(X)$, dada por $[V^m] \cdot [M^n, f] = [V^m \times M^n, g]$, onde g(x, y) = f(x). Notemos que, se $X = \{ponto\}$, então existe um isomorfismo natural de \mathcal{N}_* -módulos, $\mathcal{N}_*(X) \cong \mathcal{N}_*$.

Podemos associar a uma variedade singular (M^n, f) em X certos números módulo 2, de maneira a estender o que foi feito para os elementos de \mathcal{N}_* : para cada classe de cohomologia $h \in H^m(X, \mathbb{Z}_2)$ e cada partição $i_1 + i_2 + \cdots + i_r = n - m$, temos o inteiro módulo 2

$$w_{i_1}(\tau) \cdot w_{i_2}(\tau) \cdots w_{i_r}(\tau) f^*(h) [M^n]_2$$

ou, resumidamente, $w_{i_1} \cdot w_{i_2} \cdots w_{i_r} f^*(h) [M^n]_2$. Tais números são denominados números de Whitney (ou números característicos) de f associados à classe de cohomologia h e se reduzem aos números de Stiefel-Whitney usuais de M^n se colocarmos $h = 1 \in H^0(X, \mathbb{Z}_2)$.

O teorema abaixo estabelece que os números de *Whitney* de f determinam a classe de cobordismo de (M^n, f) quando impomos certas condições sobre X.

Teorema 1.3.1. (Conner-Floyd, [8]) Sejam X um CW-complexo finito em cada dimensão e (M^n, f) uma variedade singular em X. Então, $[M^n, f] = 0$ em $\mathcal{N}_n(X)$ se, e somente se, todos os números de Whitney de f são nulos.

Corolário 1.3.1. Seja X um CW-complexo finito em cada dimensão. Duas variedades singulares são cobordantes se, e somente se, possuem os mesmos números de Whitney.

1.4 Bordismo de fibrados vetoriais

Sejam $\xi^k \mapsto M^n \in \eta^k \mapsto V^n$ fibrados vetoriais k-dimensionais, cujas bases, $M^n \in V^n$, são variedades fechadas n-dimensionais.

Definição 1.4.1. Dizemos que um fibrado vetorial $\xi^k \mapsto M^n$ borda se existe um fibrado *k*-dimensional $\zeta^k \mapsto W^{n+1}$, sendo W^{n+1} uma variedade compacta, tal que $\partial W^{n+1} = M^n$ e $\zeta^k|_{M^n} = \xi^k$.

Definição 1.4.2. Dizemos que $\xi^k \mapsto M^n$ é *cobordante* a $\eta^k \mapsto V^n$ se existem uma variedade W^{n+1} compacta e um fibrado k-dimensional $\mu^k \mapsto W^{n+1}$ tais que $\partial W^{n+1} = M^n \sqcup V^n$, $\mu^k|_{M^n} \cong \xi^k \in \mu^k|_{V^n} \cong \eta^k$.

A definição acima estabelece uma relação de equivalência na coleção dos fibrados vetoriais k-dimensionais sobre variedades fechadas n-dimensionais. A classe de bordismo de $\xi^k \mapsto M^n$ é denotada por $[\xi^k \mapsto M^n]$, ou simplesmente por $[\xi^k]$. A coleção formada por todas as tais classes torna-se um grupo abeliano através da união disjunta (no qual todo elemento tem ordem 2) e torna-se um \mathcal{N}_* -módulo através da operação

$$[V^m] \cdot [\xi^k \mapsto M^n] = [p^*(\xi^k) \mapsto V^m \times M^n],$$

onde $p: V^m \times M^n \longrightarrow M^n$ é a projeção na segunda coordenada e $p^*(\xi^k)$ denota o *pullback* de ξ^k através de p. A classe do elemento neutro $[\xi^k \mapsto M^n] = 0$ pode ser representada pelos fibrados k-dimensionais triviais sobre variedades que bordam.

O \mathcal{N}_* -módulo em questão nada mais é do que $\mathcal{N}_*(BO(k))$, onde BO(k) é o espaço classificante para fibrados vetoriais k-dimensionais. Com efeito, denotemos por $\mu^k = E(O(k)) \mapsto BO(k)$ o fibrado universal. A identificação nos dois sentidos é feita da seguinte maneira: dado um fibrado $\xi^k \mapsto M^n$, escolhemos uma função classificante $f : M^n \longrightarrow BO(k)$ para ξ^k . Isso determina a variedade singular (M^n, f) em BO(k). Reciprocamente, dada uma variedade singular (M^n, f) em BO(k), associamos à mesma o *pullback* $f^*(\mu^k) \mapsto M^n$. A associação estabelecida é bem definida. Mais ainda, tal associação preserva a soma e a estrutura de \mathcal{N}_* -módulos, além de ser uma bijeção. Dessa forma, o \mathcal{N}_* módulo de fibrados k-dimensionais pode ser visto como o \mathcal{N}_* -módulo de bordismo singular $\mathcal{N}_*(BO(k))$.

Agora, fixemos $[\xi^k \mapsto M^n] \in \mathcal{N}_n(BO(k))$ e tomemos seu correspondente $[M^n, f]$. Conforme visto anteriormente, o que determina $[M^n, f]$ são os seus números de *Whitney*,

$$w_{i_1} \cdot w_{i_2} \cdots w_{i_r} f^*(h) [M^n]_{2}$$

onde $h \in H^m(BO(k), \mathbb{Z}_2)$ e $i_1 + i_2 + \cdots + i_r = n - m$. Ocorre que $H^*(BO(k), \mathbb{Z}_2)$ é a álgebra polinomial $\mathbb{Z}_2[w_1, w_2, \ldots, w_k]$, onde $w_i \in H^i(BO(k), \mathbb{Z}_2)$, $1 \leq i \leq k$, é a *i*-ésima classe de *Stiefel-Whitney* do fibrado universal $\mu^k \mapsto BO(k)$. Assim, um monômio básico $h \in H^m(BO(k), \mathbb{Z}_2)$ pode ser escrito como $h = w_{j_1} \cdot w_{j_2} \cdots w_{j_s}$, onde $j_1 + j_2 + \cdots + j_s = m$. Pela naturalidade das classes características, $f^*(w_{j_1} \cdot w_{j_2} \cdots w_{j_s}) = v_{j_1} \cdot v_{j_2} \cdots v_{j_s}$, onde $v_j = w_j(\xi^k)$ é a *j*-ésima classe característica de ξ^k . Segue que

$$w_{i_1} \cdot w_{i_2} \cdots w_{i_r} f^*(h) [M^n]_2 = w_{i_1} \cdot w_{i_2} \cdots w_{i_r} \cdot v_{j_1} \cdot v_{j_2} \cdots v_{j_s} [M^n]_2$$

e, portanto, os números de Whitney do fibrado vetorial $\xi^k \mapsto M^n$ são dados por

$$w_{i_1} \cdot w_{i_2} \cdots w_{i_r} \cdot v_{j_1} \cdot v_{j_2} \cdots v_{j_s} [M^n]_2,$$

onde $i_1 + i_2 + \dots + i_r + j_1 + j_2 + \dots + j_s = n$.

Dessa maneira, um fibrado borda se, e somente se, todos os números descritos acima se anulam.

Exemplo 1.4.1. Consideremos o fibrado linha canônico $\lambda^1 \mapsto S^1$. Temos $v_1 = w_1(\lambda^1) = \alpha$, o gerador de $H^1(S^1, \mathbb{Z}_2)$ e, portanto, o número de *Whitney* $w_1(\lambda^1)[S^1]_2$ de λ^1 é não nulo. Segue que λ^1 não borda (embora S^1 borde).

1.5 Bordismo de ações de grupos

Seja G um grupo de *Lie* compacto. Cada par da forma (M^n, ϕ) denotará uma ação $\phi : G \times M^n \longrightarrow M^n$ de G em uma variedade fechada M^n . Lembremos que está subentendido que as variedades e aplicações entre variedades, em particular as ações, são diferenciáveis de classe C^{∞} .

Definição 1.5.1. Dizemos que uma ação (M^n, ϕ) borda equivariantemente se existem uma variedade W^{n+1} compacta, com bordo $\partial W^{n+1} = M^n$, e uma ação $\Phi : G \times W^{n+1} \longrightarrow W^{n+1}$, com restrição $\Phi|_{M^n} = \phi$. Dizemos que duas ações $(M^n, \phi) \in (V^n, \psi)$ são cobordantes se a união disjunta $(M^n, \phi) \sqcup (V^n, \psi) = (M^n \sqcup V^n, \phi \sqcup \psi)$ borda.

A relação de bordismo acima introduzida é uma relação de equivalência. Não é difícil mostrar a reflexividade e a simetria, enquanto que a transitividade necessita do *Teorema do Colar Equivariante* para garantir a suavidade da ação.

Denotamos por $[M^n, \phi]$ a classe de bordismo de (M^n, ϕ) , e por $\mathcal{I}_n(G)$ a coleção das classes de bordismo das *G*-ações nas variedades fechadas *n*-dimensionais. Com a operação de soma dada pela união disjunta $[M^n, \phi] + [V^n, \psi] = [M^n \sqcup V^n, \phi \sqcup \psi]$, $\mathcal{I}_n(G)$ é um grupo abeliano, denominado grupo de *G*-bordismo irrestrito *n*-dimensional. O elemento neutro é dado pela classe de bordismo $[M^n, \phi] = 0$ das *G*-ações (M^n, ϕ) que bordam equivariantemente (por exemplo, tomemos M^n uma variedade que borda e $\phi : G \times M^n \longrightarrow$ M^n dada por $\phi(g, x) = x$). Podemos obter outros grupos de *G*-bordismo impondo restrições às ações consideradas. Nessa linha, surge o grupo de *G*-bordismo principal n-dimensional, denotado por $\mathcal{N}_n(G)$, obtido ao impormos que todas as ações consideradas na relação de bordismo são livres.

Existe uma estrutura de \mathcal{N}_* -módulo graduado em $\mathcal{I}_*(G) = \bigoplus_{n=0}^{\infty} \mathcal{I}_n(G)$ (analogamente em $\mathcal{N}_*(G) = \bigoplus_{n=0}^{\infty} \mathcal{N}_n(G)$), dada pela operação $[V^m] \cdot [M^n, \phi] = [V^m \times M^n, \psi],$

onde ψ : $G \times (V^m \times M^n) \longrightarrow V^m \times M^n$ é definida por $\psi(g, (v, m)) = (v, \phi(g, m))$. Verifica-se que $[V^m \times M^n, \psi] \in \mathcal{I}_{n+m}(G)$ depende somente de $[M^n, \phi]$ e de $[V^m]$, o que determina a estrutura pretendida.

1.6 O grupo de \mathbb{Z}_2 -bordismo principal

Particularizaremos as considerações anteriores para o caso em que $G = \mathbb{Z}_2$. Assim, estaremos trabalhando com $\mathcal{N}_*(\mathbb{Z}_2)$ (o grupo de \mathbb{Z}_2 -bordismo principal), ou seja, o grupo abeliano formado pelas classes de bordismo $[M^n, \phi]$, onde M^n é uma variedade fechada e $\phi : \mathbb{Z}_2 \times M^n \longrightarrow M^n$ é uma ação livre C^{∞} . Observemos que tal ação é equivalente a uma aplicação $T : M^n \longrightarrow M^n$ com $T^2 = Id$, ou seja, uma *involução*. O fato de ϕ ser livre significa que T não tem pontos fixos. Usaremos a notação $[M^n, T] \in \mathcal{N}_n[\mathbb{Z}_2]$ no lugar de $[M^n, \phi]$.

Consideremos, então, uma involução sem pontos fixos (M^n, T) , onde M^n é uma variedade fechada. Assim, o espaço de órbitas $\frac{M^n}{T}$ ainda é uma variedade fechada *n*-dimensional.

Definição 1.6.1. Definimos o *fibrado linha associado a T* como sendo o fibrado $\lambda \mapsto \frac{M^n}{T}$, onde o espaço total de λ é dado pelo espaço quociente $\frac{M^n \times \mathbb{R}}{(m,r) \sim (T(m), -r)}$.

Um exemplo é o fibrado linha canônico $\lambda_n^1 \mapsto \mathbb{R}P^n$, que é o fibrado linha associado à involução antipodal (S^n, A) .

A associação $[M^n, T] \mapsto [\lambda \mapsto \frac{M^n}{T}]$ define um isomorfismo de \mathcal{N}_* -módulos entre $\mathcal{N}_*(\mathbb{Z}_2)$ e $\mathcal{N}_*(BO(1))$ (vide [8], p.71, 20.4). Assim, podemos reconhecer um elemento $[M^n, T]$ através dos números de *Whitney* do elemento correspondente $[\frac{M^n}{T}, f] \in \mathcal{N}_n(BO(1))$. Lembremos que $H^*(BO(1), \mathbb{Z}_2)$ é a álgebra polinomial $\mathbb{Z}_2[c]$, onde $c \in H^1(BO(1), \mathbb{Z}_2)$. Colocando-se $f^*(c) = c \in H^1(\frac{M^n}{T}, \mathbb{Z}_2)$, tal elemento é denominado a classe característica da involução (M^n, T) e é, na realidade, a primeira classe de Whitney do fibrado linha $\lambda \mapsto \frac{M^n}{T}$ associado a (M^n, T) (às vezes, também chamada a classe de Euler da involução livre).

Definição 1.6.2. Dada uma involução sem pontos fixos (M^n, T) , definimos os números de involução de (M^n, T) como sendo os números de Whitney do fibrado linha associado $\lambda \mapsto \frac{M^n}{T}$. Ou seja, tais números são da forma $w_{i_1} \cdot w_{i_2} \cdots w_{i_r} c^k [\frac{M^n}{T}]_2$, onde os w_{i_j} 's são classes tangenciais de $[\frac{M^n}{T}]$.

Logo, $[M^n, T] = 0 \text{ em } \mathcal{N}_n(\mathbb{Z}_2)$ se, e somente se, todos os seus números de involução são nulos. Temos, portanto, o seguinte resultado:

Teorema 1.6.1. Duas involuções sem pontos fixos são cobordantes se, e somente se, possuem os mesmos números de involução.

Serão de grande importância para nós as involuções sem pontos fixos dadas pelos *fibrados involução*, as quais descreveremos a seguir.

Consideremos $\xi^k \stackrel{p}{\longmapsto} V^n$, um fibrado vetorial k-dimensional sobre uma variedade fechada V^n , com grupo O(k) (grupo ortogonal), $k \ge 1$. Existe, então, o fibrado em esferas associado, $S(\xi^k) \stackrel{p}{\longmapsto} V^n$, com fibra S^{k-1} e cujo espaço total $S(\xi^k)$ é uma variedade fechada (n + k - 1)-dimensional. A aplicação antipodal $A : S^{k-1} \longrightarrow S^{k-1}$ comuta com todos os elementos de O(k). Portanto, podemos introduzir em $S(\xi^k)$ uma involução T bem definida, sem pontos fixos, a qual restrita a cada fibra é a antipodal. Referimo-nos ao par $(S(\xi^k), T)$ como sendo o fibrado involução associado a ξ^k .

Agora, consideremos o fibrado projetivo associado a ξ^k , dado por $\mathbb{R}P(\xi^k) \xrightarrow{p} V^n$, com projeção p, fibra $\mathbb{R}P^{k-1}$ e espaço total $\mathbb{R}P(\xi^k) = \frac{S(\xi^k)}{T}$ (notemos que esse espaço total também é uma variedade de dimensão n+k-1); então, temos a classe característica $c \in H^1(\mathbb{R}P(\xi^k), \mathbb{Z}_2)$ da involução $(S(\xi^k), T)$. A estrutura de $H^*(\mathbb{R}P(\xi^k), \mathbb{Z}_2)$ é fornecida pelo seguinte resultado:

Teorema 1.6.2. (Leray-Hirsch, [21, p.202]) Sejam Λ um anel comutativo com unidade $e \ E \xrightarrow{p} X$ um fibrado, onde $X \ \acute{e}$ um CW-complexo. Suponhamos que existem elementos homogêneos $\alpha_1, \alpha_2, \ldots, \alpha_r \in H^*(E, \Lambda)$ tais que, para cada $x \in X$, o Λ -módulo $H^*(E_x, \Lambda)$ seja livre com base $\{j_x^*(\alpha_1), j_x^*(\alpha_2), \ldots, j_x^*(\alpha_r)\}$, onde $E_x = p^{-1}(x) \ \acute{e}$ a fibra sobre $x \ e \ j_x : E_x \longrightarrow E \ \acute{e}$ a inclusão. Então, o $H^*(X, \Lambda)$ -módulo $H^*(E, \Lambda)$ (via $p^*: H^*(X) \longrightarrow H^*(E)$) \acute{e} livre com base $\{\alpha_1, \alpha_2, \ldots, \alpha_r\}$.

Voltando a $\mathbb{R}P(\xi^k) \xrightarrow{p} V^n$, notamos por construção que se $\mathbb{R}P^{k-1} \subset \mathbb{R}P(\xi^k)$ é uma fibra típica, então o fibrado linha $\lambda \mapsto \mathbb{R}P(\xi^k)$ é tal que $\lambda|_{\mathbb{R}P^{k-1}} \mapsto \mathbb{R}P^{k-1}$ é o fibrado linha canônico usual. Pela naturalidade das classes de *Stiefel-Whitney*, segue que $i^*(c) = \alpha \in H^1(\mathbb{R}P^{k-1}, \mathbb{Z}_2)$ é o gerador, onde $i : \mathbb{R}P^{k-1} \to \mathbb{R}P(\xi^k)$ é a inclusão. Agora, $H^*(\mathbb{R}P^{k-1}, \mathbb{Z}_2)$ é um \mathbb{Z}_2 -módulo livre com base $1, \alpha, \alpha^2, \ldots, \alpha^{k-1}$. Pelo teorema acima, segue que $H^*(\mathbb{R}P(\xi^k), \mathbb{Z}_2)$ é um $H^*(V^n, \mathbb{Z}_2)$ -módulo livre graduado com base $1, c, c^2, \ldots, c^{k-1}$.

Sejam $T(V^n)$ e $T(\mathbb{R}P(\xi^k))$ os espaços totais dos respectivos fibrados tangentes. Baseado no fato de que $\mathbb{R}P(\xi^k)$ é localmente um produto, temos que $T(\mathbb{R}P(\xi^k)) \cong \tau_1 \oplus \tau_2$, onde τ_1 é o *pullback* $p^*(T(V^n))$ e τ_2 é o fibrado dos vetores tangentes paralelos às fibras. Denotemos por

 $W(T(V^n)) = 1 + w_1 + w_2 + \dots + w_n$ e $W(\xi^k) = 1 + v_1 + v_2 + \dots + v_k$,

as respectivas classes de Stiefel-Whitney. Pela naturalidade, temos que

$$W(\tau_1) = 1 + p^*(w_1) + p^*(w_2) + \dots + p^*(w_n)$$

A classe de τ_2 é dada pelo

Teorema 1.6.3. (Borel-Hirzebruch, [8])

$$W(\tau_2) = (1+c)^k + (1+c)^{k-1}p^*(v_1) + (1+c)^{k-2}p^*(v_2) + \dots + p^*(v_k).$$

Em particular, como τ_2 é um fibrado (k-1)-dimensional, vale a relação

$$c^{k} + c^{k-1}p^{*}(v_{1}) + c^{k-2}p^{*}(v_{2}) + \dots + p^{*}(v_{k}) = 0.$$

Juntando os fatos acima e omitindo-se, para simplificar a notação, o símbolo p^* (daqui em diante omitiremos sempre p^*), concluímos que

Corolário 1.6.1. A classe de Stiefel-Whitney do espaço total do fibrado projetivo associado a ξ^k é dada por

$$W(\mathbb{R}P(\xi^k)) = (1 + w_1 + w_2 + \dots + w_n)[(1+c)^k + (1+c)^{k-1}v_1 + (1+c)^{k-2}v_2 + \dots + v_k].$$

1.7 Sequência exata de *Conner* e *Floyd*

Seja (M^n, T) uma involução suave em uma variedade fechada *n*-dimensional M^n . Conforme mencionamos na Introdução, o conjunto de pontos fixos F de T é uma união disjunta e finita de subvariedades fechadas de M^n , que pode ser escrita como $F = \bigcup_{n=1}^{n} F^i$, onde cada F^i é a união (eventualmente vazia) das componentes *i*-dimensionais de F. O fibrado normal de F em M^n , $\eta \mapsto F = \bigcup_{i=0}^n (\eta^{n-i} \mapsto F^i)$, é chamado o *fixed-data* da involução (M^n, T) . A notação F^n diz respeito às componentes de M^n restrita às quais T é a identidade. Dessa forma, $\eta^0 \mapsto F^n$ é o fibrado 0-dimensional.

Exemplo 1.7.1. Para qualquer variedade fechada M^n , o fibrado tangente $\tau(M^n) \mapsto M^n$ pode ser realizado como um *fixed-data*. De fato, a involução

$$twist: M^n \times M^n \longrightarrow M^n \times M^n, \qquad twist(x,y) = (y,x),$$

tem como conjunto de pontos fixos a diagonal $\Delta = \{(x, x); x \in M^n\}$, ou seja, uma cópia de M^n . O fibrado normal de Δ , no produto cartesiano $M^n \times M^n$, é equivalente ao fibrado tangente $\tau(M^n) \mapsto M^n$.

Como vimos na seção anterior, o que caracteriza a classe de bordismo de uma involução sem pontos fixos (M^n, T) em $\mathcal{N}_n(\mathbb{Z}_2)$ são os seus números de involução. No entanto, não existe, a priori, um tal critério para involuções (M^n, T) com $F_T \neq \emptyset$. A sequência exata de Conner e Floyd de [8] contorna tal ponto; na realidade, tal sequência estabelece quando duas involuções são cobordantes e, adicionalmente, quando um determinado fibrado pode ser caracterizado como o fixed-data de alguma involução.

De acordo com as notações utilizadas nas seções anteriores, sejam $\mathcal{I}_n(\mathbb{Z}_2)$ o grupo de bordismo irrestrito de variedades *n*-dimensionais com involução e $\mathcal{N}_n(BO(k))$ o grupo de bordismo de fibrados *k*-dimensionais sobre variedades *n*-dimensionais. Logo, no contexto acima, (M^n, T) representa uma classe em $\mathcal{I}_n(\mathbb{Z}_2)$, enquanto que cada $\eta^{n-i} \mapsto F^i$ representa uma classe em $\mathcal{N}_i(BO(n-i)), 0 \leq i \leq n$.

Consideremos o \mathbb{Z}_2 -módulo

$$\mathcal{M}_n = \bigoplus_{i=0}^n \mathcal{N}_i(BO(n-i))$$

e as seguintes aplicações:

• $j^* : \mathcal{I}_n(\mathbb{Z}_2) \longrightarrow \mathcal{M}_n$, dada por

$$j^*([M^n, T]) = \sum_{i=0}^n [\eta^{n-i} \mapsto F^i],$$

onde
$$\bigcup_{i=0}^{n} (\eta^{n-i} \mapsto F^{i})$$
 é o *fixed-data* da involução (M^{n}, T) ;

• $\partial: \mathcal{M}_n \longrightarrow \mathcal{N}_{n-1}(BO(1))$, que associa a cada elemento

$$[\eta \mapsto F] = \sum_{i=0}^{n} [\eta^{n-i} \mapsto F^{i}] \in \mathcal{M}_{n}$$

o elemento

$$[\lambda \mapsto \mathbb{R}P(\eta)] = \sum_{i=0}^{n-1} [\lambda_{\eta^{n-i}} \mapsto \mathbb{R}P(\eta^{n-i})] \in \mathcal{N}_{n-1}(BO(1)),$$

onde $\lambda_{\eta^{n-i}} \mapsto \mathbb{R}P(\eta^{n-i})$ é o fibrado linha associado à involução antipodal nas fibras de η^{n-i} . Para o caso em que $i = n, \partial : \mathcal{N}_n(BO(0)) \longrightarrow \mathcal{N}_{n-1}(BO(1))$ é o homomorfismo nulo.

Além de verificar que tais aplicações estão bem definidas, *Conner* e *Floyd* mostraram que j^* e ∂ são homomorfismos de \mathcal{N}_* -módulos e compõem uma sequência exata curta.

Teorema 1.7.1. (Sequência de Conner e Floyd, [8]) Para cada n, a sequência de \mathbb{Z}_2 -módulos

$$0 \longrightarrow \mathcal{I}_n(\mathbb{Z}_2) \xrightarrow{j_*} \mathcal{M}_n \xrightarrow{\partial} \mathcal{N}_{n-1}(BO(1)) \longrightarrow 0$$

é exata.

Observação 1.7.1. $\mathcal{I}_*(\mathbb{Z}_2)$ é uma \mathcal{N}_* -álgebra comutativa com unidade, com o produto dado por $[M^n, T] \cdot [V^m, S] = [M^n \times V^m, T \times S]$ (produto cartesiano). A soma direta $\mathcal{M}_* = \bigoplus_{n=0}^{\infty} \mathcal{M}_n$ também possui uma estrutura de \mathcal{N}_* -álgebra comutativa com unidade; especificamente, dados $[\eta_1^k \mapsto M_1^n] \in [\eta_2^l \mapsto M_2^m]$, definimos o produto

$$[\eta_1^k \stackrel{\pi_1}{\mapsto} M_1^n][\eta_2^l \stackrel{\pi_2}{\mapsto} M_2^m] = [\eta_1^k \times \eta_2^l \stackrel{\pi_1 \times \pi_2}{\mapsto} M_1^n \times M_2^m],$$

com $\eta_1^k \times \eta_2^l$ denotando o produto cartesiano (também chamado a *soma de Whitney* externa) dos fibrados vetoriais $\eta_1^k \in \eta_2^l$. Com tais estruturas, $j^* : \mathcal{I}_*(\mathbb{Z}_2) \longrightarrow \mathcal{M}_*$ é um homomorfismo de \mathcal{N}_* -álgebras (vide [8]).

As observações a seguir são algumas consequências do Teorema 1.7.1.

Observação 1.7.2. Se (M^n, T) é uma involução sem pontos fixos, então $[M^n, T] = 0$ em $\mathcal{I}_n(\mathbb{Z}_2)$, pois $j^*([M^n, T]) = 0$. Notemos que, se (M^n, T) é uma involução cujo conjunto de pontos fixos é uma variedade F^n de mesma dimensão, então F^n é a união das componentes conexas de M^n em que T atua como a identidade. Além disso, em $M^n - F^n$, T atua sem

pontos fixos. Logo,

$$[M^{n}, T] = [F^{n}, T] + [M^{n} - F^{n}, T] = [F^{n}, Id]$$

em $\mathcal{I}_n(\mathbb{Z}_2)$.

Observação 1.7.3. Seja (M^n, T) uma involução com conjunto de pontos fixos $F = \bigcup_{i=0} F^i$. Se F não borda (ou seja, se pelo menos uma das componentes $F^i \neq \emptyset$ é não bordante, $1 \leq i \leq n$), então (M^n, T) não borda equivariantemente, pois $j^*([M^n, T])$ é necessariamente não nulo.

Observação 1.7.4. Não existe involução (M^n, T) em uma variedade fechada M^n , com $n \geq 1$, fixando exatamente um ponto. De fato, se existisse tal involução, teríamos $j^*([M^n, T]) = [nR \mapsto \{ponto\}]$. Notemos que o fibrado linha, $\lambda \mapsto \mathbb{R}P(nR)$, é o fibrado linha canônico $\lambda^1 \mapsto \mathbb{R}P^{n-1}$. Logo, teríamos $\partial(j^*([M^n, T])) = [\lambda^1 \mapsto \mathbb{R}P^{n-1}] \neq 0$ (conforme vimos no Exemplo 1.4.1), o que contraria a exatidão da sequência de *Conner* e *Floyd*.

A classe de bordismo de uma involução é determinada, via o monomorfismo j^* , pela classe de bordismo do seu *fixed-data*:

Corolário 1.7.1. Duas involuções $(M^n, T) e(V^n, S)$ são cobordantes se, e somente se, os seus fixed-data $\eta \mapsto F_T e \eta' \mapsto F_S$ são cobordantes. Em outras palavras, duas involuções $(M^n, T) e(V^n, S)$ são cobordantes se, e somente se, seus fixed-data possuem os mesmos números característicos.

Consideremos um fibrado qualquer $\eta \mapsto F = \bigcup_{i=0}^{n} (\eta^{n-i} \mapsto F^{i})$. Se $[\eta \mapsto F] \in \mathcal{M}_{n}$ está no núcleo de ∂ , então $[\eta] = j^{*}([M^{n}, T])$, para alguma involução (M^{n}, T) . Em outras palavras, se $\partial([\eta]) = 0$, então η é cobordante a um fibrado que pode ser realizado como um *fixed-data*. Na realidade, a prova do Teorema 1.7.1 nos diz algo mais forte: o próprio η pode ser realizado como o *fixed-data* de uma involução. Em particular, vemos que "*um fibrado cobordante a um fixed-data também é um fixed-data*". Dessa forma, obtemos o

Corolário 1.7.2. Um fibrado $\eta \mapsto F = \bigcup_{i=0}^{n} (\eta^{n-i} \mapsto F^i)$ é um fixed-data se, e somente se, $\partial([\eta]) = 0$. Equivalentemente, $\eta \mapsto F$ é um fixed-data se, e somente se, todos os números característicos do fibrado linha $\lambda \mapsto \mathbb{R}P(\eta) = \bigcup_{i=0}^{n-1} (\lambda_{\eta^{n-i}} \mapsto \mathbb{R}P(\eta^{n-i}))$ são nulos.

Observação 1.7.5. Seja $\eta \mapsto F = \bigcup_{i=0}^{n} (\eta^{n-i} \mapsto F^{i})$ um fibrado bordante (ou seja, cada $\eta^{n-i} \mapsto F^{i}$ borda). Então, $\partial([\eta]) = 0$ e, portanto, existe uma involução (M^{n}, T) cujo

fixed-data é $\eta \mapsto F$ (nesse caso, (M^n, T) borda equivariantemente).

Observação 1.7.6. Seja $\eta \mapsto F = (\eta^{n-i} \mapsto F^i) \cup (\eta^{n-j} \mapsto F^j)$ um fixed-data. (a) Se $\eta^{n-i} \mapsto F^i$ é um fixed-data, então $\eta^{n-j} \mapsto F^j$ também o é, pois

$$0 = \partial([\eta]) = \partial([\eta^{n-i} \mapsto F^i]) + \partial([\eta^{n-j} \mapsto F^j]) = \partial([\eta^{n-j} \mapsto F^j]).$$

(b) Se $(\eta^{n-i} \mapsto F^i) \cup (nR \mapsto \{ponto\})$ é um fixed-data, então $(\eta^{n-j} \mapsto F^j) \cup (nR \mapsto \{ponto\})$ também é um fixed-data. De fato, notemos que

$$[\eta^{n-i} \mapsto F^i] + [\eta^{n-j} \mapsto F^j] = [\eta^{n-i} \mapsto F^i] + [nR \mapsto \{ponto\}] + [\eta^{n-j} \mapsto F^j] + [nR \mapsto \{ponto\}].$$

Logo,

$$\begin{array}{ll} 0 &= \partial([\eta]) = \partial([\eta^{n-i} \mapsto F^i] + [nR \mapsto \{ponto\}]) + \partial([\eta^{n-j} \mapsto F^j] + [nR \mapsto \{ponto\}]) = \\ &= \partial([\eta^{n-j} \mapsto F^j] + [nR \mapsto \{ponto\}]). \end{array}$$

O Corolário 1.7.1 nos diz que, embora (M^n, T) não possua números característicos, a classe de (M^n, T) em $\mathcal{I}_n(\mathbb{Z}_2)$ é indiretamente determinada por números característicos, a saber, os números de $\eta \mapsto F_T$.

Também, temos um um critério bem definido para avaliar se um determinado fibrado $\eta \mapsto F$ é ou não o *fixed-data* de alguma involução: o elemento $\partial([\eta]) = [S(\eta), T]$ pertence a $\mathcal{N}_{n-1}(\mathbb{Z}_2)$ e, conforme vimos, a classe de $(S(\eta), T)$ em $\mathcal{N}_{n-1}(\mathbb{Z}_2)$ é determinada pelos números de *Whitney* da correspondente classe do fibrado linha $\lambda \mapsto \frac{S(\eta)}{T} = \mathbb{R}P(\eta)$ em $\mathcal{N}_{n-1}(BO(1))$; portanto, η é um *fixed-data* se, e somente se, todos os números de *Whitney* de $\lambda \mapsto \mathbb{R}P(\eta)$ forem nulos. Pela observação 1.7.4, segue que o fibrado trivial sobre o ponto não pode ser um *fixed-data*. Em particular (e de grande importância para nós), temos o seguinte resultado:

Teorema 1.7.2. Seja (M^n, T) uma involução tal que F é da forma $F^j \cup F^p$, j . $Sejam <math>\eta^{n-j} \mapsto F^j \in \mu^{n-p} \mapsto F^p$ os fibrados normais sobre $F^j \in F^p$, respectivamente. Então, os fibrados linha usuais $\lambda \mapsto \mathbb{R}P(\eta^{n-j}) \in \lambda' \mapsto \mathbb{R}P(\mu^{n-p})$ possuem os mesmos números de Whitney.

Os teoremas a seguir também são consequências dos fatos acima.

Teorema 1.7.3. Seja (M^n, T) uma involução com fixed-data $\eta \mapsto F = (\eta_1 \mapsto F_1) \cup (\eta_2 \mapsto F_2)$. Se $\eta_1 \mapsto F_1$ é cobordante a um certo fibrado $\mu \mapsto G$, então existe uma involução (W^n, T') cobordante a (M^n, T) e cujo fixed-data é $(\mu \mapsto G) \cup (\eta_2 \mapsto F_2)$.

Prova: Temos

$$\partial([\mu] + [\eta_2]) = \partial([\mu] + [\eta_1] + [\eta_1] + [\eta_2]) = \partial([\eta_1] + [\eta_2]) = 0.$$

Portanto, existe uma involução (W^n, T') com fixed-data $\mu \cup \eta_2$. Como $\mu \cup \eta_2$ é cobordante a $\eta_1 \cup \eta_2$, temos que (W^n, T') é cobordante a (M^n, T) .

Teorema 1.7.4. Se o fixed-data de (M^n, T) é $\eta \mapsto F = (\eta_1 \mapsto F_1) \cup (\eta_2 \mapsto F_2)$ e $\eta_1 \mapsto F_1$ borda, então existe uma involução (W^n, T') cobordante a (M^n, T) cujo fixed-data é $\eta_2 \mapsto F_2$.

O fato a seguir será de grande interesse para nós. Graças a ele, podemos supor que, dada uma involução (M^n, T) , a parte *i*-dimensional de seu conjunto de pontos fixos, $0 \le i \le n$, é conexa.

Teorema 1.7.5. Seja (M^n, T) uma involução com fixed-data $\eta \mapsto F = \bigcup_{i=0}^n (\eta^{n-i} \mapsto F^i)$. Então, (M^n, T) é cobordante a uma involução (W^n, T') , cujo fixed-data $\mu \mapsto G = \bigcup_{i=0}^n (\mu^{n-i} \mapsto G^i)$ é tal que cada G^i é conexa, $0 \le i \le n$.

O teorema acima decorre das seguintes considerações: sejam $\xi^r \mapsto V^n \in \theta^r \mapsto W^n$ fibrados vetoriais r-dimensionais sobre variedades fechadas n-dimensionais. Consideremos a soma conexa

$$W^n \sharp V^n = \frac{(W^n - D_1) \cup (V^n - D_2)}{\sim},$$

onde $D_1 \in D_2$ denotam discos abertos *n*-dimensionais em torno de pontos pré-escolhidos, $p \in W^n \in q \in V^n$, $e \sim é$ a relação que identifica os bordos $\partial(D_1) \cong \partial(D_2) \cong S^1$ através de um difeomorfismo C^{∞} . É conhecido o fato de que essa soma é cobordante à união disjunta $W^n \sqcup V^n$.

Como $\xi^r|_{\partial D_1} \in \theta^r|_{\partial D_2}$ são fibrados triviais, a construção $W^n \sharp V^n$ pode ser estendida aos fibrados; temos, então, a *soma conexa dos fibrados* $\xi^r \in \theta^r$, $\xi^r \sharp \theta^r \mapsto W^n \sharp V^n$, a qual é um fibrado *r*-dimensional sobre a variedade fechada $W^n \sharp V^n$. Também é conhecido o fato de que o cobordismo entre $W^n \sharp V^n \in W^n \sqcup V^n$ se estende aos fibrados, ou seja, $\xi^r \sharp \theta^r \mapsto W^n \sharp V^n$ é cobordante à $(\xi^r \mapsto V^n) \sqcup (\theta^r \mapsto W^n)$.

Voltando à justificativa do Teorema 1.7.5, como a involução (M^n, T) tem fixeddata $\eta \mapsto F = \bigcup_{i=0}^{n} (\eta^{n-i} \mapsto F^i)$, podemos aplicar o argumento acima iteradamente às componentes de F^i , trocando cada F^i por uma G^i conexa através do Teorema 1.7.3.

1.8 O Princípio Splitting

Em geral, um fibrado vetorial r-dimensional sobre uma variedade fechada ndimensional, $\eta^r \mapsto V^n$, não necessariamente se decompõe em uma soma de Whitney de fibrados unidimensionais, $\lambda_1 \oplus \lambda_2 \oplus \cdots \oplus \lambda_r \mapsto V^n$. Se isso ocorresse, a classe de Stiefel-Whitney $W(\eta^r) = 1 + v_1 + v_2 + \cdots + v_r$ se decomporia em fatores lineares

$$W(\eta^r) = \prod_{i=1}^r W(\lambda_i) = \prod_{i=1}^r (1 + v_1(\lambda_i))$$

No entanto, em argumentos que se baseiam em classes características e números de *Stiefel-Whitney* temos, em geral, que a classe de *Stiefel-Whitney* de qualquer fibrado vetorial pode ser expressa em fatores lineares. Isso decorre do seguinte resultado ([21, Seção 5]): dado qualquer fibrado $\eta^r \mapsto V^n$, existe uma variedade fechada W e uma função $f: W \longrightarrow V^n$ tal que o *pullback* $f^*(\eta^r) \mapsto W$ se decompõe em $\lambda \oplus \mu^{r-1} \mapsto W$, onde λ é um fibrado unidimensional; adicionalmente, a induzida em cohomologia $f^*: H^*(V^n) \longrightarrow$ $H^*(W^n)$ é um monomorfismo. Iterando o resultado acima com $\mu^{r-1} \mapsto W$ no lugar de $\eta^r \mapsto V^n$ (e, assim, sucessivamente), e levando-se em conta que:

- o pullback das somas de Whitney é a soma de Whitney dos pullbacks,
- o pullback $(g \circ f)^*(\eta)$ é igual a $f^*(g^*(\eta))$ e
- a composta de monomorfismos é um monomorfismo,

concluímos o seguinte

Teorema 1.8.1. (*Princípio Splitting*) Seja $\eta^r \mapsto V^n$ um fibrado vetorial r-dimensional sobre uma variedade fechada n-dimensional V^n . Então, existem uma variedade fechada W e uma função $f: W \longrightarrow V^n$ tais que:

- (i) o pullback $f^*(\eta^r) \mapsto W$ se decompõe em uma soma de Whitney de fibrados unidimensionais, $\lambda_1 \oplus \lambda_2 \oplus \cdots \oplus \lambda_r \mapsto W$;
- (ii) $f^*: H^*(V^n, \mathbb{Z}_2) \longrightarrow H^*(W, \mathbb{Z}_2)$ é um monomorfismo.

Como consequência e pela naturalidade, temos que

$$W(\lambda_1 \oplus \lambda_2 \oplus \dots \oplus \lambda_r) = (1+x_1)(1+x_2)\cdots(1+x_r) = f^*(1+v_1+v_2+\dots+v_r) =$$

= 1 + f^*(v_1) + f^*(v_2) + \dots + f^*(v_r),

onde $v_i \in H^i(V^n, \mathbb{Z}_2)$ é a *i*-ésima classe de η^r e $x_i \in H^1(W, \mathbb{Z}_2)$ é a primeira (e única) classe de $\lambda_i, 1 \leq i \leq r$.

Como f^* é um homomorfismo de anéis, em argumentos utilizando classes características e números de *Stiefel-Whitney* (que envolvem monômios nas classes características), o objeto $1 + v_1 + v_2 + \cdots + v_r \in H^*(V^n, \mathbb{Z}_2)$ pode ser substituído pelo objeto $1 + f^*(v_1) + f^*(v_2) + \cdots + f^*(v_r) \in f^*(H^*(V^n, \mathbb{Z}_2))$, sendo $f^*(H^*(V^n, \mathbb{Z}_2))$ uma cópia isomorfa (como anel) a $H^*(V^n, \mathbb{Z}_2)$ dentro de $H^*(W, \mathbb{Z}_2)$; o elemento $1 + f^*(v_1) + f^*(v_2) + \cdots + f^*(v_r)$ se fatora em termos lineares, conforme acima.

Ao utilizarmos o Princípio Splitting, por abuso de notação, escrevemos

"
$$W(\eta^r) = 1 + v_1 + v_2 + \dots + v_r = (1 + x_1)(1 + x_2) \cdots (1 + x_r)$$
",

sem mencionarmos a variedade W e os fibrados unidimensionais $\lambda_i \mapsto W$ (embora, rigorosamente, $1 + f^*(v_1) + f^*(v_2) + \dots + f^*(v_r) = \prod_{i=1}^r (1+x_i)$). Por exemplo, seja $\xi^k \mapsto V^n$ um fibrado k-dimensional sobre uma variedade

Por exemplo, seja $\xi^k \mapsto V^n$ um fibrado k-dimensional sobre uma variedade fechada n-dimensional V^n , com $W(V^n) = 1 + w_1 + w_2 + \cdots + w_n$ e $W(\xi^k) = 1 + v_1 + v_2 + \cdots + v_k$. Vimos que

$$W(\mathbb{R}P(\xi^k)) = (1 + w_1 + w_2 + \dots + w_n)(\sum_{j=0}^k (1+c)^{k-j} v_j).$$

Suponhamos que $W(V^n)$ e $W(\xi^k)$ se fatoram, através do Princípio Splitting, como

$$W(V^n) = (1+x_1)(1+x_2)\cdots(1+x_n)$$
 e $W(\xi^k) = (1+y_1)(1+y_2)\cdots(1+y_k).$

Então, temos o seguinte resultado:

Teorema 1.8.2. A forma fatorada de $W(\mathbb{R}P(\xi^k))$ é

$$W(\mathbb{R}P(\xi^k)) = (1+x_1)(1+x_2)\cdots(1+x_n)(1+c+y_1)(1+c+y_2)\cdots(1+c+y_k).$$

1.9 O limitante m(n) de Stong e Pergher

Na Introdução desse trabalho, comentamos que, para cada $n \in \mathbb{N}$, Stong e Pergher construíram em [26] uma involução (M, T) onde a dimensão de M é um específico número natural m(n) > n e o conjunto de pontos fixos é da forma $F^n \cup \{ponto\}$; além disso, esse valor é o maximal nessas condições. Em outras palavras, se existe uma involução (N^r, T) com conjunto de pontos fixos da forma $F^n \cup \{ponto\}$, então $r \leq m(n)$. A seguir, detalharemos m(n). Escreva $n = 2^p q$, onde $p \ge 0$ e $q \ge 1$, com q impar. Então,

$$m(n) = \begin{cases} 2n + p + 1 - q, & \text{se } q \ge p, \\ 2n + 2^{p-q}, & \text{se } q < p. \end{cases}$$

Notemos, em particular, que:

(i) se *n* é ímpar, então $n = 2^0 q$ $(q \ge 1)$ e temos

$$m(n) = 2n + 1 - q = 2q + 1 - q = q + 1 = n + 1$$

que é o resultado de Royster([27]);

(ii) se n = 2q, com q ímpar, então

$$m(n) = 2n + 1 + 1 - q = 4q + 2 - q = 3q + 2 = \frac{3}{2}n + 2.$$

Esse valor melhora o resultado de Pergher de [22], que mostra que o limitante maximal é $\frac{3}{2}n + 3$, nesse caso; (iii) se $n = 2^p$, $p \ge 1$, então

$$m(n) = \begin{cases} 5 = \frac{5}{2}2, & \text{se } p = 1, \\ 2n + 2^{p-q} = 2^{p+1} + 2^{p-1} = 2^{p-1}(4+1) = \frac{5}{2}2^p = \frac{5}{2}n, & \text{se } p > 1. \end{cases}$$

Em outras palavras, se $n = 2^p$, com $p \ge 1$, os exemplos $(M^{m(n)}, T)$ de Stong e Pergher atingem o limite $\frac{5}{2}n$ de Boardman.

A seguir, enunciaremos o teorema de Stong e Pergher na forma em que o mesmo aparece em [26] (a qual é mais adequada em alguns contextos).

Teorema 1.9.1. Seja (M^m, T) uma involução suave sobre uma variedade fechada, tal que o seu conjunto de pontos fixos tem a forma $F = F^n \cup \{ponto\}, sendo F^n$ uma subvariedade n-dimensional fechada, 0 < n < m. Se $n = 2^p(2q+1)$, então $m \le m(n)$, onde

$$m(n) = \begin{cases} (2^{p+1} - 1)(2q+1) + p + 1, & se \quad p \le 2q + 2, \\ (2^{p+1} - 2^{p-(2q+1)})(2q+1) + 2^{p-(2q+1)}(2q+2), & se \quad p \ge 2q + 1. \end{cases}$$

Adicionalmente, existe uma involução $(M^{m(n)}, T)$, para cada n, com conjunto fixado da forma $F^n \cup \{ponto\}.$

1.10 A fórmula de *Conner*

Seja $\eta^k \mapsto F^n$ um fibrado vetorial k-dimensional $(k \ge 1)$ sobre uma variedade *n*-dimensional fechada e conexa F^n . Denotemos por

$$W(\eta^k) = 1 + v_1 + v_2 + \dots + v_k$$

a classe de Stiefel-Whitney de η^k . Pelo Teorema de Leray-Hirsch (1.6.2), temos que $H^*(\mathbb{R}P(\eta^k),\mathbb{Z}_2)$ é um $H^*(F^n,\mathbb{Z}_2)$ -módulo livre e graduado, gerado por $\{1, c, c^2, \ldots, c^{k-1}\}$, satisfazendo a relação $c^k = v_1 c^{k-1} + v_2 c^{k-2} + \cdots + v_k$. Em particular, se $a_n \in H^n(F^n,\mathbb{Z}_2)$ e $a_n c^{k-1} = 0$, então $a_n = 0$. Assim, como $H^n(F^n,\mathbb{Z}_2)$ e $H^{n+k-1}(\mathbb{R}P(\eta^k),\mathbb{Z}_2)$ são isomorfos a \mathbb{Z}_2 , vale a igualdade

$$a_n[F^n]_2 = a_n c^{k-1} [\mathbb{R}P(\eta^k)]_2.$$

Se $a_s \in H^s(F^n, \mathbb{Z}_2)$, com $n < s \le n + k - 1$, então $a_s c^{n+k-1-s} [\mathbb{R}P(\eta^k)]_2 = 0$, já que $a_s = 0$.

Agora, calculemos $a_s c^{n+k-1-s} [\mathbb{R}P(\eta^k)]_2$ no caso em que $0 \leq s < n$. Denotemos por $\bar{v}_i \in H^i(F^n, \mathbb{Z}_2)$ o termo homogêneo de grau *i* do inverso multiplicativo de $W(\eta^k)$ em $H^*(F^n, \mathbb{Z}_2)$,

$$\overline{W}(\eta^k) = \frac{1}{W(\eta^k)} = 1 + \overline{v}_1 + \dots + \overline{v}_k.$$

Vejamos mais precisamente o que significa \bar{v}_i .

Seja X um espaço topológico. A coleção de todos os elementos da forma

$$v = 1 + v_1 + v_2 + v_3 + \dots + v_s \in H^*(X), s \ge 1,$$

onde $v_i \in H^i(X)$ e o termo de grau zero é $1 \in H^0(X)$, é um grupo comutativo com a operação dada pelo produto *cup*. Dado um elemento $v = 1 + v_1 + v_2 + v_3 + \cdots + v_s$, o seu inverso (ou *dual*)

$$\frac{1}{v} = \bar{v} = 1 + \bar{v}_1 + \bar{v}_2 + \bar{v}_3 + \cdots,$$

caracterizado pela relação $v\bar{v} = 1 \in H^*(X)$, pode ser construído indutivamente pelo algoritmo

$$\bar{v}_0 = 1$$
 e $\bar{v}_n = \sum_{i=1}^n v_i \bar{v}_{n-i}$

Pela construção de \bar{v}_i e utilizando-se a relação $c^k = v_1 c^{k-1} + v_2 c^{k-2} + \cdots + v_k$

iteradamente, verifica-se que, para cada $j \ge 1$,

$$c^{j+k-1} = \bar{v}_j c^{k-1} + \sum_{t=1}^{k-1} b_{j+t} c^{k-1-t},$$

para certos $b_{j+t} \in H^{j+t}(F^n, \mathbb{Z}_2)$. Em particular,

$$a_{s}c^{n+k-1-s} = a_{s}\left(\bar{v}_{n-s}c^{n+k-1-s} + \sum_{t=1}^{k-1}b_{n-s+t}c^{k-1-t}\right) = a_{s}\bar{v}_{n-s}c^{k-1}$$

pois $a_s b_{n-s+t} \in H^{n+t}(F^n, \mathbb{Z}_2) = 0$, para $t \ge 1$. Desse modo, concluí-se que, para cada $0 \le s \le n$,

$$a_s c^{n+k-1-s} [\mathbb{R}P(\eta^k)]_2 = a_s \bar{v}_{n-s} [F^n]_2.$$

A fórmula acima é conhecida como a *Fórmula de Conner* (vide [6]).

1.11 A classe de Wu

Para definirmos a classe de Wu, serão necessárias algumas propriedades das operações cohomológicas Sq^i , conhecidas como quadrados de Steenrod. Tais operações são certos homomorfismos aditivos $Sq^i : H^n(X, \mathbb{Z}_2) \longrightarrow H^{n+i}(X, \mathbb{Z}_2)$, os quais satisfazem as seguintes propriedades:

(1) (*Naturalidade*) Se $f : X \longrightarrow Y$ é qualquer aplicação contínua entre espaços topológicos, então

$$Sq^i \circ f^* = f^* \circ Sq^i.$$

- (2) Se $a \in H^n(X, \mathbb{Z}_2)$, então $Sq^0(a) = a$, $Sq^n(a) = a^2 \in Sq^i(a) = 0$, para cada i > n.
- (3) (*Fórmula de Cartan*) Se $a \in b$ são elementos homogêneos de $H^*(X, \mathbb{Z}_2)$, então vale a identidade

$$Sq^{i}(ab) = \sum_{j=0}^{i} Sq^{j}(a)Sq^{i-j}(b).$$

Temos ainda a operação quadrado total, dada por

$$Sq(a) = a + Sq^{1}(a) + Sq^{2}(a) + \dots + Sq^{n}(a)$$
, onde $a \in H^{n}(X, \mathbb{Z}_{2})$.

Em relação às classes características de um fibrado vetorial, temos o

Teorema 1.11.1. (Fórmula de Wu) Se $\eta^k \mapsto X$ é um fibrado vetorial sobre um espaço X paracompacto e $W(\eta^k) = 1 + w_1 + \cdots + w_k$ denota a classe de Stiefel-Whitney de η^k ,
então

$$Sq^{i}(w_{j}) = \sum_{t=0}^{i} \binom{j-i-1+t}{t} w_{i-t}w_{j+t},$$

para i < j.

O seguinte fato é verdadeiro (para maiores detalhes, vide [19]): se M^n é uma variedade *n*-dimensional conexa e fechada, então existe uma, e somente uma, classe de cohomologia $v_k \in H^k(M^n, \mathbb{Z}_2), 0 \le k \le n$, tal que

$$v_k x = Sq^k(x),$$

para qualquer $x \in H^{n-k}(M^n, \mathbb{Z}_2)$. Tal classe é chamada a k-ésima classe de Wu de M^n e

$$V = 1 + v_1 + v_2 + \dots + v_n$$

é a classe de Wu de M^n . Observemos que, pela caracterização de V e pela propriedade (2) anterior, temos que $v_k = 0$, se k > n - k. Então, efetivamente, V assume a forma

$$V = 1 + v_1 + v_2 + \dots + v_{[n/2]},$$

onde [n/2] denota o maior inteiro $\leq \frac{n}{2}$.

A classe de Wu de M^n se relaciona com a classe de *Stiefel-Whitney* de M^n através do seguinte resultado:

Teorema 1.11.2. (Wu) Se $W(M^n) = 1 + w_1 + w_2 + \cdots + w_n$ e $V(M^n) = 1 + v_1 + v_2 + \cdots + v_{\lfloor n/2 \rfloor}$ denotam, respectivamente, as classes de Stiefel-Whitney e de Wu de M^n , então

$$Sq(V(M^n)) = W(M^n).$$

Por exemplo,

$$1 + w_1 + w_2 + \dots + w_n = W(M^n) = Sq(1 + v_1 + v_2 + \dots) =$$

= 1 + v_1 + v_1^2 + v_2 + Sq^1(v_2) + v_2^2 + termos com grau \ge 3 =
= 1 + v_1 + v_1^2 + v_2 + v_1v_2 + v_2^2 + termos com grau \ge 3.

Daí, $v_1 = w_1$, $v_2 = v_1^2 + w_2 = w_1^2 + w_2$ e, assim, sucessivamente. Ou seja, cada v_k pode ser explícita e recursivamente calculada em termos dos w_i 's.

1.12 Funções simétricas

Consideremos o anel polinomial $\mathcal{F} = \mathbb{Z}_2[t_1, t_2, \dots, t_n]$, onde t_1, t_2, \dots, t_n são variáveis de grau 1.

Definição 1.12.1. Dizemos que um polinômio $p(t_1, t_2, ..., t_n) \in \mathcal{F}$ é uma função simétrica se

$$p(t_1, t_2, \ldots, t_n) = p(t_{\sigma(1)}, t_{\sigma(2)}, \ldots, t_{\sigma(n)}),$$

para toda permutação $\sigma: \{1, 2, \dots, n\} \longrightarrow \{1, 2, \dots, n\}.$

A coleção C, formada por todas as funções simétricas, é um subanel de \mathcal{F} . Consideremos o polinômio

$$(1+t_1)(1+t_2)\cdots(1+t_n)\in\mathcal{C}.$$

Tal polinômio contém termos de grau r,onde $0 \leq r \leq n.$ Podemos, então, escrever

$$(1+t_1)(1+t_2)\cdots(1+t_n) = 1 + \sigma_1 + \sigma_2 + \cdots + \sigma_n,$$

onde cada $\sigma_i \in C$ é a soma de todos os monômios de grau *i* e é chamada a *i-ésima* função simétrica elementar. Sabe-se que C é também um anel polinomial nos *n* geradores independentes $\sigma_1, \sigma_2, \ldots, \sigma_n$, isto é, $C = \mathbb{Z}_2[\sigma_1, \sigma_2, \ldots, \sigma_n]$. Notemos que

$$\sigma_1 = t_1 + t_2 + \dots + t_n$$
$$\sigma_2 = \sum_{i < j} t_i t_j,$$

e, em geral,

$$\sigma_i = \sum_{j_1 < j_2 < \dots < j_i} t_{j_1} t_{j_2} \dots t_{j_i}.$$

Em particular,

$$\sigma_n = t_1 t_2 \dots t_n.$$

Sejam m > 0 um número natural arbitrário e \mathcal{C}_m o grupo aditivo formado por todas as funções simétricas de grau m. Consideremos o conjunto $\mathcal{L} = \{(i_1, i_2, \ldots, i_r)\},$ formado por todas as partições (i_1, i_2, \ldots, i_r) de m, com $1 \leq i_t \leq n, 1 \leq t \leq r$. Cada $(i_1, i_2, \ldots, i_r) \in \mathcal{L}$ dá origem à função simétrica $\sigma_{i_1} \cdot \sigma_{i_2} \cdots \sigma_{i_r}$. Decorre do fato acima que uma base para o grupo aditivo \mathcal{C}_m é, portanto,

$$\{\sigma_{i_1}\cdot\sigma_{i_2}\cdots\sigma_{i_r}; (i_1,i_2,\ldots,i_r)\in\mathcal{L}\}.$$

Serão de suma importância para nós algumas funções simétricas especiais, as quais descrevemos a seguir.

Fixemos um natural k e seja ω uma partição (i_1, i_2, \ldots, i_r) de k tal que $1 \le i_t \le n$, para $1 \le t \le r$. Então, cada tal ω dá origem a uma função simétrica de grau k, denotada por S_{ω} e descrita por

$$S_{\omega} = \sum_{\substack{j_1 < j_2 < \dots < j_r \\ 1 \le j_i \le n}} \sum_{\sigma \in S_r} t_{j_{\sigma(1)}}^{i_1} t_{j_{\sigma(2)}}^{i_2} \dots t_{j_{\sigma(r)}}^{i_r}.$$

Assim, S_{ω} pode ser expressa em termos das funções simétricas elementares $\sigma_1, \sigma_2, \ldots, \sigma_n$ e, em especial, se $k \leq n$, S_{ω} pode ser expressa em termos de $\sigma_1, \sigma_2, \ldots, \sigma_k$. Mais ainda, se $k \leq n$, é conhecido o fato que a expressão de S_{ω} como polinomial em termos de $\sigma_1, \sigma_2, \ldots, \sigma_k$ não depende de n. Por exemplo, se $n \geq 2$, então $S_{(2)}(\sigma_1, \sigma_2) = \sigma_1^2$ e $S_{(1,1)}(\sigma_1, \sigma_2) = \sigma_2$; se $n \geq 3$, então $S_{(3)}(\sigma_1, \sigma_2, \sigma_3) = \sigma_1^3 + \sigma_1\sigma_2 + \sigma_3$, $S_{(1,2)}(\sigma_1, \sigma_2, \sigma_3) =$ $\sigma_1\sigma_2 + \sigma_3$ e $S_{(1,1,1)}(\sigma_1, \sigma_2, \sigma_3) = \sigma_3$; se $n \geq 4$, então $S_{(4)}(\sigma_1, \sigma_2, \sigma_3, \sigma_4) = \sigma_1^4$, $S_{(1,3)}(\sigma_1, \sigma_2, \sigma_3, \sigma_4) = \sigma_1^2\sigma_2 + \sigma_1\sigma_3$, $S_{(2,2)}(\sigma_1, \sigma_2, \sigma_3, \sigma_4) = \sigma_2^2$, $S_{(1,1,2)}(\sigma_1, \sigma_2, \sigma_3, \sigma_4) = \sigma_1\sigma_3$ e $S_{(1,1,1,1)}(\sigma_1, \sigma_2, \sigma_3, \sigma_4) = \sigma_4$ (vide [19]).

O Princípio *Splitting*, detalhado na Seção 1.8, nos permite estabelecer uma conexão entre funções simétricas e classes características. De fato, se $\eta^r \mapsto V^n$ é um fibrado vetorial r-dimensional sobre uma variedade n-dimensional fechada e se

$$W(\eta^r) = 1 + v_1 + v_2 + \dots + v_r$$

é a sua classe de *Stiefel-Whitney*, então o Princípio *Splitting* nos diz que $W(\eta^r)$ pode ser considerada na forma fatorada

$$W(\eta^r) = 1 + v_1 + v_2 + \dots + v_r = (1 + x_1)(1 + x_2) \cdots (1 + x_r).$$

Em particular, cada v_i , $1 \leq i \leq r$, é a função simétrica elementar $\sigma_i(x_1, x_2, \ldots, x_r)$ (rigorosamente, $f^*(v_i) = \sigma_i(x_1, x_2, \ldots, x_r)$, onde f^* é o monomorfismo em cohomologia do Princípio *Splitting*; aqui também o grau algébrico é dado pelo grau cohomológico).

Dessa forma e em sentido contrário, dada qualquer função simétrica

$$p(t_1, t_2, \ldots, t_r) \in \mathcal{C} \subset \mathcal{F},$$

sabemos que $p(t_1, t_2, \ldots, t_r)$ é uma polinomial nas funções simétricas elementares $\sigma_1, \sigma_2, \ldots, \sigma_r$, digamos, $q(\sigma_1, \sigma_2, \ldots, \sigma_r)$. Portanto, $p(t_1, t_2, \ldots, t_r)$ dá origem à polinomial nas classes características $q(\sigma_1, \sigma_2, \ldots, \sigma_r)$. Por exemplo, se $p(t_1, t_2, \ldots, t_r)$ é um

polinômio simétrico e homogêneo de grau n, então $p(t_1, t_2, \ldots, t_r) = q(\sigma_1, \sigma_2, \ldots, \sigma_r) = q(v_1, v_2, \ldots, v_n)$ é uma soma de monômios nos v_i 's, cada qual tendo grau n; em particular, se $\tau^n \mapsto V^n$ é o fibrado tangente a V^n , cada tal monômio dá origem a um número de *Stiefel-Whitney* de V^n . Portanto, se V^n e M^n são variedades fechadas n-dimensionais cobordantes, faz sentido a identidade

$$p(t_1, t_2, \dots, t_r)[V^n]_2 = p(t_1, t_2, \dots, t_r)[M^n]_2,$$

o que, rigorosamente, significa dizer que

$$q(w_1(V^n), w_2(V^n), \dots, w_n(V^n))[V^n]_2 = q(w_1(M^n), w_2(M^n), \dots, w_n(M^n))[M^n]_2.$$

Particularmente, se $I = (i_1, i_2, ..., i_r)$ é uma partição de n, então $S_I[V^n]_2$ é uma soma de números de *Stiefel-Whitney* de V^n e, portanto, um invariante de cobordismo. Por exemplo, $S_{(1,2)}[M^3]_2 = (w_1w_2 + w_3)[M^3]_2$ é um invariante de cobordismo de M^3 .

1.13 Teorema de Lucas

Em computações envolvendo números característicos, é de grande importância técnica determinar a paridade de coeficientes binomiais $\begin{pmatrix} a \\ b \end{pmatrix}$. Nesse conexto, o *Teorema de Lucas*, o qual descreveremos a seguir, é muito útil.

Definição 1.13.1. Seja p um número natural primo. Dado um número natural n, definimos a *expansão p-ádica* de n como sendo

$$n = n_k n_{k-1} \dots n_2 n_1 n_0 = n_k p^k + n_{k-1} p^{k-1} + \dots + n_2 p^2 + n_1 p^1 + n_0 \quad (0 \le n_i < p).$$

Observação 1.13.1. Quando p = 2, temos a expansão diádica (2-ádica) de n dada por

$$n = n_k n_{k-1} \dots n_2 n_1 n_0 = n_k 2^k + n_{k-1} 2^{k-1} + \dots + n_2 2^2 + n_1 2^1 + n_0 \quad (0 \le n_i < 2),$$

que é equivalente a representar n na base 2 (forma binária). Como cada n_i é igual a 0 ou a 1, temos que n é dado por uma soma de potências distintas de 2.

Teorema 1.13.1. (*Teorema de Lucas, [18]*) Seja p um número primo e tomemos r e c com expansões p-ádicas:

$$r = r_k r_{k-1} \dots r_2 r_1 r_0 = r_k p^k + r_{k-1} p^{k-1} + \dots + r_2 p^2 + r_1 p^1 + r_0 \quad (0 \le r_i < p),$$

$$c = c_k c_{k-1} \dots c_2 c_1 c_0 = c_k p^k + c_{k-1} p^{k-1} + \dots + c_2 p^2 + c_1 p^1 + c_0 \quad (0 \le c_i < p).$$

Então,

$$\binom{r}{c} \equiv \binom{r_0}{c_0} \binom{r_1}{c_1} \binom{r_2}{c_2} \cdots \binom{r_k}{c_k} (mod \ p),$$
$$\binom{r}{c} = 0 \quad sc \ c > r$$

convencionando-se que $\binom{r}{c} = 0$, se c > r.

Em nossas computações envolvendo números característicos, será de fundamental importância o seguinte

Corolário 1.13.1. Consideremos r e c com expansões diádicas:

 $r = r_k 2^k + r_{k-1} 2^{k-1} + \dots + r_2 2^2 + r_1 2^1 + r_0 \qquad e$

$$c = c_k 2^k + c_{k-1} 2^{k-1} + \dots + c_2 2^2 + c_1 2^1 + c_0, \quad r_i, c_i = 0 \text{ ou } 1.$$

Sejam $R = \{i; r_i = 1\} \ e \ C = \{i; c_i = 1\}.$ Então,

$$\binom{r}{c} \equiv 1 \pmod{2}$$
 se, e somente se, $C \subset R$.

Prova: Basta aplicar o Teorema de Lucas, observando-se que

$$\begin{pmatrix} 0\\0 \end{pmatrix} \equiv \begin{pmatrix} 1\\0 \end{pmatrix} \equiv \begin{pmatrix} 1\\1 \end{pmatrix} \equiv 1 \pmod{2} \quad \text{e} \quad \begin{pmatrix} 0\\1 \end{pmatrix} \equiv 0 \pmod{2}.$$

				٦
L				
L				
L				
L	_	_	_	

Capítulo 2

Involuções fixando $F^n \cup F^4$

2.1 Introdução

O objetivo desse capítulo é mostrar o seguinte resultado:

Teorema 2.1.1. Seja (M^m, T) uma involução com fixed-data $(\mu \mapsto F^n) \cup (\eta \mapsto F^4)$, onde n é impar. Se o fibrado normal sobre F^4 , $\eta \mapsto F^4$, é não bordante, então $m \le m(n-4)+8$. Além disso, esse limitante é o melhor possível. Se n é par, o resultado também é válido para quase toda classe não nula de fibrados a qual η pertence.

Observação 2.1.1. A expressão "é válido para quase toda classe não nula de fibrados" será tornada precisa mais adiante (Proposição 2.4.2).

Observação 2.1.2. Lembremos que m(n) é o limitante de *Stong* e *Pergher*, definido na Seção 1.9.

Observação 2.1.3. Iremos considerar $F^n \in F^4$ conexos, devido ao Teorema 1.7.5. Além disso, podemos supor n > 5, já que n = 5 é um caso particular de $F = F^n \cup F^{n-1}$, estudado em [14].

Comecemos construindo o exemplo maximal, o qual mostra que o limitante dado pelo teorema anterior é o melhor possível. Ou seja, mostremos que existe uma involução (M^m, T) fixando $F = F^n \cup F^4$, com o fibrado normal sobre a componente F^4 não bordante, e tal que m = m(n-4) + 8.

Consideremos a involução $(G^{m(n-4)}, S)$ dada pelo Teorema 1.9.1 e cujo conjunto de pontos fixos tem a forma

$$F = F^{n-4} \cup \{ponto\}.$$

Definimos, então, sobre a variedade $M^m = G^{m(n-4)} \times \mathbb{R}P^4 \times \mathbb{R}P^4$, a involução

$$T(a,b,c) = (S(a),c,b),$$

para todo elemento $(a, b, c) \in G^{m(n-4)} \times \mathbb{R}P^4 \times \mathbb{R}P^4$. Notemos que o conjunto fixado por esta involução é

$$(F^{n-4} \cup \{ponto\}) \times \mathbb{R}P^4 = \underbrace{(F^{n-4} \times \mathbb{R}P^4)}_{F^n} \cup \underbrace{(\{ponto\} \times \mathbb{R}P^4)}_{F^4},$$

com $F^4 = \mathbb{R}P^4$ não bordante (vide Exemplo 1.2.1), o que implica que o fibrado normal sobre esta componente não borda.

Veremos que a prova do Teorema 2.1.1 segue a mesma linha de raciocínio do resultado de Stong e Pergher ([26]), que diz que "se (M^m, T) fixa $F = F^n \cup \{ponto\}$, então $m \leq m(n)$." Neste caso, como o $\{ponto\}$ não borda, o fibrado normal sobre ele (que é o fibrado trivial) automaticamente é não bordante. Em nosso caso, como $\eta \mapsto F^4$ não borda, a ideia é usar a mesma técnica geral da demonstração do resultado de [26]. A diferença crucial é que enquanto só existe uma classe, a menos de bordismo, para o fibrado normal sobre o ponto (de fato, só existe um fibrado), o fibrado $\eta \mapsto F^4$ admite, em princípio, diversas possibilidades em termos de classes. De fato, esta será a nossa primeira tarefa: na Seção 2.2, mostraremos que existem, a menos de bordismo, 511 classes não nulas de fibrados sobre bases 4-dimensionais; mais ainda, mostraremos que é possível construir modelos explícitos de fibrados que representam cada uma dessas classes. Dessa forma, quando fizermos a suposição de que (M^m, T) tem fixed-data $(\mu \mapsto F^n) \cup (\eta \mapsto F^4)$, com $\eta \mapsto F^4$ não bordante, poderemos admitir, sem perda de generalidade, que $\eta \mapsto F^4$ é um desses 511 modelos explícitos de fibrados.

Na Seção 2.4, provaremos o Teorema 2.1.1, levando-se em consideração essas 511 possibilidades para $\eta \mapsto F^4$. Primeiro, será efetuada uma espécie de redução do problema através de dois importantes lemas, a saber, Lema 2.4.1 e Lema 2.4.2. Esta redução eliminará 496 classes, restando somente 15 classes não nulas a serem analisadas (as quais denotaremos por β_i , i = 1, 2, ..., 15). A prova do resultado para as classes restantes se baseará em uma abordagem semelhante à utilizada por *Stong* e *Pergher*, em [26], e será dividida em dois casos: n ímpar (subseção 2.4.1) e n par (subseção 2.4.2).

2.2 Classes de bordismo estáveis de fibrados vetoriais sobre variedades fechadas 4-dimensionais

Comecemos introduzindo algumas notações que serão utilizadas a partir daqui. Denotaremos por $R \mapsto G$ o fibrado trivial unidimensional sobre uma variedade G. Se $\eta \mapsto G$ é um fibrado qualquer, então $l\eta \mapsto G$ denotará a soma de *Whitney* de l cópias do fibrado η . Na Seção 1.4, definimos os grupos de bordismo de fibrados vetoriais kdimensionais sobre variedades fechadas n-dimensionais, $\mathcal{N}_n(BO(k))$, os quais vimos ter fortes conexões com os grupos de bordismo de involuções. Também vimos que uma classe $[\eta^k \mapsto F^n] \in \mathcal{N}_n(BO(k))$ é completamente determinada pelos números característicos de $\eta^k \mapsto F^n$. Nessa seção, temos como objetivo determinar $\mathcal{N}_4(BO(k))$, para qualquer $k \ge 4$.

Seja $\eta^k \mapsto F^n$ um fibrado vetorial k-dimensional arbitrário; consideremos o fibrado (k+t)-dimensional $\eta^k \oplus tR \mapsto F^n$. Se $\mu^k \mapsto G^n$ é um fibrado vetorial cobordante a $\eta^k \mapsto F^n$, é fácil ver que

$$\mu^k \oplus tR \mapsto G^n$$
 é cobordante a $\eta^k \oplus tR \mapsto F^n$.

Assim, existe uma função bem definida

$$\Gamma^t: \mathcal{N}_n(BO(k)) \longrightarrow \mathcal{N}_n(BO(k+t)),$$

dada por

$$\Gamma^t([\eta^k \mapsto F^n]) = [\eta^k \oplus tR \mapsto F^n].$$

Também, é simples verificar que Γ^t é um homomorfismo de \mathcal{N}_* -módulos.

Lema 2.2.1. $\Gamma^t : \mathcal{N}_n(BO(n)) \longrightarrow \mathcal{N}_n(BO(n+t))$ é um isomorfismo de \mathcal{N}_* -módulos, para qualquer $t \ge 1$.

Prova: Pelo axioma da soma para classes características, temos que $W(\eta^k \oplus tR) = W(\eta^k)$. Logo, qualquer número característico de $\eta^k \oplus tR$ se reduz a um número característico de η^k . Então, se $\eta^k \oplus tR$ borda, η^k borda e isso nos dá a injetividade da aplicação Γ^t .

A sobrejetividade de Γ^t pode ser provada a partir de um resultado bastante conhecido da teoria de fibrados (vide [21], por exemplo), que nos diz o seguinte: se X é um CW-complexo de dimensão $n \in \eta^k \mapsto X$ é um fibrado k-dimensional, com k > n, então η^k é equivalente a um fibrado $\nu^n \oplus (k-n)R \mapsto X$, onde $\nu^n \mapsto X$ é um fibrado n-dimensional. Como variedades n-dimensionais são CW-complexos n-dimensionais, concluímos que Γ^t é sobrejetora.

O lema acima nos diz que para determinar $\mathcal{N}_n(BO(k))$, k > n, é suficiente determinar $\mathcal{N}_n(BO(n))$; mais ainda, dado um fibrado $\eta^k \mapsto F^n$, com k > n, e escrevendo $\eta^k = \nu^n \oplus (k - n)R$, temos que a classe de bordismo de $\eta^k \mapsto F^n$ é completamente determinada pela classe de bordismo de $\nu^n \mapsto F^n$. Por essa razão, a classe de bordismo $[\nu^n \mapsto F^n]$ é conhecida como *classe de bordismo estável*, o que indica a sua invariância por soma de fatores triviais.

Conforme mencionamos acima, o nosso interesse é obter $\mathcal{N}_4(BO(k))$, para qualquer $k \ge 4$; logo, é suficiente analisarmos $\mathcal{N}_4(BO(4))$. Sendo assim, comecemos com um fibrado vetorial 4-dimensional sobre uma variedade fechada 4-dimensional, $\eta^4 \mapsto F^4$. Sejam

$$W(F^4) = 1 + w_1 + w_2 + w_3 + w_4$$
 e $W(\eta^4) = 1 + v_1 + v_2 + v_3 + v_4$

as classes de *Stiefel-Whitney* de F^4 e η^4 , respectivamente. A classe $[\eta^4 \mapsto F^4] \in \mathcal{N}_4(BO(4))$ é completamente determinada por seus números característicos, que são obtidos avaliando-se as classes de cohomologia

$$\begin{split} w_1^4, & w_1^2 w_2, \quad w_1 w_3, \quad w_1 v_1^3, \quad w_1^2 v_1^2, \quad w_1^3 v_1, \quad w_1^2 v_2, \quad w_1 v_3, \quad w_2^2, \quad w_2 v_1^2, \quad w_2 v_2 \\ & w_3 v_1, \quad w_4, \quad v_1^4, \quad v_1^2 v_2, \quad v_1 v_3, \quad v_2^2, \quad v_4, \quad w_1 w_2 v_1 \quad e \quad w_1 v_1 v_2 \end{split}$$

na classe fundamental de homologia $[F^4]$.

Uma classe de bordismo $[\eta^4 \mapsto F^4]$ corresponde a uma lista de valores 0 ou 1 atribuídos a cada um dos objetos acima. O total de possibilidades para tais listas é, portanto, igual a 2²⁰. O resultado a seguir nos diz que é possível reduzir esse total para 2⁹.

Lema 2.2.2. As classes de Stiefel-Whitney associadas a fibrados sobre variedades 4dimensionais satisfazem as seguintes relações:

(a) $w_1^2 w_2 = w_1 w_2 v_1 = w_1 w_3 = 0$ (b) $w_1 v_3 = v_1 v_3 = w_1 v_1 v_2$ (c) $w_2 v_1^2 = w_1^2 v_1^2 + v_1^4$ (d) $w_2 v_1^2 = w_3 v_1$ (e) $w_1^3 v_1 = w_1^2 v_1^2$ (f) $w_1 v_1^3 = v_1^4$ (g) $w_2^2 = w_4 + w_1^4$ (h) $w_1^2 v_2 = v_2^2 + w_2 v_2$

Prova: Os resultados que utilizaremos nesta demonstração são os descritos na Seção 1.11. Seja $V(F^4) = 1 + u_1 + u_2$ a classe de *Wu* de F^4 . Sabemos que

$$W(F^4) = Sq(V(F^4)),$$

onde Sq é a operação de Steenrod. Então, usando a fórmula de Cartan e as propriedades

de Sq, temos

$$1 + w_1 + w_2 + w_3 + w_4 = W(F^4) = Sq(1 + u_1 + u_2) =$$

= 1 + u_1 + u_1^2 + u_2 + Sq^1(u_2) + u_2^2,

o que resulta em

(i) $w_1 = u_1$, (ii) $w_2 = u_1^2 + u_2 = w_1^2 + u_2$, (iii) $w_3 = Sq^1(u_2)$ e (iv) $w_4 = u_2^2$.

Nas computações a seguir, utilizaremos, além das igualdades listadas acima e das propriedades de Sq, a fórmula de Cartan (*), a fórmula de Wu (**) e a relação

$$u_k x = Sq^k(x), \quad (***)$$

que é válida para todo $x \in H^{4-k}(F^4, \mathbb{Z}_2)$, com k = 1 ou 2.

(a)
$$w_3 \stackrel{(iii)}{=} Sq^1(u_2) \stackrel{(ii)}{=} Sq^1(w_1^2 + w_2) = Sq^1(w_1^2) + Sq^1(w_2) \stackrel{(*)}{=} Sq^1(w_2) =$$

 $\stackrel{(**)}{=} \sum_{t=0}^1 \binom{2-1-1+t}{t} w_{1-t}w_{2+t} = w_1w_2 + w_3.$

Assim, $w_1w_2 = 0$ e, portanto,

$$w_1^2 w_2 = 0$$
 e $w_1 w_2 v_1 = 0.$

Também,

$$0 = Sq^{1}(0) = Sq^{1}(w_{1}w_{2}) \stackrel{(*)}{=} w_{1}Sq^{1}(w_{2}) + w_{1}^{2}w_{2} =$$

$$\stackrel{(**)}{=} w_{1}(w_{1}w_{2} + w_{3}) + w_{1}^{2}w_{2} = w_{1}^{2}w_{2} + w_{1}w_{3} + w_{1}^{2}w_{2}$$

e temos que

$$w_1 w_3 = 0.$$

(b)
$$w_1 v_3 \stackrel{(i)}{=} u_1 v_3 \stackrel{(***)}{=} Sq^1(v_3) \stackrel{(**)}{=} \sum_{t=0}^1 \binom{3-1-1+t}{t} v_{1-t} v_{3+t} = v_1 v_3$$

e
 $w_1 v_1 v_2 \stackrel{(i)}{=} u_1 v_1 v_2 \stackrel{(***)}{=} Sq^1(v_1 v_2) \stackrel{(*)}{=} v_1 Sq^1(v_2) + v_1^2 v_2 =$
 $\stackrel{(**)}{=} v_1(v_1 v_2 + v_3) + v_1^2 v_2 = v_1^2 v_2 + v_1 v_3 + v_1^2 v_2 = v_1 v_3.$

Logo,

$$w_1v_3 = v_1v_3 = w_1v_1v_2.$$

(c)
$$w_2 v_1^2 \stackrel{(ii)}{=} (w_1^2 + u_2) v_1^2 = w_1^2 v_1^2 + u_2 v_1^2 = {}^{(***)} w_1^2 v_1^2 + Sq^2(v_1^2) = w_1^2 v_1^2 + v_1^4.$$

(d)
$$0 \stackrel{(a)}{=} w_1 w_2 v_1 \stackrel{(i)}{=} u_1 w_2 v_1 \stackrel{(***)}{=} Sq^1(w_2 v_1) \stackrel{(*)}{=} w_2 v_1^2 + Sq^1(w_2) v_1 =$$
$$\stackrel{(**)}{=} w_2 v_1^2 + (w_1 w_2 + w_3) v_1 \stackrel{(a)}{=} w_2 v_1^2 + w_3 v_1.$$

Logo,

$$w_2 v_1^2 = w_3 v_1.$$

- (e) $w_1^3 v_1 \stackrel{(i)}{=} u_1 w_1^2 v_1 \stackrel{(***)}{=} Sq^1(w_1^2 v_1) \stackrel{(*)}{=} w_1^2 v_1^2.$
- (f) $w_1 v_1^3 \stackrel{(i)}{=} u_1 v_1^3 \stackrel{(***)}{=} Sq^1(v_1^3) = Sq^1(v_1 v_1^2) \stackrel{(*)}{=} v_1^4.$
- (g) $w_2^2 \stackrel{(ii)}{=} (u_2 + w_1^2)^2 = u_2^2 + w_1^4 \stackrel{(iv)}{=} w_4 + w_1^4.$

(h)
$$w_1^2 v_2 \stackrel{(i)}{=} u_1^2 v_2 \stackrel{(ii)}{=} (u_2 + w_2) v_2 = u_2 v_2 + w_2 v_2 \stackrel{(***)}{=} Sq^2(v_2) + w_2 v_2 = v_2^2 + w_2 v_2.$$

O fato demonstrado acima prova o seguinte lema:

Lema 2.2.3. A classe $[\eta^4 \mapsto F^4] \in \mathcal{N}_4(BO(4))$ é completamente determinada pelos 9 números característicos: $w_1v_3[F^4], w_2v_1^2[F^4], w_1^2v_1^2[F^4], w_2^2[F^4], w_1^4[F^4], v_2^2[F^4], w_2v_2[F^4], v_1^2v_2[F^4] e v_4[F^4].$

Logo, $\mathcal{N}_4(BO(4))$ possui, no máximo, $2^9 = 512$ classes de bordismo (incluindo a classe nula). Mas, em princípio, nada nos garante que existam fibrados $\eta^4 \mapsto F^4$ com números característicos realizando todas essas 512 possibilidades. Nossa tarefa será, portanto, construir um modelo de fibrado $\eta^4 \mapsto F^4$ para cada uma dessas listas.

Inicialmente, consideremos $F^4 = \mathbb{R}P^4$, cuja classe de Stiefel-Whitney é

$$W(\mathbb{R}P^4) = (1+\alpha)^5 = 1 + \alpha + \alpha^4,$$

sendo α o gerador de $H^1(\mathbb{R}P^4, \mathbb{Z}_2)$. Assim, $w_1 = \alpha$, $w_2 = w_3 = 0$ e $w_4 = \alpha^4$.

Seja $\xi \mapsto \mathbb{R}P^4$ o fibrado linha canônico. Então, podemos considerar sobre $\mathbb{R}P^4$ os seguintes fibrados 4-dimensionais:

1) $\eta_1 = 4R \mapsto \mathbb{R}P^4$, cuja classe de *Stiefel-Whitney* é igual a 1. Assim, todas as classes

que determinam este fibrado são nulas, com exceção de

$$w_1^4 = \alpha^4 \neq 0.$$

2) $\eta_2 = \xi \oplus 3R \mapsto \mathbb{R}P^4$. Nesse caso, $W(\eta_2) = 1 + \alpha$ e temos que $v_1 = \alpha$ e $v_2 = v_3 = v_4 = 0$. Assim,

$$w_1^2 v_1^2 = w_1^4 = \alpha^4 \neq 0$$

e as demais classes são nulas.

3) $\eta_3 = 2\xi \oplus 2R \mapsto \mathbb{R}P^4$. Daí, $W(\eta_3) = (1 + \alpha)^2 = 1 + \alpha^2$ e temos $v_2 = \alpha^2$ e $v_1 = v_3 = v_4 = 0$. Portanto,

$$w_1^4 = v_2^2 = \alpha^4 \neq 0$$

e as demais classes são nulas.

4) $\eta_4 = 3\xi \oplus R \mapsto \mathbb{R}P^4$, cuja classe de *Stiefel-Whitney* é $W(\eta_4) = (1+\alpha)^3 = 1+\alpha+\alpha^2+\alpha^3$; assim, $v_1 = \alpha$, $v_2 = \alpha^2$, $v_3 = \alpha^3$ e $v_4 = 0$. Logo,

$$w_1v_3 = w_1^2v_1^2 = w_1^4 = v_2^2 = v_1^2v_2 = \alpha^4 \neq 0$$

e as classes restantes são nulas.

5) $\eta_5 = 4\xi \mapsto \mathbb{R}P^4$. Nesse caso, $W(\eta_5) = (1+\alpha)^4 = 1 + \alpha^4$ e temos $v_1 = v_2 = v_3 = 0$ e $v_4 = \alpha^4$. Segue que

$$w_1^4 = v_4 = \alpha^4 \neq 0$$

e as demais classes são nulas.

Agora, consideremos a base $F^4 = \mathbb{R}P^2 \times \mathbb{R}P^2$. Para construirmos fibrados sobre essa variedade, faremos uso das projeções canônicas

$$p_1, p_2: \mathbb{R}P^2 \times \mathbb{R}P^2 \longrightarrow \mathbb{R}P^2.$$

Seja $\xi \mapsto \mathbb{R}P^2$ o fibrado linha canônico e denotemos por $\xi_j \mapsto \mathbb{R}P^2 \times \mathbb{R}P^2$, $j = 1, 2, o pullback de \xi \mapsto \mathbb{R}P^2$ através da *j*-ésima projeção. Denotemos por θ o gerador de $H^1(\mathbb{R}P^2, \mathbb{Z}_2)$ e por $\alpha = p_1^*(\theta)$ e $\beta = p_2^*(\theta)$ os geradores de $H^1(\mathbb{R}P^2 \times \mathbb{R}P^2, \mathbb{Z}_2)$, onde $p_j^* : H^1(\mathbb{R}P^2, \mathbb{Z}_2) \longrightarrow H^1(\mathbb{R}P^2 \times \mathbb{R}P^2, \mathbb{Z}_2)$ é o homomorfismo induzido em cohomologia. Temos

$$W(\mathbb{R}P^2 \times \mathbb{R}P^2) = (1+\alpha)^3 (1+\beta)^3 = (1+\alpha+\alpha^2)(1+\beta+\beta^2) =$$
$$= 1+\alpha+\beta+\alpha^2+\beta^2+\alpha\beta+\alpha\beta^2+\alpha^2\beta+\alpha^2\beta^2$$

e, então, $w_1 = \alpha + \beta$, $w_2 = \alpha^2 + \beta^2 + \alpha\beta$, $w_3 = \alpha\beta^2 + \alpha^2\beta$ e $w_4 = \alpha^2\beta^2$. Sobre $\mathbb{R}P^2 \times \mathbb{R}P^2$, consideremos os fibrados:

6) $\eta_6 = 4R \mapsto \mathbb{R}P^2 \times \mathbb{R}P^2$, cuja classe de *Stiefel-Whitney* é igual a 1. Assim,

$$w_2^2 = \alpha^2 \beta^2 \neq 0$$

e as demais classes são nulas.

7) $\eta_7 = \xi_1 \oplus 3R \mapsto \mathbb{R}P^2 \times \mathbb{R}P^2$. Nesse caso, $W(\eta_7) = 1 + \alpha$ e temos que $v_1 = \alpha$ e $v_2 = v_3 = v_4 = 0$. Portanto,

$$w_2 v_1^2 = w_1^2 v_1^2 = w_2^2 = \alpha^2 \beta^2 \neq 0$$

e as classes restantes são nulas.

8) $\eta_8 = 2\xi_1 \oplus 2R \mapsto \mathbb{R}P^2 \times \mathbb{R}P^2$, com classe de *Stiefel-Whitney* dada por $W(\eta_8) = (1 + \alpha)^2 = 1 + \alpha^2$. Daí, $v_2 = \alpha^2$ e $v_1 = v_3 = v_4 = 0$, o que resulta em

$$w_2^2 = w_2 v_2 = \alpha^2 \beta^2 \neq 0,$$

sendo as demais classes nulas.

O próximo fibrado terá base $F^4 = \mathbb{R}P^1 \times \mathbb{R}P^3$, cuja classe de *Stiefel-Whitney* é $W(\mathbb{R}P^1 \times \mathbb{R}P^3) = (1 + \alpha)^2(1 + \beta)^4 = (1 + \alpha^2)(1 + \beta^4) = 1$, sendo $\alpha \in \beta$ os geradores de $H^1(\mathbb{R}P^1, \mathbb{Z}_2)$ e $H^1(\mathbb{R}P^3, \mathbb{Z}_2)$, respectivamente (para facilitar a notação, estamos tomando $\alpha = p_1^*(\alpha) \in \beta = p_2^*(\beta)$, onde $p_1 \in p_2$ são as projeções canônicas de $\mathbb{R}P^1 \times \mathbb{R}P^3$). Assim, $w_1 = w_2 = w_3 = w_4 = 0$. Seja, então:

9) $\eta_9 = \xi_1 \oplus 3\xi_3 \mapsto \mathbb{R}P^1 \times \mathbb{R}P^3$, onde $\xi_1 \in \xi_3$ são os *pullbacks* dos fibrados linha canônicos sobre $\mathbb{R}P^1 \in \mathbb{R}P^3$, respectivamente. Temos

$$W(\eta_9) = (1+\alpha)(1+\beta)^3 = (1+\alpha)(1+\beta+\beta^2+\beta^3) = = 1+\alpha+\beta+\alpha\beta+\beta^2+\beta^3+\alpha\beta^2+\alpha\beta^3.$$

Assim, $v_1 = \alpha + \beta$, $v_2 = \alpha\beta + \beta^2$, $v_3 = \beta^3 + \alpha\beta^2$ e $v_4 = \alpha\beta^3$. Segue que

$$v_1^2 v_2 = v_4 = \alpha \beta^3 \neq 0$$

e as demais classes são nulas.

Agora, consideremos a seguinte tabela cujas linhas são compostas pelos fibrados

	w_1v_3	$w_2 v_1^2$	$w_1^2 v_1^2$	w_{2}^{2}	w_1^4	v_{2}^{2}	$w_2 v_2$	$v_{1}^{2}v_{2}$	v_4
η_4	1	0	1	0	1	1	0	1	0
η_7	0	1	1	1	0	0	0	0	0
η_2	0	0	1	0	1	0	0	0	0
η_6	0	0	0	1	0	0	0	0	0
η_1	0	0	0	0	1	0	0	0	0
η_3	0	0	0	0	1	1	0	0	0
η_8	0	0	0	1	0	0	1	0	0
η_9	0	0	0	0	0	0	0	1	1
η_5	0	0	0	0	1	0	0	0	1

 η_i 's, $i = 1, 2, \ldots, 9$, definidos acima, e cujas colunas são os números de *Whitney* obtidos através das 9 classes que determinam $[\eta_4 \mapsto F^4] \in \mathcal{N}_4(BO(4))$:

TABELA 2.1: Fibrados representantes das classes que geram $\mathcal{N}_4(BO(4))$.

Observação 2.2.1. A tabela acima dá origem a uma matriz 9×9 com entradas iguais a 0 ou 1, a qual é semelhante à matriz identidade. De fato, denotando por $e_i = (0, 0, \ldots, 0, 1, 0, \ldots, 0), 1 \le i \le 9$, as linhas da matriz identidade 9×9 , sendo a *i*-ésima entrada igual a 1 e as demais entradas iguais a 0, e por a_i a lista realizada pelo fibrado $\eta_i, 1 \le i \le 9$, podemos escalonar a matriz inicial obtendo a matriz identidade, da seguinte forma:

 $e_{1} = a_{4} + a_{9} + a_{2} + a_{3} + a_{5},$ $e_{2} = a_{7} + a_{1} + a_{2} + a_{6},$ $e_{3} = a_{2} + a_{1},$ $e_{4} = a_{6},$ $e_{5} = a_{1},$ $e_{6} = a_{3} + a_{1},$ $e_{7} = a_{8} + a_{6},$ $e_{8} = a_{9} + a_{1} + a_{5} \quad e$ $e_{9} = a_{5} + a_{1}.$

Em outras palavras, as classes $[\eta_i]$, i = 1, 2, ..., 9, constituem um conjunto linearmente independente no \mathbb{Z}_2 -espaço vetorial $\mathcal{N}_4(BO(4))$. Portanto, se fizermos somas conexas entre os 9 fibrados η_i , $1 \leq i \leq 9$, fabricamos fibrados que representam as outras 502 classes não nulas pertencentes a $\mathcal{N}_4(BO(4))$. Para entendermos esse ponto, sejam M^n e V^n variedades suaves. Recordemos que a soma conexa de M^n e V^n é obtida da seguinte forma: sejam $p \in M^n$ e $q \in V^n$ pontos nas respectivas variedades, e sejam $B^n \subset M^n$ e $B^{n'} \subset V^n$ bolas fechadas tais que $p \in B^n \subset M^n$ e $q \in B^{n'} \subset V^n$. Escolhemos um difeomorfismo $\varphi : B^n \longrightarrow B^{n'}$; logo, $\varphi(\partial B^n) = \partial B^{n'}$. Consideremos o seguinte espaço quociente

$$\frac{(M^n - B^n) \sqcup (V^n - B^{n'})}{x \sim \varphi(x), \ x \in \partial B^n},$$

que também é uma variedade, chamada soma conexa de $M^n \in V^n$, a qual denotamos por $M^n \sharp V^n$. Tal variedade é cobordante à união disjunta $M^n \sqcup V^n$. De fato, esse cobordismo é dado da seguinte forma: consideremos as variedades disjuntas $M^n \times I \in V^n \times I$, onde $I = [0,1] \subset \mathbb{R}$. Em seguida, identificamos $M^n \in V^n \operatorname{com} M^n \times \{0\} \in V^n \times \{0\}$, respectivamente. Lembrando que $B^n \subset M^n \in B^{n'} \subset V^n$, tomamos $B^n \times [0, \varepsilon] \subset M^n \times I \in B^{n'} \times [0, \varepsilon] \subset V^n \times I$, para algum ε suficientemente pequeno.

Agora, consideremos $(M^n \times I) - (int(B^n) \times [0, \varepsilon))$ e $(V^n \times I) - (int(B^{n'}) \times [0, \varepsilon))$, cujos bordos são, respectivamente, $(\partial B^n \times [0, \varepsilon]) \cup (B^n \times \{0, \varepsilon\})$ e $(\partial B^{n'} \times [0, \varepsilon]) \cup (B^{n'} \times \{0, \varepsilon\})$.

A partir do difeomorfismo

$$\begin{aligned} \psi : & B^n \times [0, \varepsilon] & \longrightarrow & B^{n'} \times [0, \varepsilon] \\ & (x, t) & \longmapsto & (\varphi(x), t) \end{aligned}$$

definimos o espaço quociente

$$\frac{\left((M^n \times I) - \left(int(B^n) \times [0,\varepsilon)\right)\right) \bigsqcup \left((V^n \times I) - \left(int(B^{n'}) \times [0,\varepsilon)\right)\right)}{x \sim \psi(x)},$$

que é uma variedade com bordo igual à união disjunta de $M^n \sharp V^n$ e $M^n \sqcup V^n$.

Consideremos os fibrados vetoriais k-dimensionais $\xi^k \mapsto M^n \in \eta^k \mapsto V^n$. Veremos que existe um novo fibrado vetorial k-dimensional cuja base é a soma conexa $M^n \sharp V^n$.

Sejam $E \in W$ os espaços totais dos fibrados $\xi^k \in \eta^k$, com projeções $E \xrightarrow{p} M^n$ e $W \xrightarrow{q} V^n$. Tomamos uma bola fechada com $x \in B^n \subset M^n$, e sabemos que o fibrado $\xi^k \mid_{B^n}$ é trivial. Então, existe um difeomorfismo fibrado

$$f: E \mid_{p^{-1}(B^n)} \longrightarrow B^n \times \mathbb{R}^k.$$

Analogamente, como $\varphi(x) \in V^n$, tomamos uma bola fechada $B^{n'} \subset V^n$ com $\varphi(x) \in B^{n'} \subset V^n$, e o fibrado $\eta^k \mid_{B^{n'}}$ é trivial. Então, temos o difeomorfismo fibrado

$$g: W \mid_{q^{-1}(B^{n'})} \longrightarrow B^{n'} \times \mathbb{R}^k.$$

Em particular,

$$f\big(\partial(E\mid_{p^{-1}(B^n)})\big) = \partial(B^n \times \mathbb{R}^k) \quad \text{e} \quad g\big(\partial(W\mid_{q^{-1}(B^{n'})})\big) = \partial(B^{n'} \times \mathbb{R}^k),$$

e como $\partial(B^n \times \mathbb{R}^k) = S^{n-1} \times \mathbb{R}^k = \partial(B^{n'} \times \mathbb{R}^k)$, temos a aplicação identidade

$$Id: \partial(B^n \times \mathbb{R}^k) \longrightarrow \partial(B^{n'} \times \mathbb{R}^k).$$

Agora, consideremos a restrição

$$g^{-1} \circ Id \circ f : \partial(E \mid_{p^{-1}(B^n)}) \longrightarrow \partial(W \mid_{q^{-1}(B^{n'})}).$$

Podemos, então, unir os espaços totais dos fibrados iniciais fazendo uma colagem através da aplicação $g^{-1} \circ Id \circ f$. Dessa maneira, construímos o espaço quociente

$$\frac{\left(E - \left(E\mid_{p^{-1}(B^n)}\right)\right) \bigsqcup \left(W - \left(W\mid_{q^{-1}(B^{n'})}\right)\right)}{x \sim (g^{-1} \circ Id \circ f)(x)},$$

que é o espaço total do novo fibrado $\xi^k \sharp \eta^k$, com base $M^n \sharp V^n$.

Semelhantemente ao caso de variedades, também é verdade que a soma conexa de dois fibrados é cobordante à união disjunta dos mesmos. A prova segue os mesmos passos do caso de variedades: inicia-se com os *pullbacks* $p_1^*(\xi^k) \mapsto M^n \times I \in q_1^*(\eta^k) \mapsto V^n \times I$, onde $p_1 \in q_1$ são as respectivas (primeiras) projeções.

Na prova de que $M^n \sqcup V^n$ é cobordante à $M^n \sharp V^n$, ao considerarmos a união disjunta $(M^n \times I) \sqcup (V^n \times I)$ e tomarmos as vizinhanças $B^n \times [0, \varepsilon]$ e $B^{n'} \times [0, \varepsilon]$ (para em seguida fazermos as identificações através dos bordos destas vizinhanças), basta termos o cuidado de escolher tais vizinhaças de modo que, sobre as mesmas, os fibrados $p_1^*(\xi^k)$ e $q_1^*(\eta^k)$ sejam triviais. Isso permitirá que esses fibrados determinem sobre a variedade

$$\frac{\left((M^n \times I) - \left(int(B^n) \times [0,\varepsilon)\right)\right) \bigsqcup \left((V^n \times I) - \left(int(B^{n'}) \times [0,\varepsilon)\right)\right)}{x \sim \psi(x)}$$

um fibrado k-dimensional bem definido, que coincide com $(\xi^k \mapsto M^n) \sqcup (\eta^k \mapsto V^n) \sqcup (\xi^k \sharp \eta^k \mapsto M^n \sharp V^n)$ quando restrito ao bordo.

Em particular, como números característicos são aditivos com respeito à união disjunta, se os fibrados $\xi \in \eta$ realizam as listas $a \in b$, então $\xi \sharp \eta$ realiza a lista a + b.

Voltando ao nosso caso, vemos que a partir de somas conexas entre os 9 fibrados η_i , $1 \leq i \leq 9$, é possível fabricar 502 fibrados que representam as demais classes não nulas de $\mathcal{N}_4(BO(4))$; ou seja, as 511 classes não nulas de bordismo de $\mathcal{N}_4(BO(4))$ são realizáveis. Sumarizando, o seguinte teorema foi provado

Teorema 2.2.1. Para qualquer $k \ge 4$, $\mathcal{N}_4(BO(K))$ possui exatamente 511 classes não nulas, as quais podem ser explicitamente descritas como

- $\lambda_1 = [\eta_1 \oplus (k-4)R \mapsto \mathbb{R}P^4], \ com \ w_1v_3 = 0, \ w_2v_1^2 = 0, \ w_1^2v_1^2 = 0, \ w_2^2 = 0, \ w_1^4 \neq 0, \ v_2^2 = 0, \ w_2v_2 = 0, \ v_1^2v_2 = 0 \ e \ v_4 = 0,$
- $\lambda_2 = [\eta_2 \oplus (k-4)R \mapsto \mathbb{R}P^4], \ com \ w_1v_3 = 0, \ w_2v_1^2 = 0, \ w_1^2v_1^2 \neq 0, \ w_2^2 = 0, \ w_1^4 \neq 0, \ v_2^2 = 0, \ w_2v_2 = 0, \ v_1^2v_2 = 0 \ e \ v_4 = 0,$
- $\lambda_3 = [\eta_3 \oplus (k-4)R \mapsto \mathbb{R}P^4], \ com \ w_1v_3 = 0, \ w_2v_1^2 = 0, \ w_1^2v_1^2 = 0, \ w_2^2 = 0, \ w_1^4 \neq 0, \ v_2^2 \neq 0, \ w_2v_2 = 0, \ v_1^2v_2 = 0 \ e \ v_4 = 0,$
- $\lambda_4 = [\eta_4 \oplus (k-4)R \mapsto \mathbb{R}P^4], \ com \ w_1v_3 \neq 0, \ w_2v_1^2 = 0, \ w_1^2v_1^2 \neq 0, \ w_2^2 = 0, \ w_1^4 \neq 0, \ v_2^2 \neq 0, \ w_2v_2 = 0, \ v_1^2v_2 \neq 0 \ e \ v_4 = 0,$
- $\lambda_5 = [\eta_5 \oplus (k-4)R \mapsto \mathbb{R}P^4], \ com \ w_1v_3 = 0, \ w_2v_1^2 = 0, \ w_1^2v_1^2 = 0, \ w_2^2 = 0, \ w_1^4 \neq 0, \ v_2^2 = 0, \ w_2v_2 = 0, \ v_1^2v_2 = 0 \ e \ v_4 \neq 0,$
- $\lambda_6 = [\eta_6 \oplus (k-4)R \mapsto \mathbb{R}P^2 \times \mathbb{R}P^2], \ com \ w_1v_3 = 0, \ w_2v_1^2 = 0, \ w_1^2v_1^2 = 0, \ w_2^2 \neq 0, \ w_1^4 = 0, \ v_2^2 = 0, \ w_2v_2 = 0, \ v_1^2v_2 = 0 \ e \ v_4 = 0,$
- $\lambda_7 = [\eta_7 \oplus (k-4)R \mapsto \mathbb{R}P^2 \times \mathbb{R}P^2], \ com \ w_1v_3 = 0, \ w_2v_1^2 \neq 0, \ w_1^2v_1^2 \neq 0, \ w_2^2 \neq 0, \ w_1^4 = 0, \ v_2^2 = 0, \ w_2v_2 = 0, \ v_1^2v_2 = 0 \ e \ v_4 = 0,$
- $\lambda_8 = [\eta_8 \oplus (k-4)R \mapsto \mathbb{R}P^2 \times \mathbb{R}P^2], \ com \ w_1v_3 = 0, \ w_2v_1^2 = 0, \ w_1^2v_1^2 = 0, \ w_2^2 \neq 0, \ w_1^4 = 0, \ v_2^2 = 0, \ w_2v_2 \neq 0, \ v_1^2v_2 = 0 \ e \ v_4 = 0,$
- $\lambda_9 = [\eta_9 \oplus (k-4)R \mapsto \mathbb{R}P^1 \times \mathbb{R}P^3], \ com \ w_1v_3 = 0, \ w_2v_1^2 = 0, \ w_1^2v_1^2 = 0, \ w_2^2 = 0, \ w_1^4 = 0, \ v_2^2 = 0, \ w_2v_2 = 0, \ v_1^2v_2 \neq 0 \ e \ v_4 \neq 0$

e as demais classes (num total de 502) são obtidas a partir destas por meio de somas conexas.

2.3 Classes características especiais

Seja $\eta^k \mapsto F^n$ um fibrado vetorial k-dimensional sobre uma variedade fechada *n*-dimensional e seja $\lambda \mapsto \mathbb{R}P(\eta^k)$ o fibrado linha usual. Denotaremos as classes características de F^n , $\eta^k \in \lambda$, respectivamente, por:

$$W(F^n) = 1 + w_1 + w_2 + \dots + w_n,$$

 $W(\eta^k) = 1 + v_1 + \dots + v_k \quad e$
 $W(\lambda) = 1 + c.$

Pelo Corolário 1.6.1, temos que

$$W(\mathbb{R}P(\eta^k)) = (1 + w_1 + w_2 + \dots + w_n)[(1+c)^k + (1+c)^{k-1}v_1 + \dots + v_k] =$$

= 1 + W₁ + W₂ + \dots + W_{n+k-1},

onde cada W_i é uma polinomial homogênea de grau i nos w_j 's, v_t 's e c, obtida coletando-se a parte de grau i em

$$\left(\sum_{j=0}^{n} w_j\right) \left(\sum_{t=0}^{k} (1+c)^{k-t} v_t\right).$$

Observemos também que 1 + c tem inverso multiplicativo em $H^*(\mathbb{R}P(\eta^k), \mathbb{Z}_2)$,

$$\frac{1}{1+c} = 1 + c + c^2 + \dots + c^{n+k-1},$$

uma vez que $c^l = 0$, se $l > n + k - 1 = \dim(\mathbb{R}P(\eta^k))$. Dessa forma, dado qualquer $d \in \mathbb{Z}$, temos que

$$(1+c)^d = 1 + \varepsilon_1 c + \varepsilon_2 c^2 + \dots + \varepsilon_{n+k-1} c^{n+k-1},$$

onde $\varepsilon_i = 0$ ou 1, dependendo de d. Segue que, para qualquer $d \in \mathbb{Z}$,

$$(1+c)^{d}W(\mathbb{R}P(\eta^{k})) = (1+\varepsilon_{1}c+\varepsilon_{2}c^{2}+\cdots+\varepsilon_{n+k-1}c^{n+k-1})(1+W_{1}+W_{2}+\cdots+W_{n+k-1})$$

é tal que a sua parte de grau *i* consiste de uma polinomial $p(c, W_1, W_2, \ldots, W_{n+k-1})$, homogênea e de grau *i* nos W_i 's e c. Sendo assim e denotando-se

$$(1+c)^d W(\mathbb{R}P(\eta^k)) = 1 + V_1 + V_2 + \dots + V_{n+k-1},$$

onde V_i é a parte homogênea de grau i, temos que, se $t + i_1 + i_2 + \cdots + i_q = n + k - 1$, então

$$c^t V_{i_1} V_{i_2} \cdots V_{i_q} [\mathbb{R}P(\eta^k)]$$

é um número característico de $\lambda \mapsto \mathbb{R}P(\eta^k)$ (e, portanto, um invariante de cobordismo do mesmo).

Nesse contexto, Stong
ePergherintroduziram em [26] as classes $W[r], \ r \geq 0,$
definidas por

$$W[r] = (1+c)^{r-k} W(\mathbb{R}P(\eta^k)) = \frac{1}{(1+c)^{k-r}} W(\mathbb{R}P(\eta^k)).$$

A parte de grau i de W[r], denotada por $W[r]_i$, é obtida coletando-se os termos de grau

 $i \, \mathrm{em}$

$$W[r] = (1 + w_1 + w_2 + \dots + w_n) \Big[(1 + c)^r + (1 + c)^{r-1} v_1 + \dots + (1 + c) v_{r-1} + v_r + \frac{v_{r+1}}{1 + c} + \frac{v_{r+2}}{(1 + c)^2} + \dots + \frac{v_{r+i}}{(1 + c)^i} + \dots + \frac{v_k}{(1 + c)^{k-r}} \Big] = 1 + W[r]_1 + \dots + W[r]_{n+k-1}.$$

Logo, cada $W[r]_i$ é uma polinomial homogênea de grau i nos w_j 's, v_t 's e c.

Em particular, sejam $\eta^k \mapsto F^n \in \mu^l \mapsto V^m$ fibrados vetoriais $k \in l$ -dimensionais, respectivamente, sobre variedades fechadas $F^n \in V^m$, com k + n = l + m, e tais que os respectivos fibrados linha, $\lambda \mapsto \mathbb{R}P(\eta^k) \in \xi \mapsto \mathbb{R}P(\mu^l)$, sejam cobordantes. Seja $t + i_1 + i_2 + \cdots + i_q$ uma partição de k + n - 1 = l + m - 1 e consideremos os números inteiros não negativos r_1, r_2, \ldots, r_q . Para cada $r_j, 1 \leq j \leq q$, definimos $s_j = l + r_j - k$ e, então, $k - r_j = l - s_j = d_j$. Assim, denotando-se

$$W(\lambda) = 1 + c = W(\xi)$$

(por abuso de notação, estamos usando a mesma letra c para designar ambas as classes),

$$W(\mathbb{R}P(\eta^k)) = 1 + W_1 + W_2 + \dots + W_{n+k-1} \quad e \quad W(\mathbb{R}P(\mu^l)) = 1 + W_1' + W_2' + \dots + W_{n+k-1}',$$

se $W[r_j]_{i_j}$ é a polinomial $p(c, W_1, W_2, \ldots, W_{n+k-1})$, coletada em $\frac{W(\mathbb{R}P(\eta^k))}{(1+c)^{k-r_j}}$, então $W[s_j]_{i_j}$ é a mesma polinomial $p(c, W'_1, W'_2, \ldots, W'_{n+k-1})$, coletada em $\frac{W(\mathbb{R}P(\mu^l))}{(1+c)^{l-s_j}}$. Portanto, temos que

$$c^{t}W[r_{1}]_{i_{1}}W[r_{2}]_{i_{2}}\dots W[r_{q}]_{i_{q}}[\mathbb{R}P(\eta^{k})] = c^{t}W[s_{1}]_{i_{1}}W[s_{2}]_{i_{2}}\dots W[s_{q}]_{i_{q}}[\mathbb{R}P(\mu^{l})]$$

Em nossos cálculos, algumas $W[r]_i$'s terão papel fundamental; especificamente, $W[r]_{2r}$ e $W[r]_{2r+1}$. A importância de tais classes é que elas satisfazem propriedades especiais, as quais simplificam algumas computações. Tais propriedades são:

- 1) $W[r]_{2r} = w_r c^r + \text{termos envolvendo } c^x, \text{ com } x < r;$
- 2) $W[r]_{2r+1} = (w_{r+1} + v_{r+1})c^r + \text{termos envolvendo } c^x, \text{ com } x < r.$

Justifiquemos a propriedade 1). Sabemos que $W[r]_{2r}$ é obtida coletando-se a parte de grau 2r em W[r] e que tal parte consiste de monômios que têm a forma $V^j c^x$, onde $j+x = 2r e V^j$ é uma classe de cohomologia proveniente de $H^j(F^n, \mathbb{Z}_2)$. Observemos que a parte de W[r] dada por $(1+c)^{r-1}v_1+\cdots+(1+c)v_{r-1}+v_r$ somente contribui na formação de monômios $V^j c^x$, onde x < r. Além disso, cada termo $\frac{v_{r+i}}{(1+c)^i}, 1 \le i \le k-r$, de W[r] tem todos os seus monômios divisíveis por v_{r+i} . Dessa forma, tal termo contribui na formação de monômios $V^j c^x$ de maneira que v_{r+i} sempre divide V^j . Logo, $j \ge r+i \ge r+1$, e como j + x = 2r, segue que x < r. Em outras palavras, monômios $V^j c^x$ de $W[r]_{2r}$, com $x \ge r$, só podem ser coletados em $(1 + w_1 + w_2 + \cdots + w_n)(1 + c)^r$. Agora, em $(1 + c)^r$, o único termo c^x com $x \ge r$ é c^r ; segue que o único monômio $V^j c^x$ em $W[r]_{2r}$ com $x \ge r$ é $w_r c^r$.

Em relação à propriedade 2), novamente notemos que $(1+c)^{r-1}v_1 + \cdots + (1+c)v_{r-1} + v_r$ contribui somente com termos envolvendo c^x , com x < r. Por outro lado, se $i \ge 2$, o termo $\frac{v_{r+i}}{(1+c)^i}$ possui todos os seus monômios divisíveis por v_{r+i} e, portanto, os monômios $V^j c^x$ provenientes do mesmo são tais que v_{r+i} divide V^j . Então, $j \ge r+i \ge r+2$ e como j + x = 2r + 1, segue que x < r. Assim, os monômios $V^j c^x$ de $W[r]_{2r+1}$, com $x \ge r$, devem ser obtidos de

$$(1+w_1+w_2+\cdots+w_n)\bigg[(1+c)^r+\frac{v_{r+1}}{1+c}\bigg].$$

Como antes, o único tal monômio proveniente de $(1 + w_1 + w_2 + \dots + w_n)(1 + c)^r$ é $w_{r+1}c^r$. Por outro lado, termos da forma V^jc^x , com $V_j = w_lv_{r+1}$ e $l \ge 1$, satisfazem necessariamente x < r. Logo, o único monômio V^jc^x , com $x \ge r$, proveniente de $(1 + w_1 + w_2 + \dots + w_n)\left(\frac{v_{r+1}}{1+c}\right)$ é $v_{r+1}c^r$.

2.4 Prova do Teorema 2.1.1

Nessa seção, provaremos o Teorema 2.1.1, o qual estabelece que se (M^m, T) é uma involução fixando $F^n \cup F^4$, tal que o fibrado normal sobre F^4 , $\eta \mapsto F^4$, não borda e n é ímpar, então $m \leq m(n-4) + 8$. Além disso, se n é par, o resultado também é válido para quase toda classe não nula de fibrados a qual η pertence. Pela Seção 2.2, sabemos que $\eta \mapsto F^4$ pode ser assumido como um dos 511 modelos não bordantes lá descritos.

Seja $\mu \mapsto F^n$ o fibrado normal sobre F^n ; a dimensão de $\mu \in m-n$. Para facilitar, denotaremos a dimensão de μ por m-n=k.

Usando a mesma notação da Seção 2.2, sejam

$$W(\eta) = 1 + v_1 + v_2 + v_3 + v_4, \quad W(F^4) = 1 + w_1 + w_2 + w_3 + w_4$$
 e

$$W(\lambda) = 1 + c$$

as classes de *Stiefel-Whitney* de η , F^4 e do fibrado linha sobre $\mathbb{R}P(\eta)$, respectivamente. Como foi visto, o que determina o fibrado $\eta \mapsto F^4$ é a sua lista de números de *Whitney*: $w_1v_3[F^4]$, $w_2v_1^2[F^4]$, $w_1^2v_1^2[F^4]$, $w_2^2[F^4]$, $w_1^4[F^4]$, $v_2^2[F^4]$, $w_2v_2[F^4]$, $v_1^2v_2[F^4]$ e $v_4[F^4]$.

Conforme mencionamos na introdução desse capítulo, nossa estratégia consistirá

inicialmente em promover a redução do problema, de tal sorte que, após essa redução, tenhamos apenas 15 classes não nulas de fibrados para serem analisadas. Tal redução se dará através do

Lema 2.4.1. Se m > m(n-4) + 8, então temos $w_2v_1^2 + w_1^4 + w_2^2 + v_2^2 = 0$, $v_1^2v_2 = w_2v_2 + v_2^2 = w_1v_3$ e $v_4 = 0$.

Analisando os 511 modelos para $\eta \mapsto F^4$ (Teorema 2.2.1), vemos que, dentre todos eles, somente as classes descritas na tabela a seguir satisfazem as relações dadas pelo lema anterior.

	w_1v_3	$w_2 v_1^2$	$w_1^2 v_1^2$	w_{2}^{2}	w_1^4	v_{2}^{2}	$w_2 v_2$	$v_1^2 v_2$	v_4
β_1	1	0	0	1	0	1	0	1	0
β_2	1	0	0	0	0	0	1	1	0
β_3	0	0	0	1	0	1	1	0	0
β_4	0	1	0	0	1	0	0	0	0
β_5	1	1	0	1	1	1	0	1	0
β_6	1	1	0	0	1	0	1	1	0
β_7	0	1	0	1	1	1	1	0	0
β_8	0	0	1	1	1	0	0	0	0
β_9	1	0	1	0	1	1	0	1	0
β_{10}	1	0	1	1	1	0	1	1	0
β_{11}	0	0	1	0	1	1	1	0	0
β_{12}	0	1	1	1	0	0	0	0	0
β_{13}	1	1	1	0	0	1	0	1	0
β_{14}	1	1	1	1	0	0	1	1	0
β_{15}	0	1	1	0	0	1	1	0	0

TABELA 2.2: Classes de fibrados que satisfazem as relações dadas pelo Lema 2.4.1.

Logo, pela contrapositiva do lema acima e nas condições do Teorema 2.1.1, temos que: se o fibrado normal $\eta \mapsto F^4$ pertence a uma das 496 classes não nulas de $\mathcal{N}_4(BO(4))$ distintas dos β_i 's, $1 \leq i \leq 15$, então $m \leq m(n-4) + 8$.

O Lema 2.4.1 pode ser provado admitindo-se o seguinte resultado:

Lema 2.4.2. Se m > m(n-4) + 8, então $V_1^4[F^4] = 0$, $V_1^2V_2[F^4] = 0$, $V_2^2[F^4] = 0$, $V_1V_3[F^4] = 0$ e $V_4[F^4] = 0$, onde V_1 , V_2 , V_3 e V_4 são as classes de Stiefel-Whitney do fibrado $\tau \oplus \eta$, sendo $\tau \mapsto F^4$ o fibrado tangente sobre F^4 .

De fato, temos

$$W(\tau \oplus \eta) = W(\tau)W(\eta) = (1 + w_1 + w_2 + w_3 + w_4)(1 + v_1 + v_2 + v_3 + v_4) = = 1 + w_1 + v_1 + w_2 + v_2 + w_1v_1 + w_3 + v_3 + w_2v_1 + w_1v_2 + w_4 + + v_4 + w_3v_1 + w_2v_2 + w_1v_3.$$

Assim, $V_1 = w_1 + v_1$, $V_2 = w_2 + v_2 + w_1v_1$, $V_3 = w_3 + v_3 + w_2v_1 + w_1v_2$ e $V_4 = w_4 + v_4 + w_3v_1 + w_2v_2 + w_1v_3$.

Consideremos, agora, as relações dadas pelo Lema 2.2.2:

(a) $w_1^2 w_2 = w_1 w_2 v_1 = w_1 w_3 = 0$ (b) $w_1 v_3 = v_1 v_3 = w_1 v_1 v_2$ (c) $w_2 v_1^2 = w_1^2 v_1^2 + v_1^4$ (d) $w_2 v_1^2 = w_3 v_1$ (e) $w_1^3 v_1 = w_1^2 v_1^2$ (f) $w_1 v_1^3 = v_1^4$ (g) $w_2^2 = w_4 + w_1^4$ (h) $w_1^2 v_2 = v_2^2 + w_2 v_2$

Supondo válido o Lema 2.4.2 e utilizando as relações acima, temos:

$$\begin{split} \text{(I)} \ 0 &= V_1^4 = w_1^4 + v_1^4; \\ \text{(II)} \ 0 &= V_1^2 V_2 = (w_1^2 + v_1^2)(w_2 + v_2 + w_1v_1) = w_1^2 w_2 + w_1^2 v_2 + w_1^3 v_1 + w_2 v_1^2 + v_1^2 v_2 + w_1 v_1^3 = \\ & \stackrel{(a)}{=} w_1^2 v_2 + w_1^3 v_1 + w_2 v_1^2 + v_1^2 v_2 + w_1 v_1^3 \stackrel{(e)+(f)}{=} w_1^2 v_2 + w_1^2 v_1^2 + w_2 v_1^2 + v_1^2 v_2 + v_1^4 = \\ & \stackrel{(c)}{=} w_1^2 v_2 + v_1^2 v_2; \\ \text{(III)} \ 0 &= V_2^2 = w_2^2 + v_2^2 + w_1^2 v_1^2; \\ \text{(IV)} \ 0 &= V_1 V_3 = (w_1 + v_1)(w_3 + v_3 + w_2 v_1 + w_1 v_2) = w_1 w_3 + w_1 v_3 + w_1 w_2 v_1 + w_1^2 v_2 + w_3 v_1 + \\ & \quad + v_1 v_3 + w_2 v_1^2 + w_1 v_1 v_2 \stackrel{(a)}{=} w_1 v_3 + w_1^2 v_2 + w_3 v_1 + v_1 v_3 + w_2 v_1^2 + w_1 v_1 v_2 \stackrel{(b)}{=} w_1 v_3 + \\ & \quad + w_1^2 v_2 + w_3 v_1 + w_2 v_1^2 \stackrel{(d)}{=} w_1 v_3 + w_1^2 v_2; \end{split}$$

(V) $0 = V_4 = w_4 + v_4 + w_3v_1 + w_2v_2 + w_1v_3$.

Assim, de (c) e (I), temos

$$w_2 v_1^2 \stackrel{(c)}{=} w_1^2 v_1^2 + v_1^4 \stackrel{(I)}{=} w_1^2 v_1^2 + w_1^4.$$

Por outro lado, de (III) temos que $w_1^2 v_1^2 = w_2^2 + v_2^2$. Assim, $w_2 v_1^2 + w_1^4 = w_1^2 v_1^2 = w_2^2 + v_2^2$, ou seja,

$$w_2v_1^2 + w_1^4 + w_2^2 + v_2^2 = 0.$$

Usando agora as equações (II) e (IV), temos

$$v_1^2 v_2 \stackrel{(II)}{=} w_1^2 v_2 \stackrel{(IV)}{=} w_1 v_3.$$

Como, por (h),

$$w_1^2 v_2 = w_2 v_2 + v_2^2,$$

segue que

$$v_1^2 v_2 = w_2 v_2 + v_2^2 = w_1 v_3.$$

Para finalizar a prova do Lema 2.4.1, mostremos que $v_4 = 0$. De (V), temos que

$$v_4 = w_4 + w_3 v_1 + w_2 v_2 + w_1 v_3$$

Então, substituindo-se os valores $w_4 = w_2^2 + w_1^4$, $w_3v_1 = w_2v_1^2$, $w_2v_2 = w_1^2v_2 + v_2^2$ e $w_1v_3 = w_1^2v_2$ dados pelas equações (g), (d), (h) e (IV), respectivamente, na igualdade acima, temos

$$v_4 = w_2^2 + w_1^4 + w_2v_1^2 + w_1^2v_2 + v_2^2 + w_1^2v_2 = w_2^2 + w_1^4 + w_2v_1^2 + v_2^2.$$

Por (III), sabemos que $w_2^2+v_2^2=w_1^2v_1^2.$ Daí,

$$v_4 = w_1^2 v_1^2 + w_1^4 + w_2 v_1^2$$

e, como foi mostrado acima que $w_2v_1^2 + w_1^4 = w_1^2v_1^2$, podemos concluir que

$$v_4 = 0.$$

Agora, para demonstrar o Lema 2.4.2, faremos o uso do fato (já citado anteriormente) que

$$p(c, W_1, \ldots, W_{m-1})[\mathbb{R}P(\mu)] = p(c, W_1, \ldots, W_{m-1})[\mathbb{R}P(\eta)],$$

para qualquer polinomial p nas classes características dos fibrados linha usuais sobre $\mathbb{R}P(\eta) \in \mathbb{R}P(\mu)$. A estratégia é mostrar que se m > m(n-4)+8, então é possível escolher polinomiais p especiais de tal sorte que $p(c, W_1, \ldots, W_{m-1})[\mathbb{R}P(\mu)] = 0$, por razões dimensionais, enquanto que $p(c, W_1, \ldots, W_{m-1})[\mathbb{R}P(\eta)]$ reproduz os números $V_1^4[F^4]$, $V_1^2V_2[F^4], V_2^2[F^4], V_1V_3[F^4] \in V_4[F^4]$.

A escolha de tais polinomiais é bastante técnica e terá como componente fundamental uma polinomial especial, usada por Stong e Pergher em [26], e denominada a classe X. A outra componente será dada por funções polinomiais simétricas especiais, denominadas f_{ω} , associadas a fibrados linha $\lambda \mapsto B^n$ quando se considera o Princípio Splitting (Seção 1.8) sobre o fibrado tangente a B^n e sobre λ . Tais f_{ω} terão conexões com as funções simétricas S_{ω} , detalhadas na Seção 1.12. Isso será estratégico, uma vez que, se ω é igual a (1, 1, 1, 1), (1, 1, 2), (2, 2), (1, 3) e (4) temos, respectivamente, S_{ω} igual a V_4 , V_1V_3 , V_2^2 , $V_1^2V_2 + V_1V_3$ e V_1^4 . Formalmente, as nossas polinomiais serão do tipo $f_{\omega}Xc^d$. Sejam

$$W(F^n) = 1 + \theta_1 + \theta_2 + \dots + \theta_n, \quad W(\mu) = 1 + u_1 + u_2 + \dots + u_k$$
 e $W(\xi) = 1 + c$

as classes de *Stiefel-Whitney* de F^n , μ e do fibrado linha sobre $\mathbb{R}P(\mu)$, respectivamente. Por *Borel-Hirzebruch* (Corolário 1.6.1), temos

$$W(\mathbb{R}P(\mu)) = (1 + \theta_1 + \theta_2 + \dots + \theta_n)[(1 + c)^k + (1 + c)^{k-1}u_1 + \dots + u_k].$$

Na seção anterior, definimos as classes W[r] por

$$W[r] = \frac{1}{(1+c)^{k-r}} W(\mathbb{R}P(\mu)) = (1+\theta_1+\theta_2+\dots+\theta_n)[(1+c)^r+(1+c)^{r-1}u_1+\dots+u_r+(1+c)^{-1}u_{r+1}+\dots+(1+c)^{r-k}u_k],$$

para as quais vimos serem válidas as seguintes propriedades:

- $W[r]_{2r} = \theta_r c^r + \text{termos envolvendo } c^x, \text{ com } x < r \text{ e}$
- $W[r]_{2r+1} = (\theta_{r+1} + u_{r+1})c^r + \text{termos envolvendo } c^x, \text{ com } x < r.$

Definimos a classe X, acima mencionada, como sendo

$$X = W[r_1]_{2r_1} \dots W[r_h]_{2r_h} W[s_1]_{2s_1+1} \dots W[s_t]_{2s_t+1},$$

cuja dimensão é

$$\dim(X) = 2(r_1 + \dots + r_h) + 2(s_1 + \dots + s_t) + t.$$

Além disso, devido às propriedades de W[r], temos que

$$\begin{split} X &= (\theta_{r_1}c^{r_1} + \text{ termos envolvendo } c^x, \text{ com } x < r_1). \\ &\cdot (\theta_{r_2}c^{r_2} + \text{ termos envolvendo } c^x, \text{ com } x < r_2). \\ &\vdots \\ &\cdot (\theta_{r_h}c^{r_h} + \text{ termos envolvendo } c^x, \text{ com } x < r_h). \\ &\cdot ((\theta_{s_1+1} + u_{s_1+1})c^{s_1} + \text{ termos envolvendo } c^x, \text{ com } x < s_1). \\ &\cdot ((\theta_{s_2+1} + u_{s_2+1})c^{s_2} + \text{ termos envolvendo } c^x, \text{ com } x < s_2). \\ &\vdots \\ &\cdot ((\theta_{s_t+1} + u_{s_t+1})c^{s_t} + \text{ termos envolvendo } c^x, \text{ com } x < s_t). \end{split}$$

Assim, temos

$$X = (\theta_{r_1} \cdots \theta_{r_h} (\theta_{s_1+1} + u_{s_1+1}) \cdots (\theta_{s_t+1} + u_{s_t+1}))c^{|r|+|s|} + \text{ termos envolvendo } c^x,$$

onde x < |r| + |s|, sendo $|r| = r_1 + \dots + r_h$ e $|s| = s_1 + \dots + s_t$.

Escreva $n - 4 = 2^p q$, com q ímpar. Em [26], a classe X é construída a partir de uma escolha especial dos valores $r_1, \ldots, r_h, s_1, \ldots, s_t$, expressos em termos de $p \in q$, de tal forma que as seguintes propriedades técnicas são satisfeitas:

(1) dim $(X) = 2(r_1 + \dots + r_h) + 2(s_1 + \dots + s_t) + t = m(n-4)$ e

(2)
$$|r| + |s| + t = r_1 + \dots + r_h + s_1 + \dots + s_t + t > n-4,$$

lembrando que

$$m(n-4) = \begin{cases} (2^{p+1}-1)q + p + 1, & \text{se } p \le q+1, \\ (2^{p+1}-2^{p-q})q + 2^{p-q}(q+1), & \text{se } p \ge q, \end{cases}$$

segundo a definição do limitante m(n) dada pelo Teorema 1.9.1.

A lista dos valores r_i 's e s_j 's mencionados acima é descrita da seguinte forma:

- (i) se $p \le q+1$, então $r_1 = 2^p 2^{p-1}, r_2 = 2^p 2^{p-2}, \dots, r_i = 2^p 2^{p-i}, \dots, r_p = 2^p 2^{p-p} = 2^p 1$ e $s_j = 2^p 1$, onde $1 \le j \le q+1-p$ (observando-se que, se p = q+1, então os s_j 's não ocorrem);
- (ii) se $p \ge q+1$, então $r_1 = 2^p 2^{p-1}, r_2 = 2^p 2^{p-2}, \dots, r_i = 2^p 2^{p-i}, \dots, r_{q+1} = 2^p 2^{p-q-1}$ e, nesse caso, os s_j 's não ocorrem.

Com tais valores, em [26] é demonstrado que as propriedades (1) e (2) acima são satisfeitas. Notemos ainda que, como $c^{|r|+|s|}$ é a potência máxima de c que ocorre na classe X, a propriedade (2) nos diz que cada monômio de X tem um termo proveniente de $H^*(F^n, \mathbb{Z}_2)$ com dimensão > n-4. As polinomiais f_{ω} , que construiremos adiante, terão dimensão 8 e serão tais que cada um de seus monômios possuirá um termo c^x , com $x \leq 4$, o que implica que a dimensão mínima do termo provindo da cohomologia de F^n de cada tal monômio será 4.

Logo, se m > m(n-4)+8,então $m-1 \ge m(n-4)+8$ e faz sentido considerarmos a polinomial

$$f_{\omega}Xc^{m-1-(m(n-4)+8)}$$

cuja dimensão é m-1; dessa forma, tal polinomial pode ser avaliada nas classes $[\mathbb{R}P(\mu)]$ e $[\mathbb{R}P(\eta)]$.

Agora, seja $c^x A$ um monômio de f_{ω} tal que $dim(c^x A) = 8$, com $x \leq 4$ (e, portanto, dim $(A) \geq 4$) e A proveniente de $H^*(F^n, \mathbb{Z}_2)$. Pelas considerações acima, cada monômio de $f_{\omega}X$ terá um termo de $H^*(F^n, \mathbb{Z}_2)$ com dimensão > n. Segue que

$$f_{\omega} X c^{m-1-(m(n-4)+8)} [\mathbb{R} P(\mu)] = 0,$$

por razões dimensionais.

Para computarmos a polinomial $f_{\omega}Xc^{m-1-(m(n-4)+8)}$ sobre $\mathbb{R}P(\eta)$, analisemos inicialmente como a classe X se comporta.

A classe X é um produto de $W[r]_i$'s e vimos, na Seção 2.3, que W[r] sobre $\mathbb{R}P(\mu)$ produz a mesma polinomial que W[l] sobre $\mathbb{R}P(\eta)$, onde m - 4 - l = m - n - r, ou seja, l = n + r - 4. Tal W[l] sobre $\mathbb{R}P(\eta)$ é dada por

$$W[l] = \frac{W(\mathbb{R}P(\eta))}{(1+c)^{m-n-r}} = (1+w_1+w_2+w_3+w_4)[(1+c)^{n+r-4}+(1+c)^{n+r-5}v_1+(1+c)^{n+r-6}v_2+(1+c)^{n+r-7}v_3+(1+c)^{n+r-8}v_4].$$

Como as polinomiais f_{ω} que construiremos serão formadas por monômios $c^{x}A$, onde dim $(A) \geq 4$ e A provém de $H^{*}(F^{4}, \mathbb{Z}_{2})$, temos que dim(A) = 4. Observemos que o produto de W[l] por $c^{x}A$ produz monômios com termos provenientes de $H^{i}(F^{4}, \mathbb{Z}_{2})$, com $i \geq 5$ (os quais são nulos por razões dimensionais), com exceção de $(1+c)^{n+r-4}c^{x}A$. Assim, com exceção de $(1+c)^{n+r-4}$, os demais termos de W[l] nada contribuem em $f_{\omega}Xc^{d}$. Podemos, portanto, considerar W[l] módulo termos de dimensão positiva provenientes de $H^{*}(F^{4}, \mathbb{Z}_{2})$ em nossas computações; isto é, vamos analisar

$$W[l] \equiv (1+c)^{n+r-4}$$

para os valores r_i 's e s_j 's considerados na obtenção da classe X. Lembremos que n-4 =

 $2^{p}q$, ou seja, $n = 2^{p}q + 4$.

Para cada $r_i \in s_j$, consideremos os seus correspondentes $l_i \in l_j$. Então,

$$W[l_i] \equiv (1+c)^{n+r_i-4};$$

logo,

$$W[l_i]_{2r_i} = \binom{n+r_i-4}{2r_i}c^{2r_i}.$$

Sendo $r_i = 2^p - 2^{p-i}$ e $n = 2^p q + 4$, temos que

$$n + r_i - 4 = 2^p q + 4 + 2^p - 2^{p-i} - 4 = 2^p (q+1) - 2^{p-i} = 2^p (2^{t_s} + 2^{t_{s-1}} + \dots + 2^{t_1} + 2^{t_0}) - 2^{p-i},$$

onde $0 < t_0 < t_1 < \ldots < t_s$, já que q + 1 é um número par. Assim,

$$n + r_i - 4 = 2^{p+t_s} + \dots + 2^{p+t_1} + 2^{p+t_0} - 2^{p-i} =$$

= 2^{p+t_s} + \dots + 2^{p+t_1} + 2^{p+t_0-1} + 2^{p+t_0-2} + \dots + 2^{p-i}.

Por outro lado,

$$2r_i = 2^{p+1} - 2^{p+1-i} = 2^p + 2^{p-1} + \dots + 2^{p-i+1}$$

Como $t_0 > 0$, temos que $p + t_0 - 1 \ge p$ e, portanto, a expansão diádica de $2r_i$ está contida na expansão diádica de $n + r_i - 4$. Segue, pelo Corolário 1.13.1, que $\binom{n + r_i - 4}{2r_i} = 1$. Logo,

$$W[l_i]_{2r_i} = c^{2r_i}.$$

Agora,

$$W[l_j] \equiv (1+c)^{n+s_j-4},$$

e temos

$$W[l_j]_{2s_j+1} = \binom{n+s_j-4}{2s_j+1}c^{2s_j+1}$$

Sendo $s_j = 2^p - 1$, segue que

$$n + s_j - 4 = 2^p q + 4 + 2^p - 1 - 4 = 2^p (q + 1) - 1 =$$

= $2^p (2^{t_s} + 2^{t_{s-1}} + \dots + 2^{t_1} + 2^{t_0}) - 1 =$
= $2^{p+t_s} + \dots + 2^{p+t_1} + 2^{p+t_0} - 1 =$
= $2^{p+t_s} + \dots + 2^{p+t_1} + 2^{p+t_0-1} + 2^{p+t_0-2} + \dots + 2 + 1,$

onde $0 < t_0 < t_1 < \ldots < t_s$, e

$$2s_j + 1 = 2(2^p - 1) + 1 = 2^{p+1} - 1 = 2^p + 2^{p-1} + \dots + 2 + 1.$$

Pela mesma justificativa utilizada no caso anterior, temos que a expansão diádica de $2s_j + 1$ está contida na expansão diádica de $n + s_j - 4$ e, usando novamente o Corolário 1.13.1, segue que

$$W[l_j]_{2s_j+1} = c^{2s_j+1}$$

Assim, a classe X sobre $\mathbb{R}P(\eta)$ é dada por

$$X = c^{2r_1 + \dots + 2r_h + (2s_1 + 1) + \dots + (2s_t + 1)} + \dots$$

+ termos contendo elementos de dimensão positiva provenientes de $H^*(F^4, \mathbb{Z}_2) =$

$$= c^{m(n-4)} +$$

+ termos contendo elementos de dimensão positiva provenientes de $H^*(F^4, \mathbb{Z}_2)$.

Passemos agora a descrever as polinomiais f_{ω} anteriormente mencionadas. Em linhas gerais, tais polinomiais provêm de certas funções simétricas que podem ser associadas a fibrados linha genéricos $\gamma \mapsto V^n$, onde V^n é uma variedade fechada *n*-dimensional (e, em particular, aos fibrados linha usuais associados a fibrados projetivos), quando se leva em consideração o Princípio *Splitting*. Levando-se em conta tal princípio, sejam

$$W(V^n) = 1 + w_1 + \dots + w_n = (1 + x_1)(1 + x_2)\dots(1 + x_n),$$

е

$$W(\gamma) = 1 + c.$$

Sejam l um número natural e $\omega = (i_1, i_2, \dots, i_r)$ uma partição de l $(r \leq n)$. Temos, então, a função simétrica f_{ω} de grau 2l, dada por

$$f_{\omega} = \sum_{\substack{j_1 < j_2 < \cdots < j_r \\ 1 \le j_i \le n}} \sum_{\sigma \in S_r} x_{j_{\sigma(1)}}^{i_1} (c + x_{j_{\sigma(1)}})^{i_1} x_{j_{\sigma(2)}}^{i_2} (c + x_{j_{\sigma(2)}})^{i_2} \dots x_{j_{\sigma(r)}}^{i_r} (c + x_{j_{\sigma(r)}})^{i_r},$$

onde S_r é o grupo de permutações de r elementos. Como tal função é simétrica, ela pode ser expressa como uma polinomial nas variáveis w_i 's e c.

Para obter as nossas específicas f_{ω} , tomemos l = 4 e $\gamma \mapsto V^n$ como sendo o fibrado linha usual associado ao fibrado projetivo $\mathbb{R}P(\zeta^k)$, $\lambda \mapsto \mathbb{R}P(\zeta^k)$, onde $\zeta^k \mapsto B^n$ é um fibrado k-dimensional sobre uma variedade fechada n-dimensional B^n . Nesse caso, temos as partições $\omega = (1, 1, 1, 1), \ \omega = (1, 1, 2), \ \omega = (1, 3), \ \omega = (2, 2)$ e $\omega = (4)$, e a dimensão de f_{ω} será igual a 8.

O lema a seguir relaciona tais f_{ω} 's com as S_w 's da Seção 1.12, associadas ao fibrado $\tau^n \oplus \zeta^k \mapsto B^n$, sendo τ^n o fibrado tangente a B^n .

Lema 2.4.3. Para $\omega = (1, 1, 1, 1), \ \omega = (1, 1, 2), \ \omega = (1, 3), \ \omega = (2, 2) \ e \ \omega = (4) \ temos$

$$f_{\omega}(\lambda \mapsto \mathbb{R}P(\zeta^k)) = S_{\omega}(\tau^n \oplus \zeta^k)c^4 + termos envolvendo c^x, \ com \ x < 4.$$

Prova: Usando o Princípio *Splitting*, sejam

$$W(\tau^n) = (1+x_1)(1+x_2)\dots(1+x_n)$$
 e $W(\zeta^k) = (1+y_1)(1+y_2)\dots(1+y_k)$.

Pelo Teorema 1.8.2, sabemos que

$$W(\mathbb{R}P(\zeta^k)) = (1+z_1)(1+z_2)\dots(1+z_n)(1+z_{n+1})\dots(1+z_{n+k})$$

onde $z_j = x_j$, se $1 \le j \le n$ e $z_j = c + y_{j-n}$, se $n+1 \le j \le n+k$.

(1) Primeiro, mostremos que o resultado é válido para a partição $\omega = (1, 1, 1, 1)$. Lembremos que, nesse caso, S_{ω} é composto por monômios que são produtos de 4 variáveis distintas de grau 1, todas com potência 1. Como, pelo Princípio *Splitting*,

$$W(\tau^n \oplus \zeta^k) = (1+x_1)(1+x_2)\dots(1+x_n)(1+y_1)(1+y_2)\dots(1+y_k),$$

temos que

$$S_{\omega}(\tau^{n} \oplus \zeta^{k}) = \sum_{\substack{i < j < l < m \\ i < j < l < m }} x_{i}x_{j}x_{l}x_{m} + \sum_{\substack{i,j,l,m \\ i < j < l \\ m }} x_{i}x_{j}y_{l}y_{m} + \sum_{\substack{i,j,l,m \\ i < j < l < m }} x_{i}x_{j}y_{l}y_{l}y_{m} + \sum_{\substack{i,j,l,m \\ j < l < m }} y_{i}y_{j}y_{l}y_{m}.$$

Por outro lado, se $\lambda \mapsto V^n$ é qualquer fibrado linha com

$$W(\lambda) = 1 + c \ e \ W(V^n) = (1 + t_1)(1 + t_2) \dots (1 + t_n),$$

então f_{ω} é formado por todos os possíveis termos do tipo

$$t_i(c+t_i)t_j(c+t_j)t_l(c+t_l)t_m(c+t_m),$$

com i < j < l < m. Em particular, $f_{\omega}(\mathbb{R}P(\zeta^k))$ tem o formato

$$\sum_{i < j < l < m} z_i(c+z_i) z_j(c+z_j) z_l(c+z_l) z_m(c+z_m),$$

e com termos provenientes de cinco fontes:

(i) da parte $(1 + z_1)(1 + z_2) \dots (1 + z_n) = (1 + x_1)(1 + x_2) \dots (1 + x_n)$, a qual contribui com

$$\sum_{i < j < l < m} x_i(c+x_i) x_j(c+x_j) x_l(c+x_l) x_m(c+x_m);$$

(ii) da parte $(1 + z_{n+1})(1 + z_{n+2}) \dots (1 + z_{n+k}) = (1 + c + y_1)(1 + c + y_2) \dots (1 + c + y_k),$ que contribui com

$$\sum_{i < j < l < m} (c + y_i)(c + c + y_i)(c + y_j)(c + c + y_j)(c + y_l)(c + c + y_l)(c + c + y_m) = 0$$

$$= \sum_{i < j < l < m} y_i(c+y_i)y_j(c+y_j)y_l(c+y_l)y_m(c+y_m);$$

(iii) da mistura de um termo da forma $(1 + z_t)$, $1 \le t \le n$, com três termos da forma $(1 + z_t)$, $n + 1 \le t \le n + k$, o que contribui com

$$\sum_{\substack{i,j,l,m \ j < l < m}} x_i(c+x_i)(c+y_j)(c+c+y_j)(c+y_l)(c+c+y_l)(c+y_m)(c+c+y_m) =$$
$$= \sum_{\substack{i,j,l,m \ j < l < m}} x_i(c+x_i)y_j(c+y_j)y_l(c+y_l)y_m(c+y_m);$$

(iv) da mistura de dois termos da forma $(1 + z_t)$, $1 \le t \le n$, com dois termos da forma $(1 + z_t)$, $n + 1 \le t \le n + k$, o que contribui com

$$\sum_{\substack{i,j,l,m\\i< j \ e \ l< m}} x_i(c+x_i)x_j(c+x_j)(c+y_l)(c+c+y_l)(c+y_m)(c+c+y_m) =$$
$$= \sum_{\substack{i,j,l,m\\i< j \ e \ l< m}} x_i(c+x_i)x_j(c+x_j)y_l(c+y_l)y_m(c+y_m);$$

(v) da mistura de três termos da forma $(1 + z_t)$, $1 \le t \le n$, com um termo da forma $(1 + z_t)$, $n + 1 \le t \le n + k$, o que resulta em

$$\sum_{\substack{i,j,l,m \ i < j < l}} x_i(c+x_i) x_j(c+x_j) x_l(c+x_l)(c+y_m)(c+c+y_m) = x_i(c+x_i) x_j(c+x_j) x_l(c+x_j) x_l(c+x_$$

$$= \sum_{\substack{i,j,l,m \\ i < j < l}} x_i(c+x_i) x_j(c+x_j) x_l(c+x_l) y_m(c+y_m).$$

Na parte (i), em cada termo

$$x_i(c+x_i)x_j(c+x_j)x_l(c+x_l)x_m(c+x_m)$$

do somatório, o monômio com maior potência de c é $x_i x_j x_l x_m c^4$. Portanto,

$$x_i(c+x_i)x_j(c+x_j)x_l(c+x_l)x_m(c+x_m) = x_ix_jx_lx_mc^4 + \text{ termos com } c^x, x < 4.$$

Analogamente, das partes (ii) a (v) obtemos, respectivamente,

$$\begin{aligned} y_i(c+y_i)y_j(c+y_j)y_l(c+y_l)y_m(c+y_m) &= y_iy_jy_ly_mc^4 + \text{ termos com } c^x, x < 4, \\ x_i(c+x_i)y_j(c+y_j)y_l(c+y_l)y_m(c+y_m) &= x_iy_jy_ly_mc^4 + \text{ termos com } c^x, x < 4, \\ x_i(c+x_i)x_j(c+x_j)y_l(c+y_l)y_m(c+y_m) &= x_ix_jy_ly_mc^4 + \text{ termos com } c^x, x < 4 \\ e x_i(c+x_i)x_j(c+x_j)x_l(c+x_l)y_m(c+y_m) &= x_ix_jx_ly_mc^4 + \text{ termos com } c^x, x < 4. \end{aligned}$$

Juntando tais fatos, concluímos que

$$\begin{split} f_{\omega}(\mathbb{R}P(\zeta^{k})) &= \left[\left(\sum_{\substack{i < j < l < m \\ i < j < l < m }} x_{i}x_{j}x_{l}x_{m} \right) c^{4} + \text{ termos com } c^{x}, x < 4 \right] + \\ &+ \left[\left(\sum_{\substack{i < j < l < m \\ j < l < m }} x_{i}y_{j}y_{l}y_{m} \right) c^{4} + \text{ termos com } c^{x}, x < 4 \right] + \\ &+ \left[\left(\sum_{\substack{i < j < l < m \\ i < j \ e \ l < m }} x_{i}x_{j}y_{l}y_{m} \right) c^{4} + \text{ termos com } c^{x}, x < 4 \right] + \\ &+ \left[\left(\sum_{\substack{i < j < l < m \\ i < j \ e \ l < m }} x_{i}x_{j}x_{l}y_{l}y_{m} \right) c^{4} + \text{ termos com } c^{x}, x < 4 \right] + \\ &+ \left[\left(\sum_{\substack{i < j < l < m \\ i < j \ e \ l < m }} x_{i}x_{j}x_{l}y_{m} \right) c^{4} + \text{ termos com } c^{x}, x < 4 \right] = \\ &= \left[\left(\sum_{\substack{i < j < l < m \\ i < j \ e \ l < m }} x_{i}x_{j}x_{l}x_{m} \right) + \left(\sum_{\substack{i < j < l < m \\ i < j < l \ m }} x_{i}x_{j}y_{l}y_{m} \right) \right] c^{4} + \text{ termos com } c^{x}, x < 4 = \\ &= S_{\omega}(\tau^{n} \oplus \zeta^{k})c^{4} + \text{ termos com } c^{x}, x < 4, \end{split}$$

o que prova o resultado para $\omega = (1, 1, 1, 1)$.

A análise para as demais partições é feita de maneira análoga ao caso $\omega = (1, 1, 1, 1)$. Levando-se em conta que $f_{\omega}(\mathbb{R}P(\zeta^k))$ tem os formatos

•
$$\sum_{\substack{i,j,l\\i< j}} z_i(c+z_i) z_j(c+z_j) z_l^2(c+z_l)^2,$$

•
$$\sum_{i< j} z_i^2(c+z_i)^2 z_j^2(c+z_j)^2,$$

•
$$\sum_{i,j} z_i(c+z_i) z_j^3(c+z_j)^3 e$$

•
$$\sum_i z_i^4(c+z_i)^4,$$

para $\omega = (1, 1, 2), \, \omega = (2, 2), \, \omega = (1, 3)$ e $\omega = (4)$, respectivamente, temos

$$(3) \quad f_{(2,2)}(\mathbb{R}P(\zeta^{k})) = \left[\left(\sum_{i < j} x_{i}^{2} x_{j}^{2} \right) c^{4} + \text{ termos com } c^{x}, x < 4 \right] + \\ + \left[\left(\sum_{i < j} x_{i}^{2} y_{j}^{2} \right) c^{4} + \text{ termos com } c^{x}, x < 4 \right] + \\ + \left[\left(\sum_{i < j} y_{i}^{2} y_{j}^{2} \right) c^{4} + \text{ termos com } c^{x}, x < 4 \right] = \\ = \left[\left(\sum_{i < j} x_{i}^{2} x_{j}^{2} \right) + \left(\sum_{i < j} x_{i}^{2} y_{j}^{2} \right) + \left(\sum_{i < j} y_{i}^{2} y_{j}^{2} \right) \right] c^{4} + \\ + \text{ termos com } c^{x}, x < 4 = \\ = S_{(2,2)}(\tau^{n} \oplus \zeta^{k}) c^{4} + \text{ termos com } c^{x}, x < 4;$$

$$\begin{array}{rcl} (4) & f_{(1,3)}(\mathbb{R}P(\zeta^k)) &= \left[\left(\sum_{i,j} x_i x_j^3 \right) c^4 + \text{ termos com } c^x, x < 4 \right] + \\ &+ \left[\left(\sum_{i,j} x_i y_j^3 \right) c^4 + \text{ termos com } c^x, x < 4 \right] + \\ &+ \left[\left(\sum_{i,j} y_i y_j^3 \right) c^4 + \text{ termos com } c^x, x < 4 \right] + \\ &+ \left[\left(\sum_{i,j} x_i x_j^3 \right) + \left(\sum_{i,j} x_i y_j^3 \right) + \left(\sum_{i,j} y_i x_j^3 \right) + \left(\sum_{i,j} y_i y_j^3 \right) \right] c^4 + \\ &+ \text{ termos com } c^x, x < 4 = \\ &= S_{(1,3)}(\tau^n \oplus \zeta^k) c^4 + \text{ termos com } c^x, x < 4] + \\ &+ \left[\left(\sum_{i,j} x_i^4 \right) c^4 + \text{ termos com } c^x, x < 4 \right] + \\ &+ \left[\left(\sum_{i,j} y_i^4 \right) c^4 + \text{ termos com } c^x, x < 4 \right] = \\ \end{array}$$

$$= \left[\left(\sum_{i} x_{i}^{4} \right) + \left(\sum_{i} y_{i}^{4} \right) \right] c^{4} + \text{ termos com } c^{x}, x < 4 =$$
$$= S_{(4)}(\tau^{n} \oplus \zeta^{k}) c^{4} + \text{ termos com } c^{x}, x < 4.$$

Agora, estamos em condições de provar o Lema 2.4.2, que é o nosso principal objetivo. Ou seja, vamos provar que, se m > m(n-4)+8, então $V_1^4[F^4] = 0$, $V_1^2V_2[F^4] = 0$, $V_2^2[F^4] = 0$, $V_1V_3[F^4] = 0$ e $V_4[F^4] = 0$, onde V_1 , V_2 , V_3 e V_4 são as classes de *Stiefel-Whitney* do fibrado $\tau \oplus \eta \mapsto F^4$.

Prova (Lema 2.4.2): Conforme discutido anteriormente, consideremos a polinomial $f_{\omega}Xc^{y}$, onde y = m - 1 - (m(n-4) + 8). Para que essa polinomial se anule sobre $\mathbb{R}P(\mu)$ (por razões dimensionais) vimos que é suficiente que f_{ω} tenha dimensão 8 e que cada um de seus monômios seja da forma $c^{x}A$, com A proveniente de $H^{*}(F^{n}, \mathbb{Z}_{2})$ e tal que dim $(A) \geq 4$. Pelo Lema 2.4.3, temos que $f_{\omega}(\mathbb{R}P(\mu)) = S_{\omega}(\tau^{n} \oplus \mu)c^{4} + \text{ termos com } c^{x}, x < 4$, onde τ^{n} é o fibrado tangente a F^{n} e ω é igual a (1, 1, 1, 1), (1, 1, 2), (2, 2), (1, 3) ou (4). Como $S_{\omega}(\tau^{n} \oplus \mu)$ se expressa nas classes características de $\tau^{n} \oplus \mu$ (as quais provêm da cohomologia de F^{n}), temos que para tais ω

$$f_{\omega} X c^{y} [\mathbb{R} P(\mu)] = 0.$$

Por outro lado, usando o Lema 2.4.3 e o cálculo da classe X para $\mathbb{R}P(\eta)$ feito

anteriormente, temos que

$$f_{\omega}Xc^{y}[\mathbb{R}P(\eta)] = \left(S_{\omega}(\tau \oplus \eta)c^{4} + \text{ termos contendo } c^{x}, \text{ com } x < 4\right) \cdot \cdot \left(c^{m(n-4)} + \text{ termos contendo elementos com dimensão positiva provenientes de } H^{*}(F^{4}, \mathbb{Z}_{2})\right)c^{y}[\mathbb{R}P(\eta)].$$

Observemos que cada termo contendo elementos com dimensão positiva provenientes de $H^*(F^4, \mathbb{Z}_2)$ multiplicado por $S_{\omega}(\tau \oplus \eta)$ é igual a zero, uma vez que $S_{\omega}(\tau \oplus \eta) \in H^4(F^4, \mathbb{Z}_2)$. Logo,

$$f_{\omega}Xc^{y}[\mathbb{R}P(\eta)] = \left(S_{\omega}(\tau \oplus \eta)c^{m(n-4)+4+y} + \text{ termos envolvendo } c^{x}, \\ \operatorname{com} x < m(n-4) + 4 + y\right)[\mathbb{R}P(\eta)].$$

Notemos também que cada termo envolvendo c^x , com x < m(n-4) + 4 + y = m - 5(lembrando que y = m - 1 - (m(n-4) + 8)), tem necessariamente um termo proveniente de $H^*(F^4, \mathbb{Z}_2)$ com dimensão > 4 e, portanto, é igual a zero. Assim,

$$f_{\omega} X c^{y}[\mathbb{R}P(\eta)] = S_{\omega}(\tau \oplus \eta) c^{m-5}[\mathbb{R}P(\eta)].$$

Agora, sendo $H^*(\mathbb{R}P(\eta),\mathbb{Z}_2)$ um $H^*(F^4,\mathbb{Z}_2)$ -módulo livre gerado por $1, c, c^2, \ldots, c^{m-5}$ (Teorema 1.6.2), concluímos que

$$f_{\omega} X c^{y}[\mathbb{R}P(\eta)] = S_{\omega}(\tau \oplus \eta) c^{m-5}[\mathbb{R}P(\eta)] = S_{\omega}(\tau \oplus \eta)[F^{4}].$$

Mas, por [19, p.189] temos que

$$S_{\omega}(\tau \oplus \eta) = \begin{cases} V_4(\tau \oplus \eta), & \text{se } \omega = (1, 1, 1, 1) \\ V_1 V_3(\tau \oplus \eta), & \text{se } \omega = (1, 1, 2), \\ V_2^2(\tau \oplus \eta), & \text{se } \omega = (2, 2), \\ V_1^2 V_2(\tau \oplus \eta) + V_1 V_3(\tau \oplus \eta), & \text{se } \omega = (1, 3) \text{ e} \\ V_1^4(\tau \oplus \eta), & \text{se } \omega = (4). \end{cases}$$

Logo,

$$f_{\omega}Xc^{y}[\mathbb{R}P(\eta)] = \begin{cases} V_{4}[F^{4}], & \text{se } \omega = (1,1,1,1), \\ V_{1}V_{3}[F^{4}], & \text{se } \omega = (1,1,2), \\ V_{2}^{2}[F^{4}], & \text{se } \omega = (2,2), \\ (V_{1}^{2}V_{2} + V_{1}V_{3})[F^{4}], & \text{se } \omega = (1,3) \text{ e} \\ V_{1}^{4}[F^{4}], & \text{se } \omega = (4). \end{cases}$$

Como $f_{\omega}Xc^{y}[\mathbb{R}P(\eta)] = f_{\omega}Xc^{y}[\mathbb{R}P(\mu)] = 0$, temos o seguinte sistema de equações

$$V_4[F^4] = 0$$

$$V_1V_3[F^4] = 0$$

$$V_2^2[F^4] = 0$$

$$(V_1^2V_2 + V_1V_3)[F^4] = 0$$

$$V_1^4[F^4] = 0$$

cuja única solução é dada por $V_4[F^4] = V_1V_3[F^4] = V_2^2[F^4] = V_1^2V_2[F^4] = V_1^4[F^4] = 0.$ Isso encerra a prova do Lema 2.4.2 (e, consequentemente, do Lema 2.4.1).

A tarefa acima realizada reduz o nosso trabalho, conforme já explicado, a provar o seguinte fato: se (M^m, T) é uma involução com *fixed-data*

$$(\mu \mapsto F^n) \cup (\eta \mapsto F^4),$$

onde η pertence às classes β_i , $1 \le i \le 15$, descritas na tabela 2.2, então $m \le m(n-4)+8$. Mostraremos que tal resultado é válido para toda classe β_i , $1 \le i \le 15$, com exceção de β_3 , se $n \equiv 0 \mod 4$, β_1 , $\beta_8 \in \beta_9$, se $n \equiv 2 \mod 8$, e β_1 , $\beta_{10} \in \beta_{11}$, se $n \equiv 6 \mod 8$.

Observação 2.4.1. Acreditamos que o limitante $m \le m(n-4) + 8$ também é válido para esses casos pendentes; entretanto, não foi possível provar tais resultados com a utilização de nossas técnicas e os mesmos continuam em aberto.

Para facilitar a nossa tarefa, estabeleceremos algumas notações que serão utilizadas até o final deste capítulo. Manteremos as notações previamente estabelecidas:

$$W(F^n) = 1 + \theta_1 + \dots + \theta_n$$
 e $W(\mu) = 1 + u_1 + \dots + u_k$

(onde k = m - n) para as classes de *Stiefel-Whitney* do fibrado $\mu \mapsto F^n$;

$$W(F^4) = 1 + w_1 + w_2 + w_3 + w_4$$
 e $W(\eta) = 1 + v_1 + v_2 + v_3 + v_4$

para as classes de *Stiefel-Whitney* do fibrado $\eta \mapsto F^4$, reforçando o fato de que η é um fibrado pertencente a uma das classes β_i , $1 \le i \le 15$.

Lembremos que os fibrados linha usuais, $\xi \mapsto \mathbb{R}P(\mu)$ e $\lambda \mapsto \mathbb{R}P(\eta)$, são cobordantes como elementos de $\mathcal{N}_{m-1}(BO(1))$ e denotemos por

$$W(\xi) = 1 + c$$
 e $W(\lambda) = 1 + d$

as classes de Stiefel-Whitney de tais fibrados. Usaremos as classes $W[0] \in W[1]$ sobre

 $\mathbb{R}P(\mu)$ e as suas respectivas classes correspondentes, $W[n-4] \in W[n-3]$ sobre $\mathbb{R}P(\eta)$, as quais descreveremos a seguir.

Observação 2.4.2. Nos cálculos a seguir envolvendo binômios e nas próximas subseções (2.4.1 e 2.4.2), utilizaremos o Corolário 1.13.1.

Sobre $\mathbb{R}P(\mu)$, temos

$$W[0] = (1 + \theta_1 + \theta_2 + \dots + \theta_n) \left[1 + \frac{u_1}{1+c} + \frac{u_2}{(1+c)^2} + \dots + \frac{u_k}{(1+c)^k} \right],$$

de onde obtemos as classes

- $W[0]_1 = \theta_1 + u_1,$
- $W[0]_2 = u_1c + u_2 + \theta_1u_1 + \theta_2$ e
- $W[0]_3 = u_1c^2 + \theta_1u_1c + u_3 + \theta_1u_2 + \theta_2u_1 + \theta_3.$

Sobre $\mathbb{R}P(\eta)$, temos a classe correspondente a W[0], dada por

$$W[n-4] = (1+w_1+w_2+w_3+w_4)[(1+d)^{n-4}+(1+d)^{n-5}v_1+(1+d)^{n-6}v_2+(1+d)^{n-7}v_3+(1+d)^{n-8}v_4],$$

da qual obtemos

•
$$W[n-4]_1 = \binom{n-4}{1}d + w_1 + v_1 = \begin{cases} d+w_1+v_1, & \text{se } n \text{ é impar,} \\ w_1+v_1, & \text{se } n \text{ é par,} \end{cases}$$

• $W[n-4]_2 = \binom{n-4}{2}d^2 + \binom{n-5}{1}v_1d + \binom{n-4}{1}w_1d + v_2 + w_1v_1 + w_2 = \\ = \begin{cases} \binom{n-4}{2}d^2 + w_1d + v_2 + w_1v_1 + w_2, & \text{se } n \text{ é impar,} \\ \binom{n-4}{2}d^2 + v_1d + v_2 + w_1v_1 + w_2, & \text{se } n \text{ é par,} \end{cases}$

е

•
$$W[n-4]_3 = \binom{n-4}{3}d^3 + \binom{n-5}{2}v_1d^2 + \binom{n-4}{2}w_1d^2 + \binom{n-6}{1}v_2d + \binom{n-5}{1}w_1v_1d + \binom{n-4}{1}w_2d + v_3 + w_1v_2 + w_2v_1 + w_3 =$$

= $\binom{n-5}{2}v_1d^2 + \binom{n-4}{2}w_1d^2 + w_1v_1d + v_3 + w_1v_2 + w_2v_1 + w_3,$
se $n \notin par$

n e par.
Sobre $\mathbb{R}P(\mu)$, temos também a classe

$$W[1] = (1 + \theta_1 + \theta_2 + \dots + \theta_n) \left[1 + c + u_1 + \frac{u_2}{1 + c} + \frac{u_3}{(1 + c)^2} + \dots + \frac{u_k}{(1 + c)^{k-1}} \right]$$

de onde obtemos

- $W[1]_2 = \theta_1 c + u_2 + \theta_1 u_1 + \theta_2$ e
- $W[1]_3 = (u_2 + \theta_2)c + u_3 + \theta_1 u_2 + \theta_2 u_1 + \theta_3.$

Sobre $\mathbb{R}P(\eta)$, temos a classe correspondente a W[1], dada por

$$W[n-3] = (1+w_1+w_2+w_3+w_4)[(1+d)^{n-3}+(1+d)^{n-4}v_1+(1+d)^{n-5}v_2+(1+d)^{n-6}v_3+(1+d)^{n-7}v_4],$$

da qual obtemos

•
$$W[n-3]_2 = \binom{n-3}{2}d^2 + \binom{n-4}{1}v_1d + \binom{n-3}{1}w_1d + v_2 + w_1v_1 + w_2 =$$

 $= \binom{n-3}{2}d^2 + w_1d + v_2 + w_1v_1 + w_2$, se $n \in par$,
e
• $W[n-3]_3 = \binom{n-3}{3}d^3 + \binom{n-4}{2}v_1d^2 + \binom{n-3}{2}w_1d^2 + \binom{n-5}{1}v_2d + \binom{n-3}{1}w_2d +$
 $+ \binom{n-4}{1}w_1v_1d + v_3 + w_1v_2 + w_2v_1 + w_3 = \binom{n-3}{3}d^3 + \binom{n-4}{2}v_1d^2 +$

$$+\binom{n-3}{2}w_1d^2 + (v_2+w_2)d + v_3 + w_1v_2 + w_2v_1 + w_3, \text{ se } n \text{ é par.}$$

A análise do problema será dividida em dois casos: $n \ge 7$ ímpar (subseção 2.4.1) e $n \ge 6$ par (subseção 2.4.2).

2.4.1 Caso n impar

Observação 2.4.3. Como estamos considerando n ímpar, temos que n-4 também é ímpar. Assim, m(n-4) + 8 = (n-4) + 1 + 8 = n + 5 (vide Seção 1.9).

Essa subseção será dedicada à demonstração do seguinte resultado:

Proposição 2.4.1. Seja (M^m, T) uma involução cujo conjunto fixado tem a forma $F = F^n \cup F^4$, onde $n \ge 7$ é ímpar, e tal que o fibrado normal sobre F^4 pertence a uma das classes β_i , $1 \le i \le 15$, descritas na tabela 2.2. Então, se k é a codimensão de F^n , $k \le 5$.

Mais do que isso, se o fibrado normal pertence a uma das classes: (i) β_2 , β_3 , β_6 , β_7 , β_8 , β_9 , β_{12} , β_{13} , com $n \equiv 1 \mod 4$, ou β_2 , β_3 , β_4 , β_5 , β_8 , β_9 , β_{14} , β_{15} , com $n \equiv 3 \mod 4$, então $k \leq 1$; (ii) β_1 , β_4 , β_5 , β_{11} , β_{14} , β_{15} , com $n \equiv 1 \mod 4$, ou β_1 , β_6 , β_7 , β_{11} , β_{12} , β_{13} , com $n \equiv 3 \mod 4$, então $k \leq 3$.

Prova: Para demonstrar esse resultado, utilizaremos polinomiais construídas a partir das classes $W[0]_1 e W[0]_2$ (associadas a $\mathbb{R}P(\mu)$) e das suas respectivas classes correspondentes, $W[n-4]_1 e W[n-4]_2$ (associadas a $\mathbb{R}P(\eta)$). Dividiremos a prova em 4 partes (de (A) a (D)), em cada qual trabalharemos com uma dessas polinomiais. Na parte (A), será demonstrado o item (i) e nas partes (B) e (C), o item (ii). Para finalizar, mostraremos na parte (D) que, se o fibrado normal pertence à classe $\beta_{10} e n \acute{e}$ ímpar, então $k \leq 5$. (A) Suponhamos k > 1 e consideremos a classe $W[0]_1 = \theta_1 + u_1$. A partir de $W[0]_1$, definimos a classe

$$W[0]_1^{n+1}c^{k-2}$$

cuja dimensão é n+k-1, podendo, portanto, ser avaliada na classe fundamental $[\mathbb{R}P(\mu)]$.

Notemos que $W[0]_1^{n+1} = 0$, pois os seus termos têm dimensão n + 1 e são provenientes da cohomologia de F^n . Assim,

$$W[0]_1^{n+1}c^{k-2}[\mathbb{R}P(\mu)] = 0.$$

Então, como consequência do Teorema 1.7.2, temos que o número característico associado a $\mathbb{R}P(\eta)$ e correspondente a $W[0]_1^{n+1}c^{k-2}[\mathbb{R}P(\mu)]$,

$$W[n-4]_1^{n+1}d^{k-2}[\mathbb{R}P(\eta)],$$

é nulo. Calculemos explicitamente tal número.

Utilizando-se os fatos de que n + 1 é par e que toda classe de dimensão > 4 provinda da cohomologia de F^4 é nula, temos

$$W[n-4]_1^{n+1}d^{k-2} = (d+w_1+v_1)^{n+1}d^{k-2} =$$

= $\sum_{j=0}^{n+1} {\binom{n+1}{j}}(w_1+v_1)^j d^{n+1-j}d^{k-2} =$
= $d^{n+k-1} + {\binom{n+1}{2}}(w_1^2+v_1^2)d^{n+k-3} + {\binom{n+1}{4}}(w_1^4+v_1^4)d^{n+k-5}.$

Como decorrência da fórmula de Conner (Seção 1.10) temos que, se $x \in$

 $H^t(F^4, \mathbb{Z}_2)$, com $t \leq 4$ e t + l = n + k - 1, então

$$xd^{l} [\mathbb{R}P(\eta)] = x\overline{v}_{4-t}[F^{4}],$$

onde $\overline{W(\eta)} = 1 + \overline{v}_1 + \overline{v}_2 + \overline{v}_3 + \overline{v}_4$ é a *classe dual* de $W(\eta)$, com

- $\overline{v}_1 = v_1$,
- $\overline{v}_2 = v_1^2 + v_2$,
- $\overline{v}_3 = v_1^3 + v_3$ e
- $\overline{v}_4 = v_1^4 + v_2^2 + v_1^2 v_2 + v_4.$

Com isso em mente, temos

$$W[n-4]_{1}^{n+1}d^{k-2}[\mathbb{R}P(\eta)] = \left(d^{n+k-1} + \binom{n+1}{2}(w_{1}^{2}+v_{1}^{2})d^{n+k-3} + \binom{n+1}{4}(w_{1}^{4}+v_{1}^{4})d^{n+k-5}\right)[\mathbb{R}P(\eta)] = \left(\overline{v}_{4} + \binom{n+1}{2}(w_{1}^{2}+v_{1}^{2})\overline{v}_{2} + \binom{n+1}{4}(w_{1}^{4}+v_{1}^{4})\right)[F^{4}].$$

Agora, sabendo-se que $\binom{n+1}{2}, \binom{n+1}{4}$ é igual a (1,0), (0,1), (1,1) e (0,0) para os casos $n \equiv 1 \mod 8, n \equiv 3 \mod 8, n \equiv 5 \mod 8$ e $n \equiv 7 \mod 8$, respectivamente, temos que

$$W[n-4]_1^{n+1}d^{k-2}[\mathbb{R}P(\eta)] = \begin{cases} (w_2v_2 + v_4 + w_1^2v_1^2)[F^4], & \text{se } n \equiv 1 \mod 8, \\ (v_2^2 + v_1^2v_2 + v_4 + w_1^4)[F^4], & \text{se } n \equiv 3 \mod 8, \\ (w_2v_2 + v_4 + w_2v_1^2 + w_1^4)[F^4], & \text{se } n \equiv 5 \mod 8, \\ (v_1^4 + v_2^2 + v_1^2v_2 + v_4)[F^4], & \text{se } n \equiv 7 \mod 8, \end{cases}$$

que, por sua vez (e pelo o que comentamos anteriormente), é igual a zero.

Observação 2.4.4. Nos cálculos acima, foram utilizadas as relações $w_2v_1^2 = w_1^2v_1^2 + v_1^4$ e $w_1^2v_2 = v_2^2 + w_2v_2$, descritas no Lema 2.2.2.

Analisando a tabela 2.2, observamos que as classes de fibrados

$$\beta_2, \beta_3, \beta_6, \beta_7, \beta_8, \beta_9, \beta_{12} \in \beta_{13}$$

não satisfazem as relações

$$w_2v_2 + v_4 + w_1^2v_1^2 = 0$$

е

$$w_2v_2 + v_4 + w_2v_1^2 + w_1^4 = 0.$$

Logo,

se
$$n \equiv 1 \mod 4$$
e o fibrado normal sobre F^4 pertence a uma das classes
 $\beta_2, \beta_3, \beta_6, \beta_7, \beta_8, \beta_9, \beta_{12}$ ou β_{13} ,
então $k \leq 1$.

Observemos, também, que as classes

$$\beta_2, \beta_3, \beta_4, \beta_5, \beta_8, \beta_9, \beta_{14} \in \beta_{15}$$

não satisfazem as relações

$$v_2^2 + v_1^2 v_2 + v_4 + w_1^4 = 0$$
 e $v_1^4 + v_2^2 + v_1^2 v_2 + v_4 = 0.$

Portanto,

se
$$n \equiv 3 \mod 4$$
 e o fibrado normal sobre F^4 pertence a uma das classes
 $\beta_2, \beta_3, \beta_4, \beta_5, \beta_8, \beta_9, \beta_{14}$ ou $\beta_{15},$
então $k \leq 1$.

Dessa forma, encerramos a demonstração da parte (i) da Proposição 2.4.1.

(B) Suponhamos que k > 3 e consideremos a classe

$$W[0]_1^{n+3}c^{k-4}.$$

Sendo $W[0]_1^{n+3} = (\theta_1 + u_1)^{n+3} = 0$, pois é uma classe (n+3)-dimensional composta por elementos da cohomologia de F^n , temos que

$$W[0]_1^{n+3}c^{k-4}[\mathbb{R}P(\mu)] = 0.$$

Analisemos o número característico correspondente, associado a $\mathbb{R}P(\eta)$,

$$W[n-4]_1^{n+3} d^{k-4} [\mathbb{R}P(\eta)].$$

Com
on+3é par e toda classe de dimensão >4 provinda da co
homologia de F^4 é nula,

temos

$$W[n-4]_{1}^{n+3}d^{k-4} = (d+w_{1}+v_{1})^{n+3}d^{k-4} =$$

$$= \sum_{j=0}^{n+3} \binom{n+3}{j}(w_{1}+v_{1})^{j}d^{n+3-j}d^{k-4} =$$

$$= d^{n+k-1} + \binom{n+3}{2}(w_{1}^{2}+v_{1}^{2})d^{n+k-3} + \binom{n+3}{4}(w_{1}^{4}+v_{1}^{4})d^{n+k-5}$$

e, utilizando-se as propriedades da classe dual de $W(\eta)$, segue que

$$W[n-4]_1^{n+3}d^{k-4}[\mathbb{R}P(\eta)] = \left(\overline{v}_4 + \binom{n+3}{2}(w_1^2 + v_1^2)\overline{v}_2 + \binom{n+3}{4}(w_1^4 + v_1^4)\right)[F^4].$$

Notemos que $\binom{n+3}{2}, \binom{n+3}{4}$ é igual a (0,1), (1,1), (0,0) e (1,0) para $n \equiv 1 \mod 8, n \equiv 3 \mod 8, n \equiv 5 \mod 8$ e $n \equiv 7 \mod 8$, respectivamente. Daí,

$$W[n-4]_{1}^{n+3}d^{k-4}[\mathbb{R}P(\eta)] = \begin{cases} (v_{2}^{2}+v_{1}^{2}v_{2}+v_{4}+w_{1}^{4})[F^{4}], & \text{se } n \equiv 1 \mod 8, \\ (w_{2}v_{2}+v_{4}+w_{2}v_{1}^{2}+w_{1}^{4})[F^{4}], & \text{se } n \equiv 3 \mod 8, \\ (v_{1}^{4}+v_{2}^{2}+v_{1}^{2}v_{2}+v_{4})[F^{4}], & \text{se } n \equiv 5 \mod 8, \\ (w_{2}v_{2}+v_{4}+w_{1}^{2}v_{1}^{2})[F^{4}], & \text{se } n \equiv 7 \mod 8, \end{cases}$$

que é igual a zero, como consequência do Teorema 1.7.2.

Observemos que as relações obtidas acima para $n \equiv 1 \mod 4$ são as mesmas que foram obtidas no caso anterior (parte (A)) para $n \equiv 3 \mod 4$; da mesma forma, as relações obtidas acima para $n \equiv 3 \mod 4$ são as mesmas que foram obtidas no caso anterior para $n \equiv 1 \mod 4$. Assim, temos os seguintes resultados:

se $n \equiv 1$	mod 4 e o fibrado normal sobre F^4 pertence a uma das classes	
$\beta_4, \beta_5, \beta_{14} \text{ ou } \beta_{15},$		
então $k \leq 3;$		

se $n \equiv 3 \mod$	od 4 e o fibrado normal sobre F^4 pertence a uma das classes
	$\beta_6, \beta_7, \beta_{12}$ ou $\beta_{13},$
	então $k \leq 3$.

O que foi feito acima prova parte do item (ii) da Proposição 2.4.1. Resta mostrar que, se n é ímpar e o fibrado normal sobre F^4 pertence às classes β_1 ou β_{11} , então $k \leq 3$; isso será feito na parte (C), a seguir. (C) Assim como na parte (B), suponhamos k > 3. Consideremos a classe

$$W[0]_1^{n-1}W[0]_2^2c^{k-4}$$

Primeiramente, observemos que todos os monômios de

$$W[0]_1^{n-1}W[0]_2^2 = (\theta_1 + u_1)^{n-1}(u_1c + u_2 + \theta_1u_1 + \theta_2)^2$$

possuem um termo proveniente da cohomologia de F^n com dimensão, no mínimo, igual a n+1. Logo,

$$W[0]_1^{n-1}W[0]_2^2 c^{k-4}[\mathbb{R}P(\mu)] = 0.$$

Como consequência do Teorema 1.7.2, temos então que

$$W[n-4]_1^{n-1}W[n-4]_2^2 d^{k-4}[\mathbb{R}P(\eta)] = 0.$$

Calculemos explicitamente o número característico $W[n-4]_1^{n-1}W[n-4]_2^2d^{k-4}[\mathbb{R}P(\eta)].$

Agora, utilizando-se o fato de que n-1 é par e que toda classe de dimensão > 4 provinda da cohomologia de F^4 é nula, temos

$$W[n-4]_{2}^{2} = \binom{n-4}{2}d^{4} + w_{1}^{2}d^{2} + v_{2}^{2} + w_{1}^{2}v_{1}^{2} + w_{2}^{2}$$

е

$$W[n-4]_{1}^{n-1} = (d+w_{1}+v_{1})^{n-1} =$$

$$= \sum_{j=0}^{n-1} {\binom{n-1}{j}} (w_{1}+v_{1})^{j} d^{n-1-j} =$$

$$= d^{n-1} + {\binom{n-1}{2}} (w_{1}^{2}+v_{1}^{2}) d^{n-3} + {\binom{n-1}{4}} (w_{1}^{4}+v_{1}^{4}) d^{n-5}.$$

Assim, sabendo-se que $\binom{n-1}{2}, \binom{n-1}{4}, \binom{n-4}{2}$ é igual a (0,0,0), (1,0,1), (0,1,0) e (1,1,1) para $n \equiv 1 \mod 8, n \equiv 3 \mod 8, n \equiv 5 \mod 8$ e $n \equiv 7 \mod 8$, respectivamente, segue que

$$W[n-4]_1^{n-1}W[n-4]_2^2d^{k-4} = \\ = \begin{cases} w_1^2d^{n+k-3} + (v_2^2 + w_1^2v_1^2 + w_2^2)d^{n+k-5}, & \text{se } n \equiv 1 \mod 4, \\ d^{n+k-1} + v_1^2d^{n+k-3} + (v_2^2 + w_2^2 + w_1^4)d^{n+k-5}, & \text{se } n \equiv 3 \mod 4. \end{cases}$$

Pelas propriedades da classe dual e utilizando-se a relação $w_1^2v_2 + v_2^2 = w_2v_2$ (fornecida pelo item (h) do Lema 2.2.2), temos então

$$W[n-4]_1^{n-1}W[n-4]_2^2d^{k-4}[\mathbb{R}P(\eta)] =$$

$$= \begin{cases} (w_1^2\overline{v}_2 + v_2^2 + w_1^2v_1^2 + w_2^2)[F^4] = (w_2v_2 + w_2^2)[F^4], & \text{se } n \equiv 1 \mod 4, \\ (\overline{v}_4 + v_1^2\overline{v}_2 + v_2^2 + w_2^2 + w_1^4)[F^4] = (v_4 + w_2^2 + w_1^4)[F^4], & \text{se } n \equiv 3 \mod 4, \end{cases}$$

que é igual a zero, conforme comentamos acima.

Analisando a tabela 2.2, notemos que as classes β_1 e β_{11} não satisfazem as relações

$$w_2v_2 + w_2^2 = 0$$
 e $v_4 + w_2^2 + w_1^4 = 0$

Logo,

se n é ímpar e o fibrado normal sobre F^4 pertence às classes
$\beta_1 \text{ ou } \beta_{11},$
então $k \leq 3$.

Com isso, encerramos a prova do item (ii). Para finalizar a demonstração da proposição, mostraremos, a seguir, que para os fibrados pertencentes à classe β_{10} vale $k \leq 5$.

(D) Suponhamos k > 5 e consideremos a classe

$$W[0]_1^{n-1}W[0]_2^3c^{k-6}.$$

Observemos que todos os monômios de

$$W[0]_1^{n-1}W[0]_2^3 = (\theta_1 + u_1)^{n-1}(u_1c + u_2 + \theta_1u_1 + \theta_2)^3$$

possuem um termo proveniente da cohomologia de ${\cal F}^n$ com dimensão, no mínimo, igual an+1.Logo,

$$W[0]_1^{n-1} W[0]_2^3 c^{k-6} [\mathbb{R}P(\mu)] = 0.$$

Analisemos o número característico correspondente,

$$W[n-4]_1^{n-1}W[n-4]_2^3 d^{k-6}[\mathbb{R}P(\eta)].$$

Na parte (C), vimos que

$$W[n-4]_1^{n-1} = d^{n-1} + \binom{n-1}{2}(w_1^2 + v_1^2)d^{n-3} + \binom{n-1}{4}(w_1^4 + v_1^4)d^{n-5}.$$

Como estamos supondo k>5 (ou seja, m>m(n-4)+8),então são válidas as relações

do Lema 2.4.1. Assim, temos que $w_1^4 = v_1^4$. Daí, podemos considerar

$$W[n-4]_1^{n-1} = d^{n-1} + \binom{n-1}{2}(w_1^2 + v_1^2)d^{n-3}.$$

Também, temos que

$$W[n-4]_{2}^{3} = \binom{n-4}{2} \left(d^{6} + w_{1}d^{5} + (v_{2} + w_{1}v_{1} + w_{2} + w_{1}^{2})d^{4} + (v_{2}^{2} + w_{1}^{2}v_{1}^{2} + w_{2}^{2})d^{2} \right) + w_{1}^{3}d^{3} + (w_{1}^{2}v_{2} + w_{1}^{3}v_{1})d^{2}.$$

Assim, sabendo-se que $\binom{n-4}{2}, \binom{n-1}{2}$ é igual a (0,0) e a (1,1) para $n \equiv 1 \mod 4$ e $n \equiv 3 \mod 4$, respectivamente, temos

$$W[n-4]_1^{n-1}W[n-4]_2^3d^{k-6} = \begin{cases} w_1^3d^{n+k-4} + (w_1^2v_2 + w_1^3v_1)d^{n+k-5}, & \text{se } n \equiv 1 \mod 4, \\ d^{n+k-1} + w_1d^{n+k-2} + (v_2 + w_1v_1 + w_2 + v_1^2)d^{n+k-3} + \\ + w_1v_1^2d^{n+k-4} + (v_2^2 + w_2^2 + w_1^4 + v_1^2v_2 + w_1v_1^3 + w_2v_1^2)d^{n+k-5}, & \text{se } n \equiv 3 \mod 4, \end{cases}$$

e, utilizando-se as propriedades da classe dual, segue que

$$\begin{split} W[n-4]_1^{n-1}W[n-4]_2^3d^{k-6}[\mathbb{R}P(\eta)] &= \\ &= \begin{cases} (w_1^3\overline{v}_1 + w_1^2v_2 + w_1^3v_1)[F^4], & \text{se } n \equiv 1 \mod 4, \\ (\overline{v}_4 + w_1\overline{v}_3 + (v_2 + w_1v_1 + w_2 + v_1^2)\overline{v}_2 + \\ + w_1v_1^2\overline{v}_1 + v_2^2 + w_2^2 + w_1^4 + v_1^2v_2 + w_1v_1^3 + w_2v_1^2)[F^4], & \text{se } n \equiv 3 \mod 4, \end{cases} \\ &= \begin{cases} (w_1^3v_1 + w_1^2v_2 + w_1^3v_1)[F^4] = w_1^2v_2[F^4], & \text{se } n \equiv 1 \mod 4, \\ (v_4 + w_1v_3 + w_1v_1v_2 + w_2v_2 + v_2^2 + w_2^2 + w_1^4)[F^4] = \\ = (v_1^2v_2 + w_2^2 + w_1^4)[F^4], & \text{se } n \equiv 3 \mod 4. \end{cases} \end{split}$$

Observação 2.4.5. Na última passagem acima (relativa
a $n\equiv 3\mod 4),$ foram utilizadas as relações

$$w_1v_1^3 = v_1^4 = w_1^2v_1^2 + w_2v_1^2$$
, $w_1v_3 = w_1v_1v_2$, e $w_2^2 + v_2^2 = w_1^2v_1^2$, $v_4 = 0$,

presentes no Lema 2.2.2 e na demonstração do Lema 2.4.1, respectivamente.

Analisando a tabela 2.2, vemos que a classe β_{10} não satisfaz as relações

$$w_1^2 v_2 = 0$$
 e $v_1^2 v_2 + w_2^2 + w_1^4 = 0.$

Logo,

se n é ímpar e o fibrado normal sobre
$$F^4$$
 pertence à classe
 $\beta_{10},$
então $k \leq 5.$

Assim, finalizamos a prova da Proposição 2.4.1.

2.4.2Caso <math>n par

As notações que serão utilizadas nessa subseção são as mesmas da subseção anterior (caso n ímpar). O nosso objetivo aqui é a demonstração do seguinte resultado:

Proposição 2.4.2. Seja (M^m, T) uma involução cujo conjunto fixado tem a forma $F = F^n \cup F^4$, onde $n \ge 6$ é par. Consideremos as classes β_i , $1 \le i \le 15$, descritas na tabela 2.2. Então,

(i) se $n \equiv 0 \mod 4$ e o fibrado normal sobre F^4 pertence a uma das classes β_i , $1 \le i \le 15$, com exceção da classe β_3 , ou

(ii) se $n \equiv 2 \mod 4$ e o fibrado normal sobre F^4 pertence a uma das classes β_i , com exceção das classes β_1 , $\beta_8 \in \beta_9$ (para $n \equiv 2 \mod 8$) e das classes β_1 , $\beta_{10} \in \beta_{11}$ (para $n \equiv 6 \mod 8$),

temos que $m \le m(n-4) + 8$.

Prova: Para demonstrar esse resultado, utilizaremos polinomiais construídas a partir das classes $W[0]_1$, $W[0]_2$, $W[0]_3$, $W[1]_2$ e $W[1]_3$ (associadas a $\mathbb{R}P(\mu)$) e das suas respectivas classes correspondentes, $W[n-4]_1$, $W[n-4]_2$, $W[n-4]_3$, $W[n-3]_2$ e $W[n-3]_3$ (associadas a $\mathbb{R}P(\eta)$). Tais polinomiais serão descritas nos itens de (A) a (C) seguintes. Utilizaremos também a classe X, descrita na Seção 2.4. Recordemos que, sobre $\mathbb{R}P(\mu)$, tal classe possui dimensão m(n-4) e é tal que todos os seus monômios contêm elementos j-dimensionais provindos de $H^*(F^n, \mathbb{Z}_2)$, com j > n-4.

A partir daqui, vamos supor, por absurdo, que m > m(n-4) + 8.

(A) Consideremos as classes $W[0]_1 = \theta_1 + u_1 \in W[0]_3 = u_1c^2 + \theta_1u_1c + u_3 + \theta_1u_2 + \theta_2u_1 + \theta_3$. Como estamos supondo m > m(n-4) + 8, temos que $m-1 \ge m(n-4) + 8$; assim, podemos definir a polinomial

$$W[0]_1^2 W[0]_3^2 X c^{m-1-(m(n-4)+8)},$$

cuja dimensão é m-1.

Observemos que cada monômio de

$$W[0]_1^2 W[0]_3^2 X = (\theta_1^2 + u_1^2)(u_1^2 c^4 + \theta_1^2 u_1^2 c^2 + u_3^2 + \theta_1^2 u_2^2 + \theta_2^2 u_1^2 + \theta_3^2) X_1^2$$

possui um termo proveniente da cohomologia de F^n com dimensão, no mínimo, igual a n + 1, como decorrência da propriedade da classe X citada acima. Assim, por razões dimensionais, temos que $W[0]_1^2 W[0]_3^2 X = 0$ e, portanto,

$$W[0]_1^2 W[0]_3^2 X c^{m-1-(m(n-4)+8)} [\mathbb{R}P(\mu)] = 0.$$

Agora, analisemos a polinomial correspondente, associada a $\mathbb{R}P(\eta)$,

$$W[n-4]_1^2 W[n-4]_3^2 Y d^{m-1-(m(n-4)+8)}$$

onde Y é a classe correspondente à classe X. Temos:

$$W[n-4]_1^2 = w_1^2 + v_1^2 \quad \text{e}$$

$$W[n-4]_3^2 = \binom{n-5}{2} v_1^2 d^4 + \binom{n-4}{2} w_1^2 d^4 + w_1^2 v_1^2 d^2$$

(os demais monômios de $W[n-4]_3^2$, v_3^2 , $w_1^2v_2^2$, $w_2^2v_1^2$ e w_3^2 , são nulos por motivos dimensionais).

Utilizando-se o fato de que $\binom{n-5}{2}, \binom{n-4}{2}$ é igual a (1,0) e (0,1), para $n \equiv 0 \mod 4$ e $n \equiv 2 \mod 4$, respectivamente, e por razões dimensionais, segue que

$$\begin{split} W[n-4]_1^2 W[n-4]_3^2 &= \\ &= \begin{cases} (v_1^2+w_1^2)(v_1^2d^4+w_1^2v_1^2d^2) = (v_1^4+w_1^2v_1^2)d^4, & \text{se } n \equiv 0 \mod 4, \\ (v_1^2+w_1^2)(w_1^2d^4+w_1^2v_1^2d^2) = (w_1^2v_1^2+w_1^4)d^4, & \text{se } n \equiv 2 \mod 4. \end{cases} \end{split}$$

Agora, façamos uma pausa para uma observação importante.

Observação 2.4.6. Todos os monômios de $W[n-4]_1^2 W[n-4]_3^2$ possuem elementos 4dimensionais provenientes da cohomologia de F^4 , tanto para $n \equiv 0 \mod 4$ quanto para $n \equiv 2 \mod 4$; então, por razões dimensionais, os termos da classe Y que contêm elementos provindos de $H^*(F^4, \mathbb{Z}_2)$ nada contribuem com a polinomial $W[n-4]_1^2 W[n-4]_3^2 Y$, uma vez que cada tal termo multiplicado por $(v_1^4 + w_1^2 v_1^2)d^4$ (se $n \equiv 0 \mod 4$), ou por $(w_1^2 v_1^2 + w_1^4)d^4$ (se $n \equiv 2 \mod 4$), é igual a zero. Portanto, a classe Y associada a $\mathbb{R}P(\eta)$ deve ser analisada módulo o ideal gerado por $H^1(F^4, \mathbb{Z}_2) \oplus H^2(F^4, \mathbb{Z}_2) \oplus H^3(F^4, \mathbb{Z}_2) \oplus H^4(F^4, \mathbb{Z}_2)$ (o qual denotaremos por $\langle H^1(F^4) \oplus H^2(F^4) \oplus H^3(F^4) \oplus H^4(F^4) \rangle$). Em outras palavras, só nos interessa os termos da classe Y do tipo d^l .

Nessas condições, vimos na Seção 2.4 que a classe Y é dada por

$$Y \equiv d^{m(n-4)} \mod \left\langle H^1(F^4) \oplus H^2(F^4) \oplus H^3(F^4) \oplus H^4(F^4) \right\rangle.$$

Como consequência da observação acima e da fórmula de *Conner* (Seção 1.10), segue que

$$\begin{split} W[n-4]_1^2 W[n-4]_3^2 Y d^{m-1-(m(n-4)+8)}[\mathbb{R}P(\eta)] &= \\ &= \begin{cases} (v_1^4 + w_1^2 v_1^2) d^4 d^{m(n-4)} d^{m-1-(m(n-4)+8)}[\mathbb{R}P(\eta)], & \text{se } n \equiv 0 \mod 4, \\ (w_1^2 v_1^2 + w_1^4) d^4 d^{m(n-4)} d^{m-1-(m(n-4)+8)}[\mathbb{R}P(\eta)], & \text{se } n \equiv 2 \mod 4, \end{cases} \\ &= \begin{cases} (v_1^4 + w_1^2 v_1^2) d^{m-5}[\mathbb{R}P(\eta)] = (v_1^4 + w_1^2 v_1^2)[F^4], & \text{se } n \equiv 0 \mod 4, \\ (w_1^2 v_1^2 + w_1^4) d^{m-5}[\mathbb{R}P(\eta)] = (w_1^2 v_1^2 + w_1^4)[F^4], & \text{se } n \equiv 2 \mod 4. \end{cases} \end{split}$$

Então, pelo Teorema 1.7.2,

$$v_1^4 + w_1^2 v_1^2 = 0$$
 e $w_1^2 v_1^2 + w_1^4 = 0$,

para $n \equiv 0 \mod 4 \in n \equiv 2 \mod 4$, respectivamente.

Analisando-se a tabela 2.2, observamos que as seguintes classes de fibrados não satisfazem as relações acima:

$$\beta_4, \, \beta_5, \, \beta_6, \, \beta_7, \, \beta_{12}, \, \beta_{13}, \, \beta_{14} \in \beta_{15},$$

tanto para $n \equiv 0 \mod 4$ quanto para $n \equiv 2 \mod 4$. Portanto,

se *n* é par e o fibrado normal sobre
$$F^4$$
 pertence a uma das classes
 $\beta_4, \beta_5, \beta_6, \beta_7, \beta_{12}, \beta_{13}, \beta_{14}$ ou $\beta_{15},$
então $m \leq m(n-4) + 8.$

(B) Consideremos as classes $W[1]_2 = \theta_1 c + u_2 + \theta_1 u_1 + \theta_2$ e $W[1]_3 = (u_2 + \theta_2)c + u_3 + \theta_1 u_2 + \theta_2 u_1 + \theta_3$. Utilizando-se as fórmulas de *Cartan* e de *Wu* (vide Seção 1.11), temos

$$Sq^{1}(W[1]_{3}) = Sq^{1}((u_{2} + \theta_{2})c + u_{3} + \theta_{1}u_{2} + \theta_{2}u_{1} + \theta_{3}) =$$

= $(u_{1}u_{2} + u_{3} + \theta_{1}\theta_{2} + \theta_{3})c + (u_{2} + \theta_{2})c^{2} + Sq^{1}(u_{3} + \theta_{1}u_{2} + \theta_{2}u_{1} + \theta_{3}),$

sendo $Sq^1(u_3 + \theta_1u_2 + \theta_2u_1 + \theta_3)$ uma classe 4-dimensional com elementos provindos da cohomologia de F^n .

Definimos, então, a polinomial

$$Sq^{1}(W[1]_{3})W[1]_{2}^{2}Xc^{m-1-(m(n-4)+8)}$$

cuja dimensão é m-1.

Observemos que cada monômio de

$$\begin{split} Sq^{1}(W[1]_{3})W[1]_{2}^{2}X &= \\ ((u_{1}u_{2}+u_{3}+\theta_{1}\theta_{2}+\theta_{3})c+(u_{2}+\theta_{2})c^{2}+Sq^{1}(u_{3}+\theta_{1}u_{2}+\theta_{2}u_{1}+\theta_{3}))(\theta_{1}^{2}c^{2}+u_{2}^{2}+\theta_{1}^{2}u_{1}^{2}+\theta_{2}^{2})X \\ \text{possui um termo proveniente da cohomologia de } F^{n} \text{ com dimensão, no mínimo, igual a} \end{split}$$

possur un termo provemente da conomologia de T - com dimensao, no minimo, iguar a n + 1 (aqui também estamos utilizando o fato de que todos os monômios da classe X contêm elementos j-dimensionais provindos de $H^*(F^n, \mathbb{Z}_2)$, com j > n - 4). Assim, por razões dimensionais, temos que $Sq^1(W[1]_3)W[1]_2^2X = 0$ e, portanto,

$$Sq^{1}(W[1]_{3})W[1]_{2}^{2}Xc^{m-1-(m(n-4)+8)}[\mathbb{R}P(\mu)] = 0.$$

Analisemos, agora, a polinomial associada a $\mathbb{R}P(\eta)$,

$$Sq^{1}(W[n-3]_{3})W[n-3]_{2}^{2}Yd^{m-1-(m(n-4)+8)},$$

para o caso em que $n \equiv 0 \mod 4$. Neste caso, temos que

$$W[n-3]_2 = \binom{n-3}{2}d^2 + w_1d + v_2 + w_1v_1 + w_2 = w_1d + v_2 + w_1v_1 + w_2$$

е

$$W[n-3]_3 = \binom{n-3}{3}d^3 + \binom{n-4}{2}v_1d^2 + \binom{n-3}{2}w_1d^2 + (v_2+w_2)d + v_3 + w_1v_2 + w_2v_1 + w_3 = (v_2+w_2)d + v_3 + w_1v_2 + w_2v_1 + w_3.$$

Daí, usando novamente as fórmulas de Cartan e de Wu, temos

$$Sq^{1}(W[n-3]_{3}) = (v_{2}+w_{2})d^{2} + (v_{1}v_{2}+v_{3}+w_{1}w_{2}+w_{3})d + Sq^{1}(v_{3}+w_{1}v_{2}+w_{2}v_{1}+w_{3}).$$

Agora, observemos que

$$Sq^{1}(W[n-3]_{3})W[n-3]_{2}^{2} = ((v_{2}+w_{2})d^{2})(w_{1}^{2}d^{2}) = (w_{1}^{2}v_{2}+w_{1}^{2}w_{2})d^{4},$$

pois os demais monômios deste produto se anulam por questões dimensionais (ou seja, os demais monômios possuem elementos j-dimensionais provenientes da cohomologia de F^4 , com j > 4).

Como consequência da observação 2.4.6 (item (A)) e da fórmula de Conner, segue que

$$\begin{split} Sq^{1}(W[n-3]_{3})W[n-3]_{2}^{2}Yd^{m-1-(m(n-4)+8)}[\mathbb{R}P(\eta)] &= \\ &= (w_{1}^{2}v_{2} + w_{1}^{2}w_{2})d^{4}d^{m(n-4)}d^{m-1-(m(n-4)+8)}[\mathbb{R}P(\eta)] = \\ &= (w_{1}^{2}v_{2} + w_{1}^{2}w_{2})d^{m-5}[\mathbb{R}P(\eta)] = (w_{1}^{2}v_{2} + w_{1}^{2}w_{2})[F^{4}] = v_{1}^{2}v_{2}[F^{4}]. \end{split}$$

Observação 2.4.7. Na última passagem do cálculo acima, utilizamos as relações $w_1^2 w_2 = 0$ e $w_1^2 v_2 = v_1^2 v_2$, fornecidas pelos lemas 2.2.2 e 2.4.1, respectivamente.

Então, pelo Teorema 1.7.2, temos que $v_1^2 v_2 = 0$, para $n \equiv 0 \mod 4$. Analisandose a tabela 2.2, observamos que as classes de fibrados β_1 , β_2 , β_9 e β_{10} não satisfazem tal relação. Portanto,

se $n \equiv 0 \mod 4$ e o fibrado normal sobre F^4 pertence a uma das classes $\beta_1, \beta_2, \beta_9$ ou $\beta_{10},$ então $m \leq m(n-4) + 8.$

(C) Consideremos a classe $W[0]_2 = u_1c + u_2 + \theta_1u_1 + \theta_2$. Como estamos supondo m > m(n-4) + 8, podemos definir a polinomial

$$W[0]_2^4 X c^{m-1-(m(n-4)+8)},$$

cuja dimensão é m-1.

Observemos que cada monômio de

$$W[0]_2^4 X = (u_1^4 c^4 + u_2^4 + \theta_1^4 u_1^4 + \theta_2^4) X$$

possui um termo proveniente da cohomologia de F^n com dimensão, no mínimo, igual a n + 1. Assim, por razões dimensionais, temos que $W[0]_2^4 X = 0$. Logo,

$$W[0]_2^4 X c^{m-1-(m(n-4)+8)} [\mathbb{R}P(\mu)] = 0.$$

Seja

$$W[n-4]_2^4 Y d^{m-1-(m(n-4)+8)}$$

a polinomial correspondente a $W[0]_2^4 X c^{m-1-(m(n-4)+8)}$ e associada a $\mathbb{R}P(\eta)$. Temos que

$$W[n-4]_2 = \binom{n-4}{2}d^2 + v_1d + v_2 + w_1v_1 + w_2.$$

Assim, e por razões dimensionais,

$$W[n-4]_2^4 = \binom{n-4}{2}d^8 + v_1^4d^4.$$

Se $n \equiv 0 \mod 4$, então $\binom{n-4}{2} = 0$. Daí, utilizando novamente a observação 2.4.6 e a fórmula de *Conner*, segue que

$$W[n-4]_{2}^{4}Yd^{m-1-(m(n-4)+8)}[\mathbb{R}P(\eta)] = v_{1}^{4}d^{4}d^{m(n-4)}d^{m-1-(m(n-4)+8)}[\mathbb{R}P(\eta)] = v_{1}^{4}d^{m-5}[\mathbb{R}P(\eta)] = v_{1}^{4}[F^{4}].$$

Pelo Teorema 1.7.2, temos então que $v_1^4 = 0$, para $n \equiv 0 \mod 4$. Analisando-se a tabela 2.2, observamos que as classes de fibrados $\beta_8 \in \beta_{11}$ não satisfazem tal relação. Portanto,

se
$$n \equiv 0 \mod 4$$
 e o fibrado normal sobre F^4 pertence a uma das classes
 $\beta_8 \text{ ou } \beta_{11},$
temos que $m \leq m(n-4) + 8.$

Agora, suponhamos $n \equiv 2 \mod 4$. Nesse caso, $\binom{n-4}{2} = 1$ e temos

$$W[n-4]_2^4 = d^8 + v_1^4 d^4.$$

Notemos que a observação 2.4.6 não se aplica a esse caso, ou seja, não podemos tomar $Y \equiv d^{m(n-4)} \mod \langle H^1(F^4) \oplus H^2(F^4) \oplus H^3(F^4) \oplus H^4(F^4) \rangle$. Para contornar esse problema, faremos, a seguir, o cálculo explícito da classe Y para $n \equiv 2 \mod 4$. Utilizaremos as mesmas notações da Seção 2.4, onde foi definida a classe X.

Seja $n - 4 = 2^p q$, com q ímpar e $p \ge 1$. Como estamos considerando $n \equiv 2 \mod 4$, podemos escrever n = 2 + 4x, com $x \ge 1$. Assim,

$$2^{p}q = n - 4 = 2 + 4x - 4 = 4x - 2 = 2(2x - 1)$$

e, portanto, p = 1 e q = 2x - 1, com $x \ge 1$.

Vimos, na Seção 2.4, que a classe X sobre $\mathbb{R}P(\mu)$ é definida por

$$X = W[r_1]_{2r_1} \dots W[r_h]_{2r_h} W[s_1]_{2s_1+1} \dots W[s_t]_{2s_t+1},$$

onde $r_i = 2^p - 2^{p-i}$, para i = 1, 2, ..., p, e $s_j = 2^p - 1$, para $1 \le j \le q + 1 - p$. Notemos que, como estamos no caso particular em que p = 1, temos

$$X = W[1]_2 W[1]_3^q$$

Logo, a classe Y sobre $\mathbb{R}P(\eta)$ é dada por

$$Y = W[n-3]_2 W[n-3]_3^q$$

Agora, pelos cálculos de $W[n-3]_2$ e $W[n-3]_3$, feitos anteriormente, e sabendo-se

que

$$\binom{n-3}{2} = \binom{n-3}{3} = \binom{n-4}{2} = 1$$

para $n \equiv 2 \mod 4$, temos que

$$W[n-3]_2 = d^2 + w_1d + v_2 + w_1v_1 + w_2$$

е

$$W[n-3]_3 = d^3 + (v_1 + w_1)d^2 + (v_2 + w_2)d + v_3 + w_1v_2 + w_2v_1 + w_3.$$

A seguir, faremos o cálculo do produto $W[n-3]_2 W[n-3]_3^q$, iniciando-se pelo termo $W[n-3]_3^q$. Para facilitar a computação, denotaremos d^3 por $A \in (v_1+w_1)d^2 + (v_2+w_2)d + v_3 + w_1v_2 + w_2v_1 + w_3$ por B. Então, observando-se que $B^i = 0$, se i > 4, temos

$$W[n-3]_{3}^{q} = (A+B)^{q} = \sum_{i=0}^{q} {\binom{q}{i}} A^{q-i}B^{i} = A^{q} + A^{q-1}B + {\binom{q}{2}} A^{q-2}B^{2} + {\binom{q}{3}} A^{q-3}B^{3} + {\binom{q}{4}} A^{q-4}B^{4}$$

Notemos que, por razões dimensionais, $B^4 = (v_1^4 + w_1^4)d^8$; e como $v_1^4 = w_1^4$ se m > m(n-4) + 8 (vide a demonstração do Lema 2.4.1), o último termo da soma acima é nulo. Além disso, devido aos binômios presentes na expressão e sendo q ímpar, torna-se necessário dividir a análise de $W[n-3]_3^q$ em dois casos: $q \equiv 1 \mod 4$ e $q \equiv 3 \mod 4$, para os quais temos $n \equiv 6 \mod 8$ e $n \equiv 2 \mod 8$, respectivamente (já que n = 2q + 4). Dessa forma, sendo $\binom{q}{2}, \binom{q}{3}$ igual a (0,0), se $q \equiv 1 \mod 4$, e igual a (1,1), se $q \equiv 3 \mod 4$, temos

$$W[n-3]_3^q = \begin{cases} A^q + A^{q-1}B, & \text{se } n \equiv 6 \mod 8, \\ A^q + A^{q-1}B + A^{q-2}B^2 + A^{q-3}B^3, & \text{se } n \equiv 2 \mod 8. \end{cases}$$

Substituindo-se os valores de $A \in B$ na expressão acima e levando-se em conta que os monômios com variáveis provindas da cohomologia de F^4 (v_i 's e w_i 's) com grau maior que 4 são nulos, temos

$$W[n-3]_3^q = \begin{cases} d^{3q} + (w_1 + v_1)d^{3q-1} + (w_2 + v_2)d^{3q-2} + (v_3 + w_1v_2 + w_2v_1 + w_3)d^{3q-3}, \\ & \text{se } n \equiv 6 \mod 8, \end{cases}$$
$$d^{3q} + (w_1 + v_1)d^{3q-1} + (w_2 + v_2 + w_1^2 + v_1^2)d^{3q-2} + (v_3 + w_1v_2 + w_2v_1 + w_3 + v_1^3 + w_1^2v_1 + w_1v_1^2 + w_1^3)d^{3q-3} + (v_2^2 + w_2^2)d^{3q-4}, \qquad \text{se } n \equiv 2 \mod 8. \end{cases}$$

Logo,

$$Y = W[n-3]_2 W[n-3]_3^q = (d^2 + w_1 d + v_2 + w_1 v_1 + w_2) W[n-3]_3^q = \begin{cases} d^{3q+2} + v_1 d^{3q+1} + w_1^2 d^{3q} + (w_1^2 v_1 + v_1 v_2 + w_1 v_1^2 + v_3 + w_1 v_2 + w_3) d^{3q-1} + \\ + (w_2^2 + v_2^2 + w_1^2 v_2) d^{3q-2}, & \text{se } n \equiv 6 \mod 8, \\ d^{3q+2} + v_1 d^{3q+1} + v_1^2 d^{3q} + (v_1 v_2 + w_1 v_1^2 + v_3 + w_1 v_2 + w_3 + v_1^3) d^{3q-1} + \\ + (v_1^2 v_2 + w_2 v_1^2 + w_1^2 v_1^2 + w_1^4) d^{3q-2}, & \text{se } n \equiv 2 \mod 8. \end{cases}$$

Observação 2.4.8. Nas computações acima, utilizamos, além do fato de algumas classes se anularem por razões dimensionais, as relações $w_1^2w_2 = w_1w_2v_1 = 0$ e $w_1v_3 = w_1v_1v_2$ (vide Lema 2.2.2).

Para facilitar nossos próximos cálculos, denotaremos 3q + 2 = m(n - 4) por t. Dessa forma, a classe Y fica igual a

$$Y = \begin{cases} d^{t} + v_{1}d^{t-1} + w_{1}^{2}d^{t-2} + (w_{1}^{2}v_{1} + v_{1}v_{2} + w_{1}v_{1}^{2} + v_{3} + w_{1}v_{2} + w_{3})d^{t-3} + \\ + (w_{2}^{2} + v_{2}^{2} + w_{1}^{2}v_{2})d^{t-4}, & \text{se } n \equiv 6 \mod 8, \\ d^{t} + v_{1}d^{t-1} + v_{1}^{2}d^{t-2} + (v_{1}v_{2} + w_{1}v_{1}^{2} + v_{3} + w_{1}v_{2} + w_{3} + v_{1}^{3})d^{t-3} + \\ + (v_{1}^{2}v_{2} + w_{2}v_{1}^{2} + w_{1}^{2}v_{1}^{2} + w_{1}^{4})d^{t-4}, & \text{se } n \equiv 2 \mod 8. \end{cases}$$

Agora que temos a forma explícita da classe Y, voltemos às computações da polinomial $W[n-4]_2^4 Y d^{m-1-(m(n-4)+8)}$. Dividiremos a análise nos casos $n \equiv 6 \mod 8$ e $n \equiv 2 \mod 8$.

• Se $n \equiv 6 \mod 8$, temos

$$\begin{split} W[n-4]_2^4 Y d^{m-1-(m(n-4)+8)} &= [d^8 + v_1^4 d^4] [d^t + v_1 d^{t-1} + w_1^2 d^{t-2} + (w_1^2 v_1 + v_1 v_2 + w_1 v_1^2 + v_1 v_2 + w_1 v_2 + w_1 v_2 + w_1 v_2 + w_2 d^{t-4}] d^{m-1-(t+8)} \\ &+ v_3 + w_1 v_2 + w_3) d^{t-3} + (w_2^2 + v_2^2 + w_1^2 v_2) d^{t-4}] d^{m-1-(t+8)} \\ &= d^{m-1} + v_1 d^{m-2} + w_1^2 d^{m-3} + (w_1^2 v_1 + v_1 v_2 + w_1 v_1^2 + v_3 + w_1 v_2 + w_3) d^{m-4} + (w_2^2 + v_2^2 + w_1^2 v_2 + v_1^4) d^{m-5} \end{split}$$

e, pela fórmula de Conner, temos que

$$\begin{split} W[n-4]_2^4 Y d^{m-1-(m(n-4)+8)}[\mathbb{R}P(\eta)] &= (\bar{v}_4 + v_1 \bar{v}_3 + w_1^2 \bar{v}_2 + (w_1^2 v_1 + v_1 v_2 + w_1 v_1^2 + v_3 + w_1 v_2 + w_3) \bar{v}_1 + w_2^2 + v_2^2 + w_1^2 v_2 + v_1^4)[F^4]. \end{split}$$

Utilizando-se, então, as propriedades da classe dual e as relações $w_1v_1^3 = v_1^4$, $w_1v_1v_2 = w_1v_3$, $w_3v_1 = w_2v_1^2$ (Lema 2.2.2) e $v_4 = 0$ (Lema 2.4.1), segue que

$$W[n-4]_{2}^{4}Yd^{m-1-(m(n-4)+8)}[\mathbb{R}P(\eta)] = (v_{4}+w_{1}v_{1}^{3}+w_{1}v_{1}v_{2}+w_{3}v_{1}+w_{2}^{2}+v_{1}^{4})[F^{4}] = (w_{1}v_{3}+w_{2}v_{1}^{2}+w_{2}^{2})[F^{4}].$$

Assim, como consequência do Teorema 1.7.2, temos que $w_1v_3 + w_2v_1^2 + w_2^2 = 0$, para $n \equiv 6 \mod 8$. Analisando-se a tabela 2.2, observamos que as classes de fibrados β_2 , β_3 , $\beta_8 \in \beta_9$ não satisfazem a relação acima. Portanto,

se $n \equiv 6$	mod 8 e o fibrado normal sobre F^4 pertence a uma das classes
	$\beta_2, \ \beta_3, \ \beta_8 \ \text{ou} \ \beta_9,$
	temos que $m \le m(n-4) + 8$.

• Se $n \equiv 2 \mod 8$, temos

$$W[n-4]_{2}^{4}Yd^{m-1-(m(n-4)+8)} = [d^{8} + v_{1}^{4}d^{4}][d^{t} + v_{1}d^{t-1} + v_{1}^{2}d^{t-2} + (v_{1}v_{2} + w_{1}v_{1}^{2} + v_{3} + w_{1}v_{2} + w_{3} + v_{1}^{3})d^{t-3} + (v_{1}^{2}v_{2} + w_{2}v_{1}^{2} + w_{1}^{2}v_{1}^{2} + w_{1}^{4})d^{t-4}]d^{m-1-(t+8)} = d^{m-1} + v_{1}d^{m-2} + v_{1}^{2}d^{m-3} + (v_{1}v_{2} + w_{1}v_{1}^{2} + v_{3} + w_{1}v_{2} + w_{3} + v_{1}^{3})d^{m-4} + (v_{1}^{2}v_{2} + w_{2}v_{1}^{2} + w_{1}^{2}v_{1}^{2} + w_{1}^{4})d^{m-5}$$

e, pela fórmula de Conner, temos que

$$W[n-4]_{2}^{4}Yd^{m-1-(m(n-4)+8)}[\mathbb{R}P(\eta)] = (\bar{v}_{4}+v_{1}\bar{v}_{3}+v_{1}^{2}\bar{v}_{2}+(v_{1}v_{2}+w_{1}v_{1}^{2}+v_{3}+w_{1}v_{2}+w_{3}+v_{1}^{3})\bar{v}_{1}+v_{1}^{2}v_{2}+w_{2}v_{1}^{2}+w_{1}^{2}v_{1}^{2}+w_{1}^{4}+v_{1}^{4})[F^{4}].$$

Utilizando-se, então, as propriedades da classe dual e as relações $w_1v_1^3 = v_1^4$, $w_1v_1v_2 = w_1v_3$, $w_3v_1 = w_2v_1^2$, $w_2v_1^2 = w_1^2v_1^2 + v_1^4$ (Lema 2.2.2) e $v_4 = 0$, $v_1^4 = w_1^4$ (Lema 2.4.1), segue que

$$W[n-4]_{2}^{4}Yd^{m-1-(m(n-4)+8)}[\mathbb{R}P(\eta)] = (v_{2}^{2}+v_{4}+w_{1}v_{1}^{3}+w_{1}v_{1}v_{2}+w_{3}v_{1}+w_{2}v_{1}^{2}+w_{1}^{4}+w_{1}^{2}v_{1}^{2}+v_{1}^{4})[F^{4}] = (v_{2}^{2}+w_{1}v_{3}+w_{2}v_{1}^{2})[F^{4}].$$

Assim, como consequência do Teorema 1.7.2, temos que $v_2^2 + w_1v_3 + w_2v_1^2 = 0$, para $n \equiv 2 \mod 8$. Analisando-se a tabela 2.2, observamos que as classes de fibrados β_2 , β_3 , $\beta_{10} \in \beta_{11}$ não satisfazem a relação acima. Portanto, se $n \equiv 2 \mod 8$ e o fibrado normal sobre F^4 pertence a uma das classes $\beta_2, \beta_3, \beta_{10}$ ou $\beta_{11},$ temos que $m \leq m(n-4) + 8.$

Com isso, finalizamos a demonstração da Proposição 2.4.2 e, portanto, do Teorema 2.1.1.

Capítulo 3

Involuções fixando várias componentes

3.1 Introdução

Seja (M^m, T) uma involução cuja componente maximal de seu conjunto fixado $F = \bigcup_{j=0}^{n} F^j$ é *n*-dimensional. Denotemos por k = m - n a codimensão de F^n . Os resultados que apresentaremos nesse capítulo são caracterizados como *fenômenos de baixa codimensão*, o que significa que k é limitado como uma função de n. A seguir, listamos alguns resultados, encontrados na literatura correlata (os quais já foram mencionados na Introdução desse trabalho), envolvendo fenômenos de baixa codimensão: se $F = F^n \cup F^1$ e n é par, então $k \leq 2$ ([15]); se $F = F^n \cup F^2$ e n é ímpar, então $k \leq 3$ ([12]); se $F = F^n \cup F^3$ e n é par, então $k \leq 4$ ([1]). Além disso, esses limitantes são os melhores possíveis. Para $F = F^n$, $F = F^n \cup F^{n-1}$, $F = F^n \cup F^1$ (n ímpar), $F = F^n \cup F^2$ (n par) e $F = F^n \cup F^3$ (n ímpar) não ocorrem tais fenômenos.

Observação 3.1.1. Cada componente F^j do conjunto fixado F, $0 \leq j \leq n$, pode ser considerada conexa (vide Teorema 1.7.5). Assim, podemos nos referir aos casos $F = F^n \in$ $F = F^n \cup F^j$, $0 \leq j < n$, como o caso de uma componente e o caso de duas componentes, respectivamente. Além disso, se o fibrado normal sobre alguma componente F^j em M^m borda, ele pode ser equivariantemente removido originando uma nova involução, equivariantemente cobordante a (M^m, T) e com conjunto de pontos fixos $F - F^j$ (vide Teorema 1.7.4). Portanto, tal F^j não tem influência no contexto da procura de limitantes para as possíveis codimensões. Tal fato nos leva a assumir, ao longo deste capítulo, que o fibrado normal sobre cada componente F^j mencionada é não bordante.

Com base na discussão acima, faz sentido questionarmos sobre a existência de fenômenos de baixa codimensão no caso em que F possui mais do que duas componentes fixadas. Mostraremos que tais fenômenos ocorrem, em particular, para 4 especiais

conjuntos fixados, explicitados no seguinte teorema:

Teorema 3.1.1. Seja (M^m, T) uma involução cujo conjunto de pontos fixos tem uma das seguintes formas

(i)
$$F = \{ponto\} \cup (\bigcup_{\substack{j=1\\ j \text{ impar}}}^{n} F^{j}), \text{ onde } n \ge 3 \text{ é impar};$$

(ii) $F = F^{1} \cup (\bigcup_{\substack{j=0\\ j \text{ par}}}^{n} F^{j}), \text{ onde } n \ge 2 \text{ é par};$
(iii) $F = F^{2} \cup (\bigcup_{\substack{j=1\\ j \text{ impar}}}^{n} F^{j}), \text{ onde } n \ge 3 \text{ é impar};$
(iv) $F = F^{3} \cup (\bigcup_{\substack{j=0\\ j \text{ par}}}^{j=0} F^{j}), \text{ onde } n \ge 4 \text{ é par}.$

Conforme comentamos anteriormente, estamos supondo que o fibrado normal sobre cada componente fixada F^{j} é não bordante. Então, se k é a codimensão de F^{n} em M^{m} , temos que $k \leq 1$ em (i), $k \leq 2$ em (ii), $k \leq 3$ em (iii) e $k \leq 4$ em (iv). Além disso, tais limitantes são os melhores possíveis.

O ponto crucial deste capítulo será a apresentação de um método para a construção de involuções maximais. Isso será feito na Seção 3.3, combinando-se métodos já conhecidos com uma involução especial, definida sobre os espaços totais de fibrados projetivos associados às somas de *Whitney* de dois fibrados vetoriais. Na seção 3.2, mostraremos que 1, 2, 3 e 4 são limitantes para k nos casos (i), (ii), (iii) e (iv), respectivamente. Para tal, utilizaremos a teoria de *Conner* e *Floyd* e, assim como no capítulo anterior, algumas polinomiais especiais construídas a partir de classes características de espaços totais de fibrados projetivos (introduzidas por *Stong* e *Pergher* em [26]).

3.2 Obtenção dos limitantes

3.2.1 Notações e preliminares

Se $F = \bigcup_{j=0}^{n} F^{j}$ é o fixed-data da involução (M^{m}, T) , denotemos por $\eta^{i} \mapsto F^{i}$, $0 \leq i \leq n$, o fibrado normal sobre a união das componentes *i*-dimensionais. Para evitar excesso de notação, escreveremos $W(F^{i}) = 1 + w_{1} + w_{2} + \ldots + w_{i}$ e $W(\eta^{i}) = 1 + v_{1} + \ldots + v_{n+k-i}$ como sendo as classes de *Stiefel-Whitney* de $F^{i} \in \eta^{i}$, respectivamente, com $0 \leq i \leq n$.

Fato. Se $\eta \mapsto F$ é o fixed-data de uma involução, denotemos por E o espaço

total do fibrado real projetivo associado a η , $\mathbb{R}P(\eta) \mapsto F$, e por $\xi \mapsto E$ o fibrado linha sobre E. Sabemos que $\xi \mapsto E$ borda como fibrado linha (Corolário 1.7.2). Então, conforme previamente comentado, se dim(E) = r, qualquer classe $P = P(w_1(E), ..., w_r(E), w_1(\xi)) \in H^r(E, \mathbb{Z}_2)$, dada por uma polinomial de dimensão rnas classes $w_i(E)$ e $w_1(\xi)$, produz o número característico nulo ao ser avaliada na classe fundamental [E].

Utilizando-se esse fato, denotemos por E_i , $0 \le i \le n$, o espaço total do fibrado projetivo correspondente às componentes *i*-dimensionais e por $\xi^i \mapsto E_i$ os correspondentes fibrados linha. Nossa estratégia será selecionar polinomiais especiais P, com dimensões n + k - 1, construídas sob as hipóteses de que k > 1 (subseção 3.2.2), k > 2 (subseção 3.2.3), k > 3 (subseção 3.2.4) e k > 4 (subseção 3.2.5), lembrando que k = m - n é a codimensão da componente maximal fixada, F^n . Resolvendo, então, equações ou sistemas de equações do tipo

$$\sum_{0\leq j\leq n} P[E_j]=0$$

para cada caso, chegaremos em contradições, o que nos levará aos resultados desejados.

Seja $W(\xi_i) = 1 + c$, para $0 \le i \le n$. Para a construção das "polinomiais especiais" P nas próximas subseções, faremos uso da classe $\widetilde{W}(E_i)$, $0 \le i \le n$, definida por

$$\widetilde{W}(E_i) = \frac{W(E_i)}{(1+c)^k} = = \frac{(1+w_1+\ldots+w_i)[(1+c)^{n+k-i}+(1+c)^{n+k-i-1}v_1+\ldots+v_{n+k-i}]}{(1+c)^k} = = 1+\widetilde{W}_1 + \widetilde{W}_2 + \cdots,$$

onde cada \widetilde{W}_j é uma polinomial nas classes $w_s(E_i)$ e c. Como já mencionado na Seção 2.3, esta classe é um caso particular das classes introduzidas por Stong e Pergher em [26].

3.2.2 Caso
$$F = \{ponto\} \cup (\bigcup_{j=1 \atop j \text{ impar}}^{n} F^{j})$$

Comecemos pelo item (i) do Teorema 3.1.1, ou seja, mostremos que $k \leq 1$ para este caso.

Vamos supor, por absurdo, que k > 1. Assim, faz sentido considerarmos a polinomial $P = \widetilde{W}_1^{n+1} c^{k-2}$. Calculemos $P[E_i]$, para i = 0 e $1 \le i \le n$ ímpar.

(1) Sobre a componente
$$F^0 = \{ponto\}$$
, temos $E_0 \cong \mathbb{R}P^{n+k-1}$ e
 $\widetilde{W}(E_0) = \frac{(1+c)^{n+k}}{(1+c)^k} = (1+c)^n$. Como *n* é ímpar, temos que $\widetilde{W}_1 = \binom{n}{1}c = c$.

Assim, utilizando-se o fato de que c é o gerador de $H^1(\mathbb{R}P^{n+k-1},\mathbb{Z}_2)$, temos

$$P[E_0] = \widetilde{W}_1^{n+1} c^{k-2} [\mathbb{R}P^{n+k-1}] = c^{n+1} c^{k-2} [\mathbb{R}P^{n+k-1}] = c^{n+k-1} [\mathbb{R}P^{n+k-1}] = 1.$$
(3.1)

(2) Sobre F^j , com $1 \le j \le n$ ímpar, temos

$$\widetilde{W}(E_j) = (1 + w_1 + \ldots + w_j) \left[(1 + c)^{n-j} + (1 + c)^{n-j-1} v_1 + \ldots + \frac{v_{n+k-j}}{(1 + c)^k} \right].$$

Sendo n - j par, segue que

$$\widetilde{W}_1 = \binom{n-j}{1}c + v_1 + w_1 = v_1 + w_1.$$

Agora, notemos que cada termo da polinomial $\widetilde{W}_1^{n+1} = (v_1+w_1)^{n+1}$ tem dimensão n+1 e provém da cohomologia de F^j , com $j \le n < n+1$; assim, $\widetilde{W}_1^{n+1} = 0$ e

$$P[E_j] = \widetilde{W}_1^{n+1} c^{k-2} [E_j] = 0, \qquad (3.2)$$

para $1 \le j \le n$ ímpar.

Substituindo-se os valores obtidos em (3.1) e (3.2) na equação

$$P[E_0] + \sum_{\substack{j=1 \ j \text{ impar}}}^n P[E_j] = 0,$$

que é válida devido ao Fato citado na subseção anterior, temos uma contradição. Portanto, $k \leq 1.$

3.2.3 Caso
$$F = F^1 \cup (\bigcup_{\substack{j=0\\ \mathbf{j} \text{ par}}}^n F^j)$$

Nessa subseção, provaremos o item (ii) do Teorema 3.1.1.

Vamos supor, por absurdo, que k > 2. Então, podemos definir a polinomial $P = \widetilde{W}_1^{n+2} c^{k-3}$. Calculemos $P[E_i]$, para i = 0, 1 e $2 \le i \le n$ par.

(1) Sobre a componente $F^0 = \{ponto\}$, temos $\widetilde{W}_1 = \binom{n}{1}c = 0$, pois n é par.

Logo,

$$P[E_0] = \widetilde{W}_1^{n+2} c^{k-3} [\mathbb{R}P^{n+k-1}] = 0.$$
(3.3)

(2) Sobre a componente F^1 , $\widetilde{W}(E_1) = (1+c)^{n-1} + (1+c)^{n-2}v_1$. Sendo n-1 é ímpar,

$$\widetilde{W}_1 = \binom{n-1}{1}c + v_1 = c + v_1.$$

Daí,

$$\widetilde{W}_{1}^{n+2}c^{k-3} = (c+v_{1})^{n+2}c^{k-3} = \left[\sum_{j=0}^{n+2} \binom{n+2}{j}v_{1}^{j}c^{n+2-j}\right]c^{k-3} = \left[c^{n+2} + \binom{n+2}{1}v_{1}c^{n+1}\right]c^{k-3} = c^{n+k-1},$$

pois n + 2 é par. Assim, $P[E_1] = \widetilde{W}_1^{n+2} c^{k-3}[E_1] = c^{n+k-1}[E_1]$ e, pela fórmula de *Conner* (Seção 1.10), sabemos que $c^{n+k-1}[E_1] = v_1[F^1]$. Como, por hipótese, o fibrado normal sobre a variedade F^1 é não bordante, podemos identificá-lo com o fibrado linha sobre o espaço real projetivo unidimensional $\mathbb{R}P^1$; assim, $v_1 \neq 0$ ($v_1 \in H^1(\mathbb{R}P^1, \mathbb{Z}_2)$) e segue que

$$P[E_1] = c^{n+k-1}[E_1] = v_1[\mathbb{R}P^1] = 1.$$
(3.4)

(3) Sobre F^j , com $2 \le j \le n$ par, temos que

$$\widetilde{W}_1 = \binom{n-j}{1}c + v_1 + w_1 = v_1 + w_1,$$

pois n-j é par. Observemos que a classe $\widetilde{W}_1^{n+2} = (v_1+w_1)^{n+2}$ é nula, pois tem dimensão n+2 e é composta por elementos provindos da cohomologia de F^j , com $j \leq n < n+2$. Logo,

$$P[E_j] = \widetilde{W}_1^{n+2} c^{k-3}[E_j] = 0, \qquad (3.5)$$

para $2 \leq j \leq n$ par.

Substituindo-se os valores obtidos em (3.3), (3.4) e (3.5) na equação

$$P[E_1] + \sum_{\substack{j=0\\ j \text{ par}}}^{n} P[E_j] = 0,$$

temos uma contradição. Portanto, $k\leq 2.$

3.2.4 Caso
$$F = F^2 \cup \left(\bigcup_{\substack{j=1 \ j \text{ impar}}}^n F^j\right)$$

Nessa subseção, provaremos o item (*iii*) do Teorema 3.1.1.

Suponhamos, por absurdo, que k > 3. Assim, faz sentido definirmos as polinomiais $P_1 = \widetilde{W}_1^{n+1}c^{k-2}$, $P_2 = \widetilde{W}_1^{n+3}c^{k-4} \in P_3 = \widetilde{W}_1^{n-1}\widetilde{W}_2^2c^{k-4}$.

A seguir, calcularemos $P_i[E_j]$, para $i = 1, 2 \in 3$, com $j = 2 \in 1 \le j \le n$ ímpar.

(1) Sobre as componentes F^j , com $1 \le j \le n-2$ ímpar, temos

$$\widetilde{W}_1 = \binom{n-j}{1}c + v_1 + w_1 = v_1 + w_1$$

já que n-j é par. Notemos que as 3 polinomiais P_i , i = 1, 2 e 3, têm em suas composições polinomiais \widetilde{W}_1^k , com k igual a n-1, n+1 ou n+3. Sendo \widetilde{W}_1 uma classe com elementos provindos da cohomologia de F^j , com $j \leq n-2$, segue que $\widetilde{W}_1^{n-1} = \widetilde{W}_1^{n+1} = \widetilde{W}_1^{n+3} = 0$, por razões dimensionais. Logo, para $1 \leq j \leq n-2$ ímpar, temos que

$$P_i[E_j] = 0, (3.6)$$

para $i = 1, 2 \in 3$.

(2) Sobre F^n , temos

$$\widetilde{W}(E_n) = (1 + w_1 + \ldots + w_n) \left[1 + \frac{v_1}{1+c} + \frac{v_2}{1+c^2} + \frac{v_3}{(1+c)^3} + \ldots + \frac{v_k}{(1+c)^k} \right].$$

Então,

$$\begin{split} \widetilde{W}_1 &= v_1 + w_1 \quad \mathrm{e} \\ \widetilde{W}_2 &= v_1 c + v_2 + w_1 v_1 + w_2. \\ \mathrm{Assim}, \\ \widetilde{W}_1^{n+1} &= (v_1 + w_1)^{n+1}, \\ \widetilde{W}_1^{n+3} &= (v_1 + w_1)^{n+3} \quad \mathrm{e} \\ \widetilde{W}_1^{n-1} \widetilde{W}_2^2 &= (v_1 + w_1)^{n-1} (v_1^2 c^2 + v_2^2 + w_1^2 v_1^2 + w_2^2). \end{split}$$

Notemos que cada termo das polinomiais acima tem um fator de dimensão, no mínimo, igual a n + 1 e proveniente da cohomologia de F^n ; portanto,

$$P_i[E_n] = 0, (3.7)$$

para $i = 1, 2 \in 3$.

(3) Sobre a componente F^2 , temos

$$\widetilde{W}(E_2) = (1+w_1+w_2)[(1+c)^{n-2}+(1+c)^{n-3}v_1+(1+c)^{n-4}v_2].$$

Sendo n ímpar,

$$\widetilde{W}_{1} = \binom{n-2}{1}c + v_{1} + w_{1} = c + v_{1} + w_{1} \quad e$$

$$\widetilde{W}_{2} = \binom{n-2}{2}c^{2} + \binom{n-3}{1}v_{1}c + \binom{n-2}{1}w_{1}c + w_{1}v_{1} + v_{2} + w_{2} =$$

$$= \binom{n-2}{2}c^{2} + w_{1}c + w_{1}v_{1} + v_{2} + w_{2}.$$

Então, utilizando-se novamente o fato de n ser ímpar e por razões dimensionais,

$$P_{1}[E_{2}] = \widetilde{W}_{1}^{n+1}c^{k-2}[E_{2}] = (c+v_{1}+w_{1})^{n+1}c^{k-2}[E_{2}] = \\ = \left(\sum_{j=0}^{n+1} \binom{n+1}{j}(v_{1}+w_{1})^{j}c^{n+1-j}\right)c^{k-2}[E_{2}] = \\ = \left(c^{n+k-1} + \binom{n+1}{2}(v_{1}^{2}+w_{1}^{2})c^{n+k-3}\right)[E_{2}],$$

$$P_{2}[E_{2}] = \widetilde{W}_{1}^{n+3}c^{k-4}[E_{2}] = (c+v_{1}+w_{1})^{n+3}c^{k-4}[E_{2}] = \\ = \left(\sum_{j=0}^{n+3} \binom{n+3}{j}(v_{1}+w_{1})^{j}c^{n+3-j}\right)c^{k-4}[E_{2}] = \\ = \left(c^{n+k-1} + \binom{n+3}{2}(v_{1}^{2}+w_{1}^{2})c^{n+k-3}\right)[E_{2}]$$

 \mathbf{e}

$$P_{3}[E_{2}] = \widetilde{W}_{1}^{n-1}\widetilde{W}_{2}^{2}c^{k-4}[E_{2}] = (c+v_{1}+w_{1})^{n-1}\left(\binom{n-2}{2}c^{4}+w_{1}^{2}c^{2}\right)c^{k-4}[E_{2}] = \\ = \left(\sum_{j=0}^{n-1}\binom{n-1}{j}(v_{1}+w_{1})^{j}c^{n-1-j}\right)\left(\binom{n-2}{2}c^{k}+w_{1}^{2}c^{k-2}\right)[E_{2}] = \\ = \left(c^{n-1}+\binom{n-1}{2}(v_{1}^{2}+w_{1}^{2})c^{n-3}\right)\left(\binom{n-2}{2}c^{k}+w_{1}^{2}c^{k-2}\right)[E_{2}] = \\ = \left(\binom{n-2}{2}c^{n+k-1}+w_{1}^{2}c^{n+k-3}\right)[E_{2}].$$

Observação 3.2.1. Na última igualdade do cálculo de $P_3[E_2]$ acima, utilizamos também o fato de que $\binom{n-1}{2}\binom{n-2}{2} = 0$, para qualquer *n* ímpar.

Denotando-se por

$$\overline{W}(\eta^2) = \frac{1}{W(\eta^2)} = 1 + \overline{v}_1 + \overline{v}_2$$

a classe dual do fibrado normal sobre F^2 , a fórmula de Conner (vide Seção 1.10) nos garante que

$$xc^{n+k-i}[E_2] = x\overline{v}_{3-i}[F^2],$$

para todo $x \in H^{i-1}(F^2, \mathbb{Z}_2)$ e $1 \le i \le 3$. Sendo $\overline{v}_2 = v_1^2 + v_2$, temos

$$P_{1}[E_{2}] = \left(\overline{v}_{2} + \binom{n+1}{2}(v_{1}^{2} + w_{1}^{2})\right)[F^{2}] = \\ = \left(v_{1}^{2} + v_{2} + \binom{n+1}{2}(v_{1}^{2} + w_{1}^{2})\right)[F^{2}],$$

$$P_{2}[E_{2}] = \left(\overline{v}_{2} + \binom{n+3}{2}(v_{1}^{2} + w_{1}^{2})\right)[F^{2}] = \\ = \left(v_{1}^{2} + v_{2} + \binom{n+3}{2}(v_{1}^{2} + w_{1}^{2})\right)[F^{2}]$$
e (3.8)

$$P_{3}[E_{2}] = \left(\binom{n-2}{2} \overline{v}_{2} + w_{1}^{2} \right) [F^{2}] = \\ = \left(\binom{n-2}{2} (v_{1}^{2} + v_{2}) + w_{1}^{2} \right) [F^{2}]$$

Agora, usando o resultado de Conner e Floyd (discutido na subseção 3.2.1), temos o sistema de equações:

$$\begin{cases}
P_1[E_2] + \sum_{\substack{j=1 \ j \text{ impar}}}^n P_1[E_j] = 0 \\
P_2[E_2] + \sum_{\substack{j=1 \ j \text{ impar}}}^n P_2[E_j] = 0 \\
P_3[E_2] + \sum_{\substack{j=1 \ j \text{ impar}}}^n P_3[E_j] = 0
\end{cases}$$

Substituindo-se os valores obtidos nas equações (3.6) a (3.8) no sistema acima, obtemos:

$$\begin{cases} \left(v_1^2 + v_2 + \binom{n+1}{2}(v_1^2 + w_1^2)\right)[F^2] = 0\\ \left(v_1^2 + v_2 + \binom{n+3}{2}(v_1^2 + w_1^2)\right)[F^2] = 0\\ \left(\binom{n-2}{2}(v_1^2 + v_2) + w_1^2\right)[F^2] = 0 \end{cases}$$

Agora, se $n \equiv 3 \mod 4$, o sistema acima se torna

$$(v_1^2 + v_2)[F^2] = 0$$

$$(v_2 + w_1^2)[F^2] = 0$$

$$w_1^2[F^2] = 0$$

e se $n \equiv 1 \mod 4$, se reduz a

$$\begin{cases} (v_2 + w_1^2)[F^2] &= 0\\ (v_1^2 + v_2)[F^2] &= 0\\ (v_1^2 + v_2 + w_1^2)[F^2] &= 0 \end{cases}$$

Em ambos os casos, $w_1^2[F^2] = v_2[F^2] = v_1^2[F^2] = 0$ é a única solução.

Fato. A classe de cobordismo de qualquer fibrado vetorial sobre uma variedade bidimensional F^2 é determinada pelos números de Whitney $w_1^2[F^2]$, $v_2[F^2] e v_1^2[F^2]$ (para maiores detalhes, vide [13]).

Daí, concluímos que o fibrado normal sobre a componente F^2 borda, o que é um absurdo. Logo, $k\leq 3.$

3.2.5 Caso
$$F = F^3 \cup (\bigcup_{\substack{j=0\\ \mathbf{j} \text{ par}}}^n F^j)$$

Nessa subseção, provaremos o item (iv) do Teorema 3.1.1.

Vamos supor, por absurdo, que k > 4. Assim, faz sentido definirmos as polinomiais $P_1 = \widetilde{W}_1^{n+4}c^{k-5}$, $P_2 = \widetilde{W}_1^n \widetilde{W}_2^2 c^{k-5}$ e $P_3 = \widetilde{W}_1^{n-1} \widetilde{W}_2 \widetilde{W}_3 c^{k-5}$.

Recordemos que, se Sq é a operação de Steenrod então, pela fórmula de Wu, temos que Sq^j avaliado sobre uma classe característica de um fibrado resulta em uma polinomial nas classes características desse mesmo fibrado (vide Seção 1.11). Logo, $Sq^1(\widetilde{W}_3)$ é uma polinomial nas classes $w_s(E_i)$ e c. Definimos, então, $P_4 = \widetilde{W}_1^n Sq^1(\widetilde{W}_3)c^{k-5}$.

A seguir, calcularemos $P_i[E_j]$, para $i = 1, 2, 3 \in 4$, com $j = 3 \in 0 \le j \le n$ par.

(1) Sobre a componente $F^0 = \{ponto\}, temos$

$$\widetilde{W}_1 = \binom{n}{1}c = 0,$$

já que n é par. Portanto,

$$P_i[E_0] = 0, (3.9)$$

para $i = 1, 2, 3 \in 4$.

(2) Sobre as componentes F^j , com $2 \le j \le n-2$ par, temos

$$\widetilde{W}_1 = \binom{n-j}{1}c + v_1 + w_1 = v_1 + w_1,$$

pois n-j é par. Notemos que as 4 polinomiais P_i , i = 1, 2, 3 e 4, têm em suas composições polinomiais \widetilde{W}_1^k , com k igual a n-1, n ou n+4. Sendo \widetilde{W}_1 uma classe com elementos provindos da cohomologia de F^j , com $j \leq n-2$, segue que $\widetilde{W}_1^{n-1} = 0$, $\widetilde{W}_1^n = 0$ e $\widetilde{W}_1^{n+4} = 0$, por razões dimensionais. Logo,

$$P_i[E_j] = 0, (3.10)$$

para $i = 1, 2, 3 \in 4 \in 2 \le j \le n - 2$ par.

(3) Sobre F^n , temos $\widetilde{W}_1 = v_1 + w_1$, $\widetilde{W}_2 = v_1 c + v_2 + w_1 v_1 + w_2$ e $\widetilde{W}_3 = v_1 c^2 + w_1 v_1 c + v_3 + w_1 v_2 + w_2 v_1 + w_3$.

Agora, usando a fórmula de Cartane o fato de que $Sq^1(c^2)=0$ (Seção 1.11), temos

$$Sq^{1}(v_{1}c^{2} + w_{1}v_{1}c) = v_{1}^{2}c^{2} + w_{1}v_{1}c^{2} + w_{1}v_{1}^{2}c + w_{1}^{2}v_{1}c;$$

logo,

$$Sq^{1}(\widetilde{W}_{3}) = v_{1}^{2}c^{2} + w_{1}v_{1}c^{2} + w_{1}v_{1}^{2}c + w_{1}^{2}v_{1}c + Sq^{1}(v_{3} + w_{1}v_{2} + w_{2}v_{1} + w_{3})$$

(observando-se que $Sq^1(v_3 + w_1v_2 + w_2v_1 + w_3)$ é uma classe 4-dimensional com elementos provindos da cohomologia de F^n). Pelos resultados acima, temos então $\widetilde{W}_1^{n+4} = (v_1 + w_1)^{n+4},$ $\widetilde{W}_1^n \widetilde{W}_2^2 = (v_1 + w_1)^n (v_1^2c^2 + v_2^2 + w_1^2v_1^2 + w_2^2),$ $\widetilde{W}_1^{n-1}\widetilde{W}_2\widetilde{W}_3 = (v_1 + w_1)^{n-1}(v_1c + v_2 + w_1v_1 + w_2)(v_1c^2 + w_1v_1c + v_3 + w_1v_2 + w_2v_1 + w_3) \in \widetilde{W}_1^n Sq^1(\widetilde{W}_3) = (v_1 + w_1)^n(v_1^2c^2 + w_1v_1c^2 + w_1v_1^2c + w_1^2v_1c + Sq^1(v_3 + w_1v_2 + w_2v_1 + w_3)).$

Notemos que cada termo das polinomiais acima tem um fator de dimensão, no mínimo, igual a n + 1 provindo da cohomologia de F^n ; portanto,

$$P_i[E_n] = 0, (3.11)$$

para $i = 1, 2, 3 \in 4$.

(4) Para finalizar, analisemos a componente F^3 . Temos

$$\widetilde{W}(E_3) = (1 + w_1 + w_2 + w_3)[(1 + c)^{n-3} + (1 + c)^{n-4}v_1 + (1 + c)^{n-5}v_2 + (1 + c)^{n-6}v_3].$$

Sendo n par e por razões dimensionais, segue que

$$\begin{split} \widetilde{W}_{1} &= \binom{n-3}{1}c + v_{1} + w_{1} = c + v_{1} + w_{1} \quad \text{e} \\ \widetilde{W}_{1}^{n+4} &= (c+v_{1}+w_{1})^{n+4} = \sum_{j=0}^{n+4} \binom{n+4}{j} (v_{1}+w_{1})^{j} c^{n+4-j} = \\ &= c^{n+4} + \binom{n+4}{2} (v_{1}^{2}+w_{1}^{2}) c^{n+2} = \begin{cases} c^{n+4}, & \text{se } n \equiv 0 \mod 4, \\ c^{n+4} + (v_{1}^{2}+w_{1}^{2}) c^{n+2}, & \text{se } n \equiv 2 \mod 4. \end{cases} \end{split}$$

Assim,

$$P_1[E_3] = \widetilde{W}_1^{n+4} c^{k-5}[E_3] = \begin{cases} c^{n+k-1}[E_3], & \text{se } n \equiv 0 \mod 4, \\ (c^{n+k-1} + (v_1^2 + w_1^2)c^{n+k-3})[E_3], & \text{se } n \equiv 2 \mod 4. \end{cases}$$

Denotando-se por

$$\overline{W}(\eta^3) = \frac{1}{W(\eta^3)} = 1 + \overline{v}_1 + \overline{v}_2 + \overline{v}_3$$

a classe dual do fibrado normal sobre F^3 , a fórmula de *Conner* nos garante que

$$xc^{n+k-i}[E_3] = x\overline{v}_{4-i}[F^3],$$

para qualquer $x \in H^{i-1}(F^3, \mathbb{Z}_2)$ e $1 \leq i \leq 4$. Sendo $\overline{v}_1 = v_1$ e $\overline{v}_3 = v_1^3 + v_3$, temos

$$P_1[E_3] = \begin{cases} \overline{v}_3[F^3] = (v_1^3 + v_3)[F_3], & \text{se } n \equiv 0 \mod 4, \\ (\overline{v}_3 + (v_1^2 + w_1^2)\overline{v}_1)[F^3] = (v_3 + w_1^2v_1)[F^3], & \text{se } n \equiv 2 \mod 4. \end{cases}$$
(3.12)

Para o cálculo das demais polinomiais $P_i[E_3]$, $i = 2, 3 \in 4$, utilizaremos os seguintes ingredientes:

(i) As relações $w_3 = w_1 w_2 = w_1^3 = 0$, que seguem do fato de que toda variedade tridimensional borda, e as relações $w_2v_1 = w_1^2v_1$, $w_1v_1^2 = 0$ e $w_1v_2 = v_1v_2 + v_3$, que são válidas para qualquer fibrado vetorial sobre uma variedade tridimensional (para maiores detalhes, vide [1]).

(ii)
$$\widetilde{W}_{2} = \binom{n-3}{2}c^{2} + \binom{n-4}{1}v_{1}c + \binom{n-3}{1}w_{1}c + v_{2} + w_{1}v_{1} + w_{2} = \\ = \begin{cases} w_{1}c + v_{2} + w_{1}v_{1} + w_{2}, & \text{se } n \equiv 0 \mod 4, \\ c^{2} + w_{1}c + v_{2} + w_{1}v_{1} + w_{2}, & \text{se } n \equiv 2 \mod 4. \end{cases}$$

(iii)
$$\widetilde{W}_{3} = \binom{n-3}{3}c^{3} + \binom{n-4}{2}v_{1}c^{2} + \binom{n-3}{2}w_{1}c^{2} + \binom{n-5}{1}v_{2}c + \\ + \binom{n-4}{1}w_{1}v_{1}c + \binom{n-3}{1}w_{2}c + w_{2}v_{1} + w_{1}v_{2} + v_{3} = \\ = \begin{cases} (v_{2} + w_{2})c + w_{2}v_{1} + w_{1}v_{2} + v_{3}, & \text{se } n \equiv 0 \mod 4, \\ c^{3} + (v_{1} + w_{1})c^{2} + (v_{2} + w_{2})c + w_{2}v_{1} + w_{1}v_{2} + v_{3}, & \text{se } n \equiv 2 \mod 4. \end{cases}$$

(iv)
$$Sq^{1}(\widetilde{W}_{3}) = \begin{cases} (v_{2}+w_{2})c^{2} + (v_{1}v_{2}+v_{3})c, & \text{se } n \equiv 0 \mod 4, \\ c^{4} + (v_{1}^{2}+w_{1}^{2}+v_{2}+w_{2})c^{2} + (v_{1}v_{2}+v_{3})c, & \text{se } n \equiv 2 \mod 4. \end{cases}$$

Observação 3.2.2. Nos cálculos de $Sq^1(\widetilde{W}_3)$ acima, utilizamos o fato de que $Sq^1(w_2v_1 +$ $w_1v_2 + v_3 = 0$, pois se trata de uma classe 4-dimensional com elementos provindos da cohomologia de F^3 ; além disso, usamos a fórmula de Wu e o fato de que w_1w_2 e w_3 são classes de Stiefel-Whitney de variedades tridimensionais (e, portanto, iguais a zero). Assim,

$$Sq^{1}(v_{2} + w_{2}) = Sq^{1}(v_{2}) + Sq^{1}(w_{2}) = v_{1}v_{2} + v_{3} + w_{1}w_{2} + w_{3} = v_{1}v_{2} + v_{3}.$$

Os cálculos restantes seguem da fórmula de Cartan.

(v)
$$\widetilde{W}_1^n = (c+v_1+w_1)^n = \sum_{j=0}^n \binom{n}{j} (v_1+w_1)^j c^{n-j} = c^n + \binom{n}{2} (v_1^2+w_1^2) c^{n-2} =$$

$$= \begin{cases} c^n, & \text{se } n \equiv 0 \mod 4, \\ c^n + (v_1^2+w_1^2) c^{n-2}, & \text{se } n \equiv 2 \mod 4, \end{cases}$$
e

$$\widetilde{W}_1^{n-1} = c^{n-1} + (v_1 + w_1)c^{n-2} + \binom{n-1}{2}(v_1^2 + w_1^2)c^{n-3} + \binom{n-1}{3}(v_1 + w_1)^3c^{n-4} = \frac{1}{2}(v_1^2 + w_1^2)c^{n-4} + \frac{1}{2}(v_1^$$

$$= \begin{cases} c^{n-1} + (v_1 + w_1)c^{n-2} + (v_1^2 + w_1^2)c^{n-3} + (v_1 + w_1)^3c^{n-4}, & \text{se } n \equiv 0 \mod 4, \\ c^{n-1}, & \text{se } n \equiv 2 \mod 4. \end{cases}$$

Com esses resultados em mãos e seguindo passos análogos aos utilizados no cálculo de $P_1[E_3]$, chegamos a

$$P_{2}[E_{3}] = \widetilde{W}_{1}^{n} \widetilde{W}_{2}^{2} c^{k-5}[E_{3}] = \begin{cases} w_{1}^{2} v_{1}[F^{3}], & \text{se } n \equiv 0 \mod 4, \\ v_{3}[F^{3}], & \text{se } n \equiv 2 \mod 4, \end{cases}$$

$$P_{3}[E_{3}] = \widetilde{W}_{1}^{n-1} \widetilde{W}_{2} \widetilde{W}_{3} c^{k-5}[E_{3}] = \begin{cases} w_{1} v_{2}[F^{3}], & \text{se } n \equiv 0 \mod 4, \\ (v_{3} + w_{1}^{2} v_{1} + w_{1} v_{2})[F^{3}], & \text{se } n \equiv 2 \mod 4, \end{cases}$$

$$e$$

$$P_4[E_3] = \widetilde{W}_1^n Sq^1(\widetilde{W}_3)c^{k-5}[E_3] = \begin{cases} (w_1^2v_1 + v_3)[F^3], & \text{se } n \equiv 0 \mod 4, \\ (v_1^3 + w_1^2v_1)[F^3], & \text{se } n \equiv 2 \mod 4. \end{cases}$$
(3.13)

Agora, usando o resultado de *Conner* e *Floyd* discutido na subseção 3.2.1, temos o seguinte sistema de equações:

$$\begin{cases} P_1[E_3] + \sum_{\substack{j=0\\ j \text{ par}}}^n P_1[E_j] = 0 \\ P_2[E_3] + \sum_{\substack{j=0\\ j \text{ par}}}^n P_2[E_j] = 0 \\ P_3[E_3] + \sum_{\substack{j=0\\ j \text{ par}}}^n P_3[E_j] = 0 \\ P_4[E_3] + \sum_{\substack{j=0\\ j \text{ par}}}^n P_4[E_j] = 0 \end{cases}$$

Substituindo-se os valores obtidos nas equações (3.9) a (3.13) no sistema acima,

temos

$$\begin{cases} (v_1^3 + v_3)[F^3] &= 0\\ w_1^2 v_1[F^3] &= 0\\ w_1 v_2[F^3] &= 0\\ (w_1^2 v_1 + v_3)[F^3] &= 0\\ \text{se } n \equiv 0 \mod 4, \text{ e} \end{cases}$$

$$\begin{cases} (v_3 + w_1^2 v_1)[F^3] &= 0\\ v_3[F^3] &= 0\\ (v_3 + w_1^2 v_1 + w_1 v_2)[F^3] &= 0\\ (v_1^3 + w_1^2 v_1)[F^3] &= 0 \end{cases}$$

se $n \equiv 2 \mod 4$.

Em ambos os casos, $v_1^3[F^3] = v_3[F^3] = w_1v_2[F^3] = w_1^2v_1[F^3] = 0$ é a única solução. A classe de cobordismo de qualquer fibrado vetorial sobre uma variedade

Fato. A classe de cobordismo de qualquer fibrado vetorial sobre uma variedade tridimensional F^3 é determinada pelos números de Whitney $v_1^3[F^3]$, $v_3[F^3]$, $w_1v_2[F^3] e w_1^2v_1[F^3]$ (vide [1]).

Assim, concluímos que o fibrado normal sobre F^3 borda, o que é um absurdo. Logo, $k \leq 4.$

3.3 Construção dos exemplos maximais

3.3.1 Notações e preliminares

Para construir os nossos exemplos maximais, precisaremos introduzir algumas preliminares e estabelecer algumas notações.

Utilizaremos a seguinte construção de P. Conner e E. Floyd (vide [8]): seja (M^m, T) uma involução definida sobre uma variedade m-dimensional fechada M^m e com fixed-data $\eta \mapsto F$. Sobre $S^1 \times M^m$, consideremos as involuções $-Id \times T$ e $c \times Id$, onde S^1 é a esfera unidimensional, Id é a função identidade e c é a conjugação complexa. Notemos que $-Id \times T$ é livre e comuta com $c \times Id$; assim, $c \times Id$ induz uma involução sobre o espaço de órbitas $\frac{S^1 \times M^m}{-Id \times T}$, que é uma variedade (m + 1)-dimensional fechada. Esta involução, denotada por $\Gamma(M^m, T)$, possui $(R \oplus \eta \mapsto F) \cup (R \mapsto M^m)$ como fixed-data. Se M^m borda, $R \mapsto M^m$ borda como fibrado linha; logo, $\Gamma(M^m, T)$ é equivariantemente cobordante a uma involução com fixed-data $R \oplus \eta \mapsto F$. Se $\frac{S^1 \times M^m}{-Id \times T}$ borda, podemos repetir o processo fabricando $\Gamma^2(M^m, T)$ e, assim, sucessivamente.

Conforme mencionamos na Introdução desse trabalho, a principal dificuldade do caso com mais de duas componentes está na obtenção de exemplos maximais (ou quase maximais), lembrando que os casos de uma ou duas componentes possuem fontes padrões de exemplos. Introduziremos, a seguir, um método que será crucial no que se refere a esse ponto.

Sejam $\nu \mapsto F^j$ e $\eta \mapsto F^j$ fibrados vetoriais sobre uma variedade *j*-dimensional F^j , onde $dim(\nu) = k$ e $dim(\eta) = l$. Para simplificar a notação, denotaremos os espaços

totais dos fibrados envolvidos pelos mesmos símbolos usados para denotar os fibrados. Consideremos a soma de Whitney $\nu \oplus \eta \mapsto F^j$. Temos que $\nu \oplus \eta$, $\nu \in \eta$ são variedades com dimensões j + k + l, $j + k \in j + l$, respectivamente. Através das inclusões $v \longmapsto (v, 0) \in$ $w \longmapsto (0, w)$, podemos considerar $\nu \in \eta$ como subvariedades de $\nu \oplus \eta$. Seja $p : \nu \oplus \eta \longrightarrow F^j$ a projeção; as restrições de p a $\nu \in \eta$ servem como projeções desses fibrados e, para simplificar a notação, usaremos a mesma letra p para denotar tais projeções.

Da teoria de fibrados, temos o seguinte fato: o fibrado normal de $\nu \text{ em } \nu \oplus \eta$ é o $pullback \ p^*(\eta) \longrightarrow \nu$. Isso se estende naturalmente se considerarmos os correspondentes fibrados em esferas $S(\nu)$ e $S(\nu \oplus \eta)$, que tem dimensões j + k - 1 e j + k + l - 1, respectivamente. Lembremos que $(v, w) \in S(\nu \oplus \eta)$ quando $||v||^2 + ||w||^2 = 1$ e $S(\nu)$ é naturalmente uma subvariedade de $S(\nu \oplus \eta)$ através da inclusão $\nu \longmapsto (v, 0)$. Novamente, o fibrado normal de $S(\nu)$ em $S(\nu \oplus \eta)$ é o espaço total do pullback $p^*(\eta) \longrightarrow S(\nu)$.

Seja $q:S(\nu)\longrightarrow \mathbb{R}P(\nu)$ a aplicação quociente, que é um recobrimento a duas folhas. Temos então o diagrama

$$\begin{array}{ccc} S(\nu) & \stackrel{q}{\longrightarrow} & \mathbb{R}P(\nu) \\ \downarrow p & \swarrow \overline{p} \\ F^{j} \end{array}$$

onde $\overline{p} \circ q = p$ e \overline{p} denota a projeção correspondente ao fibrado projetivo. Denotemos $\overline{p}^*(\eta) = \overline{\eta}$. Temos que $p^*(\eta) = q^* \circ \overline{p}^*(\eta) = q^*(\overline{\eta})$. Segue que

 $p^*(\eta) = \{(v,w) \in S(\nu) \times \overline{\eta} ; w \text{ está na fibra sobre } q(v) = [v,-v] \}.$

Ao passarmos ao quociente $\frac{S(\nu \oplus \eta)}{antipodal} \cong \mathbb{R}P(\nu \oplus \eta)$, considerando o fibrado normal $p^*(\eta)$ de $S(\nu)$ em $S(\nu \oplus \eta)$ realizado como uma vizinhança tubular de $S(\nu)$ em $S(\nu \oplus \eta)$, e usando o mesmo argumento utilizado para determinar os fibrados tangentes dos espaços projetivos a partir dos fibrados tangentes das esferas correspondentes, vemos que: (i) $S(\nu)$ é transformado em $\mathbb{R}P(\nu) \subset \mathbb{R}P(\nu \oplus \eta)$;

(ii) o fibrado normal de $\mathbb{R}P(\nu)$ em $\mathbb{R}P(\nu \oplus \eta)$ terá como espaço total $\frac{p^*(\eta)}{\sim} = \frac{q^*(\overline{\eta})}{\sim}$, onde ~ identifica (v, w) com (-v, -w) (vendo, como acima mencionado, $p^*(\eta)$ como uma vizinhança tubular).

Agora, recordemos um fato descrito em [8] (Seção 33, p.114): sejam X um espaço equipado com uma involução sem pontos fixos $T : X \to X$, $\xi \mapsto \frac{X}{T}$ o fibrado linha associado à involução $T, q : X \to \frac{X}{T}$ a aplicação quociente e $\mu \stackrel{p}{\longrightarrow} \frac{X}{T}$ um fibrado k-dimensional arbitrário. Consideremos o pullback $q^*(\mu) \longrightarrow X$. Temos que $q^*(\mu) = \{(x,v) \in X \times \mu ; q(x) = p(v)\}$. Dado $(x,v) \in q^*(\mu)$, temos que p(v) = p(-v), pois

 $v \in -v$ estão na mesma fibra de μ . Também, $q(x) = \{x, T(x)\} = q(T(x))$. Segue que q(T(x)) = q(x) = p(v) = p(-v) e, portanto, o par (T(x), -v) pertence a $q^*(\mu)$. Portanto, $(x, v) \xrightarrow{S} (T(x), -v)$ é uma involução sem pontos fixos bem definida em $q^*(\mu)$. Assim, $\frac{q^*(\mu)}{S}$ é o espaço total de um novo fibrado k-dimensional sobre $\frac{X}{T}$, com projeção $\{(x, v), (T(x), -v)\} \longmapsto \{x, T(x)\}.$

Fato. (Lema 33.1, p.114, de [8]) O fibrado $\frac{q^*(\mu)}{S} \mapsto \frac{X}{T}$ é equivalente ao produto tensorial de fibrados $\mu \otimes \xi$.

Como consequência, colocando-se $X = S(\nu), T : X \to X$ a antipodal nas fibras, e $\mu \mapsto \frac{X}{T} = \eta \mapsto \mathbb{R}P(\nu)$, e juntando o fato acima com a discussão prévia sobre o fibrado normal de $\mathbb{R}P(\nu)$ em $\mathbb{R}P(\nu \oplus \eta)$, concluímos que tal fibrado normal é equivalente a $\eta \otimes \xi \mapsto \mathbb{R}P(\nu)$, onde ξ é o fibrado linha usual sobre $\mathbb{R}P(\nu)$.

Esses fatos nos levam à uma nova técnica para construir involuções com *fixed-data* calculável:

(I) Em $\mathbb{R}P(\nu \oplus \eta)$ consideremos a involução $[(v, w)] \stackrel{P}{\longmapsto} [(-v, w)]$. Temos que

$$Fix(P) = \{ [(0, w)], w \in S(\eta) \} \cup \{ [(v, 0)], v \in S(\nu) \} = \mathbb{R}P(\nu) \cup \mathbb{R}P(\eta).$$

Conforme visto, os fibrados normais são

$$\eta \otimes \xi \mapsto \mathbb{R}P(\nu)$$
 e $\nu \otimes \xi' \mapsto \mathbb{R}P(\eta)$,

onde ξ e ξ' são os fibrados linha sobre $\mathbb{R}P(\nu)$ e $\mathbb{R}P(\eta)$, respectivamente. Por facilidade, omitimos a notação de *pullback*.

Observação 3.3.1. Da teoria das classes características, temos o seguinte resultado a respeito da classe de *Stiefel-Whitney* do produto tensorial de dois fibrados: se $\eta \mapsto F$ é um fibrado k-dimensional sobre uma variedade fechada F, com classe $W(\eta) = v_1 + v_2 + \ldots + v_k$, e $\xi \mapsto F$ é um fibrado linha, com classe $W(\xi) = 1 + c$, então a classe de *Stiefel-Whitney* do fibrado $\eta \otimes \xi$ é dada por

$$W(\eta \otimes \xi) = (1+c)^k + (1+c)^{k-1}v_1 + \dots + (1+c)v_{k-1} + v_k.$$

Retornando às notações que serão utilizadas, para $j \ge 1$, denotaremos por $\lambda_j \mapsto \mathbb{R}P^j$ o fibrado linha canônico sobre o espaço real projetivo *j*-dimensional, e para j = 0, definimos $\mathbb{R}P^0 = \{ponto\} \in \lambda_0 = R$, o fibrado trivial. O gerador de $H^1(\mathbb{R}P^j, \mathbb{Z}_2), j \ge 1$, será denotado por α_j .

Assim como a involução definida em (I), a involução que descreveremos a seguir

será amplamente utilizada nas construções dos nossos exemplos maximais:

(II) Seja ($\mathbb{R}P^{j+p+1}, T_{j,p}$) a involução definida em coordenadas homogêneas por

$$T_{j,p}([x_0, x_1, \dots, x_{j+p+1}]) = [-x_0, -x_1, \dots, -x_j, x_{j+1}, \dots, x_{j+p+1}].$$

O fixed-data de $T_{j,p}$ é

$$((p+1)\lambda_j \mapsto \mathbb{R}P^j) \cup ((j+1)\lambda_p \mapsto \mathbb{R}P^p)$$

3.3.2 Caso
$$F = \{ponto\} \cup (\bigcup_{\substack{j=1\\ j \text{ impar}}}^{n} F^{j})$$

Nosso objetivo aqui é construir uma involução (M^{n+1}, T) , com $n \ge 3$ ímpar, cujo conjunto de pontos fixos tem a forma

$$\{ponto\} \cup (\bigcup_{j=1 \atop j \text{ impar}}^{n} F^{j}),$$

e tal que o fibrado normal sobre cada componente F^{j} fixada é não bordante, mostrando, dessa forma, que o limitante descrito no item (*i*) (Teorema 3.1.1) é o melhor possível.

Começaremos construindo exemplos de involuções para o caso $n \ge 11$ ímpar (parte (1)). Em seguida, trataremos os casos n = 7 e n = 9 (parte (2)) e, para finalizar, os casos n = 5 (parte (3)) e n = 3 (parte (4)).

(1) Mostremos que existe uma involução (M^{n+1}, T) com conjunto de pontos fixos da forma $\{ponto\} \cup (\bigcup_{j=1 \ j \text{ impar}}^n F^j)$ para o caso $n \ge 11$ ímpar, de tal sorte que os fibrados

normais sobre cada componente F^j são não bordantes.

Consideremos a involução ($\mathbb{R}P^3, T_{0,2}$), definida em (II) (subseção anterior), com j = 0 e p = 2. O fixed-data de $T_{0,2}$ é

$$(3R \mapsto \{ponto\}) \cup (\lambda_2 \mapsto \mathbb{R}P^2).$$

Como $\mathbb{R}P^3$ borda, temos que $\Gamma(\mathbb{R}P^3, T_{0,2})$ é equivariantemente cobordante a uma involução (W^4, R) , que fixa

$$(4R \mapsto \{ponto\}) \cup (\lambda_2 \oplus R \mapsto \mathbb{R}P^2).$$

Seja (V^{n-3}, P) a involução descrita em (I) (subseção anterior), onde V^{n-3} é a variedade fechada (n-3)-dimensional $\mathbb{R}P(\nu^{n-4} \oplus \eta^1)$, associada à soma direta dos fibrados $\nu^{n-4} = \lambda_1 \oplus (n-5)R \mapsto \mathbb{R}P^1$ e $\eta^1 = R \mapsto \mathbb{R}P^1$. Conforme visto, o *fixed-data* dessa involução é

$$(R \otimes \xi \mapsto \mathbb{R}P(\lambda_1 \oplus (n-5)R)) \cup ((\lambda_1 \oplus (n-5)R) \otimes \xi' \mapsto \mathbb{R}P(R)) =$$

= $(\xi \mapsto \mathbb{R}P(\lambda_1 \oplus (n-5)R)) \cup (\lambda_1 \oplus (n-5)R \mapsto \mathbb{R}P^1).$

A partir das involuções (W^4,R)
e (V^{n-3},P) descritas acima, definimos a involução produto

• $(W^4 \times V^{n-3}, S)$, dada por S(x, y) = (R(x), P(y)). O fixed-data de S é

$$(\lambda_1 \oplus (n-1)R \mapsto F^1) \cup (\lambda_1 \oplus \lambda_2 \oplus (n-4)R \mapsto F^3) \cup \cup (\xi \oplus 4R \mapsto F^{n-4}) \cup (\xi \oplus \lambda_2 \oplus R \mapsto F^{n-2}).$$

onde $F^1 = \mathbb{R}P^1$, $F^3 = \mathbb{R}P^1 \times \mathbb{R}P^2$, $F^{n-4} = \mathbb{R}P(\lambda_1 \oplus (n-5)R) \in F^{n-2} = \mathbb{R}P^2 \times \mathbb{R}P(\lambda_1 \oplus (n-5)R).$

Por fim, consideremos a involução

• $(\mathbb{R}P^{n+1}, T_{0,n})$, cujo *fixed-data* é

$$((n+1)R \mapsto \{ponto\}) \cup (\lambda_n \mapsto \mathbb{R}P^n).$$

Mostremos que as componentes do fixed-data das involuções $(W^4 \times V^{n-3}, S)$ e $(\mathbb{R}P^{n+1}, T_{0,n})$ não bordam como fibrados.

(i) A componente $\lambda_1 \oplus (n-1)R \mapsto F^1$ não borda, pois

$$w_1(\lambda_1 \oplus (n-1)R)[F^1] = \alpha_1[\mathbb{R}P^1] = 1.$$

(ii) A classe de *Stiefel-Whitney* do fibrado $\lambda_1 \oplus \lambda_2 \oplus (n-4)R$ é dada por

 $W(\lambda_1 \oplus \lambda_2 \oplus (n-4)R) = W(\lambda_1)W(\lambda_2) = (1+\alpha_1)(1+\alpha_2) = 1+\alpha_1+\alpha_2+\alpha_1\alpha_2.$ Assim,

$$w_1(\lambda_1 \oplus \lambda_2 \oplus (n-4)R)w_2(\lambda_1 \oplus \lambda_2 \oplus (n-4)R)[F^3] = (\alpha_1 + \alpha_2)\alpha_1\alpha_2[\mathbb{R}P^1 \times \mathbb{R}P^2] = \alpha_1\alpha_2^2[\mathbb{R}P^1 \times \mathbb{R}P^2] = 1,$$

e, portanto, a componente $\lambda_1 \oplus \lambda_2 \oplus (n-4)R \mapsto F^3$ não borda.

(iii) Analisemos a componente $\xi \oplus 4R \mapsto F^{n-4}$, onde F^{n-4} é o espaço total $\mathbb{R}P(\lambda_1 \oplus$
$(n-5)R) \mapsto \mathbb{R}P^1$. Seja $w_1(\xi) = c$. Pelo teorema de *Leray-Hirsch* (1.6.2), sabemos que $H^*(F^{n-4}, \mathbb{Z}_2)$ é um $H^*(\mathbb{R}P^1, \mathbb{Z}_2)$ -módulo livre gerado por 1, c, c^2, \ldots, c^{n-5} . Segue que $c^{n-5}\alpha_1$ é o gerador de $H^{n-4}(F^{n-4}, \mathbb{Z}_2)$. Além disso, por *Borel-Hirzebruch* (Teorema 1.6.3), vale a relação

$$c^{n-4} = c^{n-5}w_1(\lambda_1) + c^{n-6}w_2(\lambda_1) + \ldots + w_{n-4}(\lambda_1) = c^{n-5}\alpha_1.$$

Logo,

$$(w_1(\xi \oplus 4R))^{n-4}[F^{n-4}] = (w_1(\xi))^{n-4}[F^{n-4}] = c^{n-4}[F^{n-4}] = c^{n-5}\alpha_1[F^{n-4}] = 1$$

e, portanto, o fibrado $\xi \oplus 4R \mapsto F^{n-4}$ não borda.

(iv) Mostremos agora que a componente $\xi \oplus \lambda_2 \oplus R \mapsto F^{n-2}$ não borda. Usando Borel-Hirzebruch, temos que

$$W(\mathbb{R}P(\lambda_1 \oplus (n-5)R)) = (1+c)^{n-4} + (1+c)^{n-5}w_1(\lambda_1) + \dots + w_{n-4}(\lambda_1) = (1+c)^{n-4} + (1+c)^{n-5}\alpha_1.$$

Então, a classe de *Stiefel-Whitney* de F^{n-2} é dada por

$$W(F^{n-2}) = W(\mathbb{R}P^2)W(\mathbb{R}P(\lambda_1 \oplus (n-5)R)) = (1+\alpha_2)^3[(1+c)^{n-4} + (1+c)^{n-5}\alpha_1]$$

e, além disso, vale a relação $c^{n-4} = c^{n-5}\alpha_1$. Por *Leray-Hirsch*, temos que $c^{n-5}\alpha_1\alpha_2^2$ é o gerador de $H^{n-2}(F^{n-2}, \mathbb{Z}_2)$.

Consideremos a classe $w_1(F^{n-2}) = \binom{n-4}{1}c + \alpha_1 + \alpha_2$. Como $\binom{n-4}{1} = 1$, pois *n* é ímpar, segue que $w_1(F^{n-2}) = c + \alpha_1 + \alpha_2$. Daí,

$$(w_1(F^{n-2}))^{n-4} = (c+\alpha_1+\alpha_2)^{n-4} = = c^{n-4} + c^{n-5}(\alpha_1+\alpha_2) + \binom{n-4}{2}c^{n-6}\alpha_2^2 + \binom{n-5}{2}c^{n-7}\alpha_1\alpha_2^2.$$

Consideremos, agora, a classe de *Stiefel-Whitney* do fibrado sobre F^{n-2} ,

$$W(\xi \oplus \lambda_2 \oplus R) = W(\xi)W(\lambda_2) = (1+c)(1+\alpha_2) = 1 + c + \alpha_2 + c\alpha_2.$$

Então, $w_2(\xi \oplus \lambda_2 \oplus R) = c\alpha_2$ e usando o fato de que $\alpha_2^j = 0$, se $j \ge 3$, temos

$$(w_1(F^{n-2}))^{n-4}w_2(\xi \oplus \lambda_2 \oplus R)[F^{n-2}] = (c^{n-3}\alpha_2 + c^{n-4}\alpha_1\alpha_2 + c^{n-4}\alpha_2^2)[F^{n-2}].$$

Mas, $c^{n-3}\alpha_2 = c^{n-4}\alpha_1\alpha_2 = 0$, já que $c^{n-4} = c^{n-5}\alpha_1$ e $\alpha_1^j = 0$, para $j \ge 2$. Portanto,

$$(w_1(F^{n-2}))^{n-4}w_2(\xi \oplus \lambda_2 \oplus R)[F^{n-2}] = c^{n-4}\alpha_2^2[F^{n-2}] = c^{n-5}\alpha_1\alpha_2^2[F^{n-2}] = 1$$

e temos que $\xi \oplus \lambda_2 \oplus R \mapsto F^{n-2}$ não borda.

(v) Para finalizar, observemos que $(w_1(\lambda_n))^n[\mathbb{R}P^n] = \alpha_n^n[\mathbb{R}P^n] = 1$. Logo, a componente $\lambda_n \mapsto \mathbb{R}P^n$ não borda.

Entretanto, notemos que está faltando definir involuções que fixam as componentes $F^5, F^7, \ldots, F^{n-6}$. Consideremos, então, as involuções

• $(V_r^{n+1}, P_{\frac{r-3}{2}})$, com $r = 5, 7, \ldots, n-6$ ímpar, onde V_r^{n+1} é a variedade fechada (n+1)dimensional $\mathbb{R}P(\nu_r^{n-r+1} \oplus \eta_r^1)$, associada à soma direta dos fibrados $\nu_r^{n-r+1} = \lambda_1 \oplus (n-r)R \mapsto \mathbb{R}P^1 \times \mathbb{R}P^{r-1}$ e $\eta_r^1 = R \mapsto \mathbb{R}P^1 \times \mathbb{R}P^{r-1}$. Como foi visto, tais involuções fixam

$$(R \otimes \xi \mapsto \mathbb{R}P(\lambda_1 \oplus (n-r)R)) \cup ((\lambda_1 \oplus (n-r)R) \otimes \xi' \mapsto \mathbb{R}P(R)) =$$

= $(\xi \mapsto \mathbb{R}P(\lambda_1 \oplus (n-r)R)) \cup (\lambda_1 \oplus (n-r)R \mapsto \mathbb{R}P^1 \times \mathbb{R}P^{r-1}),$

para cada r ímpar, $5 \leq r \leq n-6$. Denotemos por F^r a base r-dimensional $\mathbb{R}P^1 \times \mathbb{R}P^{r-1}$ e por F_r^n , a base n-dimensional $\mathbb{R}P(\lambda_1 \oplus (n-r)R)$.

Mostremos que $\lambda_1 \oplus (n-r)R \mapsto F^r$ não borda, para cada r. De fato, temos que $w_1(\lambda_1 \oplus (n-r)R) = \alpha_1$. Por outro lado, a classe de *Stiefel-Whitney* de F^r é dada por $W(F^r) = W(\mathbb{R}P^1)W(\mathbb{R}P^{r-1}) = (1+\alpha_2)^r$. Assim, $w_1(F^r) = \binom{r}{1}\alpha_2 = \alpha_2$, pois r é ímpar, e então,

$$w_1(\lambda_1 \oplus (n-r)R)(w_1(F^r))^{r-1}[F^r] = \alpha_1 \alpha_2^{r-1}[F^r] = 1$$

Portanto, $\lambda_1 \oplus (n-r)R \mapsto F^r$ não borda, para todo r ímpar, $5 \le r \le n-6$.

Logo, podemos considerar, para o caso $n \ge 11$ ímpar, a involução

$$(M^{n+1},T) = (W^4 \times V^{n-3}, S) \cup (\mathbb{R}P^{n+1}, T_{0,n}) \cup \bigcup_{\substack{r=5\\r \text{ impar}}}^{n-6} (V_r^{n+1}, P_{\frac{r-3}{2}}),$$

cujo conjunto de pontos fixos é da forma $\{ponto\} \cup (\bigcup_{\substack{j=1\\ j \text{ impar}}}^{n} F^{j})$, e com cada fibrado normal sobre F^{j} , $j \neq n$, não bordante.

Para finalizar este caso, mostremos que a união das componentes *n*-dimensionais do fixed-data de (M^{n+1}, T) ,

$$\left(\bigcup_{\substack{r=5\\r \text{ impar}}}^{n-6} (\xi \mapsto F_r^n)\right) \cup (\lambda_n \mapsto \mathbb{R}P^n),$$

não borda. Para tal, é suficiente verificar que $(w_1(\xi))^n [F_r^n] = 0$, para cada $5 \le r \le n - 6$ ímpar, já que $(w_1(\lambda_n))^n [\mathbb{R}P^n] = 1$. De fato, por *Borel-Hirzebruch*, temos que em F_r^n vale a relação $c^{n-r+1} = c^{n-r}\alpha_1$, onde $c = w_1(\xi)$. Assim, para cada r ímpar, $5 \le r \le n - 6$,

$$(w_1(\xi))^n [F_r^n] = c^n [F_r^n] = c^{n-r+1} c^{r-1} [F_r^n] = c^{n-1} \alpha_1 [F_r^n] = = c^{n-r+1} c^{r-2} \alpha_1 [F_r^n] = c^{n-2} \alpha_1^2 [F_r^n] = 0,$$

pois $\alpha_1 \in H^1(\mathbb{R}P^1, \mathbb{Z}_2)$.

(2) Para os casos n = 7 e n = 9, consideremos a união das seguintes involuções, definidas em (1):

$$(M^{n+1},T) = (W^4 \times V^{n-3},S) \cup (\mathbb{R}P^{n+1},T_{0,n}).$$

Como vimos, tal união fixa o conjunto

$$\{ponto\} \cup F^1 \cup F^3 \cup F^{n-4} \cup F^{n-2} \cup F^n,$$

onde $F^1 = \mathbb{R}P^1$, $F^3 = \mathbb{R}P^1 \times \mathbb{R}P^2$, $F^{n-4} = \mathbb{R}P(\lambda_1 \oplus (n-5)R)$, $F^{n-2} = \mathbb{R}P^2 \times \mathbb{R}P(\lambda_1 \oplus (n-5)R)$ e $F^n = \mathbb{R}P^n$. Logo, (M^{n+1}, T) é um exemplo maximal para os casos n = 7 e n = 9.

Observação 3.3.2. Para o caso n = 7, a involução $(W^4 \times V^4, S)$ possui duas componentes tridimensionais em seu *fixed-data*, a saber, $\lambda_1 \oplus \lambda_2 \oplus 3R \mapsto F^3 \in \xi \oplus 4R \mapsto F^3$. Entretanto, a união dessas duas componentes não borda, já que

$$w_1(\lambda_1 \oplus \lambda_2 \oplus 3R)w_2(\lambda_1 \oplus \lambda_2 \oplus 3R)[F^3] = 1,$$

como visto em (1), e

$$w_1(\xi \oplus 4R)w_2(\xi \oplus 4R)[F^3] = 0,$$

pois $w_2(\xi \oplus 4R) = 0.$

(3) Trabalharemos agora com o caso n = 5, ou seja, construiremos uma involução (M^6, T) que fixa o conjunto $\{ponto\} \cup F^1 \cup F^3 \cup F^5$ e tal que os fibrados normais sobre as componentes F^1 , $F^3 \in F^5$ são não bordantes.

• Seja $(\mathbb{R}P^6, T_{0,5})$ a involução cujo fixed-data é

$$(6R \mapsto \{ponto\}) \cup (\lambda_5 \mapsto \mathbb{R}P^5).$$

Consideremos também as involuções:

• (V^6, P) , onde V^6 é a variedade 6-dimensional $\mathbb{R}P(\nu^5 \oplus \eta^1)$, com $\nu^5 = \lambda_1 \oplus 4R \mapsto \mathbb{R}P^1$ e $\eta^1 = R \mapsto \mathbb{R}P^1$, e cujo *fixed-data* vimos ser

$$(R \otimes \xi \mapsto \mathbb{R}P(\lambda_1 \oplus 4R)) \cup ((\lambda_1 \oplus 4R) \otimes \xi' \mapsto \mathbb{R}P(R)) =$$

= $(\xi \mapsto \mathbb{R}P(\lambda_1 \oplus 4R)) \cup (\lambda_1 \oplus 4R \mapsto \mathbb{R}P^1);$

• (V'^6, P') , onde V'^6 é a variedade fechada 6-dimensional $\mathbb{R}P(\nu^3 \oplus \eta^1)$, associada à soma direta dos fibrados $\nu^3 = \lambda_1 \oplus 2R \mapsto \mathbb{R}P^1 \times \mathbb{R}P^2$ e $\eta^1 = R \mapsto \mathbb{R}P^1 \times \mathbb{R}P^2$. O fixed-data de (V'^6, P') é

$$(R \otimes \xi \mapsto \mathbb{R}P(\lambda_1 \oplus 2R)) \cup ((\lambda_1 \oplus 2R) \otimes \xi' \mapsto \mathbb{R}P(R)) =$$

= $(\xi \mapsto \mathbb{R}P(\lambda_1 \oplus 2R)) \cup (\lambda_1 \oplus 2R \mapsto \mathbb{R}P^1 \times \mathbb{R}P^2).$

Assim, a involução

$$(M^6, T) = (\mathbb{R}P^6, T_{0,5}) \cup (V^6, P) \cup (V'^6, P')$$

fixa $\{ponto\} \cup F^1 \cup F^3 \cup F^5$, onde $F^1 = \mathbb{R}P^1$, $F^3 = \mathbb{R}P^1 \times \mathbb{R}P^2$ e $F^5 = \mathbb{R}P^5 \cup \mathbb{R}P(\lambda_1 \oplus 4R) \cup \mathbb{R}P(\lambda_1 \oplus 2R)$. Mostremos que os fibrados normais sobre essas componentes não bordam.

(i) O fibrado $\lambda_1 \oplus 4R \mapsto \mathbb{R}P^1$ não borda, pois

$$w_1(\lambda_1 \oplus 4R)[\mathbb{R}P^1] = \alpha_1[\mathbb{R}P^1] = 1.$$

(ii) Sejam $W(\lambda_1 \oplus 2R) = 1 + \alpha_1 \in W(\mathbb{R}P^1 \times \mathbb{R}P^2) = 1 + \alpha_2 + \alpha_2^2$ as classes de *Stiefel-Whitney* do fibrado $\lambda_1 \oplus 2R \mapsto \mathbb{R}P^1 \times \mathbb{R}P^2$. Então,

$$w_1(\lambda_1 \oplus 2R)(w_1(\mathbb{R}P^1 \times \mathbb{R}P^2))^2[\mathbb{R}P^1 \times \mathbb{R}P^2] = \alpha_1\alpha_2^2[\mathbb{R}P^1 \times \mathbb{R}P^2] = 1$$

e, portanto, esse fibrado também não borda.

(iii) Falta mostrar que a união dos fibrados com bases 5-dimensionais não borda.

Analisemos, primeiramente, $\lambda_5 \mapsto \mathbb{R}P^5$. Temos que

$$(w_1(\mathbb{R}P^5))^4 w_1(\lambda_5)[\mathbb{R}P^5] = 0.$$

De fato, a classe de *Stiefel-Whitney* da base é dada por $W(\mathbb{R}P^5) = (1+\alpha_5)^6 = 1+\alpha_5^2+\alpha_5^4$ e, então, $w_1(\mathbb{R}P^5) = 0$.

Sobre o fibrado $\xi \mapsto \mathbb{R}P(\lambda_1 \oplus 4R)$, usando *Borel-Hirzebruch* e denotando $w_1(\xi) = c$, temos que

$$W(\mathbb{R}P(\lambda_1 \oplus 4R)) = (1+c)^5 + (1+c)^4 \alpha_1 = 1 + c + \alpha_1 + c^4 + c^4 \alpha_1 + c^5,$$

com a relação $c^5 = c^4 \alpha_1$, sendo $c^4 \alpha_1$ o gerador de $H^5(\mathbb{R}P(\lambda_1 \oplus 4R), \mathbb{Z}_2)$. Assim,

$$(w_1(\mathbb{R}P(\lambda_1 \oplus 4R)))^4 w_1(\xi)[\mathbb{R}P(\lambda_1 \oplus 4R)] = (c + \alpha_1)^4 c[\mathbb{R}P(\lambda_1 \oplus 4R)] =$$
$$= c^5[\mathbb{R}P(\lambda_1 \oplus 4R)] =$$
$$= c^4 \alpha_1[\mathbb{R}P(\lambda_1 \oplus 4R)] = 1.$$

Por fim, sobre o fibrado $\xi \mapsto \mathbb{R}P(\lambda_1 \oplus 2R)$, e usando novamente *Borel-Hirzebruch*, temos que a classe de *Stiefel-Whitney* da base é

$$W(\mathbb{R}P(\lambda_1 \oplus 2R)) = (1 + \alpha_2)^3 [(1 + c)^3 + (1 + c)^2 \alpha_1],$$

e vale a relação $c^3 = c^2 \alpha_1$. Assim, $w_1(\mathbb{R}P(\lambda_1 \oplus 2R)) = c + \alpha_1 + \alpha_2$ e

$$(w_1(\mathbb{R}P(\lambda_1 \oplus 2R)))^4 w_1(\xi)[\mathbb{R}P(\lambda_1 \oplus 2R)] = (c + \alpha_1 + \alpha_2)^4 c[\mathbb{R}P(\lambda_1 \oplus 2R)] = c^5[\mathbb{R}P(\lambda_1 \oplus 2R)] = 0,$$

pois $c^5 = c^3 c^2 = c^4 \alpha_1 = c^3 c \alpha_1 = c^3 \alpha_1^2 = 0.$

Logo, a união dos fibrados com bases 5-dimensionais não borda.

(4) Para finalizar esta subseção, mostremos que existe uma involução (M^4, T) que fixa o conjunto $\{ponto\} \cup F^1 \cup F^3$ e tal que os fibrados normais sobre F^1 e F^3 são não bordantes.

Consideremos as involuções:

• $(\mathbb{R}P^4, T_{0,3})$, cujo *fixed-data* é

$$(4R \mapsto \{ponto\}) \cup (\lambda_3 \mapsto \mathbb{R}P^3);$$

• (V^4, P) , onde V^4 é a variedade 4-dimensional $\mathbb{R}P(\nu^3 \oplus \eta^1)$, com $\nu^3 = \lambda_1 \oplus 2R \mapsto \mathbb{R}P^1$

e $\eta^1 = R \mapsto \mathbb{R}P^1$. O fixed-data de (V^4, P) é

$$(R \otimes \xi \mapsto \mathbb{R}P(\lambda_1 \oplus 2R)) \cup ((\lambda_1 \oplus 2R) \otimes \xi' \mapsto \mathbb{R}P(R)) =$$

= $(\xi \mapsto \mathbb{R}P(\lambda_1 \oplus 2R)) \cup (\lambda_1 \oplus 2R \mapsto \mathbb{R}P^1).$

Logo, a involução

$$(M^4, T) = (\mathbb{R}P^4, T_{0,3}) \cup (V^4, P)$$

fixa {ponto} $\cup F^1 \cup F^3$, onde $F^1 = \mathbb{R}P^1$ e $F^3 = \mathbb{R}P^3 \cup \mathbb{R}P(\lambda_1 \oplus 2R)$.

Observemos que a componente $\lambda_1 \oplus 2R \mapsto \mathbb{R}P^1$ não borda como fibrado, pois

$$w_1(\lambda_1 \oplus 2R)[\mathbb{R}P^1] = \alpha_1[\mathbb{R}P^1] = 1.$$

A união das componentes com bases tridimensionais, $(\lambda_3 \mapsto \mathbb{R}P^3) \cup (\xi \mapsto \mathbb{R}P(\lambda_1 \oplus 2R))$, também não borda. De fato, por *Borel-Hirzebruch* e denotando $w_1(\xi)$ por c, temos que a classe de *Stiefel-Whitney* da base $\mathbb{R}P(\lambda_1 \oplus 2R)$ é dada por

$$W(\mathbb{R}P(\lambda_1 \oplus 2R)) = (1+c)^3 + (1+c)^2\alpha_1 = 1 + c + \alpha_1 + c^2$$

e vale a relação $c^3 = c^2 \alpha_1$, sendo $c^2 \alpha_1$ o gerador de $H^3(\mathbb{R}P(\lambda_1 \oplus 2R), \mathbb{Z}_2)$. Assim,

$$w_1(\xi)w_2(\mathbb{R}P(\lambda_1\oplus 2R))[\mathbb{R}P(\lambda_1\oplus 2R)] = cc^2[\mathbb{R}P(\lambda_1\oplus 2R)] =$$
$$= c^3[\mathbb{R}P(\lambda_1\oplus 2R)] =$$
$$= c^2\alpha_1[\mathbb{R}P(\lambda_1\oplus 2R)] = 1$$

Por outro lado, $w_1(\lambda_3)w_2(\mathbb{R}P^3)[\mathbb{R}P^3] = 0$, pois $w_2(\mathbb{R}P^3) = 0$, já que $\mathbb{R}P^3$ borda. Isso encerra o caso $\{ponto\} \cup (\bigcup_{j \text{ impar}}^{j=1} F^j)$.

3.3.3 Caso
$$F = F^1 \cup (\bigcup_{\substack{j=0\\ \mathbf{j} \text{ par}}}^n F^j)$$

Nessa subseção, mostraremos que o limitante descrito no item (ii) (Teorema 3.1.1) é o melhor possível, ou seja, construiremos uma involução (M^{n+2}, T) , com $n \ge 2$ par, cujo conjunto de pontos fixos tem a forma

$$F = F^1 \cup (\bigcup_{\substack{j=0\\j \text{ par}}}^n F^j),$$

e tal que o fibrado normal sobre cada componente fixada F^{j} é não bordante.

(1) Comecemos construindo um exemplo para o caso em que a componente maximal fixada tem a forma n = 4x + 2, com $x \ge 0$; isto é, exibiremos uma involução (M^{4x+4}, T) cujo conjunto fixado é

$$F = F^1 \cup \left(\bigcup_{\substack{j=0\\j \text{ par}}}^{4x+2} F^j\right),$$

 $\operatorname{com} x \ge 0.$

Consideremos a seguinte involução:

• $(\mathbb{R}P^{4x+4}, T_{1,4x+2})$, cujo *fixed-data* é

$$((4x+3)\lambda_1 \mapsto \mathbb{R}P^1) \cup (2\lambda_{4x+2} \mapsto \mathbb{R}P^{4x+2}).$$

Consideremos, também, as involuções ($\mathbb{R}P^{4x+3}, T_{2t,4x+2-2t}$), com $t = 0, 1, 2, \dots, x$, cujos fixed-data têm a forma

$$((4x+3-2t)\lambda_{2t} \mapsto \mathbb{R}P^{2t}) \cup ((2t+1)\lambda_{4x+2-2t} \mapsto \mathbb{R}P^{4x+2-2t}).$$

Sendo 4x + 3 ímpar, temos que $\mathbb{R}P^{4x+3}$ borda. Então, $\Gamma(\mathbb{R}P^{4x+3}, T_{2t,4x+2-2t})$ é equivariantemente cobordante a

•
$$(W_t^{4x+4}, S_t), 0 \le t \le x, \text{ com fixed-data}$$

 $((4x+3-2t)\lambda_{2t} \oplus R \mapsto \mathbb{R}P^{2t}) \cup ((2t+1)\lambda_{4x+2-2t} \oplus R \mapsto \mathbb{R}P^{4x+2-2t}).$

Observação 3.3.3. Notemos que: (i) (W_0^{4x+4}, S_0) tem como fixed-data

$$((4x+4)R \mapsto \{ponto\}) \cup (\lambda_{4x+2} \oplus R \mapsto F^{4x+2}),$$

onde $F^{4x+2} = \mathbb{R}P^{4x+2}$;

(ii) as involuções $(W_t^{4x+4}, S_t), 1 \le t \le x$, são tais que seus fixed-data contribuem com as componentes

$$(4x+3-k)\lambda_k \oplus R \mapsto F^k,$$

com $2 \leq k \leq 4x$ par, onde $F^k = \mathbb{R}P^k$.

Assim, definimos

$$(M^{4x+4}, T) = (\mathbb{R}P^{4x+4}, T_{1,4x+2}) \cup \bigcup_{t=0}^{x} (W_t^{4x+4}, S_t),$$

cujo conjunto de pontos fixos é dado por

$$F = F^1 \cup \left(\bigcup_{\substack{j=0\\ j \text{ par}}}^{4x+2} F^j\right),$$

para $x \ge 0$.

Agora, mostremos que as componentes do *fixed-data* da involução (M^{4x+4}, T) são não bordantes como fibrados.

A componente $(4x + 3)\lambda_1 \mapsto F^1$, onde $F^1 = \mathbb{R}P^1$, não borda pois, sendo 4x + 3um número ímpar, temos

$$w_1((4x+3)\lambda_1)[F^1] = \binom{4x+3}{1}\alpha_1[\mathbb{R}P^1] = \alpha_1[\mathbb{R}P^1] = 1.$$

As demais componentes do *fixed-data* não bordam pois suas bases são espaços projetivos de dimensão par. Entretanto, observemos que, dentre essas componentes, temos duas cujas bases possuem dimensão igual a 4x + 2, a saber, $2\lambda_{4x+2} \mapsto \mathbb{R}P^{4x+2}$ (decorrente da involução $(\mathbb{R}P^{4x+4}, T_{1,4x+2}))$ e $\lambda_{4x+2} \oplus \mathbb{R} \mapsto \mathbb{R}P^{4x+2}$ (decorrente de (W_0^{4x+4}, S_0)). Mas, $W(2\lambda_{4x+2}) = (1 + \alpha_{4x+2})^2 = 1 + \alpha_{4x+2}^2$ e, então,

$$(w_1(2\lambda_{4x+2}))^{4x+2}[\mathbb{R}P^{4x+2}] = 0.$$

Por outro lado, $W(\lambda_{4x+2} \oplus R) = 1 + \alpha_{4x+2}$ e

$$(w_1(\lambda_{4x+2} \oplus R)))^{4x+2}[\mathbb{R}P^{4x+2}] = \alpha_{4x+2}^{4x+2}[\mathbb{R}P^{4x+2}] = 1.$$

Logo, $(2\lambda_{4x+2} \mapsto \mathbb{R}P^{4x+2}) \cup (\lambda_{4x+2} \oplus \mathbb{R} \mapsto \mathbb{R}P^{4x+2})$ não borda.

(2) Agora, construiremos um exemplo para o caso em que n tem a forma 4x, com $x \ge 1$; ou seja, apresentaremos uma involução (M^{4x+2}, T) cujo conjunto fixado é

$$F = F^1 \cup (\bigcup_{\substack{j=0\\ j \text{ par}}}^{4x} F^j),$$

 $\operatorname{com} x \ge 1.$

Para $t = 0, 1, 2, \ldots, x - 1$, consideremos as involuções $(\mathbb{R}P^{4x+1}, T_{2t,4x-2t})$, cujos

fixed-data têm a forma

$$((4x+1-2t)\lambda_{2t} \mapsto \mathbb{R}P^{2t}) \cup ((2t+1)\lambda_{4x-2t} \mapsto \mathbb{R}P^{4x-2t}).$$

Sendo 4x + 1 ímpar, temos que $\mathbb{R}P^{4x+1}$ borda. Assim, $\Gamma(\mathbb{R}P^{4x+1}, T_{2t,4x-2t})$ é equivariantemente cobordante a

•
$$(W_t^{4x+2}, S_t), 0 \le t \le x - 1, \text{ com fixed-data}$$

 $((4x+1-2t)\lambda_{2t} \oplus R \mapsto \mathbb{R}P^{2t}) \cup ((2t+1)\lambda_{4x-2t} \oplus R \mapsto \mathbb{R}P^{4x-2t}).$

Observação 3.3.4. Notemos que: (i) (W_0^{4x+2}, S_0) tem fixed-data

$$((4x+2)R \mapsto \{ponto\}) \cup (\lambda_{4x} \oplus R \mapsto F^{4x}),$$

onde $F^{4x} = \mathbb{R}P^{4x};$

(ii) as involuções $(W_t^{4x+2}, S_t), 1 \le t \le x-1$, são tais que seus *fixed-data* contribuem com as componentes

$$(4x+1-k)\lambda_k \oplus R \mapsto F^k,$$

onde $F^k = \mathbb{R}P^k$, com $2 \le k \le 4x - 2$ par, exceto k = 2x.

Assim, falta definir involuções que fixam as componentes $F^1 \in F^{2x}$. Faremos isso a seguir.

Consideremos a involução

• $(\mathbb{R}P^{4x+2}, T_{1,4x})$, cujo *fixed-data* é

$$((4x+1)\lambda_1 \mapsto \mathbb{R}P^1) \cup (2\lambda_{4x} \mapsto \mathbb{R}P^{4x}).$$

Consideremos, também, a involução $(\mathbb{R}P^{4x-1}, T_{2x,2x-2})$, cujo fixed-data é dado por

$$((2x-1)\lambda_{2x} \mapsto \mathbb{R}P^{2x}) \cup ((2x+1)\lambda_{2x-2} \mapsto \mathbb{R}P^{2x-2}).$$

A variedade $\mathbb{R}P^{4x-1}$ borda, pois sua dimensão é ímpar. Logo, $\Gamma(\mathbb{R}P^{4x-1}, T_{2x,2x-2})$ é equivariantemente cobordante a uma involução (V^{4x}, S) , cujo fixed-data é

$$((2x-1)\lambda_{2x}\oplus R\mapsto \mathbb{R}P^{2x})\cup((2x+1)\lambda_{2x-2}\oplus R\mapsto \mathbb{R}P^{2x-2}).$$

A partir de (V^{4x}, S) , definimos a involução produto

• $(V^{4x} \times \mathbb{R}P^2, S_x)$, por

$$S_x(a,b) = (S \times Id)(a,b) = (S(a),b),$$

para todo $(a, b) \in V^{4x} \times \mathbb{R}P^2$. Tal involução tem como fixed-data as componentes

$$(((2x-1)\lambda_{2x}\oplus R\mapsto \mathbb{R}P^{2x})\cup ((2x+1)\lambda_{2x-2}\oplus R\mapsto \mathbb{R}P^{2x-2}))\times (0\mapsto \mathbb{R}P^2) =$$
$$=((2x-1)\lambda_{2x}\oplus R\mapsto \mathbb{R}P^{2x}\times \mathbb{R}P^2)\cup ((2x+1)\lambda_{2x-2}\oplus R\mapsto \mathbb{R}P^{2x-2}\times \mathbb{R}P^2).$$

Então, definimos

$$(M^{4x+2},T) = (\bigcup_{t=0}^{x-1} (W_t^{4x+2}, S_t)) \cup (\mathbb{R}P^{4x+2}, T_{1,4x}) \cup (V^{4x} \times \mathbb{R}P^2, S_x),$$

cujo conjunto de pontos fixos é

$$F = F^1 \cup \left(\bigcup_{\substack{j=0\\ j \text{ par}}}^{4x} F^j\right)$$

para $x \ge 1$.

Agora, mostremos que as componentes do *fixed-data* de (M^{4x+2}, T) não bordam como fibrados.

A componente $(4x + 1)\lambda_1 \mapsto F^1$, onde $F^1 = \mathbb{R}P^1$, não borda pois, sendo 4x + 1um número ímpar, temos

$$w_1((4x+1)\lambda_1)[\mathbb{R}P^1] = \binom{4x+1}{1}\alpha_1[\mathbb{R}P^1] = \alpha_1[\mathbb{R}P^1] = 1.$$

Observemos que as demais componentes do fixed-data de (M^{4x+2}, T) não bordam, pois são fibrados cujas bases são espaços reais projetivos de dimensão par. Entretanto, dentre esses fibrados, temos dois com bases (2x+2)-dimensionais, a saber, $(2x-1)\lambda_{2x+2} \oplus$ $R \mapsto \mathbb{R}P^{2x+2}$ e $(2x-1)\lambda_{2x} \oplus R \mapsto \mathbb{R}P^{2x} \times \mathbb{R}P^2$ (oriundos das involuções $(W^{4x+2}_{x-1}, S_{x-1})$ e $(V^{4x} \times \mathbb{R}P^2, S_x)$, respectivamente), e dois com bases 4x-dimensionais, que são $\lambda_{4x} \oplus$ $R \mapsto \mathbb{R}P^{4x}$ e $2\lambda_{4x} \mapsto \mathbb{R}P^{4x}$ (oriundos de (W^{4x+2}_0, S_0) e $(\mathbb{R}P^{4x+2}, T_{1,4x})$, respectivamente). Mostremos que as uniões dessas componentes não bordam como fibrados.

De fato, sendo 2x-1 ímpar, temos que $w_1((2x-1)\lambda_{2x}\oplus R) = {\binom{2x-1}{1}}\alpha_{2x} = \alpha_{2x}$. Assim,

$$(w_1((2x-1)\lambda_{2x}\oplus R))^{2x+2}[\mathbb{R}P^{2x}\times\mathbb{R}P^2] = \alpha_{2x}^{2x+2}[\mathbb{R}P^{2x}\times\mathbb{R}P^2] = 0$$

pois $\alpha_{2x} \in H^1(\mathbb{R}P^{2x}, \mathbb{Z}_2)$. Por outro lado, $w_1((2x-1)\lambda_{2x+2} \oplus R) = \binom{2x-1}{1}\alpha_{2x+2} = \alpha_{2x+2}$. Daí,

$$(w_1((2x-1)\lambda_{2x+2}\oplus R))^{2x+2}[\mathbb{R}P^{2x+2}] = \alpha_{2x+2}^{2x+2}[\mathbb{R}P^{2x+2}] = 1.$$

Logo, a união $((2x-1)\lambda_{2x+2} \oplus R \mapsto \mathbb{R}P^{2x+2}) \cup ((2x-1)\lambda_{2x} \oplus R \mapsto \mathbb{R}P^{2x} \times \mathbb{R}P^2)$ não borda.

Agora, analisando os fibrados com bases 4x-dimensionais, temos que $w_1(\lambda_{4x} \oplus R) = \alpha_{4x} \in w_1(2\lambda_{4x}) = 0$. Assim,

$$(w_1(\lambda_{4x} \oplus R))^{4x}[\mathbb{R}P^{4x}] = \alpha_{4x}^{4x}[\mathbb{R}P^{4x}] = 1$$

е

$$(w_1(2\lambda_{4x}))^{4x}[\mathbb{R}P^{4x}] = 0.$$

Portanto, a união $(\lambda_{4x} \oplus R \mapsto \mathbb{R}P^{4x}) \cup (2\lambda_{4x} \mapsto \mathbb{R}P^{4x})$ não borda, o que encerra a nossa construção.

3.3.4 Caso
$$F = F^2 \cup \left(\bigcup_{\substack{j=1\\ j \text{ impar}}}^n F^j\right)$$

Nessa subseção, temos como objetivo mostrar que o limitante $k \leq 3$ do item (*iii*) (Teorema 3.1.1) é o melhor possível; ou seja, construiremos uma involução (M^{n+3}, T) , com $n \geq 3$ ímpar, cujo conjunto fixado tem a forma

$$F = F^2 \cup \big(\bigcup_{\substack{j=1\\ j \text{ fmpar}}}^n F^j\big),$$

e tal que o fibrado normal sobre cada componente fixada é não bordante.

Primeiramente, construiremos exemplos para o caso $n \ge 5$ ímpar (parte (1)) e, em seguida, trataremos o caso n = 3 (parte (2)).

(1) Mostremos que existe uma involução (M^{n+3}, T) que fixa o conjunto

$$F = F^2 \cup \big(\bigcup_{\substack{j=1\\ j \text{ fmpar}}}^n F^j\big),$$

para o caso $n \ge 5$ ímpar, e de tal sorte que os fibrados normais sobre as componentes fixadas sejam não bordantes.

Seja $(\mathbb{R}P^3, T_{0,2})$ a involução definida em (II) (subseção 3.3.1), cujo *fixed-data* é $(3R \mapsto \{ponto\}) \cup (\lambda_2 \mapsto \mathbb{R}P^2)$. Como $\mathbb{R}P^3$ borda, temos que $\Gamma(\mathbb{R}P^3, T_{0,2})$ é equivariantemente cobordante a uma involução (W^4, R) , que fixa

$$(4R \mapsto \{ponto\}) \cup (\lambda_2 \oplus R \mapsto \mathbb{R}P^2).$$

Agora, seja (V^{n-1}, P) a involução descrita em (I) (subseção 3.3.1), onde V^{n-1} é a variedade fechada (n-1)-dimensional $\mathbb{R}P(\nu^{n-2} \oplus \eta^1)$, associada à soma direta dos fibrados $\nu^{n-2} = \lambda_1 \oplus (n-3)R \mapsto \mathbb{R}P^1$ e $\eta^1 = R \mapsto \mathbb{R}P^1$. Conforme foi visto, o *fixed-data* dessa involução é

$$(R \otimes \xi \mapsto \mathbb{R}P(\lambda_1 \oplus (n-3)R)) \cup ((\lambda_1 \oplus (n-3)R) \otimes \xi' \mapsto \mathbb{R}P(R)) =$$

= $(\xi \mapsto \mathbb{R}P(\lambda_1 \oplus (n-3)R)) \cup (\lambda_1 \oplus (n-3)R \mapsto \mathbb{R}P^1),$

onde ξ é o fibrado linha sobre $\mathbb{R}P(\lambda_1 \oplus (n-3)R) \in \xi'$ é o fibrado linha sobre $\mathbb{R}P(R)$.

A partir das involuções $(W^4,R) \in (V^{n-1},P)$ descritas acima, definimos a involução produto

• $(W^4 \times V^{n-1}, S)$, dada por

$$S(x, y) = (R(x), P(y)),$$

para todo $(x, y) \in W^4 \times V^{n-1}$.

O fixed-data de S é

$$(\lambda_1 \oplus (n+1)R \mapsto \mathbb{R}P^1) \cup (\lambda_1 \oplus \lambda_2 \oplus (n-2)R \mapsto \mathbb{R}P^1 \times \mathbb{R}P^2) \cup$$

$$\cup (\xi \oplus 4R \mapsto \mathbb{R}P(\lambda_1 \oplus (n-3)R)) \cup (\xi \oplus \lambda_2 \oplus R \mapsto \mathbb{R}P^2 \times \mathbb{R}P(\lambda_1 \oplus (n-3)R)),$$

cujas bases têm dimensões 1, 3, $n-2 \in n$, respectivamente.

Consideremos, também, a involução

• $(\mathbb{R}P^{n+3}, T_{2,n})$, cujo fixed-data é

$$((n+1)\lambda_2 \mapsto \mathbb{R}P^2) \cup (3\lambda_n \mapsto \mathbb{R}P^n).$$

Observemos que está faltando definir involuções cujas componentes fixadas tenham dimensão j, com $5 \le j \le n - 4$ ímpar. Consideremos, então, as involuções

• $(V_r^{n+3}, P_{\frac{r-3}{2}})$, com $5 \le r \le n-4$ ímpar, onde V_r^{n+3} é a variedade fechada (n+3)dimensional $\mathbb{R}P(\nu_r^{n-r+3} \oplus \eta_r^3)$, associada à soma direta dos fibrados $\nu_r^{n-r+3} = \lambda_1 \oplus (n-r+2)R \mapsto \mathbb{R}P^1 \times \mathbb{R}P^{r-3}$ e $\eta_r^3 = 3R \mapsto \mathbb{R}P^1 \times \mathbb{R}P^{r-3}$.

Tais involuções têm como *fixed-data* a união

$$(3R \otimes \xi \mapsto \mathbb{R}P(\lambda_1 \oplus (n-r+2)R)) \cup ((\lambda_1 \oplus (n-r+2)R) \otimes \xi' \mapsto \mathbb{R}P(3R)) = \\ = (3\xi \mapsto \mathbb{R}P(\lambda_1 \oplus (n-r+2)R)) \cup ((\lambda_1 \oplus (n-r+2)R) \otimes \xi' \mapsto \mathbb{R}P^1 \times \mathbb{R}P^2 \times \mathbb{R}P^{r-3}),$$

para cada r ímpar, $5 \le r \le n-4$, onde ξ e ξ' são os fibrados linha sobre $\mathbb{R}P(\lambda_1 \oplus (n-r+2)R)$ e $\mathbb{R}P^1 \times \mathbb{R}P^2 \times \mathbb{R}P^{r-3}$, respectivamente. Observemos que $\mathbb{R}P(\lambda_1 \oplus (n-r+2)R)$ tem dimensão n e $\mathbb{R}P^1 \times \mathbb{R}P^2 \times \mathbb{R}P^{r-3}$ tem dimensão r.

Logo, para o caso $n \ge 5$ ímpar, definimos

$$(M^{n+3},T) = (\mathbb{R}P^{n+3},T_{2,n}) \cup (W^4 \times V^{n-1},S) \cup \bigcup_{\substack{r=5\\r \text{ impar}}}^{n-4} (V_r^{n+3},P_{\frac{r-3}{2}}),$$

cujo conjunto de pontos fixos é dado por

$$F = F^2 \cup \big(\bigcup_{\substack{j=1\\ j \text{ impar}}}^n F^j\big).$$

Mais especificamente, o conjunto fixado por (M^{n+3}, T) é composto pelas componentes: (i) $F^1 = \mathbb{R}P^1$, com fibrado normal $\lambda_1 \oplus (n+1)R$; (ii) $F^2 = \mathbb{R}P^2$, com fibrado normal $(n+1)\lambda_2$; (iii) $F^3 = \mathbb{R}P^1 \times \mathbb{R}P^2$, com fibrado normal $\lambda_1 \oplus \lambda_2 \oplus (n-2)R$; (iv) $F^r = \mathbb{R}P^1 \times \mathbb{R}P^2 \times \mathbb{R}P^{r-3}$, sendo r um número ímpar variando de 5 a n-4, com fibrado normal $(\lambda_1 \oplus (n-r+2)R) \otimes \xi'$; (v) $F^{n-2} = \mathbb{R}P(\lambda_1 \oplus (n-3)R)$, com fibrado normal $\xi \oplus 4R$ e (vi) $F^n = \mathbb{R}P^n \cup (\mathbb{R}P^2 \times \mathbb{R}P(\lambda_1 \oplus (n-3)R)) \cup (\bigcup_{\substack{n=4\\r \text{ impar}}}^{r=5} \mathbb{R}P(\lambda_1 \oplus (n-r+2)R))$, com fibrados normais $3\lambda_n, \xi \oplus \lambda_2 \oplus R$ e 3ξ , respectivamente, sendo este último sobre cada

componente $\mathbb{R}P(\lambda_1 \oplus (n-r+2)R)$, com $5 \le r \le n-4$ ímpar.

O nosso próximo passo será mostrar que cada um dos fibrados listados acima não borda.

Observação 3.3.5. Recordemos que estamos denotando por α_j , $j \ge 1$, o gerador de $H^1(\mathbb{R}P^j,\mathbb{Z}_2)$.

(i) O fibrado $\lambda_1 \oplus (n+1) R \mapsto F^1$ não borda, pois

$$w_1(\lambda_1 \oplus (n+1)R)[F^1] = \alpha_1[\mathbb{R}P^1] = 1.$$

(ii) O fibrado $(n+1)\lambda_2 \mapsto F^2$ também não borda, pois a sua base, $F^2 = \mathbb{R}P^2$, é não bordante.

(iii) As classes de Stiefel-Whitney de $\lambda_1\oplus\lambda_2\oplus(n-2)R\mapsto F^3$ são

$$W(F^3) = W(\mathbb{R}P^1 \times \mathbb{R}P^2) = W(\mathbb{R}P^1)W(\mathbb{R}P^2) = (1 + \alpha_1)^2(1 + \alpha_2)^3 = 1 + \alpha_2 + \alpha_2^2 \quad \text{e}^{-1}$$

$$W(\lambda_1 \oplus \lambda_2 \oplus (n-2)R) = W(\lambda_1)W(\lambda_2) = (1+\alpha_1)(1+\alpha_2) = 1 + \alpha_1 + \alpha_2 + \alpha_1\alpha_2.$$

Assim,

$$w_1(F^3)w_2(\lambda_1 \oplus \lambda_2 \oplus (n-2)R)[F^3] = \alpha_1 \alpha_2^2[\mathbb{R}P^1 \times \mathbb{R}P^2] = 1$$

e, portanto, o fibrado em questão não borda.

(iv) Analisemos, agora, os fibrados com bases r-dimensionais, com 5 $\leq r \leq n-4$ ímpar. As classes de Stiefel-Whitney desses fibrados são dadas por

$$W(F^{r}) = W(\mathbb{R}P^{1} \times \mathbb{R}P^{2} \times \mathbb{R}P^{r-3}) = (1+\alpha_{1})^{2}(1+\alpha_{2})^{3}(1+\alpha_{r-3})^{r-2} = (1+\alpha_{2}+\alpha_{2}^{2})(1+\alpha_{r-3})^{r-2}$$

е

$$W((\lambda_1 \oplus (n-r+2)R) \otimes \xi') = (1+\alpha_2)^{n-r+3} + (1+\alpha_2)^{n-r+2}\alpha_1 \quad \text{(vide observação 3.3.1)}.$$

Assim, usando o fato de $n \in r$ serem ímpares, temos

$$w_1(F^r) = \binom{r-2}{1} \alpha_{r-3} + \alpha_2 = \alpha_2 + \alpha_{r-3} \quad \mathbf{e}$$
$$w_1((\lambda_1 \oplus (n-r+2)R) \otimes \xi') = \binom{n-r+3}{1} \alpha_2 + \alpha_1 = \alpha_1 + \alpha_2$$

Consideremos, então, a classe r-dimensional

$$(w_{1}(F^{r}))^{r-3}(w_{1}((\lambda_{1} \oplus (n-r+2)R) \otimes \xi'))^{3} = (\alpha_{2} + \alpha_{r-3})^{r-3}(\alpha_{1} + \alpha_{2})^{3} = = \left(\sum_{j=0}^{2} \binom{r-3}{j} \alpha_{2}^{j} \alpha_{r-3}^{r-3-j}\right) \alpha_{1} \alpha_{2}^{2} = = \left(\alpha_{r-3}^{r-3} + \binom{r-3}{2} \alpha_{2}^{2} \alpha_{r-3}^{r-5}\right) \alpha_{1} \alpha_{2}^{2} = = \alpha_{1} \alpha_{2}^{2} \alpha_{r-3}^{r-3}.$$

Logo,

$$(w_1(F^r))^{r-3}(w_1(\lambda_1 \oplus (n-r+2)R) \otimes \xi'))^3[F^r] = \alpha_1 \alpha_2^2 \alpha_{r-3}^{r-3}[\mathbb{R}P^1 \times \mathbb{R}P^2 \times \mathbb{R}P^{r-3}] = 1,$$

e os fibrados $(\lambda_1 \oplus (n-r+2)R) \otimes \xi' \mapsto F^r$ não bordam, para $5 \le r \le n-4$ ímpar.

(v) Analisemos o fibrado $\xi \oplus 4R \mapsto F^{n-2}$, onde F^{n-2} é o espaço total do fibrado $\mathbb{R}P(\lambda_1 \oplus (n-3)R) \mapsto \mathbb{R}P^1$. Temos

$$W(\xi \oplus 4R) = W(\xi) = 1 + w_1(\xi) = 1 + c$$

(lembrando que ξ é o fibrado linha sobre F^{n-2}) e

$$W(F^{n-2}) = W(\mathbb{R}P(\lambda_1 \oplus (n-3)R)) = (1+c)^{n-2} + (1+c)^{n-3}\alpha_1.$$

Pelo teorema de *Leray-Hirsch* (1.6.2), sabemos que $H^*(F^{n-2}, \mathbb{Z}_2)$ é um $H^*(\mathbb{R}P^1, \mathbb{Z}_2)$ -módulo livre gerado por $1, c, c^2, \ldots, c^{n-3}$. Segue que $c^{n-3}\alpha_1$ é o gerador de $H^{n-2}(F^{n-2}, \mathbb{Z}_2)$. Além disso, por *Borel-Hirzebruch* (Teorema 1.6.3), vale a relação

$$c^{n-2} = c^{n-3}w_1(\lambda_1) + c^{n-4}w_2(\lambda_1) + \ldots + w_{n-2}(\lambda_1) = c^{n-3}\alpha_1.$$

Seja

$$w_{n-3}(F^{n-2}) = \binom{n-2}{n-3}c^{n-3} + \binom{n-3}{n-4}c^{n-4}\alpha_1.$$

Fazendo o uso do corolário do teorema de Lucas (1.13.1), observemos que $\binom{n-3}{n-4} = 0$ pois, sendo n-4 ímpar, temos que o número 1 não está contido na expansão diádica de n-3, que é par. Por outro lado, a expansão diádica de n-3 está contida na expansão diádica de n-2, para qualquer $n \ge 5$ ímpar; logo, $\binom{n-2}{n-3} = 1$ e

$$w_{n-3}(F^{n-2}) = c^{n-3}.$$

Consideremos, então, a seguinte classe (n-2)-dimensional:

$$w_{n-3}(F^{n-2})w_1(\xi \oplus 4R) = c^{n-3}c = c^{n-2} = c^{n-3}\alpha_1$$

Sendo $c^{n-3}\alpha_1$ o gerador de $H^{n-2}(F^{n-2},\mathbb{Z}_2)$, segue que

$$w_{n-3}(F^{n-2})w_1(\xi \oplus 4R)[F^{n-2}] = c^{n-3}\alpha_1[F^{n-2}] = 1$$

e, portanto, o fibrado $\xi \oplus 4R \mapsto F^{n-2}$ não borda.

(vi) Mostremos que a união dos fibrados com bases *n*-dimensionais não borda. Comecemos analisando o fibrado $3\lambda_n \mapsto \mathbb{R}P^n$, cuja classe de *Stiefel-Whitney* é dada por

$$W(3\lambda_n) = (1 + \alpha_n)^3 = 1 + \alpha_n + \alpha_n^2 + \alpha_n^3.$$

Assim,

$$w_1^{n-3}(3\lambda_n)w_3(3\lambda_n)[\mathbb{R}P^n] = \alpha_n^{n-3}\alpha_n^3[\mathbb{R}P^n] = \alpha_n^n[\mathbb{R}P^n] = 1.$$

Consideremos, agora, $\lambda_2 \oplus \xi \oplus R \mapsto \mathbb{R}P^2 \times \mathbb{R}P(\lambda_1 \oplus (n-3)R)$ (lembrando que ξ é o fibrado linha sobre $\mathbb{R}P(\lambda_1 \oplus (n-3)R)$). Temos que

$$W(\lambda_2 \oplus \xi \oplus R) = W(\lambda_2)W(\xi) = (1 + \alpha_2)(1 + c) = 1 + \alpha_2 + c + c\alpha_2,$$

onde $c = w_1(\xi)$. Assim, $w_3(\lambda_2 \oplus \xi \oplus R) = 0$ e, então,

$$w_1^{n-3}(\lambda_2 \oplus \xi \oplus R)w_3(\lambda_2 \oplus \xi \oplus R)[\mathbb{R}P^2 \times \mathbb{R}P(\lambda_1 \oplus (n-3)R)] = 0.$$

Finalmente, analisemos os fibrados $3\xi \mapsto \mathbb{R}P(\lambda_1 \oplus (n-r+2)R)$, com $5 \le r \le n-4$ ímpar, observando que as suas bases são os espaços totais *n*-dimensionais

$$\mathbb{R}P(\lambda_1 \oplus (n-r+2)R) \mapsto \mathbb{R}P^1 \times \mathbb{R}P^{r-3}.$$

Seja $w_1(3\xi) = c$. Pelo teorema de *Leray-Hirsch*, sabemos que $H^*(\mathbb{R}P(\lambda_1 \oplus (n - r + 2)R), \mathbb{Z}_2)$ é um $H^*(\mathbb{R}P^1 \times \mathbb{R}P^{r-3}, \mathbb{Z}_2)$ -módulo livre gerado por $1, c, c^2, \ldots, c^{n-r+2}$. Segue que $\alpha_1 \alpha_{r-3}^{r-3} c^{n-r+2}$ é o gerador de $H^n(\mathbb{R}P(\lambda_1 \oplus (n-r+2)R), \mathbb{Z}_2)$. Além disso, por *Borel-Hirzebruch*, vale a relação

$$c^{n-r+3} = c^{n-r+2}w_1(\lambda_1) + c^{n-r+1}w_2(\lambda_1) + \ldots + w_n(\lambda_1) = c^{n-r+2}\alpha_1$$

Daí,

$$w_1(3\xi)w_3(3\xi) = c^{n-3}c^3 = c^n = c^{n-r+3}c^{r-3} = c^{n-r+2}\alpha_1c^{r-3} = c^{n-1}\alpha_1 = c^{n-r+3}c^{r-4}\alpha_1 = c^{n-r+2}\alpha_1c^{r-4}\alpha_1 = c^{n-2}\alpha_1^2 = 0,$$

pois $\alpha_1 \in H^1(\mathbb{R}P^1, \mathbb{Z}_2)$. Logo,

$$w_1^{n-3}(3\xi)w_3(3\xi)[\mathbb{R}P(\lambda_1 \oplus (n-r+2)R)] = 0,$$

para $5 \leq r \leq n-4$ ímpar, e concluímos que a união dos fibrados com bases *n*-dimensionais, $(3\lambda_n \mapsto \mathbb{R}P^n) \cup (\lambda_2 \oplus \xi \oplus R \mapsto \mathbb{R}P^2 \times \mathbb{R}P(\lambda_1 \oplus (n-3)R)) \cup \bigcup_{\substack{r=5\\r \text{ impar}}}^{n-4} (3\xi \mapsto \mathbb{R}P(\lambda_1 \oplus (n-r+2)R)),$ não borda, o que encerra a nossa demonstração para o caso $n \geq 5$ ímpar.

Construiremos, a seguir, um exemplo de involução para o caso em que a

componente maximal fixada tem dimensão n = 3.

Tomemos as involuções $(\mathbb{R}P^2, T_{0,1}) \in (\mathbb{R}P^4, T_{1,2})$, cujos fixed-data são

$$(2R \mapsto \{ponto\}) \cup (\lambda_1 \mapsto \mathbb{R}P^1) \quad e \quad (3\lambda_1 \mapsto \mathbb{R}P^1) \cup (2\lambda_2 \mapsto \mathbb{R}P^2),$$

respectivamente. A partir dessas, definimos a involução produto

$$(M^6, T) = (\mathbb{R}P^2 \times \mathbb{R}P^4, T_{0,1} \times T_{1,2})$$

por

$$T(x, y) = (T_{0,1}(x), T_{1,2}(y)),$$

para qualquer $(x, y) \in \mathbb{R}P^2 \times \mathbb{R}P^4$. O conjunto fixado por tal involução tem a forma

$$F = F^1 \cup F^2 \cup F^3,$$

onde

(i) $F^1 = \mathbb{R}P^1$, com fibrado normal $3\lambda_1 \oplus 2R$;

(ii) $F^2 = \mathbb{R}P^2 \cup \mathbb{R}P^1 \times \mathbb{R}P^1$, com fibrados normais $2\lambda_2 \oplus 2R$ e $3\lambda_1 \oplus \lambda_1$, respectivamente; (iii) $F^3 = \mathbb{R}P^1 \times \mathbb{R}P^2$, com fibrado normal $\lambda_1 \oplus 2\lambda_2$.

Mostremos que as componentes listadas acima não bordam como fibrados. Observemos, primeiramente, que a componente $3\lambda_1 \oplus 2R \mapsto F^1$ não borda pois

$$w_1(3\lambda_1 \oplus 2R)[F^1] = w_1(3\lambda_1)[\mathbb{R}P^1] = \binom{3}{1}\alpha_1[\mathbb{R}P^1] = \alpha_1[\mathbb{R}P^1] = 1.$$

$$W(\lambda_1 \oplus 2\lambda_2) = W(\lambda_1)W(2\lambda_2) = (1 + \alpha_1)(1 + \alpha_2)^2 = 1 + \alpha_1 + \alpha_2^2 + \alpha_1\alpha_2^2.$$

Então,

$$w_3(\lambda_1 \oplus 2\lambda_2)[F^3] = \alpha_1 \alpha_2^2[\mathbb{R}P^1 \times \mathbb{R}P^2] = 1$$

Para finalizar, mostremos que a união das componentes com bases bidimensionais não borda. Consideremos as classes de *Stiefel-Whitney* das bases:

 $W(\mathbb{R}P^2) = (1 + \alpha_2)^3 = 1 + \alpha_2 + \alpha_2^2 \quad e$ $W(\mathbb{R}P^1 \times \mathbb{R}P^1) = W(\mathbb{R}P^1)W(\mathbb{R}P^1) = (1 + \alpha_1)^2(1 + \alpha_1)^2 = 1.$ Daí, $[\mathbb{D}P^2] = 2^{[\mathbb{D}P^2]} = 1 \quad \text{in } \mathbb{D}P^1 \mapsto \mathbb{D}P^1$

$$w_2[\mathbb{R}P^2] = \alpha_2^2[\mathbb{R}P^2] = 1$$
 e $w_2[\mathbb{R}P^1 \times \mathbb{R}P^1] = 0$

Portanto, a união $(2\lambda_2 \oplus 2R \mapsto \mathbb{R}P^2) \cup (3\lambda_1 \oplus \lambda_1 \mapsto \mathbb{R}P^1 \times \mathbb{R}P^1)$ não borda e, assim, encerramos o caso n = 3.

3.3.5 Caso
$$F = F^3 \cup (\bigcup_{j=0 \atop j \text{ par}}^n F^j)$$

Nessa subseção, construiremos uma involução (M^{n+4}, T) , com $n \ge 4$ par, cujo conjunto fixado tem a forma

$$F = F^3 \cup (\bigcup_{j \text{ par} \atop j \text{ par}}^n F^j),$$

mostrando, dessa forma, que o limitante $k \leq 4$ do item (*iv*) (Teorema 3.1.1) é o melhor possível.

(1) Comecemos construindo um exemplo para o caso em que a componente maximal fixada tem dimensão n = 4x, com $x \ge 1$; ou seja, construiremos uma involução (M^{4x+4}, T) cujo fixed-data é da forma

$$F = F^3 \cup (\bigcup_{\substack{j=0\\ j \text{ par}}}^{4x} F^j),$$

 $\operatorname{com} x \ge 1.$

Consideremos a involução $(\mathbb{R}P^{4x+1}, T_{0,4x})$, cujo fixed-data é dado por

$$((4x+1)R \mapsto \{ponto\}) \cup (\lambda_{4x} \mapsto \mathbb{R}P^{4x}).$$

Por [26], sabemos que o espaço subjacente da involução $\Gamma^2(\mathbb{R}P^{4x+1}, T_{0,4x})$ borda e, portanto, existe uma involução

• (W^{4x+4}, S) , cobordante à $\Gamma^3(\mathbb{R}P^{4x+1}, T_{0,4x})$, cujo fixed-data é

$$((4x+4)R \mapsto \{ponto\}) \cup (\lambda_{4x} \oplus 4R \mapsto \mathbb{R}P^{4x}).$$

Agora, para t = 1, 2, ..., x, tomemos $(\mathbb{R}P^{4x+3}, T_{2t,4x+2-2t})$, cujos *fixed-data* são dados por

$$((4x+3-2t)\lambda_{2t}\mapsto \mathbb{R}P^{2t})\cup((2t+1)\lambda_{4x+2-2t}\mapsto \mathbb{R}P^{4x+2-2t}).$$

Sendo 4x + 3 ímpar, temos que $\mathbb{R}P^{4x+3}$ borda. Assim, $\Gamma(\mathbb{R}P^{4x+3}, T_{2t,4x+2-2t})$ é equivariantemente cobordante a uma involução

• $(W_t^{4x+4}, S_t), 1 \le t \le x, \text{ com fixed-data}$

$$((4x+3-2t)\lambda_{2t}\oplus R\mapsto \mathbb{R}P^{2t})\cup((2t+1)\lambda_{4x+2-2t}\oplus R\mapsto \mathbb{R}P^{4x+2-2t}).$$

Notemos que as involuções (W_t^{4x+4}, S_t) definidas acima, $1 \le t \le x$, são tais que seus *fixed-data* contribuem com componentes

$$(4x+3-k)\lambda_k \oplus R \mapsto F^k,$$

 $\operatorname{com} 2 \le k \le 4x \text{ par e } F^k = \mathbb{R}P^k.$

Finalmente, consideremos a involução

• $(\mathbb{R}P^{4x+4}, T_{3,4x})$, cujo fixed-data é

$$((4x+1)\lambda_3 \mapsto \mathbb{R}P^3) \cup (4\lambda_{4x} \mapsto \mathbb{R}P^{4x}).$$

A partir das involuções descritas acima, definimos (M^{4x+4}, T) como sendo

$$(M^{4x+4}, T) = (W^{4x+4}, S) \cup \bigcup_{t=1}^{\infty} (W_t^{4x+4}, S_t) \cup (\mathbb{R}P^{4x+4}, T_{3,4x}),$$

cujo *fixed-data* é da forma

$$F = F^3 \cup (\bigcup_{\substack{j=0\\j \text{ par}}}^{4x} F^j),$$

 $\operatorname{com} x \geq 1.$

Agora, mostremos que o fibrado normal sobre cada componente fixada por (M^{4x+4}, T) é não bordante.

Começando pelo fibrado $(4x + 1)\lambda_3 \mapsto F^3$, onde $F^3 = \mathbb{R}P^3$, temos que

$$(w_1((4x+1)\lambda_3))^3[\mathbb{R}P^3] = \binom{4x+1}{1}\alpha_3^3[\mathbb{R}P^3] = \alpha_3^3[\mathbb{R}P^3] = 1,$$

já que 4x + 1 é ímpar. Logo, a componente em questão não borda.

Observemos que as demais componentes do *fixed-data* de (M^{4x+4}, T) não bordam, pois suas bases são espaços reais projetivos de dimensão par. Entretanto, dentre essas componentes, temos três cujas bases são 4x-dimensionais, a saber, $3\lambda_{4x} \oplus R \mapsto \mathbb{R}P^{4x}$, $\lambda_{4x} \oplus 3R \mapsto \mathbb{R}P^{4x}$ e $4\lambda_{4x} \mapsto \mathbb{R}P^{4x}$ (provenientes das involuções $(W^{4x+4}, S), (W_1^{4x+4}, S_1)$ e $(\mathbb{R}P^{4x+4}, T_{3,4x})$, respectivamente). Mostremos que a união dessas componentes não borda.

De fato, as classes de Stiefel-Whitney desses fibrados são dadas por

 $W(3\lambda_{4x} \oplus R) = (1 + \alpha_{4x})^3 = 1 + \alpha_{4x} + \alpha_{4x}^2 + \alpha_{4x}^3,$ $W(\lambda_{4x} \oplus 3R) = 1 + \alpha_{4x} \quad e$ $W(4\lambda_{4x}) = (1 + \alpha_{4x}^4) = 1 + \alpha_{4x}^4;$ assim, $(w_2(3\lambda_{4x} \oplus R))^{2x}[\mathbb{R}P^{4x}] = (\alpha_{4x}^2)^{2x}[\mathbb{R}P^{4x}] = \alpha_{4x}^{4x}[\mathbb{R}P^{4x}] = 1,$ $(w_2(\lambda_{4x} \oplus 3R))^{2x}[\mathbb{R}P^{4x}] = 0 \quad e$ $(w_2(4\lambda_{4x}))^{2x}[\mathbb{R}P^{4x}] = 0.$ Logo, a união

$$(3\lambda_{4x} \oplus R \mapsto \mathbb{R}P^{4x}) \cup (\lambda_{4x} \oplus 3R \mapsto \mathbb{R}P^{4x}) \cup (4\lambda_{4x} \mapsto \mathbb{R}P^{4x})$$

não borda, o que encerra a nossa demonstração.

(2) Agora, construiremos um exemplo para o caso em que a componente maximal fixada tem dimensão n = 4x + 2, com $x \ge 1$; ou seja, construiremos uma involução (M^{4x+6}, T) cujo fixed-data é da forma

$$F = F^3 \cup \left(\bigcup_{\substack{j=0\\ j \text{ par}}}^{4x+2} F^j\right),$$

 $\operatorname{com} x \ge 1.$

Consideremos as involuções $(\mathbb{R}P^{2x+1}, T_{0,2x})$ e $(\mathbb{R}P^{2x+3}, T_{0,2x+2})$, cujos fixed-data são, respectivamente,

$$((2x+1)R \mapsto \{ponto\}) \cup (\lambda_{2x} \mapsto \mathbb{R}P^{2x}) \quad e \quad ((2x+3)R \mapsto \{ponto\}) \cup (\lambda_{2x+2} \mapsto \mathbb{R}P^{2x+2}).$$

Sendo 2x + 1 e 2x + 3 números ímpares, temos que as variedades $\mathbb{R}P^{2x+1}$ e $\mathbb{R}P^{2x+3}$ bordam; logo, existem involuções (V_1^{2x+2}, T_1) (cobordante a $\Gamma(\mathbb{R}P^{2x+1}, T_{0,2x}))$ e (V_2^{2x+4}, T_2) (cobordante a $\Gamma(\mathbb{R}P^{2x+3}, T_{0,2x+2}))$ que possuem, respectivamente, fixed-data iguais a

$$((2x+2)R \mapsto \{ponto\}) \cup (\lambda_{2x} \oplus R \mapsto \mathbb{R}P^{2x}) \in ((2x+4)R \mapsto \{ponto\}) \cup (\lambda_{2x+2} \oplus R \mapsto \mathbb{R}P^{2x+2}).$$

Consideremos, então, a involução produto

• $(W_0^{4x+6}, S_0) = (V_1^{2x+2} \times V_2^{2x+4}, T_1 \times T_2).$

Tal involução tem como fixed-data

$$((4x+6)R \mapsto \{ponto\}) \cup (\lambda_{2x+2} \oplus (2x+3)R \mapsto \mathbb{R}P^{2x+2}) \cup (\lambda_{2x} \oplus (2x+5)R \mapsto \mathbb{R}P^{2x}) \cup (\lambda_{2x+2} \oplus (2x+3)R \mapsto \mathbb{R}P^{2x}) \cup (\lambda_{2x+2} \oplus (2x+3)R \mapsto \mathbb{R}P^{2x+2}) \cup (\lambda_{2x+2} \oplus \mathbb{R}P^{2x+$$

$$(\lambda_{2x} \oplus R) \times (\lambda_{2x+2} \oplus R) \mapsto \mathbb{R}P^{2x} \times \mathbb{R}P^{2x+2}.$$

Agora, para t = 1, 2, ..., x - 1, tomemos $(\mathbb{R}P^{4x+5}, T_{2t,4x+4-2t})$, cujos *fixed-data* são dados por

$$((4x+5-2t)\lambda_{2t}\mapsto \mathbb{R}P^{2t})\cup((2t+1)\lambda_{4x+4-2t}\mapsto \mathbb{R}P^{4x+4-2t}).$$

Sendo 4x + 5 ímpar, temos que $\mathbb{R}P^{4x+5}$ borda. Assim, $\Gamma(\mathbb{R}P^{4x+5}, T_{2t,4x+4-2t})$ é equivariantemente cobordante a uma involução

• $(W_t^{4x+6}, S_t), 1 \le t \le x-1, \text{ com fixed-data}$ $((4x+5-2t)\lambda_{2t} \oplus R \mapsto \mathbb{R}P^{2t}) \cup ((2t+1)\lambda_{4x+4-2t} \oplus R \mapsto \mathbb{R}P^{4x+4-2t}).$

Notemos que as involuções (W_t^{4x+6}, S_t) definidas acima, $1 \le t \le x - 1$, são tais que seus *fixed-data* contribuem com as componentes

$$(4x+5-k)\lambda_k \oplus R \mapsto F^k,$$

com $2 \le k \le 4x + 2$ par, com exceção de k = 2x, 2x + 2 e 2x + 4, sendo $F^k = \mathbb{R}P^k$.

Logo, fica apenas faltando definir involuções que fixam as componentes F^3 e F^{2x+4} . Faremos isso a seguir.

Consideremos ($\mathbb{R}P^{4x+3}, T_{2x,2x+2}$). O fixed-data dessa involução é

$$((2x+3)\lambda_{2x} \mapsto \mathbb{R}P^{2x}) \cup ((2x+1)\lambda_{2x+2} \mapsto \mathbb{R}P^{2x+2}).$$

Sendo 4x + 3 ímpar, temos que $\mathbb{R}P^{4x+3}$ borda. Assim, $\Gamma(\mathbb{R}P^{4x+3}, T_{2x,2x+2})$ é equivariantemente cobordante a uma involução (V^{4x+4}, S) com fixed-data

$$((2x+3)\lambda_{2x}\oplus R\mapsto \mathbb{R}P^{2x})\cup((2x+1)\lambda_{2x+2}\oplus R\mapsto \mathbb{R}P^{2x+2}).$$

A partir de (V^{4x+4}, S) , definimos a involução produto

• $(W_x^{4x+6}, S_x) = (V^{4x+4} \times \mathbb{R}P^2, S \times Id).$

Tal involução tem como *fixed-data* a união

$$((2x+3)\lambda_{2x}\oplus R\mapsto \mathbb{R}P^2\times\mathbb{R}P^{2x})\cup((2x+1)\lambda_{2x+2}\oplus R\mapsto\mathbb{R}P^2\times\mathbb{R}P^{2x+2}).$$

Finalmente, consideremos a involução

• $(\mathbb{R}P^{4x+6}, T_{3,4x+2})$, cujo *fixed-data* é

$$((4x+3)\lambda_3 \mapsto \mathbb{R}P^3) \cup (4\lambda_{4x+2} \mapsto \mathbb{R}P^{4x+2}).$$

A partir das involuções descritas acima, definimos (M^{4x+6}, T) como sendo

$$(M^{4x+6}, T) = (\bigcup_{t=0}^{x} (W_t^{4x+6}, S_t)) \cup (\mathbb{R}P^{4x+6}, T_{3,4x+2}),$$

cujo *fixed-data* é da forma

$$F = F^3 \cup \left(\bigcup_{\substack{j=0\\ j \text{ par}}}^{4x+2} F^j\right),$$

com $x \ge 1$. Mais especificamente, o conjunto fixado pela involução (M^{4x+6}, T) , definida acima, é composto pelas componentes:

- {ponto}, com fibrado normal (4x+6)R;
- $F^3 = \mathbb{R}P^3$, com fibrado normal $(4x+3)\lambda_3$;
- $F^k = \mathbb{R}P^k$, $2 \le k \le 4x + 2$ par (exceto k = 2x, 2x + 2 e 2x + 4), com fibrado normal $(4x + 5 k)\lambda_k \oplus R;$
- $F^{2x} = \mathbb{R}P^{2x}$, com fibrado normal $\lambda_{2x} \oplus (2x+5)R$;
- $F^{2x+2} = \mathbb{R}P^{2x+2} \cup (\mathbb{R}P^2 \times \mathbb{R}P^{2x})$, com fibrados normais $\lambda_{2x+2} \oplus (2x+3)R$ e $(2x+3)\lambda_{2x} \oplus R$, respectivamente;

- $F^{2x+4} = \mathbb{R}P^2 \times \mathbb{R}P^{2x+2}$, com fibrado normal $(2x+1)\lambda_{2x+2} \oplus R$;
- $F^{4x+2} = (\mathbb{R}P^{2x} \times \mathbb{R}P^{2x+2}) \cup \mathbb{R}P^{4x+2}$, com fibrados normais $(\lambda_{2x} \oplus R) \times (\lambda_{2x+2} \oplus R)$ e $4\lambda_{4x+2}$, respectivamente.

Agora, mostremos que as componentes listadas acima não bordam como fibrados. A componente $(4x + 3)\lambda_3 \mapsto F^3$, onde $F^3 = \mathbb{R}P^3$, não borda pois 4x + 3 é ímpar, conforme argumento já repetitivamente utilizado.

Observemos que as demais componentes do *fixed-data* de (M^{4x+6}, T) não bordam, pois suas bases são espaços reais projetivos de dimensão par. Entretanto, dentre essas componentes, temos duas com bases (2x+2)-dimensionais, a saber, $\lambda_{2x+2} \oplus (2x+3)R \mapsto \mathbb{R}P^{2x+2}$ e $(2x+3)\lambda_{2x} \oplus R \mapsto \mathbb{R}P^2 \times \mathbb{R}P^{2x}$ (provenientes das involuções (W_0^{4x+6}, S_0) e (W_x^{4x+6}, S_x) , respectivamente) e três com bases (4x+2)-dimensionais, a saber, $(\lambda_{2x} \oplus R) \times$ $(\lambda_{2x+2} \oplus R) \mapsto \mathbb{R}P^{2x} \times \mathbb{R}P^{2x+2}$, $3\lambda_{4x+2} \oplus R \mapsto \mathbb{R}P^{4x+2}$ e $4\lambda_{4x+2} \mapsto \mathbb{R}P^{4x+2}$ (provenientes de (W_0^{4x+6}, S_0) , (W_1^{4x+6}, S_1) e $(\mathbb{R}P^{4x+6}, T_{3,4x+2})$, respectivamente). Mostremos que a união dessas componentes não borda.

Iniciemos a análise pelas componentes com bases(2x + 2)-dimensionais. Temos que

$$(w_1(\lambda_{2x+2} \oplus (2x+3)R))^{2x+2}[\mathbb{R}P^{2x+2}] = \alpha_{2x+2}^{2x+2}[\mathbb{R}P^{2x+2}] = 1.$$

Por outro lado,

$$(w_1((2x+3)\lambda_{2x} \oplus R)^{2x+2}[\mathbb{R}P^2 \times \mathbb{R}P^{2x}] = \left(\binom{2x+3}{1}\alpha_{2x}\right)^{2x+2}[\mathbb{R}P^2 \times \mathbb{R}P^{2x}] = \alpha_{2x}^{2x+2}[\mathbb{R}P^2 \times \mathbb{R}P^{2x}] = 0,$$

pois α_{2x} provém de $H^1(\mathbb{R}P^{2x},\mathbb{Z}_2)$. Segue que a união

$$(\lambda_{2x+2} \oplus (2x+3)R \mapsto \mathbb{R}P^{2x+2}) \cup ((2x+3)\lambda_{2x} \oplus R \mapsto \mathbb{R}P^2 \times \mathbb{R}P^{2x})$$

não borda.

Para finalizar, analisemos a união das componentes com bases (4x + 2)dimensionais. Consideremos as classes de *Stiefel-Whitney*: $W((\lambda_{2x} \oplus R) \times (\lambda_{2x+2} \oplus R)) = (1 + \alpha_{2x})(1 + \alpha_{2x+2}) = 1 + \alpha_{2x+2} + \alpha_{2x} + \alpha_{2x+2}\alpha_{2x},$ $W(3\lambda_{4x+2} \oplus R) = (1 + \alpha_{4x+2})^3 = 1 + \alpha_{4x+2} + \alpha_{4x+2}^2 + \alpha_{4x+2}^3 = 0$ $W(4\lambda_{4x+2}) = (1 + \alpha_{4x+2})^4 = 1 + \alpha_{4x+2}^4.$ Observemos que $(w_2((\lambda_{2x} \oplus R) \times (\lambda_{2x+2} \oplus R)))^{2x+1}[\mathbb{R}P^{2x} \times \mathbb{R}P^{2x+2}] = (\alpha_{2x+2}\alpha_{2x})^{2x+1}[\mathbb{R}P^{2x} \times \mathbb{R}P^{2x+2}] = 0,$ $(w_2(3\lambda_{4x+2} \oplus R))^{2x+1}[\mathbb{R}P^{4x+2}] = (\alpha_{4x+2}^2)^{2x+1}[\mathbb{R}P^{4x+2}] = \alpha_{4x+2}^{4x+2}[\mathbb{R}P^{4x+2}] = 1 e$ $(w_2(4\lambda_{4x+2}))^{2x+1}[\mathbb{R}P^{4x+2}] = 0.$ Portanto, a união

$$((\lambda_{2x} \oplus R) \times (\lambda_{2x+2} \oplus R) \mapsto \mathbb{R}P^{2x} \times \mathbb{R}P^{2x+2}) \cup (3\lambda_{4x+2} \oplus R \mapsto \mathbb{R}P^{4x+2}) \cup (4\lambda_{4x+2} \mapsto \mathbb{R}P^{4x+2})$$

também não borda, o que encerra a nossa demonstração.

Capítulo 4

Limitantes envolvendo o grau de decomponibilidade de componentes fixadas

4.1 Introdução

Sejam $W(F^j) = 1 + w_1 + w_2 + \dots + w_j$ a classe de *Stiefel-Whitney* de uma variedade fechada *j*-dimensional $F^j \in P(x_1, x_2, \dots, x_j)$ uma polinomial simétrica sobre \mathbb{Z}_2 de grau *j* nas variáveis x_1, x_2, \dots, x_j , onde cada x_i tem grau 1. Conforme comentamos na Introdução desse trabalho, podemos introduzir uma classe de cohomologia em $H^j(F^j, \mathbb{Z}_2)$ identificando cada w_i com a *i*-ésima função simétrica elementar nas variáveis x_1, x_2, \dots, x_j e, em seguida, expressar $P(x_1, x_2, \dots, x_j)$ como uma polinomial *j*-dimensional nos w_i 's.

Para uma partição $\omega = (i_1, i_2, \dots, i_t)$ de $j, 1 \leq t \leq j$, seja $s_{\omega}(x_1, x_2, \dots, x_j)$ a menor polinomial simétrica contendo o monômio $x_1^{i_1}x_2^{i_2}\dots x_t^{i_t}$, e denotemos por $s_{\omega}(F^j) \in$ $H^j(F^j, \mathbb{Z}_2)$ a classe de cohomologia correspondente a $s_{\omega}(x_1, x_2, \dots, x_j)$ pelo procedimento prévio. É bem conhecido o fato de que a classe de cobordismo de F^j é determinada pelo conjunto de números da forma $s_{\omega}(F^j)[F^j]$, para todas as possíveis partições de ω . Na realidade, não são necessárias todas tais partições devido ao

Fato. A classe de cobordismo de F^j é determinada pelo conjunto de números da forma $s_{\omega}(F^j)[F^j]$, com $\omega = (i_1, i_2, \ldots, i_t)$ não diádica, isto é, nenhum dos i_{α} é da forma $2^p - 1$. A demonstração desse fato pode ser encontrada em [17, Seção 5].

Se F^j é não bordante, denotemos por $l(F^j)$ o menor comprimento de uma partição não diádica ω tal que $s_{\omega}(F^j)[F^j] \neq 0$; aqui, o comprimento de $\omega = (i_1, i_2, \dots, i_t)$ é o número natural t. Por exemplo, se j = 2k e F^j é cobordante a $\mathbb{R}P^2 \times \mathbb{R}P^2 \times \dots \times \mathbb{R}P^2$ (produto cartesiano de k cópias do espaço real projetivo $\mathbb{R}P^2$), então $l(F^j) = k$. Se F^j é indecomponível (vide definição adiante), então $s_j(F^j)[F^j] \neq 0$, onde $s_j[F^j] = s_{\omega}(F^j)$, para $\omega = (j)$; portanto, nesse caso $l(F^j) = 1$. Esses dois exemplos justificam porque $l(F^j)$ pode ser considerado o "grau de decomponibilidade" (*decomposability degree*) de F^j .

Provaremos o seguinte resultado:

Teorema 4.1.1. Seja (M^m, T) uma involução cujo conjunto fixado tem a forma

$$F = (\bigcup_{k=0}^{j} F^k) \cup F^n.$$

com n > j. Se F^j é não bordante, então $m \le m(n-j) + 2j + l(F^j)$.

Grosseiramente falando, o resultado acima nos diz que o limitante para m depende do grau de decomponibilidade da componente j-dimensional fixada pela involução (M^m, T) , onde j é a maior dimensão ocorrendo, estritamente menor do que n = dimensão maximal.

Observação 4.1.1. Lembremos que o número m(n), $n \in \mathbb{N}$, é o limitante de Stong e Pergher, definido na Seção 1.9.

Observação 4.1.2. A união das componentes F^k do conjunto fixado F, com k < j, é arbitrária, podendo assumir casos extremos; isto é, tal união pode ser da forma $\bigcup_{k=0}^{j-1} F^k$, com todas as componentes F^k , $0 \le k \le j-1$, não bordantes, ou pode ser o conjunto vazio. Em qualquer um desses casos, ainda temos que $m(n-j)+2j+l(F^j)$ é um limitante para m. Tal fato pode ser facilmente observado na demonstração do Teorema 4.1.1, que será feita na seção seguinte.

Definição 4.1.1. Uma variedade fechada é dita *indecomponível* quando a sua classe de cobordismo não pode ser expressa como uma soma de produtos de classes de cobordismo com dimensões menores.

Essa definição não é tão restrita quanto parece pois, se j não é da forma $2^p - 1$, então metade dos elementos do grupo de cobordismo não orientado \mathcal{N}_j é indecomponível.

Com base em tal definição, consideremos o seguinte resultado de [23]: "Se (M^m, T) é uma involução cujo conjunto fixado tem a forma $F = F^j \cup F^n$, com n > j e F^j indecomponível, então $m \le m(n-j) + 2j + 1$."

Se, no Teorema 4.1.1, considerarmos o conjunto fixado com a forma $F = F^j \cup F^n$ e supormos F^j indecomponível (e, portanto, $l(F^j) = 1$), recaímos nesse resultado de [23]; ou seja, o Teorema 4.1.1 possui tal resultado como uma de suas consequências. Também, se no Teorema 4.1.1 considerarmos j = n-1, o limitante em questão melhora um resultado recente de *P. Pergher*, a aparecer no "*Israel J. Math.*" (para maiores detalhes, vide Seção 4.4).

Em adição ao Teorema 4.1.1, dada uma partição $\omega = (i_1, i_2, \ldots, i_t)$ de j, desenvolveremos, na Seção 4.3, um método para construir involuções (M^m, T) com conjunto de pontos fixos da forma $F = (\bigcup_{k < j} F^k) \cup F^j \cup F^n$, onde m = m(n - j) + 2j + te $s_{\omega}(F^j)[F^j] \neq 0$, para valores especiais de $n, j \in \omega$. Em algumas situações particulares, tal método mostrará que o limitante dado pelo Teorema 4.1.1 é o melhor possível.

Observação 4.1.3. Em toda a discussão acima, cada parte j-dimensional do conjunto fixado por uma involução pode ser considerada conexa (vide Teorema 1.7.5).

4.2 Prova do Teorema 4.1.1

Seja (M^m, T) uma involução cujo conjunto fixado é da forma $F = (\bigcup_{k=0}^{j} F^k) \cup F^n$, n > j, com F^j não bordante. Seja $\omega = (i_1, i_2, \dots, i_t)$ a menor partição não diádica de j tal que $s_{\omega}(F^j)[F^j] \neq 0$, isto é, $l(F^j) = t$. Nosso objetivo é mostrar que $m \leq m(n-j)+2j+t$.

Para $0 \leq k \leq j$ e k = n, denotemos por $\eta^k \mapsto F^k$ o fibrado normal de F^k em M^m , com dim $(\eta^k) = m - k$, e por $\lambda^k \mapsto \mathbb{R}P(\eta^k)$ o fibrado linha canônico sobre o espaço total do fibrado projetivo, $\mathbb{R}P(\eta^k)$.

Relembremos o seguinte resultado de [8], já citado nos capítulos anteriores: seja $P(w_1, w_2, \ldots, w_{m-1}, c)$ qualquer polinomial homogênea sobre \mathbb{Z}_2 com grau m - 1, onde cada variável w_i tem grau i e a variável c tem grau 1. Para cada $k, 0 \leq k \leq j$ ou k = n, avaliamos a classe de cohomologia

$$P(w_1(\mathbb{R}P(\eta^k)), w_2(\mathbb{R}P(\eta^k)), \dots, w_{m-1}(\mathbb{R}P(\eta^k)), w_1(\lambda^k)) \in H^{m-1}(\mathbb{R}P(\eta^k), \mathbb{Z}_2)$$

na classe fundamental de homologia $[\mathbb{R}P(\eta^k)] \in H_{m-1}(\mathbb{R}P(\eta^k), \mathbb{Z}_2)$, resultando no número característico

$$P(w_1(\mathbb{R}P(\eta^k)), w_2(\mathbb{R}P(\eta^k)), \dots, w_{m-1}(\mathbb{R}P(\eta^k)), w_1(\lambda^k))[\mathbb{R}P(\eta^k)] \in \mathbb{Z}_2.$$

Então, temos que

$$\sum_{k=0}^{j} P(w_1(\mathbb{R}P(\eta^k)), w_2(\mathbb{R}P(\eta^k)), \dots, w_{m-1}(\mathbb{R}P(\eta^k)), w_1(\lambda^k))[\mathbb{R}P(\eta^k)] + P(w_1(\mathbb{R}P(\eta^n)), w_2(\mathbb{R}P(\eta^n)), \dots, w_{m-1}(\mathbb{R}P(\eta^n)), w_1(\lambda^n))[\mathbb{R}P(\eta^n)] = 0.$$
(4.1)

Isso segue do fato de que a união disjunta dos fibrados linha $(\bigcup_{k=0}^{j} \lambda^{k}) \cup \lambda^{n}$ borda como um elemento do grupo de bordismo $\mathcal{N}_{m-1}(BO(1))$ (vide Corolário 1.7.2).

O ponto crucial do nosso argumento é utilizar a relação (4.1) com a escolha de uma polinomial $P(w_1, w_2, \ldots, w_{m-1}, c)$ adequada, a qual será composta pelo produto de duas polinomiais especiais, sendo uma delas a classe X de Stong e Pergher (descrita na Seção 2.4).

Como foi visto, a classe X está associada aos fibrados linha sobre os espaços totais dos fibrados projetivos (usaremos a notação $X(\lambda^k \mapsto \mathbb{R}P(\eta^k))$, $0 \le k \le j$ e k = n, para especificar o fibrado linha em questão). Recordando o que foi feito na Seção 2.4, dado um inteiro r, definimos a classe

$$W[r] = \frac{W(\mathbb{R}P(\eta^n))}{(1+c)^{m-n-r}}.$$

Escrevendo $n - j = 2^p q$ ($p \ge 1$ e q é ímpar) temos então que, se p < q + 1,

$$X(\lambda^{n} \mapsto \mathbb{R}P(\eta^{n})) = W[2^{p} - 1]_{2^{p+1} - 1}^{q+1-p} W[r_{1}]_{2r_{1}} W[r_{2}]_{2r_{2}} \dots W[r_{p}]_{2r_{p}},$$

onde $r_i = 2^p - 2^{p-i}$, para $1 \le i \le p$; e se $p \ge q+1$,

$$X(\lambda^{n} \mapsto \mathbb{R}P(\eta^{n})) = W[r_{1}]_{2r_{1}}W[r_{2}]_{2r_{2}}\dots W[r_{q+1}]_{2r_{q+1}},$$

onde $r_i = 2^p - 2^{p-i}$, para $1 \le i \le q+1$. Utilizando-se as propriedades das classes $W[r]_j$ (descritas na Seção 2.3), é possível então mostrar que a classe $X(\lambda^n \mapsto \mathbb{R}P(\eta^n))$ tem dimensão igual a m(n-j) e tem a forma

 $X(\lambda^n \mapsto \mathbb{R}P(\eta^n)) = A_y c^{m(n-j)-y} + \text{ termos com potências menores de c},$

onde A_y é uma classe de cohomologia de dimensão $y \geq n-j+1$ e provém da cohomologia de $F^n.$

Agora, consideremos um fibrado linha arbitrário, $\lambda \mapsto N$, onde N é uma variedade (m-1)-dimensional fechada; utilizaremos a partição não diádica $\omega = (i_1, i_2, \ldots, i_t)$ de j.

Seja $S_{\omega}(x_1, x_2, \ldots, x_{m-1}, c)$ a menor polinomial nas variáveis de grau um $x_1, x_2, \ldots, x_{m-1}, c$, que é simétrica nas variáveis $x_1, x_2, \ldots, x_{m-1}$ e contém a polinomial

$$x_1^{i_1}(x_1+c)^{i_1+1}x_2^{i_2}(x_2+c)^{i_2+1}\dots x_t^{i_t}(x_t+c)^{i_t+1}$$

Identificamos $w_1(\lambda)$ a c e cada $w_i(N)$ à *i*-ésima função simétrica elementar nas variáveis $x_1, x_2, \ldots, x_{m-1}$; em seguida, expressamos $S_{\omega}(x_1, x_2, \ldots, x_{m-1}, c)$ como uma polinomial de

dimensão 2j + t nos $w'_i s(N) \in w_1(\lambda)$. Esta classe será denotada por $S_{\omega}(\lambda \mapsto N)$.

Nosso interesse é analisar o comportamento de S_{ω} com respeito aos fibrados linha sobre os espaços totais dos fibrados projetivos; para isso, usaremos o Princípio *Splitting* (Seção 1.8), que nos permite escrever a classe de *Stiefel-Whitney* de qualquer fibrado vetorial k-dimensional formalmente como $1+w_1+w_2+\ldots+w_k = (1+x_1)(1+x_2)\cdots(1+x_k)$, onde cada x_i tem grau um, e efetivamente ver cada w_i como a *i*-ésima função simétrica elementar nas variáveis x_1, x_2, \ldots, x_k .

Seja η um fibrado vetorial k-dimensional sobre uma variedade fechada pdimensional F, onde p + k = m, e seja $\lambda \mapsto \mathbb{R}P(\eta)$ o fibrado linha canônico sobre $\mathbb{R}P(\eta)$; denotemos $w_1(\lambda)$ por c. Usando o Princípio Splitting, escrevemos $W(F) = (1 + x_1)(1 + x_2) \dots (1 + x_p) \in W(\eta) = (1 + y_1)(1 + y_2) \dots (1 + y_k)$. Então,

$$W(\mathbb{R}P(\eta)) = (1+x_1)(1+x_2)\dots(1+x_p)(1+c+y_1)(1+c+y_2)\dots(1+c+y_k).$$

Para estudarmos $S_{\omega}(\lambda \mapsto \mathbb{R}P(\eta))$, primeiro coletamos os termos com as maiores potências de c. Devemos analisar termos $z_{e_1}^{i_1}(z_{e_1}+c)^{i_1+1}z_{e_2}^{i_2}(z_{e_2}+c)^{i_2+1}\dots z_{e_t}^{i_t}(z_{e_t}+c)^{i_t+1}$ provindos de subconjuntos ordenados de variáveis de grau um

$$\{z_{e_1}, z_{e_2}, \dots, z_{e_t}\} \subset \{z_1, z_2, \dots, z_{p+k}\} = \{x_1, x_2, \dots, x_p, y_1 + c, y_2 + c, \dots, y_k + c\}.$$

Se $\{z_{e_1}, z_{e_2}, \ldots, z_{e_t}\} \subset \{x_1, x_2, \ldots, x_p\}$, podemos escrever

$$\begin{aligned} z_{e_1}^{i_1}(z_{e_1}+c)^{i_1+1} z_{e_2}^{i_2}(z_{e_2}+c)^{i_2+1} \dots z_{e_t}^{i_t}(z_{e_t}+c)^{i_t+1} &= \\ &= z_{e_1}^{i_1} \left(c^{i_1+1} + \sum_{b=0}^{i_1} \left(\begin{array}{c} i_1+1\\ b \end{array} \right) z_{e_1}^{i_1+1-b} c^b \right) \dots z_{e_t}^{i_t} \left(c^{i_t+1} + \sum_{b=0}^{i_t} \left(\begin{array}{c} i_t+1\\ b \end{array} \right) z_{e_t}^{i_t+1-b} c^b \right) &= \\ &= z_{e_1}^{i_1} z_{e_2}^{i_2} \dots z_{e_t}^{i_t} c^{j+t} + \text{ termos com potências menores de c.} \end{aligned}$$

Portanto, a soma de todos os termos provenientes de subconjuntos $\{z_{e_1}, z_{e_2}, \ldots, z_{e_t}\} \subset \{x_1, x_2, \ldots, x_p\}$ tem a forma $s_{\omega}(F)c^{j+t}$ + termos com potências menores de c, levando-se em conta que a classe de cohomologia $s_{\omega}(F) \in H^j(F, \mathbb{Z}_2)$ faz sentido também para $j \neq p$.

Se $\{z_{e_1}, z_{e_2}, \ldots, z_{e_t}\}$ possui y elementos do conjunto $\{y_1 + c, y_2 + c, \ldots, y_k + c\},$ $1 \leq y \leq t$, o mesmo cálculo acima mostra que c^{j+t-y} é a maior potência de c que aparece nos termos provenientes de $\{z_{e_1}, z_{e_2}, \ldots, z_{e_t}\}$. Isso significa que

 $S_{\omega}(\lambda \mapsto \mathbb{R}P(\eta)) = s_{\omega}(F)c^{j+t} + \text{ termos com potências menores de c.}$

Agora, retornemos aos fibrados linha sobre os espaços totais dos fibrados projetivos relacionados ao *fixed-data* de (M^m, T) , ou seja, analisemos os fibrados

 $\lambda^k \mapsto \mathbb{R}P(\eta^k)$, com $0 \le k \le j$ e k = n. Comecemos por k = n. Neste caso, o fato de que

 $X(\lambda^n \mapsto \mathbb{R}P(\eta^n)) = A_u c^{m(n-j)-y} + \text{ termos com potências menores de c},$

onde A_y é uma classe de dimensão $y \ge n - j + 1$ que provém da cohomologia de F^n , nos diz que cada termo de $X(\lambda^n \mapsto \mathbb{R}P(\eta^n))$ tem um fator de dimensão no mínimo igual a n - j + 1, provindo da cohomologia de F^n . Por outro lado, sendo

 $S_{\omega}(\lambda^n \mapsto \mathbb{R}P(\eta^n)) = s_{\omega}(F^n)c^{j+t} + \text{ termos com potências menores de c},$

podemos concluir que qualquer termo de $S_{\omega}(\lambda^n \mapsto \mathbb{R}P(\eta^n))$ tem um fator de dimensão no mínimo igual a j, provindo da cohomologia de F^n . Dessa forma, $X(\lambda^n \mapsto \mathbb{R}P(\eta^n))S_{\omega}(\lambda^n \mapsto \mathbb{R}P(\eta^n))$ é uma classe em $H^{m(n-j)+2j+t}(\mathbb{R}P(\eta^n),\mathbb{Z}_2)$, com cada um de seus termos contendo um fator de dimensão no mínimo igual a n+1, provindo da cohomologia de F^n , o que resulta em

$$X(\lambda^n \mapsto \mathbb{R}P(\eta^n))S_{\omega}(\lambda^n \mapsto \mathbb{R}P(\eta^n)) = 0.$$

Suponhamos, por absurdo, que m > m(n-j) + 2j + t. Então, $m-1 \ge m(n-j) + 2j + t$ e, portanto, faz sentido considerarmos a classe

$$X(\lambda^n \mapsto \mathbb{R}P(\eta^n))S_{\omega}(\lambda^n \mapsto \mathbb{R}P(\eta^n))c^{m-1-m(n-j)-2j-t} \in H^{m-1}(\mathbb{R}P(\eta^n), \mathbb{Z}_2),$$

que produz o número característico nulo

$$X(\lambda^n \mapsto \mathbb{R}P(\eta^n))S_{\omega}(\lambda^n \mapsto \mathbb{R}P(\eta^n))c^{m-1-m(n-j)-2j-t}[\mathbb{R}P(\eta^n)] = 0$$

Agora, analisemos a classe associada a $\lambda^k \mapsto \mathbb{R}P(\eta^k)$, com $0 \leq k < j$, correspondente à $X(\lambda^n \mapsto \mathbb{R}P(\eta^n))S_{\omega}(\lambda^n \mapsto \mathbb{R}P(\eta^n))c^{m-1-m(n-j)-2j-t}$. Esta classe é

$$X(\lambda^k \mapsto \mathbb{R}P(\eta^k))S_{\omega}(\lambda^k \mapsto \mathbb{R}P(\eta^k))c^{m-1-m(n-j)-2j-t},$$

onde $X(\lambda^k \mapsto \mathbb{R}P(\eta^k))$ é obtida a partir de $X(\lambda^n \mapsto \mathbb{R}P(\eta^n))$, substituindo-se cada $W[r]_i$ por $W[n+r-k]_i$.

Observemos que

$$X(\lambda^k \mapsto \mathbb{R}P(\eta^k))S_{\omega}(\lambda^k \mapsto \mathbb{R}P(\eta^k))c^{m-1-m(n-j)-2j-t} = 0$$

pois

$$S_{\omega}(\lambda^k \mapsto \mathbb{R}P(\eta^k)) = s_{\omega}(F^k)c^{j+t} + \text{ termos com potências menores de c}$$

se anula por razões dimensionais. De fato, s_{ω} é um polinômio *j*-dimensional, composto por elementos provindos da cohomologia de F^k , com k < j. Portanto,

$$X(\lambda^k \mapsto \mathbb{R}P(\eta^k))S_{\omega}(\lambda^k \mapsto \mathbb{R}P(\eta^k))c^{m-1-m(n-j)-2j-t}[\mathbb{R}P(\eta^k)] = 0,$$

para qualquer k < j.

Para finalizar, analisemos a classe em questão associada a $\lambda^j \mapsto \mathbb{R}P(\eta^j)$,

$$X(\lambda^j \mapsto \mathbb{R}P(\eta^j))S_{\omega}(\lambda^j \mapsto \mathbb{R}P(\eta^j))c^{m-1-m(n-j)-2j-t},$$

onde $X(\lambda^j \mapsto \mathbb{R}P(\eta^j))$ é obtida a partir de $X(\lambda^n \mapsto \mathbb{R}P(\eta^n))$, substituindo-se cada $W[r]_i$ por $W[n+r-j]_i$. Temos

$$\begin{aligned} S_{\omega}(\lambda^{j} \mapsto \mathbb{R}P(\eta^{j})) &= s_{\omega}(F^{j})c^{j+t} + \text{ termos com potências menores de c} \\ &= s_{\omega}(F^{j})c^{j+t} + \sum A_{y}c^{s}, \end{aligned}$$

onde y + s = 2j + t, s < j + t e A_y provém da cohomologia de F^j . Então, a dimensão de cada polinômio A_y é estritamente maior do que j e, portanto, igual a zero por razões dimensionais. Assim, temos $S_{\omega}(\lambda^j \mapsto \mathbb{R}P(\eta^j)) = s_{\omega}(F^j)c^{j+t}$. Isso implica que, se I é o ideal de $H^*(\mathbb{R}P(\eta^j), \mathbb{Z}_2)$ gerado pelas classes provenientes de F^j com dimensão positiva, então $S_{\omega}(\lambda^j \mapsto \mathbb{R}P(\eta^j))\theta = 0$, para cada $\theta \in I$. Logo, no cálculo de $X(\lambda^j \mapsto \mathbb{R}P(\eta^j))$, devemos apenas considerar

$$W(\mathbb{R}P(\eta^j)) \equiv (1+c)^{m-j} \mod I.$$

Assim, cada fator W[r] de X tem a forma

$$W[r] = \frac{W(\mathbb{R}P(\eta^{j}))}{(1+c)^{m-n-r}} \equiv (1+c)^{n-j+r} \mod I = (1+c)^{2^{p}q+r} \mod I.$$

Em particular, para $r_i = 2^p - 2^{p-i}, i = 1, 2, \dots, p$, temos

$$W[r_i]_{2r_i} \equiv \begin{pmatrix} 2^p q + 2^p - 2^{p-i} \\ 2^{p+1} - 2^{p-i+1} \end{pmatrix} c^{2r_i} \mod I,$$

e para $r = 2^p - 1$, temos

$$W[r]_{2r+1} \equiv \begin{pmatrix} 2^{p}q + 2^{p} - 1\\ 2^{p+1} - 1 \end{pmatrix} c^{2r+1} \mod I.$$

O menor termo da expansão diádica de $2^p q + 2^p$ é 2^{p+1} . Usando o Corolário 1.13.1, concluímos que os coeficientes binomiais acima são não nulos módulo 2. Segue que todos os fatores $W[r]_u$ que aparecem em $X(\lambda^j \mapsto \mathbb{R}P(\eta^j))$ satisfazem $W[r]_u \equiv c^u \mod I$ e, assim, $X(\lambda^j \mapsto \mathbb{R}P(\eta^j)) \equiv c^{m(n-j)} \mod I$.

Agora, como uma consequência do teorema de *Leray-Hirsch* (1.6.2), temos que $H^*(\mathbb{R}P(\eta^j),\mathbb{Z}_2)$ é um $H^*(F^j,\mathbb{Z}_2)$ -módulo livre gerado por $1, c, c^2, \ldots, c^{m-j-1}$, e então

$$\begin{split} X(\lambda^j \mapsto \mathbb{R}P(\eta^j)) S_{\omega}(\lambda^j \mapsto \mathbb{R}P(\eta^j)) c^{m-1-m(n-j)-2j-t} [\mathbb{R}P(\eta^j)] &= s_{\omega}(F^j) c^{m-j-1} [\mathbb{R}P(\eta^j)] = \\ &= s_{\omega}(F^j) [F^j] = 1. \end{split}$$

Substituindo-se os valores obtidos acima na equação (4.1), obtemos a contradição desejada.

4.3 Construção do exemplo maximal

Seja $\omega = (i_1, i_2, \dots, i_t)$ uma partição não diádica de j. Como anunciado na introdução desse capítulo, nessa seção desenvolveremos um método para construir uma involução (M^m, T) cujo conjunto de pontos fixos tem a forma $F = (\bigcup_{k < j} F^k) \cup F^j \cup F^n$, com j < n, m = m(n-j) + 2j + t e $s_{\omega}(F^j)[F^j] \neq 0$, para valores especiais de $n, j \in \omega$. Para isso, precisaremos de alguns resultados, que enunciaremos a seguir.

Fato A (*R. L. W. Brown*, [5]) Seja P^j uma variedade *j*-dimensional suave e fechada e consideremos o espaço de órbitas $\frac{S^1 \times P^j \times P^j}{-1 \times twist}$, que é uma variedade (2j+1)-dimensional fechada; aqui, S^1 é o círculo unitário. Então, se P^j é indecomponível, $\frac{S^1 \times P^j \times P^j}{-1 \times twist}$ também o é.

Fato B (*R. Stong* e *P. Pergher*, [26]) Existem involuções (N^m , S) com conjunto de pontos fixos da forma {*ponto*} $\cup F^n$, com m = m(n), para todo $n \ge 1$.

Fato C (*P. E. Conner* e *E. E. Floyd*, [8]) Seja (W^n, T) uma involução definida sobre uma variedade *n*-dimensional suave e fechada W^n , com conjunto de pontos fixos *F*. Se W^n borda, então existe uma involução sobre uma variedade (n + 1)-dimensional que fixa o mesmo conjunto F (para maiores detalhes, vide a construção feita no início da subseção 3.3.1).

Fato D (*P. Pergher, A. Ramos* e *R. Oliveira*, [20]) Para *m* e *n* pares, *m* < *n*, escreva $n - m = 2^p q$, onde $p \ge 1$ e $q \ge 1$ é ímpar. Seja ($\mathbb{R}P^{m+n+1}, T_{m,n}$) a involução

$$T_{m,n}([x_0, x_1, \dots, x_{m+n+1}]) = [-x_0, -x_1, \dots, -x_m, x_{m+1}, \dots, x_{m+n+1}],$$

cujo conjunto de pontos fixos é $F = \mathbb{R}P^m \cup \mathbb{R}P^n$. Então, a variedade subjacente da involução $\Gamma^j(\mathbb{R}P^{m+n+1}, T_{m,n})$ borda, para $0 \leq j \leq 1$, se p = 1, e para $0 \leq j \leq 2^p - 2$, se p > 1. 1. Do Fato C, segue que $\Gamma^j(\mathbb{R}P^{m+n+1}, T_{m,n})$ é cobordante a uma involução $(M^{m+n+1+j}, T)$ que fixa $F = \mathbb{R}P^m \cup \mathbb{R}P^n$, para $0 < j \leq 2$, se p = 1, e para $0 < j \leq 2^p - 1$, se p > 1.

Os dois lemas a seguir serão cruciais para a construção do nosso exemplo.

Lema 4.3.1. Seja (M^m, T) uma involução com conjunto de pontos fixos da forma $P^j \cup F^n$, onde $j \neq n$ e P^j é indecomponível. Então, existe uma involução (W^{2m+1}, T') cujo conjunto de pontos fixos é da forma $P^{2j+1} \cup F^{2n+1}$, com P^{2j+1} indecomponível.

Prova: Sobre $S^1 \times M^m \times M^m$, consideremos a involução $1 \times T \times T$. Essa involução comuta com $-1 \times twist$ e, portanto, induz uma involução S sobre o espaço de órbitas $N = \frac{S^1 \times M^m \times M^m}{-1 \times twist}$. O conjunto de pontos fixos de (N, S) é a união de 3 subvariedades:

е

•
$$P^{2j+1} = \frac{S^1 \times P^j \times P^j}{-1 \times twist}$$
,

•
$$F^{2n+1} = \frac{S^1 \times F^n \times F^n}{-1 \times twist}$$

•
$$\frac{S^1 \times (P^j \times F^n \cup F^n \times P^j)}{-1 \times twist}$$

Como $j \neq n$, existe uma vizinhança tubular de $\frac{S^1 \times (P^j \times F^n \cup F^n \times P^j)}{-1 \times twist}$ em N que é difeomorfa a uma vizinhança tubular de $S^1 \times P^j \times F^n$ em $S^1 \times M^m \times M^m$. Assim, esta subvariedade fixada é difeomorfa a $S^1 \times P^j \times F^n$, com fibrado normal $S^1 \times \nu$, onde ν é o fibrado normal de $P^j \times F^n$ em $M^m \times M^m$ (isto é, $S^1 \times \nu$ é o *pullback* de ν pela projeção $S^1 \times P^j \times F^n \to P^j \times F^n$); sendo um produto com S^1 , tal fibrado borda. Portanto, (N, S) é cobordante a uma involução (W^{2m+1}, T') , com conjunto de pontos fixos da forma $P^{2j+1} \cup F^{2n+1}$ e, pelo Fato A, P^{2j+1} é indecomponível.

Lema 4.3.2. Se $j \ge 2$ não é da forma $2^s - 1$, escreva $j+1 = 2^p(2q+1)$, onde $p \ge 0$ e q > 0(e, portanto, $j - 2^{p+1} = 2^{p+1}(q-1) + 2^p - 1 \ge 0$). Então, existe uma involução (M^{2j+1}, T) cujo conjunto fixado é da forma $P^j \cup F^n$, onde $n = j - 2^{p+1}$ e P^j é indecomponível.

Prova: Usaremos indução sobre $p \ge 0$. Para p = 0, temos j = 2q e $n = j - 2^{p+1} = 2q - 2$. Devemos exibir uma involução (M^{4q+1}, T) cujo conjunto de pontos fixos é da forma $P^{2q} \cup F^{2q-2}$, com P^{2q} indecomponível. Do Fato D, temos que a involução $\Gamma^2(\mathbb{R}P^{4q-1}, T_{2q-2,2q})$ é equivariantemente cobordante a uma involução (M^{4q+1}, T) fixando $\mathbb{R}P^{2q-2} \cup \mathbb{R}P^{2q}$. Sendo $\mathbb{R}P^{2q}$ indecomponível, segue que o resultado é verdadeiro para p = 0.

Como hipótese de indução, suponhamos que existe uma involução (M^{2j+1}, T) com conjunto de pontos fixos da forma $P^j \cup F^n$, onde $j + 1 = 2^p(2q + 1)$ (com $p \ge 0$ e q > 0), $n = j - 2^{p+1}$ e P^j é indecomponível. Então, pelo Lema 4.3.1, existe uma involução (M', T')com dim M' = 2(2j + 1) + 1, cujo conjunto de pontos fixos é da forma $P^{2j+1} \cup F^{2n+1}$, sendo P^{2j+1} indecomponível. Observando-se que

$$(2j+1) + 1 = 2^{p+1}(2q+1)$$

е

$$2n + 1 = 2(j - 2^{p+1}) + 1 = (2j + 1) - 2^{p+2}$$

concluímos que o resultado também é válido para p + 1, o que encerra a nossa demonstração.

Agora, estamos em condições de demonstrar o principal resultado dessa seção. Vamos a ele.

Proposição 4.3.1. Seja $\omega = (i_1, i_2, \ldots, i_t)$ uma partição não diádica de j e, para cada $1 \leq r \leq t$, escrevamos $i_r + 1 = 2^{p_r}(2q_r + 1)$, com $p_r \geq 0$ e $q_r > 0$. Suponhamos que $0 < n - j < 2^{p_r+1}$, para cada $1 \leq r \leq t$. Então, existe uma involução (M^m, T) , com m = m(n - j) + 2j + t, cujo conjunto fixado tem a forma

$$F = (\bigcup_{k < j} F^k) \cup F^j \cup F^n,$$

com $s_{\omega}(F^j)[F^j] \neq 0$. Mais do que isso, para tal involução temos que $l(F^j) = t$.

Prova: O Lema 4.3.2 nos garante a existência de involuções (M^{2i_r+1}, T_r) , para cada $r \in \{1, 2, \ldots, t\}$, cujo conjunto de pontos fixos tem a forma $P^{i_r} \cup F^{i_r-2^{p_r+1}}$, onde P^{i_r} é

indecomponível. Definimos, então, a involução produto

$$(W^{2j+t}, U) = (M^{2i_1+1}, T_1) \times (M^{2i_2+1}, T_2) \times \ldots \times (M^{2i_t+1}, T_t).$$

Consideremos o conjunto de números naturais

$$\mathcal{A} = \{ \sum_{r \in \sigma} 2^{p_r + 1} / \sigma \subset \{1, 2, \dots, t\}, \sigma \text{ não vazio} \}.$$

O conjunto de pontos fixos de (W^{2j+t}, U) tem a forma $F^j \cup D$, onde $F^j = P^{i_1} \times P^{i_2} \times \dots \times P^{i_t}$ e cada componente de D tem dimensão j-a, para algum $a \in \mathcal{A}$; reciprocamente, para cada $a \in \mathcal{A}$, existe uma componente de D com dimensão j-a.

Do Fato B, temos que existe uma involução $(N^{m(n-j)}, S)$, com conjunto de pontos fixos da forma $\{ponto\} \cup G^{n-j}$; tomemos $F^n = F^j \times G^{n-j}$.

A partir das involuções descritas acima, definimos a involução:

$$(M^m, T) = (W^{2j+t}, U) \times (N^{m(n-j)}, S).$$

Tal involução é o exemplo desejado. De fato, m = m(n - j) + 2j + te o seu conjunto de pontos fixos tem a forma

$$D \cup (D \times G^{n-j}) \cup F^j \cup F^n,$$

sendo que as componentes de D têm dimensões menores do que j; além disso, usando o fato de que cada P^{i_r} é indecomponível, o Princípio *Splitting* e considerações dimensionais, temos que

$$s_{\omega}[F^{j}] = s_{i_1}[P^{i_1}]s_{i_2}[P^{i_2}]\dots s_{i_t}[P^{i_t}] \neq 0.$$

Agora, se $\omega = (j_1, j_2, \dots, j_s)$ é uma partição não diádica de $i_1 + i_2 + \dots + i_t = j$, com s < t, então $s_{\omega}[P^{i_1} \times P^{i_2} \times \dots \times P^{i_t}] = 0$. Isso significa que

$$l(F^j) = l(P^{i_1} \times P^{i_2} \times \ldots \times P^{i_t}) = t.$$

Para finalizar, mostremos que as componentes de $D \times G^{n-j}$ possuem dimensões menores do que j. De fato, tais dimensões são da forma (n-j) + (j-a) = n-a, onde $a \in \mathcal{A}$. Se $a \in \mathcal{A}$, existe $r \in \{1, 2, ..., t\}$ tal que $a \ge 2^{p_r+1}$ e, assim, $n-a \le n-2^{p_r+1}$. Como, por hipótese, $n-j < 2^{p_r+1}$, temos que n-a < j, o que encerra a nossa prova.

Observação 4.3.1. Para j < n fixado, o limitante $m \leq m(n-j) + 2j + l(F^j)$ do Teorema 4.1.1 é, então, o melhor possível para variedades não bordantes F^j cujo grau de decomponibilidade $l(F^j)$ é realizado por partições ω satisfazendo as condições requeridas pela Proposição 4.3.1. Por exemplo, se tomarmos j = n - 1, tal limitante é o melhor possível, conforme veremos na próxima seção (Teorema 4.4.1). Para j = n - 2 e j = n - 3, $m \leq m(n-j) + 2j + l(F^j)$ é o melhor possível para variedades F^j tais que $l(F^j)$ é realizado por partições $\omega = (i_1, i_2, ..., i_t)$, onde i_r é ímpar, $1 \leq r \leq t$. Em particular, $m \leq m(n-j) + 2j + l(F^j)$ é o melhor possível se j = n - 2 ou j = n - 3, com F^j indecomponível e j ímpar.

4.4 Algumas melhorias para o 5/2-Teorema de J. Boardman

Podemos considerar a questão de encontrar limitantes para o caso geral $F = \bigcup_{k=0}^{n} F^{k}$, levando-se em conta o grau de decomponibilidade de uma ou mais componentes fixadas F^{k} , $2 \leq k \leq n$. Nessa direção, temos o seguinte resultado de *P. Pergher* em [24]: "Se (M^{m}, T) é uma involução fixando o conjunto $F = \bigcup_{k=0}^{n} F^{k}$, tal que a componente maximal F^{n} é indecomponível, então $m \leq 2n + 1$. Além disso, tal limitante é o melhor possível." Generalizando este resultado, *P. Pergher* provou em [25] a seguinte

Proposição 4.4.1. Se (M^m, T) é uma involução cujo conjunto de pontos fixos tem a forma $F = \bigcup_{k=0}^{n} F^k$, com F^n não bordante, então $m \leq 2n + l(F^n)$. Além disso, tal limitante é o melhor possível.

A seguir, temos um caso específico do Teorema 4.1.1, no qual tomamos a dimensão da componente fixada F^j igual a n-1. Esse resultado é, na realidade, um melhoramento para o 5/2-Teorema de *J. Boardman*, no caso particular em que a componente (n-1)dimensional fixada, F^{n-1} , é não bordante. Veremos também que o mesmo fornece um melhoramento para a Proposição 4.4.1 acima citada.

Teorema 4.4.1. Seja (M^m, T) uma involução cujo conjunto fixado é $F = \bigcup_{k=0}^{n} F^k$. Se F^{n-1} é não bordante, então $m \leq 2n + l(F^{n-1})$. Além disso, esse limitante é o melhor possível.

Prova: Pelo Teorema 4.1.1, para o caso particular em que j = n - 1, temos

$$m \le m(n - (n - 1)) + 2(n - 1) + l(F^{n-1}) = m(1) + 2n - 2 + l(F^{n-1}).$$
Mas, m(1) = 2. Logo, $m \le 2n + l(F^{n-1})$.

Para mostrar que tal limitante é o melhor possível, observemos que $n - j = n - (n - 1) = 1 < 2^{p_{\alpha}+1}$, para qualquer $\alpha \in \{1, 2, ..., t\}$. Então, pela Proposição 4.3.1, sabemos que existe uma involução (M^m, T) , com $m = m(n-j)+2j+l(F^j) = 2n+l(F^{n-1})$, cujo conjunto de pontos fixos é da forma

$$F = (\bigcup_{k < n-1} F^k) \cup F^{n-1} \cup F^n,$$

e tal que F^{n-1} é não bordante (pois $s_{\omega}(F^{n-1})[F^{n-1}] \neq 0$).

Da união do resultado acima com a Proposição 4.4.1, temos então:

Corolário 4.4.1. Seja (M^m, T) uma involução cujo conjunto fixado tem a forma $F = \bigcup_{k=0}^{n} F^k$. Se as componentes $F^{n-1} \in F^n$ não bordam, então

$$m \le \min\{2n + l(F^{n-1}), 2n + l(F^n)\}.$$

Além disso, os limitantes $m \leq 2n + l(F^{n-1})$ e $m \leq 2n + l(F^n)$ são, separadamente, os melhores possíveis.

Observação 4.4.1. O enunciado preciso do 5/2-Teorema diz o seguinte: se (M^m, T) fixa o conjunto não bordante $F = \bigcup_{j=0}^{n} F^j$, então (i) $m \leq 5k$, se $n = 2k \text{ com } k \geq 1$;

(ii) $m \le 5k + 2$, se n = 2k + 1 com $k \ge 0$.

A respeito das partições não diádicas de n-1, observemos que o comprimento máximo ocorre para a partição $\omega = (2, 2, ..., 2)$, se n-1 = 2k, e $\omega = (2, 2, ..., 2, 5)$, se n-1 = 2k-1; ou seja, $1 \le l(F^{2k}) \le k \in 1 \le l(F^{2k-1}) \le k-2$.

Assim, o Teorema 4.4.1 fornece o mesmo limitante do 5/2-Teorema para n = 2k+1 $(k \ge 1)$. De fato, se n = 2k + 1, então n - 1 = 2k e $1 \le l(F^{2k}) \le k$. Portanto, $m \le 2n + l(F^{n-1}) \le 2(2k+1) + k = 5k + 2$.

Entretanto, para n par, temos o seguinte resultado:

Teorema 4.4.2. Se (M^m, T) fixa $F = \bigcup_{j=0}^n F^j$, onde F^{n-1} é não bordante e n = 2k $(k \ge 3)$, então $m \le 5k - 2$. Além disso, tal limitante é o melhor possível.

Prova: Sendo F^{n-1} não bordante, temos, pelo Teorema 4.4.1, que $m \leq 2n + l(F^{n-1})$. Dentre todas as partições não diádicas de n-1 = 2k-1, o comprimento máximo ocorre para $\omega = (2, 2, ..., 2, 5)$ e é igual a k-2. Logo, $1 \leq l(F^{n-1}) \leq k-2$ e

$$m \le 2n + l(F^{n-1}) \le 2(2k) + (k-2) = 5k - 2.$$

Além disso, a Proposição 4.3.1 aplicada à partição $\omega = (2, 2, ..., 2, 5) \mod n$ mostra que existe uma involução (M^m, T) , com m = 5k - 2 e conjunto fixado $F = \bigcup_{j=0}^n F^j$, satisfazendo $s_{\omega}(F^{n-1})[F^{n-1}] \neq 0$. Portanto, $m \leq 5k - 2$ é o melhor limitante possível.

Observação 4.4.2. Para o caso especial n = 2k + 1, com $l(F^{n-1}) < k$, o Teorema 4.4.1 fornece melhoramentos se comparado aos resultados do 5/2-Teorema; e, mais do que isso, tal limitante é o melhor possível.

Observação 4.4.3. Em [25], temos um resultado com a mesma natureza do Teorema 4.4.2, que fornece um melhoramento para o 5/2-Teorema no caso em que a dimensão da componente maximal fixada é ímpar: "Se (M^m, T) fixa $F = \bigcup_{j=0}^{n} F^j$, onde F^n é não bordante e n = 2k + 1, então $m \le 5k + 1$. Além disso, tal limitante é o melhor possível."

Seja $F = \bigcup_{j=0}^{n} F^{j}$ o conjunto fixado por (M^{m}, T) , com F não bordante. Se t é a codimensão da componente maximal fixada F^{n} , então o 5/2-Teorema nos diz que $t \leq 3k$, se n = 2k, e $t \leq 3k + 1$, se n = 2k + 1. Dessa forma, os limitantes para t são crescentes como funções de n.

Agora, se (M^m, T) fixa $F = (\bigcup_{k=0}^{j} F^k) \cup F^n$ (j < n), com F^j não bordante, o Teorema 4.1.1 nos diz que a codimensão da componente maximal fixada é $t \le m(n - j) + 2j + l(F^j) - n$. Para *j* fixo, um simples cálculo mostra que, se n - j é par, então m(n - j) - n também não é limitado como uma função de *n*; assim, o limitante para *t* cresce com *n*, neste caso.

Entretanto, se n - j é ímpar, temos o seguinte fenômeno de baixa codimensão:

Teorema 4.4.3. Seja (M^m, T) uma involução com conjunto de pontos fixos da forma $F = (\bigcup_{k=0}^{j} F^k) \cup F^n \ (j < n), \ com F^j \ não \ bordante, \ e \ denotemos \ por \ t \ a \ codimensão \ da componente maximal <math>F^n$. Então, para cada j fixado, t é limitada como uma função de n, caso n - j seja ímpar. Mais especificamente, se j = 2k + 1 é ímpar, temos $t \le j + k$, e se j = 2k é par, temos $t \le j + k + 1$.

Prova: Considerando-se todas as partições não diádicas de j = 2k + 1, temos que o comprimento máximo ocorre para a partição $\omega = (2, 2, ..., 2, 5)$ e é igual a k - 1; no caso de j = 2k, o comprimento máximo ocorre para a partição $\omega = (2, 2, ..., 2)$ e é igual a k. Assim, se j = 2k + 1, temos $1 \le l(F^j) \le k - 1$, e se j = 2k, temos $1 \le l(F^j) \le k$. Além disso, se n - j é ímpar, m(n - j) = n - j + 1 (vide Seção 1.9). Logo,

$$t \le m(n-j) + 2j + l(F^j) - n \le n - j + 1 + 2j + k - 1 - n = j + k, \text{ se } j = 2k + 1, \text{ e}$$
$$t \le m(n-j) + 2j + l(F^j) - n \le n - j + 1 + 2j + k - n = j + k + 1, \text{ se } j = 2k.$$

Referências Bibliográficas

- [1] Barbaresco, E. M. Involuções fixando $F^n \cup F^3$, Tese de Doutorado DM/UFSCar (2010).
- Boardman, J. M. On manifolds with involution, Bulletin Amer. Math. Soc. 73, (1967), 136-138.
- [3] Borel, A. Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compacts, Ann. of Math. 57, n. 2, (1953), 115-207.
- Borel, A. and Hirzebruch, F. Characteristic classes and homogeneous spaces, I, Amer. J. Math. 80, (1958), 458-538.
- Brown, R. L. W. Immersions and embeddings up to cobordism, Canadian J. Math. 23, n. 6, (1971), 1102-1115.
- [6] Conner, P. E. Diffeomorphisms of period two, Michigan Math. J. 10, (1963), 341-352.
- [7] Conner, P. E. The bordism class of a bundle space, Michigan Math. J. 14, (1967), 289-303.
- [8] Conner, P. E. and Floyd, E. E. Differentiable periodic maps, Springer-Verlag, Berlin, (1964).
- [9] Conner, P. E. and Floyd, E. E. Fibrin within a cobordism class, Michigan Math. J. 12, (1965), 33-47.
- [10] Dold, A. *Erzeugend der Thomshen algebra* N, Math. Z. 65, (1956), 25-35.
- [11] Figueira, F. G. and Pergher, P. L. Q. Bounds on the dimension of manifolds with involution fixing $F^n \cup F^2$, Glasgow Math. J. 50, (2008), 595-604.
- [12] Figueira, F. G. and Pergher, P. L. Q. Dimensions of fixed point sets of involutions, Arch. Math. (Basel) 87, (2006), n. 3, 280-288.
- [13] Figueira, F. G. and Pergher, P. L. Q. Involutions fixing $F^n \cup F^2$, Topology Appl. 153, (2006), n. 14, 2499-2507.
- [14] Figueira, F. G. and Pergher, P. L. Q. Two commuting involutions fixing $F^n \cup F^{n-1}$, Geom. Dedicata 117, (2006), 181-193.
- [15] Kelton, S. M. Involutions fixing $\mathbb{R}P^j \cup F^n$, Topology Appl. 142, (2004), 197-203.

- [16] Kelton, S. M. Involutions fixing $\mathbb{R}P^{j} \cup F^{n}$, II, Topology Appl. 149, n. 1-3, (2005), 217-226.
- [17] Kosniowski, C. and Stong, R. E. Involutions and characteristic numbers, Topology 17, (1978), 309-330.
- [18] Lucas, E. Théorie des nombres, 1878; reprint, Librarie Blanchard, Paris, (1961).
- [19] Milnor, J. W. and Stasheff, J. D. Characteristic classes, Princeton University Press, (1974).
- [20] Oliveira, R., Pergher, P. L. Q. and Ramos, A. Z^k₂-actions fixing ℝP²∪ℝP^{even}, Algebr. Geom. Topol. 7, (2007), 29-45.
- [21] Osborn, H. Vector Bundles, Academic Press, Inc, (1982).
- [22] Pergher, P. L. Q. Bounds on the dimension of manifolds with certain Z₂ fixed sets, Mat. Contemp. 13, (1996), 269-275.
- [23] Pergher, P. L. Q. Involutions fixing $F^n \cup \{Indecomposable\}$, Canadian Math. Bull., (to appear).
- [24] Pergher, P. L. Q. Involutions whose top dimensional component of the fixed point set is indecomposable, Geom. Dedicata 146, (2010), 1-7.
- [25] Pergher, P. L. Q. An Improvement of the five halves theorem of J. Boardman, Israel Journal of Math, (to appear).
- [26] Pergher, P. L. Q. and Stong, R. E. Involutions fixing $\{point\} \cup F^n$, Transformation Groups 6, (2001), 78-85.
- [27] Royster, D. C. Involutions fixing the disjoint union of two projective spaces, Indiana Univ. Math. J. 29, n. 2, (1980), 267-276.
- [28] Thom, R. Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28, n. 1-3, (1954), 17-86.