UNIVERSIDADE FEDERAL DE SÃO CARLOS

CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA

Um Homomorfismo Índice Associado à Ações Livres de \mathbb{Z}_p

João da Mata Santos Filho

Orientador: Prof. Dr. Pedro Luiz Queiroz Pergher

Dissertação apresentada ao Programa de Pós-Graduação em Matemática da UFSCar como parte dos requisitos para obtenção do título de Mestre em Matemática

São Carlos - SP Junho de 2003

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária da UFSCar

S237hi

Santos Filho, João da Mata.

Um homomorfismo índice associado à ações livres de Zp / João da Mata Santos Filho. -- São Carlos : UFSCar, 2003. 72 p.

Dissertação (Mestrado) -- Universidade Federal de São Carlos, 2003.

1. Topologia algébrica. 2. Teorema de Borsuk - Ulam. 3. Homomorfismo índice. 4. Ações livres.

CDD: 514.2 (20^a)

Agradecimentos

À Deus, que me permitiu a realização desse sonho.

Ao professor Pedro Pergher minha sincera gratidão pela orientação dispensada na confecção deste trabalho e pelo exemplo de pessoa e de profissional que mostrou ser durante o período de convivência.

Aos meus pais, João da Mata e Maria Cecília, e aos meus irmãos Juliana e Júlio César, de quem recebo muito amor e que, mesmo nos momentos mais difíceis, nunca deixaram de acreditar na minha capacidade.

Aos professores do Departamento de Matemática, em especial ao João Sampaio, Malagutti, Adalberto e Edson, que muito contribuíram para a minha formação acadêmica.

À Fernanda e a Taís, pela amizade solidificada ao longo desses anos e ao Rafael que muito me ajudou na realização deste trabalho.

A todos dos meus queridos Bloco L e Xikeirinho, em especial, a Jurema.

Aos amigos da Pós-graduação pelo excelente ambiente de trabalho que proporcionam e pela amizade.

Ao CNPq, pela concessão da bolsa de estudos.

A todos que, direta ou indiretamente, colaboraram para a realização deste trabalho.

Sumário

In	Introdução				
1	Pré-requisitos				
	1.1	Introdução	5		
	1.2	Ações de Grupos em Conjuntos	5		
	1.3	Álgebra Homológica	11		
	1.4	Homologia singular com coeficientes em R $\dots \dots$	13		
	1.5	O homomorfismo induzido por funções			
		contínuas	16		
	1.6	O Teorema Fundamental do Levantamento	17		
2	O \mathbb{Z}_p -homomorfismo índice				
	2.1	A homologia \mathbb{Z}_p -equivariante associada ao \mathbb{Z}_p -espaço (X,T)	23		
	2.2	O operador θ	27		
	2.3	O \mathbb{Z}_p -homomorfismo índice	31		
	2.4	Invariância do \mathbb{Z}_p -homomorfismo índice por induzidas de apli-			
		cações equivariantes	39		
3	Apl	icações do \mathbb{Z}_p -homomorfismo índice	43		
	3.1	Classes de homologia equivariantes com índice não-nulo	44		
	3.2	O isomorfismo $\Gamma: S_r(X,T) \to S_r(\frac{X}{T},\mathbb{Z}_p)$	50		

4	Refe	erências Bibliográficas	70
	3.5	Uma generalização do tradicional teorema de Borsuk-Ulam $. $. $. $	68
		coincidências	66
	3.4	Um teorema tipo Borsuk-Ulam concernente à existência de T-	
		cações equivariantes	61
	3.3	Um teorema tipo Borsuk-Ulam concernente à existência de apli-	

Resumo

O objetivo deste trabalho é detalhar e analisar as consequências de um recente pré-print de Pedro Pergher, o qual trata da construção de um homomorfismoíndice associado a espaços equipados com ações livres do grupo cíclico \mathbb{Z}_p . Este homomorfismo índice é definido no \mathbb{Z}_p -módulo de homologia equivariante do \mathbb{Z}_p -espaço em questão e assume valores em \mathbb{Z}_p , e o mesmo possibilita a obtenção de alguns resultados tipo Borsuk-Ulam, concernentes à existência de aplicações equivariantes conectando dois dados \mathbb{Z}_p -espaços.

Abstract

The objective of this work is to detail and to analyze consequences of a recent paper of P. Pergher, which deals with the construction of an index-homomorphism associated to spaces equipped with free actions of the cyclic group \mathbb{Z}_p . This index-homomorphism maps the equivariant homology \mathbb{Z}_p -module of a \mathbb{Z}_p -space into \mathbb{Z}_p , and it makes possible the obtention of some results of Borsuk-Ulam type, concerning the existence of equivariant maps connecting two given \mathbb{Z}_p -spaces.

Introdução

Na literatura matemática, o termo "índice" aparece em uma diversidade de contextos, com vários significados. Entre os contextos, o "índice" configura-se como sendo algo associado a pares (X, ϕ) , onde X é um espaço topológico e ϕ é uma ação de um dado grupo G em X. Especificamente nesse caso, o "índice" de uma ação (X, ϕ) seria algum elemento obtido através de algum funtor algébrico associado a (X, ϕ) , de tal sorte a ser, em algum sentido, invariante sob o efeito de aplicações G-equivariantes. Nessa direção, um dos mais antigos trabalhos a tratar de tal conceito é "On the theorems of Borsuk-Ulam, Kakutani - Yamabe - Yujobô and Dyson, I."- Annals of Math. - 1954, de C.T.Yang. Com o intuito de estudar certos teoremas tipo Borsuk-Ulam, Yang introduziu nesse trabalho uma ferramenta dada por um certo homomorfismo $\nu_{(X,T)}: H_n(X,T) \to \mathbb{Z}_2$, onde X é um espaço topológico equipado com involução livre $T:X\to X,$ e $H_n(X,T)$ é a enésima homologia equivariante do par (X,T); o homomorfismo em questão é "invariante sob o efeito de aplicações equivariantes", onde o significado disso, neste caso, é o fato de que, se (X,T) e (Y,S) são dois espaços com involuções livres e $f:(X,T) \to$ (Y,S) é uma aplicação equivariante, então $\nu_{(Y,S)}(f_*(\xi)) = \nu_{(X,T)}(\xi)$, para todo $\xi \in H_n(X,T)$, aqui f_* sendo a induzida por f na homologia equivariante. O "índice" do par (X,T) é definido, então, como sendo o maior natural n tal que

$$\nu_{(X,T)}(H_n(X,T)) \neq 0.$$

Recentemente, e inspirado no trabalho acima de C. T. Yang, P. Pergher estendeu a construção do homomorfismo $\nu_{(X,T)}$ acima mencionado para pares (X,T), onde X é um espaço topológico e $T:X\to X$ é um homeomorfismo de grau p (ou seja, $T^p=Id_X$) gerando uma ação livre de \mathbb{Z}_p em X. Especificamente, P. Pergher construiu um homomorfismo $J_{n_{(X,T)}}:H_n(X,T)\to \mathbb{Z}_p$, onde $H_n(X,T)$ é a enésima homologia \mathbb{Z}_p -equivariante do par (X,T), de tal maneira que, como no caso p=2, se $f:(X,T)\to (Y,S)$ é uma aplicação \mathbb{Z}_p -equivariante, então $J_{n_{(Y,S)}}(f_*(\xi))=J_{n_{(X,T)}}(\xi)$, para todo $\xi\in H_n(X,T)$; adicionalmente, J_n coincide com o homomorfismo de Yang quando p=2. No entanto, embora totalmente inspirada no caso p=2, a extensão da construção de $\nu_{(X,T)}$ para p>2 não é tão automática a partir da correspondente construção para p=2.

A construção do referido \mathbb{Z}_p -índice possibilitou algumas aplicações. Uma delas refere-se a mostrar que, sob certas circunstâncias, a \mathbb{Z}_p -homologia singular do espaço de órbitas $\frac{X}{T}$ é não nula. Especificamente, é conhecido o fato de que a \mathbb{Z}_2 -homologia singular dos espaços projetivos reais RP(n) é não nula até a dimensão n. Com o \mathbb{Z}_p -índice acima, é possível mostrar que, se p=2q, com q ímpar, e se X tem \mathbb{Z}_p -homologia singular nula até a dimensão n-1, então $\frac{X}{T}$ tem \mathbb{Z}_p -homologia singular não nula até a dimensão n. Outra aplicação tem a ver com uma generalização do tradicional teorema de Borsuk-Ulam. Uma das formulações deste é a seguinte: se $f:S^m \to S^n$ é uma aplicação contínua e equivariante com respeito às antipodais, então $m \leq n$. Por outro lado, quando m é ímpar, é conhecido o fato de que a esfera m-dimensional S^m pode ser equipada com um homeomorfismo standard de grau p, $T:S^m \to S^m$, o qual gera uma ação livre de \mathbb{Z}_p em S^m . Neste contexto, surgem naturalmente as seguintes questões: é possível estender o teorema de Borsuk-Ulam para p > 2?

Até que ponto a geometria das esferas equipadas com as aplicações acima é ou não fundamental para o resultado? (no sentido de substituir-se esferas por espaços topológicos mais gerais equipados com ações livres de \mathbb{Z}_p).

Na linha acima, o \mathbb{Z}_p -índice possibilitou a obtenção de um teorema tipo Borsuk-Ulam, concernente à existência de aplicações equivariantes entre espaços topológicos X e Y, equipados com ações livres de \mathbb{Z}_p , com p=2q, q ímpar, e sob certas hipóteses topológicas e homológicas sobre X e Y, as quais situam o resultado como uma generalização do Teorema de Borsuk-Ulam.

O material acima deu origem ao pré-print "A \mathbb{Z}_p -index homomorphism for \mathbb{Z}_p -spaces", e o objetivo desta dissertação é explicar todos os detalhes subjacentes aos argumentos utilizados. A escolha do tema repousou em dois fatos: i) por um lado, constitui-se em mais uma ilustração de como alguns resultados interessantes de topologia (no caso, teoremas tipo Borsuk-Ulam) podem ser obtidos via topologia algébrica; ii) por outro lado, as ferramentas de topologia algébrica necessárias são, nesse caso, mínimas, a saber, os conceitos básicos da homologia singular. Baseados nesses dois fatos, consideramos útil tornar acessíveis os detalhes do pré-print em questão.

A redação desta dissertação está organizada em 3 capítulos. No Capítulo 1, juntamos o que julgamos ser todos os pré-requisitos necessários para a compreensão do texto, essencialmente os conceitos básicos de homologia, alguns rudimentos de ações e teorema do levantamento (lifting theorem).

No Capítulo 2, detalhamos a construção do \mathbb{Z}_p -homomorfismo índice atrás mencionado e a prova da invariância do mesmo sob o efeito de induzidas de aplicações equivariantes.

O Capítulo 3 é dedicado às aplicações do \mathbb{Z}_p -índice como acima mencionado. Um dado técnico fundamental para a obtenção de tais aplicações é o resultado segundo o qual, quando X é um espaço topológico satisfazendo

determinadas propriedades topológicas e equipado com ação livre de \mathbb{Z}_p gerada por $T:X\to X$, então a homologia \mathbb{Z}_p -equivariante $H_*(X,T)$ é isomorfa (no contexto de \mathbb{Z}_p -módulos) à homologia singular com coeficientes em \mathbb{Z}_p do espaço de órbitas $H_*(\frac{X}{T},\mathbb{Z}_p)$. Esse resultado é também provado em detalhes no Capítulo 3.

Capítulo 1

Pré-requisitos

1.1 Introdução

Neste capítulo, apresentaremos definições, notações e alguns resultados necessários ao desenvolvimento deste trabalho, referentes aos conceitos de ações de grupos em conjuntos, homologia com coeficientes em um anel comutativo e com unidade. Para finalizar, apresentaremos o Teorema Fundamental do Levantamento.

1.2 Ações de Grupos em Conjuntos

O objetivo desta seção é definir a ação de um grupo G sobre um conjunto X e apresentar algumas propriedades importantes a esse respeito.

Definição 1.2.1 Sejam (G,*) um grupo com elemento neutro $e \in G$ e X um conjunto qualquer. Uma ação de G em X é uma função $\phi: G \times X \to X$, que a cada par $(g,x) \in G \times X$ associa o elemento $\phi(g,x) \in X$ satisfazendo, para qualquer $x \in X$ e $g,h \in G$:

$$i) \phi(e,x) = x;$$

$$ii) \ \phi(g, \phi(h, x)) = \phi(g * h, x).$$

Denotaremos $\phi(g,x)$ simplesmente por $g\cdot x$. Deste modo, podemos reescrever i) e ii) da seguinte forma:

- i) $e \cdot x = x$, para todo $x \in X$;
- ii) $g \cdot (h \cdot x) = (g * h) \cdot x$, para todo $g, h \in G$, para todo $x \in X$.

Exemplo 1.2.1 Seja S^n a esfera n-dimensional e consideremos a aplicação $A: S^n \to S^n$ definida por A(x) = -x, para todo $x \in S^n$. Seja $\phi: \mathbb{Z}_2 \times S^n \to S^n$ definida por $\phi(\overline{0}, x) = x$, $\phi(\overline{1}, x) = A(x)$, para todo $x \in S^n$. Temos que ϕ define uma ação de \mathbb{Z}_2 em S^n .

Observação 1.2.1 A aplicação $A: S^n \to S^n$ definida por A(x) = -x é chamada de aplicação antípoda ou antipodal.

Observação 1.2.2 Podemos colocar o exemplo 1.2.1 em um contexto mais geral. Dado X um conjunto qualquer, consideremos uma aplicação $T: X \to X$ satisfazendo $T^p = Id_X$, onde p é um número natural qualquer. Temos então que T dá origem a uma ação de \mathbb{Z}_p em X. De fato, consideremos a função $\phi: \mathbb{Z}_p \times X \to X$ definida por $\phi(\bar{i}, x) = T^i(x)$, $0 \le i \le p-1$, e convencionaremos $T^0 = Id$. Temos que ϕ satisfaz:

i) $\phi(\overline{0}, x) = T^0(x) = Id(x) = x$, para todo $x \in X$;

ii)
$$\phi(\overline{i}, \phi(\overline{j}, x)) = \phi(\overline{i}, T^j(x)) = T^i(T^j(x)) = T^{i+j}(x) = \phi(\overline{i} + \overline{j}, x) = \phi(\overline{i} + \overline{j}, x),$$

e, portanto, ϕ define uma ação de \mathbb{Z}_p em X .

Exemplo 1.2.2 Consideremos $X = S^1 = \{(x,y) \in \mathbb{R}^2/x^2 + y^2 = 1\} = \{x + iy = z, z \in \mathbb{C}\}$. Seja $w \in S^1$ o elemento correspondente ao ângulo $\frac{2\pi}{p}$, ou seja, $w = \cos\frac{2\pi}{p} + i sen\frac{2\pi}{p}$. Podemos observar que w dá origem a uma função $T : \mathbb{C} \to \mathbb{C}$ (ou $T : \mathbb{R}^2 \to \mathbb{R}^2$) dada por T(z) = wz. Observe que

 $T^p(z)=(T\circ T\circ ...\circ T)(z)=w^p\cdot z=1$ z=Id(z). Como $\|wz\|=\|w\|\|z\|$, temos que $T(S^1)\subset S^1$ e $T:S^1\to S^1$ é a rotação de $\frac{2\pi}{p}$ no sentido antihorário. Segue então do exemplo anterior que T dá origem a uma ação de \mathbb{Z}_p em S^1 .

Este exemplo se generaliza para $T: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$, pondo-se

$$T(x_1, x_2, ..., x_{2n-1}, x_{2n}) = T(z_1, z_2, ..., z_n) = (wz_1, wz_2, ..., wz_n)$$

e é fácil ver que $T^p=Id$. Agora, se $z=(x_1,x_2,...,x_{2n})=(z_1,z_2,...,z_n)\in S^{2n-1}$, então

$$||T(x_1, x_2, ..., x_{2n})|| = ||(wz_1, wz_2, ..., wz_n)|| = \sqrt{||wz_1||^2 + ... + ||wz_n||^2} = \sqrt{||w||^2 ||z_1||^2 + ... + ||w||^2 ||z_n||^2} = \sqrt{||z_1||^2 + ... + ||z_n||^2} = 1$$

e, deste modo, temos a função $T:S^{2n-1}\to S^{2n-1}$ ainda com a propriedade de que $T^p=Id.$

Observação 1.2.3 Se um grupo (G, *, e) atua em um espaço topológico X e se H for um subgrupo de G, temos que a restrição de $\cdot : G \times X \to X$ a $\cdot : H \times X \to X$ define automaticamente uma ação de H em X.

Observação 1.2.4 Se X é um conjunto qualquer , seja $Bi(X) = \{\rho : X \to X : \rho \text{ é bijeção}\}$. Temos que $(Bi(X), \circ)$ é um grupo, sendo a operação \circ a composição de funções. Existe uma ação natural de Bi(X) em X, a saber, $Bi(X) \times X \to X$ dada por $(\rho, x) \longmapsto \rho(x)$. De fato, o elemento neutro de Bi(X) é Id_X , $e(Id_X, x) \longmapsto Id_X(x) = x$, para todo $x \in X$. Também $(\rho_1, (\rho_2, x)) \longmapsto \rho_1(\rho_2(x)) = (\rho_1 \circ \rho_2)(x) = (\rho_1 \circ \rho_2, x)$, para quaisquer $\rho_1, \rho_2 \in Bi(X)$ e qualquer $x \in X$. Agora, se $\rho \in Bi(X)$, duas situações podem ocorrer: ρ tem ordem finita em Bi(X), ou seja, $\rho^p = Id_X$ para algum p > 0 e, nesse caso, o subgrupo $[\rho]$

gerado por ρ é isomorfo a \mathbb{Z}_p ; ρ tem ordem infinita em Bi(X) e, nesse caso, o subgrupo $[\rho]$ gerado por ρ é isomorfo a \mathbb{Z} . Deste modo, de acordo com a observação 1.2.3, cada $\phi \in Bi(X)$ determina, por restrição, ou uma ação de \mathbb{Z}_p ou uma ação de \mathbb{Z} em X.

Definição 1.2.2 Uma ação $\phi: G \times X \to X$ é livre se para todo $g \in G$, $g \neq e$, $e \ x \in X$, ocorrer $g \cdot x \neq x$.

Definição 1.2.3 Seja $\cdot : G \times X \to X$ uma ação. Se $x \in X$, a órbita de x é o subconjunto orb $(x) \subset X$, orb $(x) = \{g \cdot x : g \in G\}$. Indicaremos o conjunto orb(x) simplesmente por [x].

Observação 1.2.5 As órbitas dos pontos $x \in X$ determinam uma partição em X. Com efeito, definamos $x \sim y$ se, e somente se, existe $g \in G$ tal que $y = g \cdot x$. Esta relação é reflexiva, pois pela própria definição de ação temos, para todo $x \in X$, que $x = e \cdot x$. Supondo agora $x \sim y$, existe então $g \in G$ tal que $y = g \cdot x$; $logo, g^{-1} \cdot y = g^{-1} \cdot (g \cdot x) = (g^{-1} * g) \cdot x = e \cdot x = x$, ou seja, $y \sim x$ e, portanto, \sim é uma relação simétrica. Finalmente, \sim é uma relação transitiva pois supondo $x \sim y$ e $y \sim z$, existem então $g_1, g_2 \in G$ tais que $y = g_1 \cdot x$ e $z = g_2 \cdot y$, respectivamente; então $z = g_2 \cdot y = g_2 \cdot (g_1 \cdot x) = (g_2 * g_1) \cdot x$ e, desta forma, $x \sim z$. Concluímos, então, que \sim é uma relação de equivalência em X, sendo que as classes de equivalência segundo essa relação são as órbitas dos pontos de X

Resulta da observação acima que duas órbitas ou são disjuntas ou são iguais.

Observação 1.2.6 Consideremos X um espaço topológico e $H(X) \subset Bi(X)$, onde $H(X) = \{ f \in Bi(X) : f \notin homeomorfismo \}$. Temos que $H(X) \notin um$

subgrupo de Bi(X). Observemos que H(X) é um subespaço do espaço topológico $C(X,X) = \{f: X \to X; f \text{ \'e cont\'inua}\}$, com a topologia compacto-aberta. De acordo com a observação 1.2.3, temos, por restrição, uma ação de H(X) em X. Se X for um espaço topológico localmente compacto e Hausdorff e se considerarmos em H(X) a topologia induzida como subespaço de C(X,X), com a topologia compacto -aberta, pode-se provar que tal ação é contínua.

Observação 1.2.7 $Se \cdot : G \times X \to X$ é uma ação e $x \in X$, defina o subconjunto $St(x) \subset G$ como sendo $St(x) = \{g \in G; g \cdot x = x\}$, o qual será denominado o "estabilizador de x em G". É fácil provar que St(x) é um subgrupo de G. Considerando $\frac{G}{St(x)}$ a coleção de classes laterais de St(x), defina $\varphi : \frac{G}{St(x)} \to [x]$ por $\varphi[gSt(x)] = g \cdot x$. Pode-se provar que φ é bem definida e, na verdade, é uma bijeção. Segue que, se G é finito, então a cardinalidade de [x] divide a ordem de G.

Observação 1.2.8 Vimos que se X é um conjunto e $T: X \to X$ é uma aplicação de grau p então T dá origem a uma ação de \mathbb{Z}_p em X, a saber, $\phi: \mathbb{Z}_p \times X \to X$ dada por $\phi(\overline{i}, x) = T^i(x)$, $0 \le i \le p-1$. Para a ação acima, $[x] = \{x, T(x), T^2(x), ..., T^{p-1}(x)\}$. Se a ação é livre, então cada órbita tem p pontos, o que equivale a dizer que $T^i(x) \ne T^j(x)$, para todo $i \ne j$ e $0 \le i, j \le p-1$.

Exemplo 1.2.3 Seja X um conjunto (com pelo menos dois elementos $a, b \in X$, $a \neq b$) e seja $T: X^4 \to X^4$ definida por $T(x_1, x_2, x_3, x_4) = (x_4, x_1, x_2, x_3)$. Observe que $T^4 = Id_X$ e, deste modo, esta aplicação define uma ação de \mathbb{Z}_4 em X^4 . Observemos ainda que, pelas últimas duas observações, cada órbita possui ou 1, ou 2 ou 4 pontos. De fato, se considerarmos pontos da forma (a,a,a,a), (a,b,a,b) e (a,b,b,b), teremos, respectivamente, órbitas com 1, 2 e 4 pontos. Sendo assim, podemos concluir que esta ação não é livre.

Exemplo 1.2.4 (Ação standard de \mathbb{Z}_q) Seja S^{2n+1} a esfera de dimensão 2n+1 no espaço vetorial complexo de dimensão complexa n+1, \mathbb{C}^{n+1} ; para algum inteiro q > 1, seja $T : S^{2n+1} \to S^{2n+1}$ a transformação definida por:

$$T(z_0, z_1, z_2, ..., z_n) = \left(e^{\frac{2\pi i}{q}} z_0, e^{\frac{2\pi i}{q}} z_1, ..., e^{\frac{2\pi i}{q}} z_n\right)$$

onde $z_0, z_1, ..., z_n$ são números complexos com $\sum_{i=0}^n |z_i|^2 = 1$.

Temos que T é uma função de grau q; de fato,

$$T^{q}(z_{0}, z_{1}, ..., z_{n}) = T \circ T \circ ... \circ T(z_{0}, z_{1}, ..., z_{n})$$

$$= T \circ T \circ ... \circ T(e^{\frac{2\pi i}{q}} z_{0}, e^{\frac{2\pi i}{q}} z_{1}, ..., e^{\frac{2\pi i}{q}} z_{n})$$

$$= ...$$

$$= (e^{\frac{2\pi i}{q}})^{q}(z_{0}, z_{1}, ..., z_{n})$$

$$= (z_{0}, z_{1}, ..., z_{n}).$$

Portanto, T define uma ação de \mathbb{Z}_q em S^{2n+1} . Nosso próximo objetivo é mostrar que tal ação é livre. De fato, seja $0 \le r \le q-1$ e $x=(z_0,z_1,...,z_n) \in S^{2n+1}$ tal que $\overline{r}.x=T^r(x)=x$. Então,

$$e^{\frac{2\pi ir}{q}}(z_0, z_1, ..., z_n) = (z_0, z_1, ..., z_n).$$

Como $\sum_{i=0}^{n}|z_{i}|^{2}=1$, temos que existe $z_{j}\in\mathbb{C}$ tal que $z_{j}\neq0$. Assim, sendo $e^{\frac{2\pi i r}{q}}z_{j}=z_{j}$, segue-se então que $e^{\frac{2\pi i r}{q}}=1$ e, portanto, r=nq, com $n\in\mathbb{Z}$. Como $0\leq r\leq q-1$, a única possibilidade é n=0 e, consequentemente, r=0, donde concluímos que a ação em questão é livre.

Observação 1.2.9 A ação acima será sempre referida como a "ação standard" de \mathbb{Z}_q em S^{2n+1} . Enfatizamos que, caso q > 2, é conhecido o fato de que não existe livre de \mathbb{Z}_q em S^n quando n é par.

Definição 1.2.4 Se G atua em X, dizemos que um subconjunto $A \subset X$ é G-invariante se $g \cdot a \in A$, para todo $g \in G$ e $a \in A$.

Definição 1.2.5 Sejam G um grupo e X, Y conjuntos equipados com as ações $\cdot : G \times X \to X$ $e \diamond : G \times Y \to Y$, respectivamente. Dizemos que uma função $f: X \to Y$ é equivariante com respeito a tais ações se $f(g \cdot x) = g \diamond f(x)$, para todo $x \in X$ e $g \in G$.

Observação 1.2.10 Fixados espaços topológicos X e Y, ambos dotados de uma ação de um grupo G, temos o problema da existência de aplicações equivariantes $f: X \to Y$. O Teorema de Borsuk-Ulam é apenas um exemplo desse tipo de problema, sendo,nesse caso, os dados particularizados por $X = S^m$, $Y = S^n$, $G = \mathbb{Z}_2$, e a ação \mathbb{Z}_2 sendo a antipodal.

1.3 Álgebra Homológica

Sejam R um anel comutativo com unidade, X um conjunto qualquer e F(X) a coleção de "combinações lineares formais de elementos de X com coeficientes em R". Um elemento típico de F(X) será da forma $\sum_{x \in X} \alpha_x x$, onde $\alpha_x \in R$ é de tal forma que apenas um número finito de α_x' s é diferente de zero. Esse elemento pode ser considerado rigorosamente como uma função $X \to R$, que é nula, com exceção de um número finito de x's. Observe que podemos introduzir em F(X) uma estrutura de R-módulo, com as seguintes operações:

$$\sum_{x \in X} \alpha_x x + \sum_{x \in X} \beta_x x = \left(\sum_{x \in X} \alpha_x + \beta_x\right) x;$$
$$r \sum_{x \in X} \alpha_x x = \sum_{x \in X} (r\alpha_x) x.$$

O elemento neutro de $(F(X),+,\cdot)$ é dado por $\sum_{x\in X} 0.x$ e será denotado simplesmente por 0. Dado $y=\sum_{x\in X} \alpha_x x\in F(X)$, o elemento oposto de y é $\sum_{x\in X} (-1.\alpha_x)x$, onde 1 representa o elemento unidade de R. F(X) é denominado "R-módulo livre gerado por X".

Identificando $x \in X$ com 1.x, X pode ser então considerado como um subconjunto de F(X). Nesse caso, X será um conjunto de geradores do módulo F(X), lembrando que um subconjunto $S \subset M$ (M é um módulo) é um conjunto de geradores de M se qualquer elemento de M pode ser obtido como combinação linear de elementos de S. No nosso caso, esse conjunto de geradores satisfaz adicionalmente que se $\sum_{x \in X} \alpha_x x = 0$, então devemos ter necessariamente que $\alpha_x = 0$, para todo $x \in X$. Por isso, X é chamado uma base de F(X).

Definição 1.3.1 Um complexo de cadeias de R-módulos é uma família $C = \{C_n, \partial_n\}$, onde cada C_n é um R-módulo e $\partial_n : C_n \to C_{n-1}$ é um R-homomorfismo e tal que $\partial_n \circ \partial_{n+1} = 0$, em cada nível n.

$$\cdots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \longrightarrow \cdots$$

Definição 1.3.2 Dado um complexo de cadeias $C = \{C_n, \partial_n\}$, definimos, para cada n, os conjuntos $Z_n(C) = \{x \in C_n : \partial_n(x) = 0\}$, denominado submódulo dos n-ciclos, e $B_n(C) = \{x \in C_n : x = \partial_{n+1}(y), \text{ para algum } y \in C_{n+1} \}$, denominado submódulo dos n-bordos.

Observemos que a condição $\partial_n \circ \partial_{n+1} = 0$ implica que $B_n(C) \subset Z_n(C)$, para cada n. Desta forma, $B_n(C)$ é um submódulo do R-módulo $Z_n(C)$ e, assim, existe o R-módulo quociente $\frac{Z_n(C)}{B_n(C)}$, que será denotado por $H_n(C)$.

Definição 1.3.3 Seja $C = \{C_n, \partial_n\}$ um complexo de cadeias. A homologia associada ao complexo de cadeias C é a coleção de R-módulos quocientes $H_*(C) = \{H_n(C)\} = \left\{\frac{Z_n(C)}{B_n(C)}\right\}.$

Definição 1.3.4 Sejam $C = \{C_n, \partial_n\}$ e $D = \{D_n, \partial'_n\}$ complexos de cadeias de R-módulos. Uma aplicação de cadeias $f: C \to D$ é uma coleção de homo-

morfismos de R-módulos $\{f_n\}$, $f_n: C_n \to D_n$, tal que no diagrama

$$\cdots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \longrightarrow \cdots$$

$$\downarrow f_{n+1} \qquad \downarrow f_n \qquad \downarrow f_{n-1}$$

$$\cdots \longrightarrow D_{n+1} \xrightarrow{\partial'_{n+1}} D_n \xrightarrow{\partial'_n} D_{n-1} \longrightarrow \cdots$$

cada quadrado é comutativo, ou seja, para todo $n \in \mathbb{Z}$, vale $\partial'_n \circ f_n = f_{n-1} \circ \partial_n$.

A definição de aplicação de cadeias implica que, para todo n, $f_n(Z_n(C)) \subset Z_n(D)$ e $f_n(B_n(C)) \subset B_n(D)$. Deste modo, para cada n, f_n pode ser passada ao quociente, determinando um homomorfismo de R-módulos $\frac{Z_n(C)}{B_n(C)} \to \frac{Z_n(D)}{B_n(D)}$ bem definido, o qual denotaremos por f_* . Em outras palavras, f induz um homomorfismo de R-módulos $f_*: H_n(C) \to H_n(D)$, para todo n.

Observação 1.3.1 Se $C = \{C_n, \partial\}$ e $D = \{D_n, \delta\}$ são complexos de cadeias de R-módulos e R-homomorfismos, com R anel comutativo com unidade, e $f_1, f_2, ..., f_r : C \to D$ são aplicações de cadeias, temos então que a aplicação $k_1f_1 + k_2f_2 + ... + k_rf_r : C_n \to D_n$, onde $k_1, k_2, ..., k_r \in R$, definida por $(k_1f_1 + k_2f_2 + ... + k_rf_r)(c) = k_1f_1(c) + k_2f_2(c) + ... + k_rf_r(c)$, é ainda uma aplicação de cadeias.

1.4 Homologia singular com coeficientes em R

Fixado X um espaço topológico qualquer e anel R comutativo e com unidade, vamos definir, para cada natural $n \geq 0$, o enésimo "R-módulo de homologia de X" ou "enésima homologia de X com coeficientes em R", e denotado por $H_n(X,R)$. Isto será a homologia algébrica de um determinado complexo de cadeias, construído a partir de X e R, chamado $S_*(X,R) = \{S_n(X,R)\}$.

Definição 1.4.1 Seja X um espaço topológico arbitrário. Um n-simplexo singular em X é uma função contínua $\phi: \triangle_n \to X$, onde $\triangle_n \subset \mathbb{R}^{n+1}$ é o n-

simplexo padrão, ou seja, $\triangle_n = \{t_0e_0 + t_1e_1 + ... + t_ne_n, 0 \le t_i \le 1, \sum_{i=1}^n t_i = 1, \text{ sendo } \{e_0, e_1, ..., e_n\} \text{ a base canônica de } \mathbb{R}^{n+1}\}$, munido da topologia induzida de \mathbb{R}^{n+1} .

Denotaremos o conjunto de todos os n-simplexos singulares de X por $C_n(X)$. Observemos que 0-simplexos singulares e 1-simplexos singulares nada mais são que pontos de X e caminhos de X, respectivamente.

Definição 1.4.2 Seja $\phi: \triangle_n \to X$ um n-simplexo singular. Para cada i=0,1,2,...,n, definimos a i-ésima face de ϕ como sendo o n-1-simplexo singular em $X \partial_i \circ \phi: \triangle_{n-1} \to X$, onde $\partial_i \phi(t_0,t_1,...,t_{i-1},t_i,t_{i+1},...,t_{n-1}) = \phi(t_0,t_1,...,t_{i-1},0,t_i,...,t_{n-1})$.

Observemos que $\partial_i \circ \phi$ é contínua, pois é a composta da aplicação ϕ com uma inclusão. Especificamente, $\partial_i \circ \phi$ é obtida incluindo-se Δ_{n-1} na face oposta ao i-ésimo vértice de Δ_n e, a seguir, aplicando-se ϕ .

Definição 1.4.3 Seja X um espaço topológico. Definimos $S_n(X,R)$ como sendo o R-módulo livre gerado por $C_n(X)$. Um elemento de $S_n(X,R)$ é chamado uma n-cadeia singular de X e tem a forma $\sum_{\phi \in C_n(X)} \alpha_{\phi} \phi, \text{ com } a_{\phi} \in R, \text{ sendo que apenas um número finito de } \alpha_{\phi} \notin n \tilde{a}o \text{ nulo.}$

Identificando $\phi \in C_n(X)$ com $1.\phi \in S_n(X,R)$ como antes, teremos então que $C_n(X) \subset S_n(X,R)$. Logo, $C_0(X)$ pode ser identificado com os pontos de X e, desta forma, $S_0(X,R)$ é o R-módulo livre gerado por X, e $S_1(X,R)$ é o R-módulo livre gerado pelos caminhos de X.

O operador i-ésima face, que a cada n-simplexo $\phi \in C_n(X)$ associa o (n-1)-simplexo $\partial_i \circ \phi \in C_{n-1}$, define uma função $C_n(X) \to C_{n-1}(X)$. Essa função pode ser estendida, por linearidade, a um único homomorfismo

entre os R-módulos $S_n(X,R)$ e $S_{n-1}(X,R)$, o qual ainda denotaremos por $\partial: S_n(X,R) \to S_{n-1}(X,R)$.

Sabendo-se que se M e N são R-módulos, $f_1,f_2,...,f_t:M\to N$ são homomorfismos de R-módulos e $r_1,r_2,...,r_t\in R$, então a aplicação

$$r_1 f_1 + r_2 f_2 + \dots + r_t f_t : M \to N \text{ dada por } (r_1 f_1 + r_2 f_2 + \dots + r_t f_t)(x) = \sum_{i=1}^t r_i f_i(x)$$

ainda é um homomorfismo de R-módulos, podemos, então, considerar a seguinte

Definição 1.4.4 Para n > 0, o homomorfismo $\partial: S_n(X,R) \to S_{n-1}(X,R)$ definido por

$$\partial = 1\partial_0 + (-1)\partial_1 + 1\partial_2 + (-1)\partial_3 + \dots + (-1)^n \partial_n = \sum_{i=1}^n (-1)^i \partial_i,$$

é chamado operador bordo. Convenciona-se que $S_{-1}(X,R)=0$, o que resulta na convenção de que o operador bordo $\partial: S_0(X,R) \to S_{-1}(X,R)$ é o homomorfismo nulo.

Teorema 1.4.1 Consideremos a seguinte sequência de R-módulos e homomorfismo entre R-módulos

$$\cdots \longrightarrow S_{n+1}(X,R) \stackrel{\partial_{n+1}}{\longrightarrow} S_n(X,R) \stackrel{\partial_n}{\longrightarrow} S_{n-1}(X,R) \longrightarrow \cdots$$

Então $\partial_n \circ \partial_{n+1} = 0$, para todo n.

Pelo Teorema 1.4.1, podemos concluir que $\{S_n(X,R), \partial_n\}$ é um complexo de cadeias.

Definição 1.4.5 Denotaremos por $Z_n(X,R)$ o submódulo de $S_n(X,R)$ formado pelos n-ciclos, ou seja, $Z_n(X,R)$ é o núcleo do operador bordo.

Definição 1.4.6 Denotaremos por $B_n(X,R)$ o submódulo de $S_n(X,R)$ formado pelos n-bordos, ou seja, $B_n(X,R)$ é a imagem do operador bordo.

Definição 1.4.7 O n-ésimo módulo de homologia singular de X com coeficientes em R, $H_n(X,R)$ é, por definição, a n-ésima homologia do complexo de cadeias $\{S_n(X,R), \partial_n\}$; em outras palavras, $H_n(X,R) = \frac{Z_n(X,R)}{B_n(X,R)}$.

1.5 O homomorfismo induzido por funções contínuas

Sejam X e Y espaços topológicos e $f: X \to Y$ uma função contínua. Tomando um n-simplexo singular $\phi \in C_n(X) \subset S_n(X)$, a composição $f \circ \phi: \Delta_n \to Y$ é um n-simplexo singular em Y. Desta forma, obtemos uma aplicação $\phi \longmapsto f \circ \phi$ entre $C_n(X) \subset S_n(X,R)$ e $C_n(Y) \subset S_n(Y,R)$, que se estende por linearidade a um único homomorfismo de R-módulos $f_{\sharp}: S_n(X,R) \to S_n(Y,R)$ definido por

$$f_{\sharp} \left(\sum_{\phi \in C_n(X)} \alpha_{\phi} \phi \right) = \sum_{\phi \in C_n(X)} \alpha_{\phi} f_{\sharp}(\phi) = \sum_{\phi \in C_n(X)} \alpha_{\phi} (f \circ \phi).$$

Teorema 1.5.1 O homomorfismo $f_{\sharp}: S_n(X,R) \to S_n(Y,R)$ é uma aplicação de cadeias entre os complexos de cadeias $S_*(X,R)$ e $S_*(Y,R)$ e, portanto, satisfaz para todo $n \geq 0$, $f_{\sharp} \circ \partial_n = \partial'_n \circ f_{\sharp}$.

Como vimos anteriormente, uma consequência do teorema acima é que $f_{\sharp}(Z_n(X)) \subset Z_n(Y)$ e $f_{\sharp}(B_n(X)) \subset B_n(Y)$, e que deste modo, f_{\sharp} pode ser passada ao quociente, determinando um homomorfismo de R-módulos $f_*: H_n(X,R) \to H_n(Y,R)$, o qual é definido por

$$f_*(\alpha_n + B_n(X, R)) = f_{\sharp}(\alpha_n) + B_n(Y, R).$$

Tal homomorfismo de R-módulos será denominado o homomorfismo induzido em homologia por f.

Com relação a f_* , destacaremos as seguintes propriedades:

- i) Se $f: X \to Y$ e $g: Y \to Z$ são funções contínuas, então $(g \circ f)_* = g_* \circ f_*$.
- ii) Se $Id_X: X \to X$ é a aplicação identidade, então $(Id_X)_* = Id_{H_n(X,R)}$.

Tais propriedades significam que $H_n(X,R)$ é um funtor covariante da categoria dos espaços topológicos e funções contínuas na categoria dos R-módulos e R-homomorfismos. Uma consequência disso é o seguinte

Teorema 1.5.2 Se $f: X \to Y$ é homeomorfismo então a induzida em homologia $f_*: H_n(X,R) \to H_n(Y,R)$ é um isomorfismo de R-módulos.

1.6 O Teorema Fundamental do Levantamento

Nesta seção, apresentaremos os conceitos de Grupo Fundamental de um espaço topológico X e de aplicações de recobrimento, e enunciaremos o Teorema Fundamental do Levantamento, o qual será utilizado na prova do Teorema 3.2.3, Capítulo 3.

Seja $p: E \to X$ uma aplicação contínua. O par (E,p) é chamado um espaço de recobrimento de X se, para todo $x \in X$, existe um aberto U contendo x tal que $p^{-1}(U)$ é uma reunião de abertos V_{α} de E, dois a dois disjuntos, cada um dos quais se aplica por p homeomorficamente sobre U. Um tal aberto U é chamado uma vizinhança recoberta, os abertos V_{α} são chamados folhas sobre U e para cada $x \in X$, o conjunto $p^{-1}(x)$ é chamado fibra sobre x; X é chamado espaço base e p aplicação de recobrimento. Se a cardinalidade da fibra for finita, digamos igual a n, dizemos, então, que p é um recobrimento a n-folhas.

Um exemplo importante de aplicação de recobrimento é a aplicação

 $e: \mathbb{R} \to S^1$ definida por $e(t) = e^{2\pi i t}$.

Definição 1.6.1 Dada uma aplicação de recobrimento $p: E \to X$, seja $g: Z \to X$ uma aplicação contínua. Um levantamento de g é uma aplicação contínua $h: Z \to E$ tal que $p \circ h = g$.

Podemos observar que nem toda aplicação contínua possui um levantamento. Como exemplo dessa situação, seja $I = [0, 4\pi)$ e consideremos a aplicação de recobrimento $p: I \to S^1$ dada por $p(t) = e^{\frac{it}{2}}$, $com\ t \in I$, e a aplicação identidade $Id: S^1 \to S^1$. Afirmamos que não existe aplicação contínua $\psi: S^1 \to I$ satisfazendo $p \circ \psi = Id$. Com efeito, suponhamos, por absurdo, que exista tal aplicação ψ satisfazendo $p \circ \psi = Id$. Tomando as respectivas induzidas em homologia no nível 1 com coeficientes no anel \mathbb{Z}_2 , obtemos $(p \circ \psi)_* = Id_*$, ou seja, $p_* \circ \psi_* = Id_*$, onde $p_*: H_1(I, \mathbb{Z}_2) \to H_1(S^1, \mathbb{Z}_2)$. Sendo I um espaço contrátil, segue então que $H_1(I, \mathbb{Z}_2) \cong \{0\}$ e, desta forma, ψ_* é a aplicação nula. Tomando o elemento $\overline{1} \in \mathbb{Z}_2 \cong H_1(S^1, \mathbb{Z}_2)$, temos então que $(p_* \circ \psi_*)(\overline{1}) = p_*(\psi_*(\overline{1})) = p_*(\overline{0}) = \overline{0}$, enquanto que $Id(\overline{1}) = \overline{1}$. Logo, $(p \circ \psi)_* \neq Id_*$, obtendo assim uma contradição.

Introduziremos agora o conceito de Grupo Fundamental de um espaço topológico X. A todo espaço topológico X e a todo ponto $x_0 \in X$ está associado um grupo, chamado o Grupo Fundamental de X. Para a definição desse grupo, serão usados caminhos fechados em X, de acordo com a seguinte

Definição 1.6.2 Dados dois pontos x e y em X, um caminho ligando x a y é uma função contínua $\sigma: I = [0,1] \to X$ tal que $\sigma(0) = x$ e $\sigma(1) = y$.

Observação 1.6.1 Quando $\sigma(0) = \sigma(1) = x_0$, dizemos que σ é um laço com ponto base x_0 , ou ainda, que σ é um caminho fechado em X.

Consideremos o conjunto $\Omega(X, x_0)$ de todos laços em X com ponto base x_0 e definamos em $\Omega(X, x_0)$ a seguinte relação de equivalência: $\sigma_1 \sim_{x_o} \sigma_2$ (σ_1 é homotópico a σ_2), se σ_1 pode ser deformado continuamente em σ_2 , de modo que em cada estágio a deformação seja um laço com ponto base x_0 . Em outras palavras, se existir uma aplicação contínua $F: I \times I \to X$ tal que para todo $t, s \in I$, $F(t, 0) = \sigma_1(t), F(t, 1) = \sigma_2(t)$ e, além disso, $F(0, s) = F(1, s) = x_0$. A aplicação F chama-se uma homotopia entre σ_1 e σ_2 relativa a $\{x_o\}$. Dessa forma, obtemos o conjunto quociente $\frac{\Omega(X, x_0)}{\sim x_o}$, cujos elementos são as classes de homotopia $[\sigma]$ de caminhos fechados com ponto base x_0 . Define-se o produto de duas classes como sendo: $[\sigma_1][\sigma_2] = [\sigma_1 * \sigma_2]$, onde * denota o caminho justaposto, ou seja,

$$(\sigma_1 * \sigma_2)(t) = \begin{cases} \sigma_1(2t), & \text{se } 0 \le t \le \frac{1}{2} \\ \sigma_2(2t-1), & \text{se } \frac{1}{2} \le t \le 1. \end{cases}$$

Observemos que $\sigma_1 * \sigma_2$ ainda é um laço com ponto base x_0 . Se σ for um laço com ponto base x_0 , o laço inverso $\sigma^{-1}: I \to X$ é, por definição, o laço dado por $\sigma^{-1}(t) = \sigma(1-t)$, para todo $0 \le t \le 1$. A classe do caminho inverso $[\sigma^{-1}]$ será denotada por $[\sigma]^{-1}$. Indicaremos por $\varepsilon_{x_0}: I \to X$ o caminho constante tal que $\varepsilon_{x_0}(t) = x_0$, para todo $t \in I$.

Pode-se provar que se $\sigma_1,\sigma_2,\sigma_3,\sigma_4$ forem laços em X com ponto base $x_0,$ então:

- a) $\sigma_1 * \varepsilon_{x_0} \sim_{x_0} \sigma_1 \sim_{x_0} \varepsilon_{x_0} * \sigma_1$;
- b) $\sigma_1 * \sigma_1^{-1} \sim_{x_o} \varepsilon_{x_o} \sim_{x_o} \sigma_1^{-1} * \sigma_1;$
- c) $\sigma_1 * (\sigma_2 * \sigma_3) \sim_{x_o} (\sigma_1 * \sigma_2) * \sigma_3;$
- d) se $\sigma_1 \sim_{x_o} \sigma_2$ e $\sigma_3 \sim_{x_o} \sigma_4$, então $\sigma_1 * \sigma_3 \sim_{x_o} \sigma_2 * \sigma_4$.

As propriedades acima significam que * determina uma estrutura de grupo no conjunto quociente $\frac{\Omega(X,x_0)}{\sim x_o}$, ou seja, temos assim bem determinado um grupo, chamado o Grupo Fundamental de X e denotado por $\pi_1(X,x_0)$,

munido da operação $[\sigma_1][\sigma_2] = [\sigma_1 * \sigma_2]$, cujo elemento neutro é a classe do caminho constante ε_{x_o} e o elemento inverso de $[\sigma]$ é a classe $[\sigma^{-1}]$.

Observação 1.6.2 Sempre que o espaço X for conexo por caminhos, provase que para quaisquer pontos básicos $x_0, x_1 \in X$, os grupos fundamentais $\pi_1(X, x_0)$ e $\pi_1(X, x_1)$ são isomorfos e, nesse caso, denota-se esse grupo simplesmente por $\pi_1(X)$.

Dada uma aplicação contínua $\varphi:X\to Y$ entre dois espaços topológicos, então as seguintes propriedades se verificam:

- 1) se σ for um laço em X com ponto base x_0 , então $\varphi \circ \sigma$ será um laço em Y com ponto base $\varphi(x_0)$;
- 2) se $\sigma_1 \sim_{x_o} \sigma_2$, então $\varphi \circ \sigma_1 \sim_{\varphi(x_o)} \varphi \circ \sigma_2$.

Com base nessas propriedades, se $[\sigma] \in \pi_1(X, x_0)$, então $[\varphi \circ \sigma]$ é um elemento bem definido em $\pi_1(Y, \varphi(x_0))$. Dessa forma, φ induz uma aplicação $\varphi_* : \pi_1(X, x_0) \to \pi_1(Y, \varphi(x_0))$ dada por $\varphi_*[\sigma] = [\varphi \circ \sigma]$. Pode-se provar que φ_* é um homomorfismo entre os grupos fundamentais $\pi_1(X, x_0)$ e $\pi_1(Y, \varphi(x_0))$, chamado homomorfismo induzido por φ . Esse homomorfismo possui duas propriedades chamadas propriedades funtoriais: a de que a composição de aplicações contínuas induz a composição dos respectivos homomorfismos induzidos, e que a aplicação identidade Id_X induz o homomorfismo identidade $Id_{\pi_1(X)}$.

Segue-se dessas considerações que se $h: X \to Y$ for um homeomorfismo, então $h_*: \pi_1(X,x_0) \to \pi_1(Y,h(x_0))$ é um isomorfismo, ou seja, espaços homeomorfos possuem grupos fundamentais isomorfos. Além disso, se duas aplicações contínuas $f,g: X \to Y$ são homotópicas, temos então que estas induzem o mesmo homomorfismo nos grupos fundamentais. Mais ainda, se $f: X \to Y$ é uma equivalência de homotopia, então o homomorfismo induzido

 $f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$ é um isomorfismo. Uma consequência deste fato é que o grupo fundamental de um espaço contrátil é o grupo nulo.

Estamos, assim, em condições de enunciar o Teorema Fundamental do Levantamento, cuja demonstração pode ser encontrada, por exemplo, em [3]. Na formulação do mesmo, todos espaços envolvidos serão assumidos conexos e localmente conexo por caminhos.

Teorema 1.6.1 Seja $p: E \to X$ uma aplicação de recobrimento. Sejam Y um espaço conexo e localmente conexo por caminhos, $y_0 \in Y$ e $e_0 \in E$ tal que $p(e_0) = x_0$. Dada uma aplicação contínua $f: Y \to X$, com $f(y_0) = x_0$, então existe um levantamento \overline{f} para f, ou seja, uma aplicação contínua $\overline{f}: (Y,y_0) \to (E,e_0)$ tal que $p \circ \overline{f} = f$, com $\overline{f}(y_0) = e_0$, se, e somente se, $f_*(\pi_1(Y,y_0)) \subset p_*(\pi_1(E,e_0))$.

Capítulo 2

O \mathbb{Z}_p -homomorfismo índice

Seja (X,T) um \mathbb{Z}_p -espaço, ou seja, um espaço topológico X qualquer equipado com uma aplicação contínua de grau p $T:X\to X,$ tal que a correspondente ação de \mathbb{Z}_p em X seja livre. A finalidade principal deste capítulo será a construção de um homomorfismo graduado $J_r: H_r(X,T) \to \mathbb{Z}_p, \ r \geq 0,$ o qual denominaremos \mathbb{Z}_p -homomorfismo índice. Tal índice é uma generalização para p qualquer do \mathbb{Z}_2 -índice de Yang introduzido em [12] para p=2. Aqui, $H_r(X,T)$ é a r-ésima homologia \mathbb{Z}_p -equivariante do par (X,T). O termo "índice", aqui utilizado (e baseado na literatura), vem do fato de que o homomorfismo em questão é invariante sob o efeito de homomorfismos induzidos por aplicações equivariantes. A construção desse homomorfismo índice configurase como a principal parte desta dissertação. Conforme será visto no Capítulo 3, a principal utilidade do mesmo será a de detectar classes de homologia equivariante não nulas quando X satisfaz certas propriedades homológicas (e, em consequência, detectar classes não nulas na \mathbb{Z}_p -homologia singular do espaço de órbitas $\frac{X}{T}$). Como consequência deste fato, obteremos um teorema tipo Borsuk-Ulam concernente à não existência de aplicações equivariantes conectando certos \mathbb{Z}_p -espaços (X,T) e (Y,S).

2.1 A homologia \mathbb{Z}_p -equivariante associada ao \mathbb{Z}_p -espaço (X,T)

Seja X um espaço topológico e suponhamos $T:X\to X$ uma aplicação contínua de grau p tal que a correspondente ação de \mathbb{Z}_p em X seja livre.

Tomando o complexo de cadeias singulares com coeficientes em \mathbb{Z}_p

$$\cdots \longrightarrow S_{n+1}(X, \mathbb{Z}_p) \xrightarrow{\partial_{n+1}} S_n(X, \mathbb{Z}_p) \xrightarrow{\partial_n} S_{n-1}(X, \mathbb{Z}_p) \longrightarrow \cdots,$$

podemos considerar o \mathbb{Z}_p -homomorfismo induzido ao nível de cadeias $T_{\sharp}: S_n(X, \mathbb{Z}_p) \to S_n(X, \mathbb{Z}_p)$, o qual é definido nos geradores por $T_{\sharp}(\phi) = T \circ \phi$. A partir de então, consideraremos um subconjunto especial de $S_n(X, \mathbb{Z}_p)$, de acordo com a seguinte

Definição 2.1.1 Definimos

$$S_n(X,T) = \{ \alpha \in S_n(X,\mathbb{Z}_p); T_{\sharp}(\alpha) = \alpha \} \subset S_n(X,\mathbb{Z}_p).$$

Teorema 2.1.1 $S_n(X,T)$ é um submódulo do \mathbb{Z}_p -módulo $S_n(X,\mathbb{Z}_p)$.

Demonstração: Temos que $S_n(X,T)$ é não-vazio, pois sendo T_{\sharp} um homomorfismo, temos que $T_{\sharp}(0) = 0$, onde 0 representa a cadeia nula em $S_n(X,\mathbb{Z}_p)$. Além disso, dados $\alpha, \beta \in S_n(X,T)$ e $r \in \mathbb{Z}_p$, temos que

$$T_{\sharp}(\alpha + r\beta) = T_{\sharp}(\alpha) + T_{\sharp}(r\beta) = T_{\sharp}(\alpha) + rT_{\sharp}(\beta) = \alpha + r\beta$$

e, deste modo, $\alpha + r\beta \in S_n(X, T)$, concluindo a demonstração.

Observação 2.1.1 O submódulo $S_n(X,T)$ será denominado "submódulo das (T,n)-cadeias".

Teorema 2.1.2 O operador bordo $\partial_n : S_n(X, \mathbb{Z}_p) \to S_{n-1}(X, \mathbb{Z}_p)$ satisfaz $\partial_n(S_n(X,T)) \subset S_{n-1}(X,T)$.

Demonstração: Sendo $T_{\sharp}: S_n(X, \mathbb{Z}_p) \to S_n(X, \mathbb{Z}_p)$ uma aplicação de cadeias, temos que, em cada nível $n \geq 0$, $T_{\sharp} \circ \partial_n = \partial_n \circ T_{\sharp}$. Assim, se $\alpha \in S_n(X, T)$, teremos, então, que

$$T_{\sharp}(\partial_n(\alpha)) = (T_{\sharp} \circ \partial_n)(\alpha) = (\partial_n \circ T_{\sharp})(\alpha) = \partial_n(T_{\sharp}(\alpha)) = \partial_n(\alpha),$$

ou seja, $\partial_n(\alpha) \in S_{n-1}(X,T)$ e, portanto, $\partial_n(S_n(X,T)) \subset S_{n-1}(X,T)$.

Portanto, temos um novo complexo de cadeias de \mathbb{Z}_p -módulos

$$\cdots \longrightarrow S_{n+1}(X,T) \stackrel{\partial_{n+1}}{\longrightarrow} S_n(X,T) \stackrel{\partial_n}{\longrightarrow} S_{n-1}(X,T) \longrightarrow \cdots,$$

sendo $\partial_n \circ \partial_{n+1} = 0$ em cada nível $n \geq 0$, uma vez que estes operadores bordo são os mesmos considerados inicialmente, agora restritos aos submódulos $S_n(X,T)$.

Definição 2.1.2 Definimos

$$Z_n(X,T) = \{ \alpha \in S_n(X,T); \ \partial_n(\alpha) = 0 \}$$

como sendo o "submódulo dos (T-n)-ciclos" e

$$B_n(X,T) = \{ \alpha \in S_n(X,T); \ \alpha = \partial_{n+1}(\beta), \ para \ algum \ \beta \in S_{n+1}(X,T) \}$$

 $como\ sendo\ o\ "subm\'odulo\ dos\ (T,n)-bordos".$

A homologia do complexo de cadeias acima será chamada "homologia \mathbb{Z}_p -equivariante associada ao \mathbb{Z}_p -espaço (X,T)", e será denotada por $H_*(X,T)$. O enésimo módulo de homologia de (X,T) é dado então por $H_n(X,T) = \frac{Z_n(X,T)}{B_n(X,T)}$.

Observação 2.1.2 Observemos que $Z_n(X,T) = Z_n(X,\mathbb{Z}_p) \cap S_n(X,T)$; temos também que $B_n(X,T) \subset B_n(X,\mathbb{Z}_p) \cap S_n(X,T)$, mas não necessariamente $B_n(X,\mathbb{Z}_p) \cap S_n(X,T) \subset B_n(X,T)$ pois, se $\alpha \in S_n(X,T)$ e $\alpha = \partial_{n+1}(\beta)$, com $\beta \in S_{n+1}(X,\mathbb{Z}_p)$, pode ser que α não seja imagem de uma (T,n+1)-cadeia. Isso significa que existe a possibilidade de $Z_n(X,\mathbb{Z}_p) = B_n(X,\mathbb{Z}_p)$ e, portanto, $H_n(X,\mathbb{Z}_p) = \{0\}$, mas $B_n(X,T) \subset Z_n(X,T)$; logo, $H_n(X,T) \neq \{0\}$ (no Capítulo 3 ficará claro a existência de exemplos com essa natureza).

Suponhamos (X,T) e (Y,S) \mathbb{Z}_p -espaços e $f:(X,T)\to (Y,S)$ uma aplicação contínua equivariante, e consideremos $f_\sharp:S_n(X,\mathbb{Z}_p)\to S_n(Y,\mathbb{Z}_p)$. Dado $\alpha\in S_n(X,T)$, teremos

$$S_{\sharp}(f_{\sharp}(\alpha)) = (S \circ f)_{\sharp}(\alpha) = (f \circ T)_{\sharp}(\alpha) = f_{\sharp}(T_{\sharp}(\alpha)) = f_{\sharp}(\alpha).$$

Deste modo, $f_{\sharp}(S_n(X,T)) \subset S_n(Y,S)$ e, portanto, f_{\sharp} define o homomorfismo $f_{\sharp}: S_n(X,T) \to S_n(Y,S)$. Como os operadores bordo dos complexos de cadeias $S_*(X,T) = S_*(Y,S)$ são restrições dos operadores bordo usuais e $f_{\sharp}: S_n(X,T) \to S_n(Y,S)$ também é uma restrição, temos que $f_{\sharp}: S_n(X,T) \to S_n(Y,S)$ continua sendo uma aplicação de cadeias. Em particular, temos a induzida em homologia \mathbb{Z}_p -equivariante $f_*: H_n(X,T) \to H_n(Y,S)$ para todo $n \geq 0$. Assim, se $[\alpha] \in H_n(X,T)$, ou seja, $[\alpha] = \alpha + B_n(X,T)$, com $\alpha \in Z_n(X,T)$, então

$$f_*([\alpha]) = [f_{\sharp}(\alpha)] = f_{\sharp}(\alpha) + B_n(Y, S).$$

Observação 2.1.3 Podemos estender as idéias acima para pares (X,f), com X espaço topológico e $f: X \to X$ uma função contínua fixada. De fato, considerando R um anel comutativo com unidade e definindo $S_n(X,f,R) \subset S_n(X,R)$ como $S_n(X,f,R) = \{\alpha \in S_n(X,R); f_{\sharp}(\alpha) = \alpha\}$, temos, então, os seguintes teoremas, cujas demonstrações são iguais às apresentadas nos teoremas 2.1.1 e 2.1.2.

Teorema 2.1.3 $S_n(X, f, R)$ é um submódulo do R-módulo $S_n(X, R)$.

Teorema 2.1.4 $\partial(S_n(X,f,R)) \subset S_{n-1}(X,f,R)$.

Desta forma, temos um novo complexo de cadeias de R-módulos

$$\cdots \longrightarrow S_{n+1}(X, f, R) \xrightarrow{\partial_{n+1}} S_n(X, f, R) \xrightarrow{\partial_n} S_{n-1}(X, f, R) \longrightarrow \cdots$$

A homologia deste complexo será denotada por $H_*(X, f, R)$ e o n-ésimo módulo de homologia de (X,f) é então $H_n(X, f, R) = \frac{Z_n(X, f, R)}{B_n(X, f, R)}$, onde

$$Z_n(X, f, R) = \{ \alpha \in S_n(X, f, R); \ \partial_n(\alpha) = 0 \}$$
e

$$B_n(X, f, R) = \{ \alpha \in S_n(X, f, R); \ \alpha = \partial_{n+1}(\beta), \text{ para algum } \beta \in S_{n+1}(X, f, R) \}.$$

Definição 2.1.3 Consideremos pares (X,f) e (Y,g), como acima mencionados. Uma aplicação contínua $h:(X,f)\to (Y,g)$ é chamada "permissível" se satisfizer $h\circ f=g\circ h$.

Teorema 2.1.5 Se $h:(X,f)\to (Y,g)$ é permissível, então o homomorfismo induzido $h_{\sharp}:S_n(X,R)\to S_n(Y,R)$ é tal que $h_{\sharp}(S_n(X,f,R))\subset S_n(Y,g,R)$.

Demonstração: Dado $\alpha \in S_n(X, f, R)$, temos que $h_{\sharp}(\alpha) \in S_n(Y, R)$ e, além disso,

$$g_{\sharp}(h_{\sharp}(\alpha)) = (g_{\sharp} \circ h_{\sharp})(\alpha) = (g \circ h)_{\sharp}(\alpha) = (h \circ f)_{\sharp}(\alpha) = h_{\sharp}(f_{\sharp}(\alpha)) = h_{\sharp}(\alpha),$$
ou seja, $h_{\sharp}(\alpha) \in S_n(Y, g, R)$. Portanto, $h_{\sharp}(S_n(X, f, R)) \subset S_n(Y, g, R)$.

Em particular, se h é permissível, temos o homomorfismo induzido $h_*: H_n(X,f,R) \to H_n(Y,g,R).$

2.2 O operador θ

Definição 2.2.1 Dado o \mathbb{Z}_p -espaço (X,T), definimos o operador

$$\theta: S_n(X, \mathbb{Z}_p) \to S_n(X, \mathbb{Z}_p) \quad por \quad \theta = \overline{1}Id_{\sharp} + \overline{1}T_{\sharp} + \overline{1}T_{\sharp}^2 + \dots + \overline{1}T_{\sharp}^{p-1}.$$

Sendo cada $T^r_{\sharp}: S_n(X, \mathbb{Z}_p) \to S_n(X, \mathbb{Z}_p), r = 0, 1, \dots, p-1$, uma aplicação de cadeias, segue então da observação 1.3.1 que o operador θ é uma aplicação de cadeias, por ser uma combinação linear de aplicações de cadeias.

Observação 2.2.1 A fim de simplificar a notação, salvo quando houver perigo de confusão com elementos do anel \mathbb{Z} , omitiremos a barra dos elementos do anel \mathbb{Z}_p . Sendo assim, o operador θ será definido então simplesmente por $\theta = Id_{\sharp} + T_{\sharp} + T_{\sharp}^2 + \cdots + T_{\sharp}^{p-1}$.

O resultado a seguir será crucial para a construção do \mathbb{Z}_p -homomorfismo índice. Ele simplesmente diz que as (T,n)-cadeias constituem exatamente a imagem do operador θ acima.

Teorema 2.2.1 $Imagem(\theta) = S_n(X,T)$.

Demonstração: Sendo $c \in S_n(X, \mathbb{Z}_p)$ uma n-cadeia, então

$$\begin{split} T_{\sharp}(\theta(c)) &= T_{\sharp}(c + T_{\sharp}(c) + T_{\sharp}^{2}(c) + \dots + T_{\sharp}^{p-2}(c) + T_{\sharp}^{p-1}(c)) \\ &= T_{\sharp}(c) + T_{\sharp}^{2}(c) + \dots + T_{\sharp}^{p-1}(c) + T_{\sharp}^{p}(c) \\ &= T_{\sharp}(c) + T_{\sharp}^{2}(c) + \dots + T_{\sharp}^{p-1}(c) + Id_{\sharp}(c) \\ &= \theta(c), \end{split}$$

já que T_{\sharp} tem grau p. Assim, mostramos que $\theta(c)$ pertence a $S_n(X,T)$ e, portanto, Imagem $(\theta) \subset S_n(X,T)$.

Reciprocamente, seja $\alpha \in S_n(X,T)$, isto é, $\alpha \in S_n(X,\mathbb{Z}_p)$ tal que $T_{\sharp}(\alpha) = \alpha$. Escreva $\alpha = r_1\phi_1 + r_2\phi_2 + ... + r_t\phi_t$, $r_j \in \mathbb{Z}_p$ $e \phi_j \in C_n(X)$.

Lembremos que a n-cadeia α pode ser considerada como a função $\alpha: C_n(X) \to \mathbb{Z}_p$, definida por $\alpha(\phi_j) = r_j, \quad j = 1, 2, ..., t \quad e \quad \alpha(\phi) = 0, \quad se \quad \phi \neq \phi_j.$

Seja $A = \{\phi_1, \phi_2, ..., \phi_t\}$. Então A pode ser considerado como um subconjunto de $S_n(X, \mathbb{Z}_p)$ e, desta forma, tomaremos a restrição de T_{\sharp} : $S_n(X, \mathbb{Z}_p) \to S_n(X, \mathbb{Z}_p)$ a A, ou seja, consideraremos $T_{\sharp}: A \to S_n(X, \mathbb{Z}_p)$.

Afirmamos que $T_{\sharp}(A) \subset A$. Para isso, devemos mostrar que para cada $1 \leq i \leq t$ existe $1 \leq j \leq t$ tal que $T_{\sharp}(\phi_i) = \phi_j$. Com efeito, $T_{\sharp}(\alpha) = \alpha$ implica que

$$r_1(T \circ \phi_1) + r_2(T \circ \phi_2) + \dots + r_t(T \circ \phi_t) = r_1\phi_1 + r_2\phi_2 + \dots + r_t\phi_t.$$

Em outras palavras, a função $T_{\sharp}(\alpha):C_n(X)\to\mathbb{Z}_p$ dada por

$$T_{\sharp}(\alpha)(T \circ \phi_i) = r_i, \quad i = 1, 2, ..., t \quad e \quad T_{\sharp}(\alpha)(\phi) = 0, \text{ para todo } \phi \neq T \circ \phi_i,$$

é igual a função $\alpha: C_n(X) \to \mathbb{Z}_p$ considerada logo acima. Segue que, para $1 \leq i \leq t$, $\alpha(T \circ \phi_i) = r_i \neq 0$. Entretanto, os únicos elementos de $C_n(X)$ que são levados por α em elementos não nulos de \mathbb{Z}_p são os elementos de A e, portanto, $T \circ \phi_i \in A$, isto é, $T \circ \phi_i = \phi_j$, para algum $1 \leq j \leq t$. Em outras palavras, dado qualquer i, $1 \leq i \leq t$, existe j, $1 \leq j \leq t$, tal que $T \circ \phi_i = \phi_j$, ou seja, $T_{\sharp}(\phi_i) = \phi_j$. Desta maneira, podemos concluir que $T_{\sharp}(A) \subset A$.

Observe adicionalmente que o j acima é diferente de i, pois se $T \circ \phi_i = \phi_i$, para cada $x \in \Delta_n$, teríamos que $T(\phi_i(x)) = \phi_i(x)$ e, portanto, a órbita de $\phi_i(x)$ correspondente à ação de \mathbb{Z}_p em X só teria um ponto, contrariando o fato de que tal ação é livre.

Mostramos então que $T_{\sharp}:A\to A$ é uma função sem pontos fixos. Mais ainda, $(T_{\sharp})^p=(T^p)_{\sharp}=Id_{\sharp}$ e, desta forma, segue da observação 1.2.2 que T_{\sharp} define uma ação de \mathbb{Z}_p em A. Afirmamos que esta ação é livre, ou seja, dado qualquer $\phi_i\in A$ e $0\leq l,j\leq p-1$, com $l\neq j$, teremos $T_{\sharp}^l(\phi_i)\neq T_{\sharp}^j(\phi_i)$. De fato, se $(T_{\sharp})^l(\phi_i) = (T_{\sharp})^j(\phi_i)$, então $(T^l)_{\sharp}(\phi_i) = (T^j)_{\sharp}(\phi_i)$, ou seja, $T^l \circ \phi_i = T^j \circ \phi_i$. Tomando um ponto $z \in \Delta_n$, isso significa que $T^l(\phi_i(z)) = T^j(\phi_i(z))$. Como $0 \le l, j \le p-1$ e $l \ne j$, concluímos que a órbita de $\phi_i(z)$ em X segundo $T: X \to X$ possui menos que p pontos, contrariando o fato de que a ação gerada por T é livre. Desta forma, T_{\sharp} define uma ação livre de \mathbb{Z}_p em A.

Denotemos por $\gamma_1, \gamma_2, ..., \gamma_l$ as órbitas desta ação. Afirmamos que se ϕ_i e ϕ_j pertencem à mesma órbita γ_u , então os correspondentes coeficientes r_i, r_j são iguais; em outras palavras, todos os simplexos de uma mesma órbita possuem o mesmo coeficiente. De fato, $T_{\sharp}(\alpha) = \alpha$ implica que $T_{\sharp}^j(\alpha) = \alpha$, para todo $1 \leq j \leq p-1$. Consideremos então a órbita $\gamma_u = \{\phi_i, T_{\sharp}(\phi_i), T_{\sharp}^2(\phi_i), ..., T_{\sharp}^{p-1}(\phi_i)\}$. Para $1 \leq j \leq p-1$, $T_{\sharp}^j(\alpha) = \alpha$ significa que as funções $T_{\sharp}^j(\alpha), \alpha : C_n(X) \to \mathbb{Z}_p$ são iguais. Em particular, para qualquer j, $1 \leq j \leq p-1$, vale que

$$\alpha(T_{\sharp}^{j}(\phi_{i})) = T_{\sharp}^{j}(\alpha)(T_{\sharp}^{j}(\phi_{i}))$$

$$= [r_{1}T_{\sharp}^{j}(\phi_{1}) + r_{2}T_{\sharp}^{j}(\phi_{2}) + \dots + r_{i}T_{\sharp}^{j}(\phi_{i}) + \dots + r_{t}T_{\sharp}^{j}(\phi_{t})](T_{\sharp}^{j}(\phi_{i}))$$

$$= r_{i},$$

uma vez que $T^j_{\sharp}(\phi_1), T^j_{\sharp}(\phi_2), \cdots, T^j_{\sharp}(\phi_t)$ é uma coleção de elementos distintos de $C_n(X)$ (de fato, se $T^j_{\sharp}(\phi_r) = T^j_{\sharp}(\phi_s)$, então $T^{p-j}_{\sharp}(T^j_{\sharp}(\phi_r)) = T^{p-j}_{\sharp}(T^j_{\sharp}(\phi_s))$, o que acarreta $T^p \circ \phi_r = T^p \circ \phi_s$ $e \phi_r = \phi_s$). Como $\alpha(\phi_i) = r_i$, segue que

$$\alpha\{\phi_i, T_{\sharp}(\phi_i), T_{\sharp}^2(\phi_i), ..., T_{\sharp}^{p-1}(\phi_i)\} = r_i,$$

como queríamos.

Escolhamos então, aleatoriamente, um elemento de cada órbita, digamos $\phi_{i_1} \in \gamma_1, \phi_{i_2} \in \gamma_2, ..., \phi_{i_l} \in \gamma_l$. Redenotemos $r_{i_1} = v_1, r_{i_2} = v_2, ..., r_{i_l} = v_l$ $e \phi_{i_1} = \mu_1, \phi_{i_2} = \mu_2, ..., \phi_{i_l} = \mu_l$. Pelas considerações acima, α pode ser

reescrito como

 $\alpha = v_1(\text{soma dos elementos da \'orbita de } \gamma_1) + v_2(\text{soma dos elementos da \'orbita})$ $de \gamma_2) + \cdots + v_l(\text{soma dos elementos da \'orbita de } \gamma_l)$ $= v_1(\mu_1 + T_{\sharp}(\mu_1) + \dots + T_{\sharp}^{p-1}(\mu_1)) + v_2(\mu_2 + T_{\sharp}(\mu_2) + \dots + T_{\sharp}^{p-1}(\mu_2))$ $+ \dots + v_l(\mu_l + T_{\sharp}(\mu_l) + \dots + T_{\sharp}^{p-1}(\mu_l))$ $= v_1\mu_1 + v_1T_{\sharp}(\mu_1) + \dots + v_1T_{\sharp}^{p-1}(\mu_1) + v_2\mu_2 + v_2T_{\sharp}(\mu_2) + \dots + v_2T_{\sharp}^{p-1}(\mu_2)$ $+ \dots + v_l\mu_l + v_lT_{\sharp}(\mu_l) + \dots + v_lT_{\sharp}^{p-1}(\mu_l)$ $= v_1\mu_1 + v_2\mu_2 + \dots + v_l\mu_l + v_1T_{\sharp}(\mu_1) + v_2T_{\sharp}(\mu_2) + \dots + v_lT_{\sharp}(\mu_l) + \dots + v_lT_{\sharp}^{p-1}(\mu_l)$ $= v_1\mu_1 + \dots + v_l\mu_l + T_{\sharp}(v_1\mu_1 + \dots + v_l\mu_l) + \dots + T_{\sharp}^{p-1}(v_1\mu_1 + \dots + v_l\mu_l)$ $= \theta(v_1\mu_1 + v_2\mu_2 + \dots + v_l\mu_l).$

o que prova o resultado.

Observação 2.2.2 Na prova do teorema anterior, o elemento $d = v_1\mu_1 + v_2\mu_2 + ... + v_l\mu_l \in S_n(X, \mathbb{Z}_p)$ tal que $\theta(d) = \alpha$ foi obtido escolhendo-se aleatoriamente $\mu_j \in \gamma_j$ e dotando-se o mesmo com o coeficiente comum correspondente à órbita γ_j . Portanto, tal d não é único, sendo que as outras possibilidades para d são obtidas substituindo-se cada μ_j por um outro elemento qualquer de γ_j , ou seja, μ_j por $T_{\sharp}^{k_j}(\mu_j)$, $0 \le k_j \le p-1$. Em outras palavras, $v_1\mu_1 + v_2\mu_2 + ... + v_l\mu_l$ pode ser substituído por $v_1T_{\sharp}^{k_1}(\mu_1) + v_2T_{\sharp}^{k_2}(\mu_2) + ... + v_lT_{\sharp}^{k_l}(\mu_l)$, onde $0 \le k_1, k_2, ..., k_l \le p-1$. Desta forma, existem p^l possibilidades para elementos $d \in S_n(X, \mathbb{Z}_p)$ tal que $\theta(d) = \alpha$. Em linguagem de funções, temos que a imagem inversa de α por θ é um subconjunto de $S_n(X, \mathbb{Z}_p)$ consistindo

de p^l elementos. Mais precisamente,

$$\theta^{-1}(\alpha) = \{ v_1 T_{\sharp}^{k_1}(\mu_1) + v_2 T_{\sharp}^{k_2}(\mu_2) + \dots + v_l T_{\sharp}^{k_l}(\mu_l), \quad 0 \le k_1, k_2, \dots, k_l \le p - 1 \}.$$

2.3 O \mathbb{Z}_p -homomorfismo índice

Nesta seção construiremos o \mathbb{Z}_p -homomorfismo graduado

$$J_{r(X,T)}: H_r(X,T) \to \mathbb{Z}_p, \quad r \ge 0,$$

o qual denotaremos simplesmente por $J_r: H_r(X,T) \to \mathbb{Z}_p$, anunciado na introdução do capítulo, o qual chamaremos de " \mathbb{Z}_p -homomorfismo índice". Como dito na introdução, a razão deste nome será o fato de que tal homomorfismo é invariante sob o efeito de homomorfismos induzidos por aplicações equivariantes. Em outras palavras, se (X,T) e (Y,S) são \mathbb{Z}_p -espaços e $f:(X,T)\to (Y,S)$ é uma aplicação equivariante, então teremos que a induzida em homologia equivariante $f_*:H_r(X,T)\to H_r(Y,S)$ satisfará $J_r(f_*(\xi))=J_r(\xi),\ com\ \xi\in H_r(X,T).$

A estratégia para a construção do \mathbb{Z}_p -homomorfismo índice J_r seguirá dois princípios:

- 1) A construção do \mathbb{Z}_p -homomorfismo J_r será feita por indução sobre r.
- 2) J_r será construído inicialmente a nível de (T,r)-ciclos, ou seja, $J_r: Z_r(X,T) \to \mathbb{Z}_p$; a seguir, mostrar-se-á que $J_r(B_r(X,T)) = \{0\}$, o que implicará que J_r determine um homomorfismo $J_r: \frac{Z_r(X,T)}{B_r(X,T)} \to \mathbb{Z}_p$.

Observemos ainda que J_r será construído explicitamente apenas no nível 0, ou seja, construiremos explicitamente somente o homomorfismo $J_0: Z_0(X,T) \to \mathbb{Z}_p$ satisfazendo $J_0(B_0(X,T)) = \{0\}$. Nos demais níveis, será construído recursivamente. Isso significa que, na prática, para calcular explicitamente $J_r(\xi)$, com $\xi \in Z_r(X,T)$, será necessário algum processo de "rebaixamento" de dimensão até a dimensão zero, onde a computação é explícita.

Construiremos, a seguir, o homomorfismo $J_0: H_0(X,T) \to \mathbb{Z}_p$. Seja $c \in Z_0(X,T) = S_0(X,T)$. Pelo Teorema 2.2.1, $c = \theta(d)$, sendo $d = a_1d_1 + a_2d_2 + ... + a_sd_s$, com $a_i \in \mathbb{Z}_p$ e $d_i \in X$, para i=1,2...,s. Definimos

$$J_0: Z_0(X,T) \to \mathbb{Z}_p \ por \ J_0(c) = \sum_{i=1}^s a_i.$$

Observemos que:

- i) J_0 está bem definido já que se $c = \theta(d) = \theta(d')$, então existem inteiros $0 \le j_1, j_2, ..., j_s \le p-1$ tais que $d' = a_1 T^{j_1}_{\sharp}(d_1) + a_2 T^{j_2}_{\sharp}(d_2) + ... + a_s T^{j_s}_{\sharp}(d_s)$, ou seja, os coeficientes que comparecem em d' são os mesmos de d e, portanto, $J_0(c)$ não depende da forma de se expressar c como $c = \theta(d)$.
- ii) J_0 é um \mathbb{Z}_p -homomorfismo pois se c_1, c_2 são elementos de $Z_0(X, T)$ tais que $c_1 = \theta(d_1)$ e $c_2 = \theta(d_2)$, com $d_1 = \sum_{i=1}^s a_i x_i$ e $d_2 = \sum_{i=1}^l b_i y_i$, onde $a_i, b_i \in \mathbb{Z}_p$ e $x_i, y_i \in X$, então

$$c_1 + c_2 = \theta(d_1) + \theta(d_2) = \theta(d_1 + d_2),$$

sendo $d_1 + d_2 = \sum_{i=1}^{s} a_i x_i + \sum_{i=1}^{l} b_i y_i$ e, portanto,

$$J_0(c_1 + c_2) = \sum_{i=1}^{s} a_i + \sum_{i=1}^{l} b_i = J_0(c_1) + J_0(c_2).$$

Além disso, se $k \in \mathbb{Z}_p$, então $kc_1 = k\theta(d_1) = \theta(kd_1)$, sendo $kd_1 = k(\sum_{i=1}^s a_i x_i) = \sum_{i=1}^s (ka_i)x_i$ e, portanto,

$$J_0(kc_1) = \sum_{i=1}^{s} (ka_i) = k(\sum_{i=1}^{s} a_i) = kJ_0(c_1).$$

iii) Para finalizar, $J_0(B_0(X,T)) = \{0\}$, pois dado $c \in B_0(X,T)$, existe então $d \in S_1(X,T)$ tal que $\partial(d) = c$. Pelo Teorema 2.2.1, podemos escrever $d = \theta(e)$, com $e \in S_1(X,\mathbb{Z}_p)$. Assim, $c = \partial(d) = \partial(\theta(e)) = \theta(\partial(e))$ e, deste modo,

 $J_0(c)$ será a soma dos coeficientes de $\partial(e)$. Escrevendo $e=a_1e_1+a_2e_2+...+a_se_s$, onde cada $a_i\in\mathbb{Z}_p$ e cada $e_i:[0,1]\to X$ é um caminho contínuo em X, segue então que

$$\partial_1(e) = \partial_1(a_1e_1 + a_2e_2 + \dots + a_se_s) = a_1\partial_1(e_1) + a_2\partial_1(e_2) + \dots + a_s\partial_1(e_s) =$$

$$a_1(e_1(1) - e_1(0)) + a_2(e_2(1) - e_2(0)) + \dots + a_s(e_s(1) - e_s(0))$$

e, portanto, pela definição, teremos $J_0(c)=a_1-a_1+a_2-a_2+\ldots+a_s-a_s=0,$ como queríamos.

Portanto, por i), ii) e iii) concluímos a construção do \mathbb{Z}_p -homomorfismo índice $J_0:H_0(X,T)\to\mathbb{Z}_p$ no nível 0.

Para a construção recursiva de $J_r, r > 0$, necessitaremos introduzir dois novos operadores auxiliares em $S_r(X, \mathbb{Z}_p)$, os quais denotaremos por ψ e ν . Especificamente, os operadores $\psi, \nu: S_r(X, \mathbb{Z}_p) \to S_r(X, \mathbb{Z}_p)$ serão dados por

$$\psi = T_{\sharp} + 2T_{\sharp}^{2} + 3T_{\sharp}^{3} + \dots + (p-1)T_{\sharp}^{p-1} \quad e \ \nu = Id_{\sharp} - T_{\sharp}.$$

(lembremos novamente que, pela observação 1.3.1, tais \mathbb{Z}_p -homomorfismos são aplicações de cadeias, por serem combinações lineares de aplicações de cadeias). Observe que

$$\nu \circ \psi = (Id_{\sharp} - T_{\sharp}) \circ (T_{\sharp} + 2T_{\sharp}^{2} + 3T_{\sharp}^{3} + \dots + (p-1)T_{\sharp}^{p-1})$$

$$= T_{\sharp} + 2T_{\sharp}^{2} + 3T_{\sharp}^{3} + \dots + (p-1)T_{\sharp}^{p-1} - T_{\sharp}^{2} - 2T_{\sharp}^{3} - 3T_{\sharp}^{4} - \dots - (p-2)T_{\sharp}^{p-1} - (p-1)T_{\sharp}^{p}$$

$$= Id_{\sharp} + T_{\sharp} + (2-1)T_{\sharp}^{2} + (3-2)T_{\sharp}^{3} + \dots + ((p-1) - (p-2))T_{\sharp}^{p-1}$$

$$= Id_{\sharp} + T_{\sharp} + T_{\sharp}^{2} + \dots + T_{\sharp}^{p-1}$$

$$= \theta,$$

onde acima foi usado o fato de que $-(p-1)T_{\sharp}^{p}=Id_{\sharp}$.

De modo análogo, $\psi \circ \nu = \theta$.

Voltemos, então, à tarefa recursiva de construir J_r para r>0. Suponhamos indutivamente que, para r-1, foi construído o \mathbb{Z}_p -homomorfismo $J_{r-1}: Z_{r-1}(X,T) \to \mathbb{Z}_p$ satisfazendo $J_{r-1}(B_{r-1}(X,T)) = \{0\}$. Consideremos então $c \in Z_r(X,T)$, com $c = \theta(u)$, $u \in S_r(X,\mathbb{Z}_p)$. Podemos então considerar o elemento $\psi(\partial(u)) \in S_{r-1}(X,\mathbb{Z}_p)$.

Nossos próximos objetivos serão:

- 1) Mostrar que $\psi(\partial(u)) \in Z_{r-1}(X,T)$. Note que, uma vez provado isso, fará sentido, pela hipótese de indução, calcular $J_{r-1}(\psi(\partial(u)))$ e, desta forma, poderemos então definir $J_r(c) = J_{r-1}(\psi(\partial(u)))$.
- 2) Mostrar que J_r assim definido não depende da maneira de se expressar c como $\theta(u)$, ou seja, se $c = \theta(u) = \theta(u')$, então $J_{r-1}(\psi(\partial(u))) = J_{r-1}(\psi(\partial(u')))$. Uma vez provado isso, teremos a função $J_r: Z_r(X,T) \to \mathbb{Z}_p$ definida por $J_r(c) = J_{r-1}(\psi(\partial(u)))$, sendo $c = \theta(u)$.
- 3) Mostrar que $J_r: Z_r(X,T) \to \mathbb{Z}_p$ é um \mathbb{Z}_p -homomorfismo satisfazendo $J_r(B_r(X,T)) = \{0\}$. Uma vez provado isso, J_r definirá um homomorfismo $J_r: \frac{Z_r(X,T)}{B_r(X,T)} = H_r(X,T) \to \mathbb{Z}_p$ dado por $J_r(c+B_r(X,T)) = J_r([c]) = J_r(c) = J_{r-1}(\psi(\partial(u)))$, sendo $c = \theta(u)$, e o trabalho de definir J_r recursivamente estará concluído.

Estes fatos serão abordados em nosso trabalho em forma de proposições.

Proposição 2.3.1 $\psi(\partial(u)) \in Z_{r-1}(X,T)$.

Demonstração: Observe que, sendo ψ uma aplicação de cadeias, temos que $\partial(\psi(\partial(u))) = \psi(\partial(\partial(u))) = \psi(0) = 0$ e, portanto, $\psi(\partial(u)) \in Z_{r-1}(X, \mathbb{Z}_p)$.

Temos ainda que

$$T_{\sharp}(\psi(\partial(u))) = (T_{\sharp} - Id_{\sharp} + Id_{\sharp})(\psi(\partial(u)))$$

$$= (Id_{\sharp} - \nu)(\psi(\partial(u)))$$

$$= Id_{\sharp}(\psi(\partial(u))) - \nu(\psi(\partial(u)))$$

$$= \psi(\partial(u)) - (\nu \circ \psi)(\partial(u))$$

$$= \psi(\partial(u)) - \theta(\partial(u))$$

$$= \psi(\partial(u)) - \partial(\theta(u))$$

$$= \psi(\partial(u)) - \partial(c)$$

$$= \psi(\partial(u)),$$

uma vez que $c \in Z_r(X,T)$. Sendo então $T_\sharp(\psi(\partial(u))) = \psi(\partial(u))$, podemos concluir que $\psi(\partial(u)) \in Z_{r-1}(X,T)$.

Conforme dito anteriormente, a proposição acima juntamente com a hipótese de indução acarretam que $J_{r-1}(\psi(\partial(u)))$ faz sentido. Temos, a seguir, a

Proposição 2.3.2 A regra $J_r: Z_r(X,T) \to \mathbb{Z}_p$ dada por $J_r(c) = J_{r-1}(\psi(\partial(u)))$, onde $c = \theta(u)$, independe da maneira de se expressar c como $\theta(u)$.

Demonstração: Consideremos $c \in Z_r(X,T)$ e suponhamos $c = \theta(u) = \theta(u')$, com $u, u' \in S_r(X, \mathbb{Z}_p)$. Provaremos que $J_{r-1}(\psi(\partial(u))) = J_{r-1}(\psi(\partial(u')))$.

Escrevendo $u=a_1\phi_1+a_2\phi_2+...+a_s\phi_s$, com $a_i\in\mathbb{Z}_p$ e $\phi_i\in C_r(X)$, pela observação 2.2.2, existem $0\leq v_1,v_2,...,v_s\leq p-1$, os quais após reordenação e reindexação dos ϕ_i 's podem ser supostos satisfazer $0\leq v_1\leq v_2\leq ...\leq v_s\leq p-1$, tal que $u'=a_1T^{v_1}_\sharp(\phi_1)+a_2T^{v_2}_\sharp(\phi_2)+...+a_sT^{v_s}_\sharp(\phi_s)$. É claro que $(v_1,v_2,...,v_s)\neq (0,0,...,0)$, senão não há o que provar. Seja x o

primeiro índice tal que $v_x > 0$ e considere $A_1 = a_1\phi_1 + a_2\phi_2 + ... + a_{x-1}\phi_{x-1}$ (parte comum entre u e u'). Observe que se x=1, então A=0.

Vamos, a seguir, construir uma sequência finita u_1, u_2, \dots, u_n de elementos de $S_r(X, \mathbb{Z}_p)$ tal que cada u_i dessa sequência satisfaça $c = \theta(u_i)$, e tal que $u_1 = u$ e $u_n = u'$.

Coloquemos

$$u_2 = A_1 + a_x T_{\sharp}(\phi_x) + a_{x+1} T_{\sharp}(\phi_{x+1}) + \dots + a_{s-1} T_{\sharp}(\phi_{s-1}) + a_s T_{\sharp}(\phi_s),$$

$$u_3 = A_1 + a_x T_{\sharp}^2(\phi_x) + a_{x+1} T_{\sharp}^2(\phi_{x+1}) + \dots + a_{s-1} T_{\sharp}^2(\phi_{s-1}) + a_s T_{\sharp}^2(\phi_s)$$

e, em geral, para $1 \leq i \leq v_x$ escrevemos

$$u_{i+1} = A_1 + \sum_{j=x}^{s} a_j T_{\sharp}^{i}(\phi_j),$$

e com isso já definimos $u_1=u,u_2,u_3,...,u_{v_x+1},$ de tal sorte que para $1\leq l\leq v_x,$ se $u_l=A_1+B,$ então $u_{l+1}=A_1+T_\sharp(B).$

Vamos prosseguir com o mesmo raciocínio. A idéia é atingir, via esse procedimento, a potência máxima v_s . Seja, então, y o primeiro índice tal que $v_y > v_x$, se existir. Se não existir, paramos. Seja agora

$$A_2 = A_1 + \sum_{j=x}^{y-1} a_j T_{\sharp}^{v_x}(\phi_j).$$

Pomos $v_x + 1 = k$ e definamos, para $1 \le i \le v_y - v_x$,

$$u_{k+i} = A_2 + \sum_{j=y}^{s} a_j T_{\sharp}^{v_x+i}(\phi_j).$$

Com isto, definimos um novo trecho da sequência desejada, varrendo os índices $v_x + 2, v_x + 3, ..., v_y, v_y + 1$. Neste trecho, novamente é válido fato similar ao trecho anterior, ou seja, se $1 \le l \le v_y - v_x$ é tal que u_l pertence ao trecho em questão e se $u_l = A_2 + B$, então $u_{l+1} = A_2 + T_{\sharp}(B)$. Se $v_y = v_s$, paramos. Caso contrário, seja z o primeiro índice tal que $v_z > v_y$. Usando o

procedimento anterior, construímos o terceiro trecho da sequência, varrendo os índices $v_y+2,v_y+3,...,v_z,v_z+1$, de tal maneira que se $u_i=A_3+B$, então $u_{i+1}=A_3+T_\sharp(B)$, onde $v_{y+2}\leq i\leq v_z$.

Como os dados são finitos, no momento em que o último trecho da sequência for construído, o último elemento deste último trecho será u'. Em outras palavras, construímos uma sequência $u_1, u_2, ..., u_{v_s+1}$ em $S_r(X, \mathbb{Z}_p)$, com $u_1 = u$ e $u_{v_s+1} = u'$, satisfazendo:

- i) Para cada $1 \le i \le v_s + 1$, $c = \theta(u_i)$;
- ii) Para cada $1 \le i \le v_s$, existem r-cadeias $A_i, B_i \in S_r(X, \mathbb{Z}_p)$, com A_i podendo eventualmente ser zero, tal que $u_i = A_i + B_i$ e $u_{i+1} = A_i + T_{\sharp}(B_i)$.

Segue que, para provar a propriedade, é suficiente mostrar o seguinte: se $c \in Z_r(X,T)$ é tal que $c = \theta(A+B) = \theta(A+T_{\sharp}(B))$, então $J_{r-1}(\psi(\partial(A+B))) = J_{r-1}(\psi(\partial(A+T_{\sharp}(B))))$, onde $A,B \in S_r(X,\mathbb{Z}_p)$. Temos que

$$J_{r-1}(\psi(\partial(A+B))) - J_{r-1}(\psi(\partial(A+T_{\sharp}(B)))) = J_{r-1}(\psi(\partial(A+B)) - \psi(\partial(A+T_{\sharp}(B))))$$

uma vez que $J_{r-1}:Z_{r-1}(X,T)\to\mathbb{Z}_p$ é, pela hipótese de indução, um \mathbb{Z}_p -homomorfismo. Como ψ e ∂ são também homomorfismos, o último termo é igual a

$$J_{r-1}(\psi(\partial(B - T_{\sharp}(B)))) = J_{r-1}(\psi(\partial(\nu(B)))) = J_{r-1}(\psi(\nu(\partial(B)))) =$$
$$J_{r-1}(\theta(\partial(B))) = J_{r-1}(\partial(\theta(B))).$$

Como $B \in S_r(X, \mathbb{Z}_p)$, então $\theta(B) \in S_r(X, T)$ e, deste modo, $\partial(\theta(B)) \in B_{r-1}(X, T)$. Como, por hipótese de indução, $J_{r-1}(B_{r-1}(X, T)) = \{0\}$, segue-se então que $J_{r-1}(\partial(\theta(B))) = \{0\}$, donde concluímos que

$$J_{r-1}(\psi(\partial(A+B))) - J_{r-1}(\psi(\partial(A+T_{\sharp}(B)))) = 0,$$

como queríamos.

Esse resultado significa que $J_r:Z_r(X,T)\to\mathbb{Z}_p$ definido por $J_r(c)=J_{r-1}(\psi(\partial(u)))$, onde $c=\theta(u)$ é de fato uma função bem definida. Temos agora a

Proposição 2.3.3 A aplicação $J_r: Z_r(X,T) \to \mathbb{Z}_p$ é um \mathbb{Z}_p -homomorfismo.

Demonstração: Sejam $c_1, c_2 \in Z_r(X,T)$ $e \alpha \in \mathbb{Z}_p$. Tomemos $d_1, d_2 \in S_r(X,\mathbb{Z}_p)$ tais que $c_1 = \theta(d_1)$ e $c_2 = \theta(d_2)$, respectivamente. Como θ é um \mathbb{Z}_p -homomorfismo, então $c_1 + c_2 = \theta(d_1) + \theta(d_2) = \theta(d_1 + d_2)$ e, portanto, $J_r(c_1 + c_2) = J_{r-1}(\psi(\partial(d_1 + d_2)))$. Sendo, por hipótese de indução, J_{r-1} um \mathbb{Z}_p -homomorfismo, e como ψ e ∂ são também \mathbb{Z}_p -homomorfismos, temos então que

$$J_r(c_1 + c_2) = J_{r-1}(\psi(\partial(d_1 + d_2)))$$

$$= J_{r-1}(\psi(\partial(d_1))) + J_{r-1}(\psi(\partial(d_2)))$$

$$= J_r(c_1) + J_r(c_2).$$

Além disso, $\alpha c_1 = \alpha \theta(d_1) = \theta(\alpha d_1)$ e, pelos mesmos motivos apresentados acima, temos que

$$J_r(\alpha c_1) = J_{r-1}(\psi(\partial(\alpha d_1))) = \alpha J_{r-1}(\psi(\partial(d_1))) = \alpha J_r(c_1)$$

e, assim, podemos concluir que $J_r: Z_r(X,T) \to \mathbb{Z}_p$ é um \mathbb{Z}_p -homomorfismo.

Proposição 2.3.4 $O \mathbb{Z}_p$ -homomorfismo $J_r : Z_r(X,T) \to \mathbb{Z}_p$ satisfaz $J_r(B_r(X,T)) = \{0\}.$

Demonstração: Seja $c \in B_r(X,T)$. Logo, existe $b \in S_{r+1}(X,T)$ tal que $\partial(b) = c$. No entanto, sendo $b \in S_{r+1}(X,T)$, existe $d \in S_{r+1}(X,\mathbb{Z}_p)$ tal que $\theta(d) = b$. Assim, sendo θ uma aplicação de cadeias, segue que

$$\theta(\partial(d)) = \partial(\theta(d)) = \partial(b) = c$$

e, portanto,

$$J_r(c) = J_{r-1}(\psi(\partial(\partial(d)))) = J_{r-1}(0) = 0,$$

uma vez que J_{r-1} é um \mathbb{Z}_p -homomorfismo.

Observação 2.3.1 Temos então que $J_r: Z_r(X,T) \to \mathbb{Z}_p$ dada por $J_r(c) = J_{r-1}(\psi(\partial(d)))$, onde $c = \theta(d)$, é um \mathbb{Z}_p -homomorfismo bem definido e, adicionalmente, $J_r(B_r(X,T)) = \{0\}$. Desta forma, J_r induz um \mathbb{Z}_p -homomorfismo $J_r: \frac{Z_r(X,T)}{B_r(X,T)} = H_r(X,T) \to \mathbb{Z}_p$ definido por $J_r([c]) = J_r(c)$, o qual denominaremos \mathbb{Z}_p -homomorfismo índice (graduado).

2.4 Invariância do \mathbb{Z}_p -homomorfismo índice por induzidas de aplicações equivariantes

Veremos, nesta seção, a razão pela qual o homomorfismo recém construído

$$J_r: H_r(X,T) \to \mathbb{Z}_p$$

é chamado um "homomorfismo índice". Na literatura, o termo "índice" tem muitos significados; na teoria de ações é, em geral, associado a invariantes que se acoplam às ações de tal maneira a serem preservados, em algum sentido, sob o efeito de aplicações equivariantes. Nessa direção, no nosso caso em particular, temos a seguinte

Proposição 2.4.1 Sejam (X,T) e (Y,S) \mathbb{Z}_p -espaços e $f:(X,T)\to (Y,S)$ uma aplicação \mathbb{Z}_p -equivariante. Então, a induzida em homologia equivariante $f_*:H_r(X,T)\to H_r(Y,S)$ satisfaz $J_r(f_*([c]))=J_r([c])$.

Demonstração: A prova será feita por indução sobre r.

Por definição, temos que $J_r(f_*([c])) = J_r([f_\sharp(c)]) = J_r(f_\sharp(c))$, enquanto que $J_r([c]) = J_r(c)$. Deste modo, nossa tarefa se resume a mostrar o resultado ao nível de (T,r)-ciclos, ou seja, para qualquer $c \in Z_r(X,T)$, $J_r(f_\sharp(c)) = J_r(c)$. Notemos inicialmente que, por ser f equivariante (ou seja, $f \circ T = S \circ f$), então $f \circ T^i = S^i \circ f$, para todo $1 \le i \le p-1$. Pela definição de θ e ψ , decorre então que $f_\sharp \theta = \theta f_\sharp$ e $f_\sharp \psi = \psi f_\sharp$, observando aqui que estamos usando a mesma letra θ ou ψ para designar operadores que, em princípio, são diferentes por estarem associados a ações distintas, no caso (X,T) e (Y,S). Provaremos tais fatos logo ao término da demonstração.

Seja $c \in Z_0(X,T)$. Pelo Teorema 2.2.1, temos que $c = \theta(d)$, com $d \in S_0(X,\mathbb{Z}_p)$. Escrevendo $d = a_1p_1 + a_2p_2 + ... + a_sp_s$, com $a_i \in \mathbb{Z}_p$ e $p_i \in X$, para i=1,2,...,s, resulta da definição que $J_0(c) = \sum_{i=1}^s a_i$, enquanto que

$$J_{0}(f_{\sharp}(c)) = J_{0}(f_{\sharp}(\theta(d)))$$

$$= J_{0}(\theta(f_{\sharp}(d)))$$

$$= J_{0}(\theta(f_{\sharp}(\sum_{i=1}^{s} a_{i}p_{i})))$$

$$= J_{0}(\theta(\sum_{i=1}^{s} a_{i}f_{\sharp}(p_{i})))$$

$$= J_{0}(\theta(\sum_{i=1}^{s} a_{i}f(p_{i})))$$

$$= \sum_{i=1}^{s} a_{i}.$$

Logo, $J_0(f_{\sharp}(c)) = J_0(c)$.

Suponhamos , indutivamente, que para todo inteiro k menor ou igual a r-1 seja válido que $J_k(f_\sharp(c))=J_k(c)$. Seja então $c\in Z_r(X,T)$ e suponha $c=\theta(d)$, com $d\in S_r(X,\mathbb{Z}_p)$. Então,

$$J_r(f_{\sharp}(c)) = J_r(f_{\sharp}(\theta(d))) = J_r(\theta(f_{\sharp}(d))) = J_{r-1}(\psi(\partial(f_{\sharp}(d)))).$$

Como f_{\sharp} é uma aplicação de cadeias, temos que $J_{r-1}(\psi(\partial(f_{\sharp}(d)))) = J_{r-1}(f_{\sharp}(\psi(\partial(d))))$. Assim, como $\psi(\partial(d)) \in Z_{r-1}(X,T)$, segue da hipótese de indução que $J_{r-1}(f_{\sharp}(\psi(\partial(d)))) = J_{r-1}(\psi(\partial(d)))$ que é, por definição, $J_r(c)$, o que conclui nossa demonstração.

Conforme anunciado durante a demonstração da proposição anterior, provaremos, a seguir, o

Lema 2.4.1 Sejam (X,T), (Y,S) \mathbb{Z}_p -espaços $ef:(X,T)\to (Y,S)$ uma aplicação \mathbb{Z}_p -equivariante. Então os seguintes diagramas são comutativos:

$$S_r(X,T) \xrightarrow{f_{\sharp}} S_r(Y,S)$$

$$\downarrow \theta, \psi \qquad \qquad \downarrow \theta, \psi$$

$$S_r(X,T) \xrightarrow{f_{\sharp}} S_r(Y,S)$$

Demonstração: Temos

$$f_{\sharp} \circ \theta = f_{\sharp}((Id_{X})_{\sharp} + T_{\sharp} + T_{\sharp}^{2} + \dots + T_{\sharp}^{p-1})$$

$$= f_{\sharp} + f_{\sharp}T_{\sharp} + f_{\sharp}T_{\sharp}^{2} + \dots + f_{\sharp}T_{\sharp}^{p-1}$$

$$= f_{\sharp} + (f \circ T)_{\sharp} + (f \circ T^{2})_{\sharp} + \dots + (f \circ T^{p-1})_{\sharp}$$

$$= (Id_{Y})_{\sharp}f_{\sharp} + (S \circ f)_{\sharp} + (S^{2} \circ f)_{\sharp} + \dots + (S^{p-1} \circ f)_{\sharp}$$

$$= (Id_{Y})_{\sharp}f_{\sharp} + S_{\sharp}f_{\sharp} + S_{\sharp}^{2}f_{\sharp} + \dots + S_{\sharp}^{p-1}f_{\sharp}$$

$$= ((Id_{Y})_{\sharp} + S_{\sharp} + S_{\sharp}^{2} + \dots + S_{\sharp}^{p-1}) \circ f_{\sharp}$$

$$= \theta \circ f_{\sharp}.$$

Analogamente,

$$\begin{split} f_{\sharp} \circ \psi &= f_{\sharp} \circ (T_{\sharp} + 2T_{\sharp}^{2} + 3T_{\sharp}^{3} + \ldots + (p-1)T_{\sharp}^{p-1}) \\ &= f_{\sharp}T_{\sharp} + 2f_{\sharp}T_{\sharp}^{2} + 3f_{\sharp}T_{\sharp}^{3} + \ldots + (p-1)f_{\sharp}T_{\sharp}^{p-1} \\ &= (f \circ T)_{\sharp} + 2(f \circ T^{2})_{\sharp} + 3(f \circ T^{3})_{\sharp} + \ldots + (p-1)(f \circ T^{p-1})_{\sharp} \\ &= (S \circ f)_{\sharp} + 2(S^{2} \circ f)_{\sharp} + 3(S^{3} \circ f)_{\sharp} + \ldots + (p-1)(S^{p-1} \circ f)_{\sharp} \\ &= S_{\sharp}f_{\sharp} + 2S_{\sharp}^{2}f_{\sharp} + 3S_{\sharp}^{3}f_{\sharp} + \ldots + (p-1)S_{\sharp}^{p-1}f_{\sharp} \\ &= (S_{\sharp} + 2S_{\sharp}^{2} + 3S_{\sharp}^{3} + \ldots + (p-1)S_{\sharp}^{p-1}) \circ f_{\sharp} \\ &= \psi \circ f_{\sharp}. \end{split}$$

Capítulo 3

Aplicações do \mathbb{Z}_p -homomorfismo índice

Este capítulo é dedicado a algumas aplicações do \mathbb{Z}_p -homomorfismo índice. Logo em sua primeira seção mostraremos, mediante algumas condições homológicas impostas a um \mathbb{Z}_p -espaço (X,T), que o \mathbb{Z}_p -índice é uma ferramenta adequada para detectar classes de homologia não nulas em $H_*(X,T)$ (simplesmente mostrando que tais classes possuem \mathbb{Z}_p -índice não nulo). Em seguida, mostraremos que, sob certas condições topológicas sobre X, a homologia equivariante do \mathbb{Z}_p -espaço (X,T) é \mathbb{Z}_p -isomorfa à homologia singular com coeficientes em \mathbb{Z}_p do espaço de órbitas $\frac{X}{T}$, fato este muito importante já que a homologia singular é computável (junto com o fato acima mencionado, isto detectará classes de \mathbb{Z}_p -homologia singular não nulas no espaço de órbitas $\frac{X}{T}$). De posse destas informações, estaremos então em condições de demonstrar, mediante algumas condições topológicas e homológicas sobre os espaços envolvidos, um Teorema tipo Borsuk-Ulam concernente à existência de aplicações equivariantes conectando os \mathbb{Z}_p -espaços adjacentes. Finalizaremos o capítulo com dois outros teoremas tipo Borsuk-Ulam.

3.1 Classes de homologia equivariantes com índice não-nulo

O objetivo desta seção é mostrar que, para certos valores de p e para \mathbb{Z}_p -espaços (X,T), com X conexo por caminhos e satisfazendo certas condições homológicas, existem classes $\xi \in H_r(X,T)$ com $J_r(\xi) \neq 0$. Antes, porém, provaremos alguns resultados algébricos que nos serão úteis para a obtenção destas classes não nulas.

Lema 3.1.1 Dado o \mathbb{Z}_p -espaço (X,T), consideremos a aplicação de cadeias $\theta: S_r(X,\mathbb{Z}_p) \to S_r(X,\mathbb{Z}_p)$ do capítulo anterior. Então, vale que $T^j_{\sharp} \circ \theta = \theta \circ T^j_{\sharp} = \theta$, para todo $0 \leq j \leq p-1$.

Demonstração: Como $T^r_{\sharp} \circ T^s_{\sharp} = T^s_{\sharp} \circ T^r_{\sharp}$, para todo $0 \leq r, s \leq p-1$, é claro que $T^j_{\sharp} \circ \theta = \theta \circ T^j_{\sharp}$, para todo $0 \leq j \leq p-1$. Provemos então que $\theta \circ T^j_{\sharp} = \theta$ e, para isso, é suficiente mostrar para j=1 pois, uma vez provado isso, teremos, para cada $0 \leq j \leq p-1$, que

$$\theta \circ T_{\sharp}^{j} = (\theta \circ T_{\sharp})T_{\sharp}^{j-1} = \theta \circ T_{\sharp}^{j-1} = (\theta \circ T_{\sharp})T_{\sharp}^{j-2} = \theta \circ T_{\sharp}^{j-2} = \dots = \theta \circ T_{\sharp} = \theta.$$
Agora,

$$\theta \circ T_{\sharp} = (Id_{\sharp} + T_{\sharp} + T_{\sharp}^{2} + \dots + T_{\sharp}^{p-1}) \circ T_{\sharp}$$

$$= T_{\sharp} + T_{\sharp}^{2} + T_{\sharp}^{3} + \dots + T_{\sharp}^{p-1} + T_{\sharp}^{p}$$

$$= T_{\sharp} + T_{\sharp}^{2} + \dots + T_{\sharp}^{p-1} + Id_{\sharp}$$

$$= \theta.$$

Lema 3.1.2 Os operadores $\theta, \nu : S_r(X, \mathbb{Z}_p) \to S_r(X, \mathbb{Z}_p)$ definidos no capítulo anterior satisfazem $\theta \circ \nu = \nu \circ \theta = 0$ e $\theta \circ \theta = 0$.

Demonstração: É fácil observar que $\theta \circ \nu = \nu \circ \theta$. Utilizando o lema anterior, obtemos

$$\theta \circ \nu = \theta (Id_{\sharp} - T_{\sharp}) = \theta - \theta T_{\sharp} = \theta - \theta = 0$$

e

$$\theta \circ \theta = \theta(\sum_{j=0}^{p-1} T_{\sharp}^{j}) = \sum_{j=0}^{p-1} \theta(T_{\sharp}^{j}) = \sum_{j=0}^{p-1} \theta = p\theta = 0,$$

já que estamos trabalhando com coeficientes no anel \mathbb{Z}_p .

Lema 3.1.3 Os operadores $\theta, \psi : S_r(X, \mathbb{Z}_p) \to S_r(X, \mathbb{Z}_p)$ definidos no capítulo anterior satisfazem $\psi \circ \theta = \theta \circ \psi = \frac{p \cdot (p-1)}{2} \cdot \theta$, observando que, como p ou p-1 é par, então $\frac{p \cdot (p-1)}{2}$ é um número inteiro módulo p.

Demonstração: Como $T^r_{\sharp} \circ T^s_{\sharp} = T^s_{\sharp} \circ T^r_{\sharp}$, para todo $0 \le r, s \le p-1$, então $\psi \circ \theta = \theta \circ \psi$. Utilizando o lema 3.1.1, obtemos que

$$\theta \circ \psi = \theta(\sum_{j=1}^{p-1} j T_{\sharp}^{j}) = \sum_{j=1}^{p-1} j \theta(T_{\sharp}^{j}) = \sum_{j=1}^{p-1} j \theta = (\sum_{j=1}^{p-1} j) \theta = \frac{p \cdot (p-1)}{2} \cdot \theta.$$

Corolário 3.1.1 No lema acima, se p é impar, $\theta \circ \psi = 0$, enquanto que se p é par, $\theta \circ \psi = \frac{p}{2}.\theta$.

Demonstração: Se p é impar, então p-1 é par e, portanto, $\frac{p-1}{2}$ é um número inteiro. Logo, $\frac{p.(p-1)}{2} \equiv p \mod(p)$ e, deste modo, $\theta \circ \psi = \frac{p.(p-1)}{2}.\theta = 0$. Por outro lado, se p é par,

$$\frac{p \cdot (p-1)}{2} - \frac{p}{2} = \frac{p^2}{2} - \frac{p}{2} - \frac{p}{2} = \frac{p^2}{2} - p = p(\frac{p}{2} - 1)$$

e, como p é par, $(\frac{p}{2}-1)$ é um número inteiro; segue que $\frac{p\cdot(p-1)}{2}\equiv\frac{p}{2}$ mod(p). Assim, $\theta\circ\psi=\frac{p\cdot(p-1)}{2}\theta=\frac{p}{2}\theta$.

Lema 3.1.4 Seja p par e escreva p=2q. Então:

- i) Se $q \notin impar$, $q^2 \equiv q \mod (p)$.
- ii) Se $q \notin par, q^2 \equiv 0 \mod (p)$.

Demonstração: i) Sendo q um número ímpar, temos que

$$q^{2} - q = q.(q - 1) = 2q.(\frac{q - 1}{2}) = p.(\frac{q - 1}{2})$$

e como $(\frac{q-1}{2})$ é um número inteiro (já que q é ímpar), segue então que $q^2 \equiv q \mod (p)$.

ii) Se q é par, digamos q=2x, com $x\in\mathbb{Z}$, teremos então que $q^2=4x^2=4.x.x=2.q.x=px$ e ,deste modo, concluímos que $q^2\equiv 0$ mod (p).

O próximo lema é uma construção que está em [5] e será de grande utilidade em nosso trabalho.

Lema 3.1.5 Seja (X,T) um \mathbb{Z}_p -espaço, sendo X um espaço topológico conexo por caminhos. Suponhamos que, para algum natural fixado $n \geq 1$, valha que $H_i(X,\mathbb{Z}_p) = 0$, para $1 \leq i \leq n$. Então, existem cadeias $c_0, c_1, c_2, ..., c_n, c_{n+1}$, com cada $c_j \in S_j(X,\mathbb{Z}_p)$, satisfazendo:

- i) Se j > 0 é par, $\partial(c_j) = \theta(c_{j-1})$.
- ii) Se j > 0 é ímpar, $\partial(c_j) = \nu(c_{j-1})$.

Demonstração: Tome um ponto $c_0 \in X$ qualquer, considerando-o como uma 0-cadeia em $S_0(X, \mathbb{Z}_p)$. Como X é conexo por caminhos, existe caminho $c_1 : \Delta_1 \to X$ conectando $T_{\sharp}(c_0)$ a c_0 , e já consideramos $c_1 \in S_1(X, \mathbb{Z}_p)$. Observe que

$$\partial_1(c_1) = \partial_0(c_1) - \partial_1(c_1) = c_1(1) - c_1(0) = c_0 - T_{\sharp}(c_0) = (Id_{\sharp} - T_{\sharp})(c_0) = \nu(c_0).$$

Assim, sendo θ uma aplicação de cadeias e utilizando o lema 3.1.2, temos $\partial_1(\theta(c_1)) = \theta(\partial_1(c_1)) = \theta(\nu(c_0)) = 0$, ou seja, $\theta(c_1) \in Z_1(X, \mathbb{Z}_p)$. Como

 $H_1(X, \mathbb{Z}_p) = 0$, segue que $\theta(c_1) \in B_1(X, \mathbb{Z}_p)$ e, portanto, existe $c_2 \in S_2(X, \mathbb{Z}_p)$ tal que $\partial_2(c_2) = \theta(c_1)$.

Suponhamos, indutivamente, já construídas cadeias $c_0, c_1, c_2, ..., c_j$, $2 \le j \le n$, satisfazendo as condições i) e ii) e considere j par. Então, sendo ν uma aplicação de cadeias e utilizando o lema 3.1.2, obtemos

$$\partial(\nu(c_i)) = \nu(\partial(c_i)) = \nu(\theta(c_{i-1})) = 0,$$

ou seja, $\nu(c_j) \in Z_j(X, \mathbb{Z}_p)$. Como, para $2 \leq j \leq n$, $H_j(X, \mathbb{Z}_p) = 0$, segue então que $\nu(c_j) \in B_j(X, \mathbb{Z}_p)$, ou seja, existe $c_{j+1} \in S_{j+1}(X, \mathbb{Z}_p)$ tal que $\partial(c_{j+1}) = \nu(c_j)$. Considerando, abaixo, j ímpar, teremos

$$\partial(\theta(c_i)) = \theta(\partial(c_i)) = \theta(\nu(c_{i-1})) = 0,$$

ou seja, $\theta(c_j) \in Z_j(X, \mathbb{Z}_p)$. Analogamente ao passo anterior, obtemos $c_{j+1} \in S_{j+1}(X, \mathbb{Z}_p)$ tal que $\partial(c_{j+1}) = \theta(c_j)$. Observe que, sendo j=n o último j tal que $H_j(X, \mathbb{Z}_p) = 0$, então o argumento prossegue até encontrarmos c_{n+1} .

Lema 3.1.6 Seja (X,T) um \mathbb{Z}_p -espaço, sendo X um espaço topológico conexo por caminhos. Suponhamos que, para algum natural fixado $n \geq 1$, valha que $H_i(X,\mathbb{Z}_p) = 0$, para $1 \leq i \leq n$. Então $\theta(c_j) \in Z_j(X,T)$, onde c_j , $j = 1, \dots, n+1$ são as cadeias do lema anterior.

Demonstração: Pelo Teorema 2.2.1, para cada $0 \le j \le n+1$, $\theta(c_j) \in Imagem(\theta) = S_j(X,T)$. Basta então mostrar que $\partial \theta(c_j) = 0$, para cada $0 \le j \le n+1$.

É claro que $\theta(c_0) \in Z_0(X,T)$. Se j>0 é par, utilizando os lemas 3.1.2 e 3.1.5 e o fato de θ ser uma aplicação de cadeias, obtemos

$$\partial(\theta(c_j)) = \theta(\partial(c_j)) = \theta(\theta(c_{j-1})) = 0$$

e, portanto, $\theta(c_j) \in Z_j(X,T)$. Agora, se j > 0 é impar, pelos mesmos motivos apresentados anteriormente, teremos

$$\partial(\theta(c_i)) = \theta(\partial(c_i)) = \theta(\nu(c_{i-1})) = 0$$

e, portanto, também neste caso, $\theta(c_j) \in Z_j(X,T)$.

Observação 3.1.1 O lema acima nos diz que $J_j(\theta(c_j))$ faz sentido, para cada $0 \le j \le n+1$, onde $J_j: H_j(X,T) \to \mathbb{Z}_p$ é o \mathbb{Z}_p -homomorfismo índice.

Mostraremos que para certos valores de p e j, $J_j(\theta(c_j)) \neq 0$; em particular, para tais valores, $[\theta(c_j)] \in H_j(X,T)$ é uma classe não nula.

Teorema 3.1.1 Seja (X,T) um \mathbb{Z}_p -espaço, sendo X um espaço topológico conexo por caminhos. Suponhamos, ainda, p um inteiro qualquer. Então $J_1(\theta(c_1)) \neq 0$.

Demonstração: Utilizando o lema 3.1.5, obtemos

$$J_1(\theta(c_1)) = J_0(\psi(\partial(c_1))) = J_0(\psi(\nu(c_0))) = J_0(\theta(c_0)) = 1,$$

por definição, uma vez que c_0 é um ponto de X e $c_0 = 1.c_0$.

Observação 3.1.2 Note que o teorema acima tem como consequência o fato de que, se X é qualquer espaço topológico conexo por caminhos, e se X admite uma ação livre de \mathbb{Z}_p gerada por T, então $H_1(X,T) \neq 0$.

Teorema 3.1.2 Seja (X,T) um \mathbb{Z}_p -espaço, sendo X um espaço topológico conexo por caminhos. Suponhamos, ainda, p um par qualquer. Se $H_1(X,\mathbb{Z}_p) = 0$ e $H_2(X,\mathbb{Z}_p) = 0$, então $J_i(\theta(c_i)) \neq 0$, para i=1,2,3.

Demonstração: Pelo lema 3.1.5, temos as cadeias c_0, c_1, c_2 e c_3 satisfazendo as condições lá descritas. Pela prova do teorema anterior, $J_1(\theta(c_1)) = 1$. Temos ainda que $J_2(\theta(c_2)) = J_1(\psi(\partial(c_2))) = J_1(\psi(\theta(c_1)))$ e, como p é par, segue do corolário 3.1.1 que $\psi \circ \theta = \frac{p}{2}\theta$. Assim,

$$J_1(\psi(\theta(c_1))) = J_1(\frac{p}{2}\theta(c_1)) = \frac{p}{2}J_1(\theta(c_1)) = \frac{p}{2} \neq 0 \mod(p).$$

Finalizando,

$$J_3(\theta(c_3)) = J_2(\psi(\partial(c_3))) = J_2(\psi(\nu(c_2))) = J_2(\theta(c_2)) = \frac{p}{2} \neq 0 \mod(p).$$

Observação 3.1.3 Note que o teorema acima mostra que, se X é qualquer espaço topológico conexo por caminhos admitindo ação livre de \mathbb{Z}_p , com p par, e se $H_1(X,\mathbb{Z}_p) = 0$ e $H_2(X,\mathbb{Z}_p) = 0$, então $H_1(X,T) \neq 0$, $H_2(X,T) \neq 0$ e $H_3(X,T) \neq 0$.

O próximo teorema mostrará que os pares da forma p=2q, com q ímpar, são especiais neste contexto de se detectar classes de homologia equivariantes não nulas.

Teorema 3.1.3 Seja (X,T) um \mathbb{Z}_p -espaço, sendo X um espaço topológico conexo por caminhos. Suponhamos p=2q, com q ímpar. Se $H_j(X,\mathbb{Z}_p)=0$, para $1 \leq j \leq n$ (para algum natural $n \geq 1$), então $J_j(\theta(c_j)) \neq 0$, para $1 \leq j \leq n+1$.

Demonstração: Pelo lema 3.1.5, temos as cadeias $c_0, c_1, c_2, ..., c_{n+1}$ satisfazendo as condições lá especificadas. Pelas provas dos Teoremas 3.1.1 e 3.1.2, temos que $J_1(\theta(c_1)) = 1, J_2(\theta(c_2)) = \frac{p}{2} = q$ e $J_3(\theta(c_3)) = \frac{p}{2} = q$.

Suponhamos, por indução, já provado que $J_j(\theta(c_j))=q$, onde $3\le j\le n$. Afirmamos que $J_{j+1}(\theta(c_{j+1}))=q$.

Considerando, inicialmente, j ímpar, teremos

$$J_{j+1}(\theta(c_{j+1})) = J_j(\psi(\partial(c_{j+1}))) = J_j(\psi(\theta(c_j))) = J_j(\frac{p}{2}\theta(c_j)) = qJ_j(\theta(c_j)) = q^2.$$

Pelo lema 3.1.4, como q é ímpar, $q^2 \equiv q \mod(2q)$. Segue então que $J_{j+1}(\theta(c_{j+1})) = q$.

Considerando, neste momento, j par, teremos

$$J_{j+1}(\theta(c_{j+1})) = J_j(\psi(\partial(c_{j+1}))) = J_j(\psi(\nu(c_j))) = J_j(\theta(c_j)) = q.$$

Como $q \neq 0$ mod 2q=p, o teorema está provado.

Observação 3.1.4 Em outras palavras, se X conexo por caminhos admite ação livre de \mathbb{Z}_p gerada por T, onde p=2q, com q impar, e se $H_j(X,\mathbb{Z}_p)=0$ para $1 \leq j \leq n$, então $H_j(X,T) \neq 0$, para todo $1 \leq j \leq n+1$.

3.2 O isomorfismo $\Gamma: S_r(X,T) \to S_r(\frac{X}{T},\mathbb{Z}_p)$

Uma vez mostrado que sob certas condições sobre o \mathbb{Z}_p -espaço (X,T) existem classes $\xi \in H_i(X,T)$ com $J_i(\xi) \neq 0$ (e consequentemente $\xi \neq 0$), a aplicação desse fato requer conhecimentos sobre a homologia equivariante $H_*(X,T)$; mais precisamente, conhecer para quais \mathbb{Z}_p -espaços (X,T) teríamos $H_i(X,T) = 0$ ou alguma coisa sobre a computação da homologia equivariante. Nessa direção, mostraremos que, sob certas condições topológicas, a homologia equivariante do \mathbb{Z}_p -espaço (X,T) é \mathbb{Z}_p -isomorfa à homologia singular com coeficientes em \mathbb{Z}_p do espaço de órbitas $\frac{X}{T}$ (lembrando que a homologia singular é, em algum sentido, computável). Para tanto, lembremos inicialmente que a homologia equivariante $H_*(X,T)$ é a homologia associada ao complexo de cadeias $S_*(X,T)$, enquanto que a homologia singular é a homologia associada ao complexo de

cadeias singular com coeficientes em \mathbb{Z}_p , $S_*(X,\mathbb{Z}_p)$. Então, para o objetivo acima, basta exibir uma aplicação de cadeias $\Gamma: S_*(X,T) \to S_*(\frac{X}{T},\mathbb{Z}_p)$, que seja um isomorfismo em cada nível. Isto decorre do seguinte

Lema 3.2.1 Sejam $C = \{C_n, \partial_n\}, D = \{D_n, \delta_n\}$ complexos de cadeias de Rmódulos, onde R é um anel comutativo com unidade. Seja $\phi = \{\phi_n\} : C \to D$ uma aplicação de cadeias tal que, para cada n, $\phi_n : C_n \to D_n$, seja um Risomorfismo. Então $\phi_* : H_n(C) \to H_n(D)$ é isomorfismo, para todo n.

Demonstração:

$$\cdots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \longrightarrow \cdots$$

$$\downarrow \phi_{n+1} \qquad \downarrow \phi_n \qquad \downarrow \phi_{n-1}$$

$$\cdots \longrightarrow D_{n+1} \xrightarrow{\delta_{n+1}} D_n \xrightarrow{\delta_n} D_{n-1} \longrightarrow \cdots$$

Sendo $\phi = \{\phi_n\} : C \to D$ uma aplicação de cadeias, então $\phi_* : H_n(C) \to H_n(D)$ é um homomorfismo. Resta-nos mostrar então que $\{\phi_*\}$ é uma bijeção.

Seja $\alpha + B_n(C) \in H_n(C)$, com $\alpha \in Z_n(C)$, e suponha que $\phi_*(\alpha + B_n(C)) = 0$. Logo $\phi_n(\alpha) + B_n(D) = B_n(D)$, ou seja, $\phi_n(\alpha) \in B_n(D)$. Deste modo, existe $\beta \in D_{n+1}$ tal que $\delta_{n+1}(\beta) = \phi_n(\alpha)$. Como ϕ_{n+1} é uma aplicação sobrejetora, existe $\gamma \in C_{n+1}$ tal que $\phi_{n+1}(\gamma) = \beta$. Então, sendo ϕ uma aplicação de cadeias, temos $\phi_n(\partial_{n+1}(\gamma)) = \delta_{n+1}(\phi_{n+1}(\gamma)) = \delta_{n+1}(\beta) = \phi_n(\alpha)$. Sendo ϕ_n uma aplicação injetora, segue então que $\partial_{n+1}(\gamma) = \alpha$, ou seja, $\alpha \in B_n(C)$ e, desta forma, $\alpha + B_n(C) = 0$, donde podemos concluir que ϕ_* é injetora.

Consideremos agora $\beta + B_n(D) \in H_n(D)$, com $\beta \in Z_n(D)$. Como ϕ_n é sobrejetora, existe $\alpha \in C_n$ tal que $\phi_n(\alpha) = \beta$. Sendo ϕ uma aplicação de cadeias, temos $\phi_{n-1}(\partial_n(\alpha)) = \delta_n(\phi_n(\alpha)) = \delta_n(\beta) = 0$, já que $\beta \in Z_n(D)$. Sendo ϕ_{n-1} uma aplicação injetora, então $\partial_n(\alpha) = 0$ e, deste modo, segue que $\alpha \in Z_n(C)$ e, portanto, $\alpha + B_n(C) \in H_n(C)$. Assim, por definição,

 $\phi_*(\alpha + B_n(C)) = \phi_n(\alpha) + B_n(D) = \beta + B_n(D)$, donde concluímos que a aplicação ϕ_* é sobrejetora.

Portanto, $\phi_*: H_n(C) \to H_n(D)$ é um isomorfismo, para cada n.

Com o resultado acima em mãos, passemos à tarefa de construir um isomorfismo de cadeias entre os complexos de cadeias $S_*(X,T)$ e $S_*(\frac{X}{T},\mathbb{Z}_p)$, conforme antes anunciado.

Definição 3.2.1 Definamos

$$\Gamma: S_n(X,T) \to S_n(\frac{X}{T}, \mathbb{Z}_p) \ por \ \Gamma(c) = \pi_{\sharp}(d),$$

onde $c = \theta(d)$, $d \in S_n(X, \mathbb{Z}_p)$ e $\pi : X \to \frac{X}{T}$ é a aplicação quociente, definida por $\pi(x) = [x] = \{T^i(x), i = 0, 1, ..., p - 1\}$.

Mostraremos, agora, que a aplicação Γ definida acima satisfaz as condições do Lema 3.2.1. Tais fatos serão mostrados separadamente, através de proposições.

Proposição 3.2.1 $\Gamma: S_n(X,T) \to S_n(\frac{X}{T},\mathbb{Z}_p)$ está bem definida.

Demonstração: Em outras palavras, queremos mostrar que $\Gamma(c)$ não depende da maneira de se expressar c como $c = \theta(d)$. Notemos inicialmente que $\pi \circ T^i : X \to \frac{X}{T}$, i=0,1,...,p-1 é tal que $\pi T^i(x) = [T^i(x)] = [x] = \pi(x)$, para todo $x \in X$, ou seja, $\pi \circ T^i = \pi$, para cada i=0,1,...,p-1. Suponhamos que $c \in S_n(X,T)$ é tal que $c = \theta(d) = \theta(d')$, com $d,d' \in S_n(X,\mathbb{Z}_p)$. Escrevendo $d = a_1d_1 + a_2d_2 + ... + a_sd_s$, onde $a_i \in \mathbb{Z}_p$ e $d_i \in C_n(X)$, teremos, pela observação 2.2.2, que $d' = a_1T^{j_1}_{\sharp}(d_1) + a_2T^{j_2}_{\sharp}(d_2) + ... + a_sT^{j_s}_{\sharp}(d_s)$, para certos $0 \le j_1, j_2, ..., j_s \le p-1$. Então teremos que

$$\pi_{\sharp}(d') = \pi_{\sharp}(\sum_{i=1}^{s} a_{i}T_{\sharp}^{j_{i}}(d_{i})) = \sum_{i=1}^{s} a_{i}(\pi_{\sharp}(T_{\sharp}^{j_{i}}(d_{i}))) =$$

$$\sum_{i=1}^{s} a_i((\pi \circ T^{j_i})_{\sharp}(d_i)) = \sum_{i=1}^{s} a_i \pi_{\sharp}(d_i) = \pi_{\sharp}(\sum_{i=1}^{s} a_i d_i) = \pi_{\sharp}(d),$$

o que mostra o resultado.

Proposição 3.2.2 A aplicação $\Gamma: S_n(X,T) \to S_n(\frac{X}{T},\mathbb{Z}_p)$ definida acima é um \mathbb{Z}_p -homomorfismo.

Demonstração: Sejam $\alpha \in \mathbb{Z}_p$ e $c, c' \in S_n(X, T)$, onde $c = \theta(d)$ e $c' = \theta(d')$, com $d, d' \in S_n(X, \mathbb{Z}_p)$. Então $\alpha c + c' = \alpha \theta(d) + \theta(d') = \theta(\alpha d + d')$ e, portanto,

$$\Gamma(\alpha c + c') = \pi_{\sharp}(\alpha d + d') = \alpha \pi_{\sharp}(d) + \pi_{\sharp}(d') = \alpha \Gamma(c) + \Gamma(c'),$$

donde concluímos que Γ é um \mathbb{Z}_p -homomorfismo.

Proposição 3.2.3 $O \mathbb{Z}_p$ -homomorfismo $\Gamma : S_n(X,T) \to S_n(\frac{X}{T},\mathbb{Z}_p)$ é uma aplicação de cadeias.

Demonstração: Considere o diagrama

$$\cdots \longrightarrow S_n(X,T) \stackrel{\partial}{\longrightarrow} S_{n-1}(X,T) \longrightarrow \cdots$$

$$\downarrow \Gamma \qquad \qquad \downarrow \Gamma$$

$$\cdots \longrightarrow S_n(\frac{X}{T},\mathbb{Z}_p) \stackrel{\partial}{\longrightarrow} S_{n-1}(\frac{X}{T},\mathbb{Z}_p) \longrightarrow \cdots$$

Seja $c \in S_n(X,T)$ e suponhamos que $c = \theta(d)$, $com \ d \in S_n(X,\mathbb{Z}_p)$. Então, sendo θ uma aplicação de cadeias, temos $\partial(c) = \partial(\theta(d)) = \theta(\partial(d))$ e, desta forma, segue da definição que $\Gamma(\partial(c)) = \pi_{\sharp}(\partial(d))$. Agora, por outro lado, $\partial(\Gamma(c)) = \partial(\pi_{\sharp}(d)) = \pi_{\sharp}(\partial(d))$, já que π_{\sharp} é uma aplicação de cadeias. Assim, $\Gamma(\partial(c)) = \partial(\Gamma(c))$, donde segue que Γ é uma aplicação de cadeias.

Observação 3.2.1 Uma vez estabelecido o fato acima, nosso próximo objetivo é mostrar que, sob certas condições topológicas sobre X, Γ é uma aplicação bijetora em cada nível. Antes, porém, apresentaremos alguns resultados que nos serão úteis para a obtenção desta bijeção.

Lema 3.2.2 Seja (X,T) um \mathbb{Z}_p -espaço, onde X é um espaço de Hausdorff. Dado o ponto $\overline{x} = \{x, T(x), T^2(x), ..., T^{p-1}(x)\} \in \frac{X}{T}$, então existem abertos $U_0, U_1, ..., U_{p-1}$ satisfazendo:

- 1) $T^i(x) \in U_i$, para todo i=0,1,...,p-1;
- 2) $U_i \cap U_j = \emptyset$ para todo $i \neq j$;
- 3) $U_i = T^i(U_0)$, para todo i=0,1,...,p-1.

Demonstração: A demonstração será feita por indução finita. Inicialmente, construiremos abertos U_0 e U_1 satisfazendo as condições acima. Sendo X um espaço de Hausdorff e $x \neq T(x)$, existem abertos disjuntos U_1 e V_1 contendo os pontos x e T(x), respectivamente. Além disso, a continuidade de T nos garante que para o aberto V_1 contendo T(x), existe um aberto U_2 contendo x de tal forma que $T(U_2) \subset V_1$. Fazendo $U = U_1 \cap U_2$, temos que $T(U) = T(U_1 \cap U_2) \subset V_1$ é aberto em X, pois T é um homeomorfismo. Tomando V = T(U), temos o resultado desejado.

Suponhamos que já tenhamos construído abertos $U_0, U_1, ..., U_j$ satisfazendo as condições (1),(2) e (3) e vamos construir um aberto U_{j+1} contendo $T^{j+1}(x)$ e satisfazendo as mesmas condições.

Para $0 \leq l \leq j$, temos que $T^{j+1-l}(T^l(x)) = T^{j+1}(x)$. Assim, utilizando o argumento acima para T^{j+1-l} , $T^l(x)$ e $T^{j+1}(x)$, existem abertos V_l e W_l em X tais que $T^l(x) \in V_l$, $T^{j+1}(x) \in W_l$, $com\ V_l \cap W_l = \emptyset$ e $T^{j+1-l}(V_l) = W_l$. Sem perda de generalidade, podemos supor ainda que cada V_l está contido em U_l , para l=0,1,...,j, bastando, para isso, considerarmos

 $V_l \cap U_l$ (pois, após a intersecção, o aberto não perde as propriedades anteriores). Seja então $U_{j+1} = \bigcap_{l=0}^{j} W_l$ e redefinamos $U_l = (T^{j+1-l})^{-1}(U_{j+1})$, para $0 \le l \le j$. É claro que $U_i \cap U_t = \emptyset$, para todo $0 \le i, t \le j$, já que estes U_i redefinidos estão contidos nos abertos U_j considerados na hipótese de indução e, além disso, por construção, $U_{j+1} \cap U_t = \emptyset$, para todo $0 \le t \le j$. Em particular, $U_0 = (T^{j+1})^{-1}(U_{j+1})$ e, então, $T^{j+1}(U_0) = U_{j+1}$. Assim, se $1 \le i \le j$, $(T^{j+1-i})^{-1}(T^{j+1}(U_0)) = (T^{j+1-i})^{-1}(U_{j+1})$ e, deste modo,

$$T^{i}(U_{0}) = T^{i}((T^{j+1})^{-1}(U_{j+1})) = T^{i-j-1}(U_{j+1}) =$$

$$T^{-(j+1-i)}(U_{j+1}) = (T^{j+1-i})^{-1}(U_{j+1}) = U_{i}$$

e, portanto, U_{j+1} satisfaz as condições desejadas.

Lema 3.2.3 Seja (X,T) um \mathbb{Z}_p -espaço, onde X é um espaço de Hausdorff. Então a aplicação quociente $\pi: X \to \frac{X}{T}$ é um recobrimento a p-folhas.

Demonstração: Seja $\overline{x} \in \frac{X}{T}$ arbitrário, e considere U_0 um aberto de X contendo x tal como construído no lema anterior. Seja $\overline{U_0} = \pi(U_0) \subset \frac{X}{T}$. Então $\overline{x} \in \overline{U_0}$ e $\pi^{-1}(\overline{U_0}) = U_0 \cup T(U_0) \cup ... \cup T^{p-1}(U_0)$ é aberto em X e, portanto, $\overline{U_0}$ é aberto em $\frac{X}{T}$.

Afirmamos que $\pi_{|_{U_0}}: U_0 \to \pi(U_0)$ é um homeomorfismo. Valendo isso, teremos, para cada $1 \leq j \leq p-1$, $\pi_{|_{T^j(U_0)}}: T^j(U_0) \to \pi(T^j(U_0)) = \pi(U_0)$ será um homeomorfismo, uma vez que $\pi_{|_{T^j(U_0)}} = \pi_{|_{U_0}} \circ T^j$. Claramente, $\pi_{|_{U_0}}$ é contínua e sobrejetora. Pela construção de U_0 , se $a,b \in U_0$ são tais que $a \neq b$, como em cada U_i , $0 \leq i \leq p-1$, existe um, e somente um, elemento de cada órbita de a, concluímos que $b \notin orb(a)$. Desta forma, $\pi(a) \neq \pi(b)$ e, portanto, π é injetora.

Resta-nos mostrar que $\pi_{|\overline{U_0}}^{-1}: \overline{U_0} \to U_0$ é contínua. Seja $V \subset U_0$ um aberto de U_0 ; em particular, V é aberto em X. Pela construção de U_0 , qualquer aberto de X contido em U_0 satisfaz as mesmas propriedades estabelecidas acima para U_0 . Segue que $\pi^{-1}(\pi(V)) = V \cup T(V) \cup T^2(V) \cup ... \cup T^{p-1}(V)$ é aberto em X e, portanto, $\pi(V)$ é aberto em $\frac{X}{T}$. Como $\pi(V) \subset \overline{U_0}$ e $\overline{U_0}$ é aberto em $\frac{X}{T}$, segue-se então que $\pi(V) = (\pi_{|\overline{U_0}}^{-1})^{-1}(V)$ é aberto em $\overline{U_0}$. Deste modo, $\pi_{|U_0}^{-1}$ é contínua e, desta forma, podemos concluir que π é uma aplicação de recobrimento. Observemos ainda que se $[x] \in \frac{X}{T}$, então a cardinalidade de $\pi^{-1}([x])$ é p e, assim, π é um recobrimento a p-folhas.

Lema 3.2.4 Seja (X,T) um \mathbb{Z}_p -espaço, onde X é um espaço de Hausdorff. Sejam Y um espaço conexo e $\phi_1, \phi_2 : Y \to X$ contínuas e tais que $\pi \circ \phi_1 = \pi \circ \phi_2$. Então existe $0 \le j \le p-1$ tal que $\phi_1 = T^j \circ \phi_2$.

Demonstração: Escolhendo $y_0 \in Y$ temos, de acordo com a hipótese, que $(\pi \circ \phi_1)(y_0) = (\pi \circ \phi_2)(y_0)$, ou seja, $orb(\phi_1(y_0)) = orb(\phi_2(y_0))$ e, deste modo, existe $0 \le j \le p-1$ tal que $\phi_1(y_0) = T^j\phi_2(y_0)$.

Consideremos o subconjunto $A \subset Y$ definido por $A = \{y \in Y; \phi_1(y) = T^j \phi_2(y)\}$. Podemos observar que $A \neq \emptyset$ pois $y_0 \in A$. Como X é um espaço de Hausdorff, temos que A é um subconjunto fechado de Y.

Afirmamos que A é aberto. De fato, seja $y \in A$. Logo, $\phi_1(y) = T^j\phi_2(y)$. Pela prova do lema anterior, existe aberto $V \subset X$ contendo $\phi_2(y)$ tal que $T^i(V) \cap T^l(V) = \emptyset$, para todo $i \neq l$, $0 \leq i, l \leq p-1$ e $\pi_{|_{T^i(V)}}$ é um homeomorfismo para cada $0 \leq i \leq p-1$. Temos que $T^j(\phi_2(y)) = \phi_1(y) \in T^j(V)$. Como $T^j\phi_2$ $e \phi_1$ são aplicações contínuas, existem abertos W_1 $e W_2$ em Y contendo y e tal que $\phi_1(W_1) \subset T^j(V)$ $e T^j\phi_2(W_2) \subset T^j(V)$. Assim, tomando $W = W_1 \cap W_2$, temos que $y \in W$, $\phi_1(W) \subset T^j(V)$ $e T^j\phi_2(W) \subset T^j(V)$.

Afirmamos que $W \subset A$. Seja $z \in W$. Então $\phi_1(z) \in T^j(V)$ e $T^j\phi_2(z) \in T^j(V)$. Agora, temos que $\pi_{|_{T^j(V)}}: T^j(V) \to \pi T^j(V)$ é um homeomorfismo e $\pi(T^j\phi_2(z)) = (\pi \circ T^j)(\phi_2(z)) = \pi \phi_2(z)$; também por hipótese, $\pi \phi_2(z) = \pi \phi_1(z)$ e, deste modo, temos que $\pi(T^j\phi_2(z)) = \pi \phi_1(z)$. Sendo π injetora em $T^j(V)$, decorre que $T^j\phi_2(z) = \phi_1(z)$ e, portanto, $z \in A$. Logo, $W \subset A$, donde concluímos que A é aberto.

Como Y é conexo, segue que A=Y e, portanto, $T^j\phi_2 = \phi_1$.

Como consequência temos o

Teorema 3.2.1 Seja (X,T) um \mathbb{Z}_p -espaço, onde X é um espaço de Hausdorff. Então a aplicação de cadeias $\Gamma: S_n(X,T) \to S_n(\frac{X}{T},\mathbb{Z}_p)$ é injetora.

Demonstração: Sendo Γ um homomorfismo, basta mostrar que, se $c \in S_n(X,T)$ é não nulo, então $\Gamma(c)$ é não nulo. Seja $c=\theta(d)$, onde $d \in S_n(X,\mathbb{Z}_p)$, digamos $d=r_1\phi_1+r_2\phi_2+...+r_t\phi_t$, com $r_i\in\mathbb{Z}_p$ e $\phi_i\in C_n(X)$. Como $c\neq 0$, consequentemente $d\neq 0$. Olhando d como a função $d:C_n(X)\to\mathbb{Z}_p$ tal que $d(\phi_j)=r_j, \ 1\leq j\leq t$ e $d(\phi)=0$ quando $\phi\neq\phi_j$, o fato de que $d\neq 0$ significa que signifi

$$\Gamma(c) = \pi_{t}(d) = r_{1}(\pi \circ \phi_{1}) + r_{2}(\pi \circ \phi_{2}) + \dots + r_{t}(\pi \circ \phi_{t})$$

é uma n-cadeia em $S_n(\frac{X}{T}, \mathbb{Z}_p)$ e pode ser vista como a função $\Gamma(c): C_n(\frac{X}{T}) \to \mathbb{Z}_p$, onde $\Gamma(c)(\pi\phi_j) = r_j$, $1 \le j \le t$, $e \Gamma(c)(\psi) = 0$, $se \psi \ne \pi\phi_j$, j = 0

1, 2, ..., t. Notemos que $t \geq 1$ e $r_i \neq 0$, para todo i; adicionalmente, caso existissem $0 \leq i, j \leq t$, com $i \neq j$, tal que $\pi \phi_i = \pi \phi_j$, existiria, pelo lema anterior, $0 \leq k \leq p-1$ com $\phi_i = T^k \circ \phi_j = (T^k)_{\sharp} \phi_j = (T_{\sharp})^k \phi_j$ e, assim, ϕ_i e ϕ_j pertenceriam à mesma órbita de T_{\sharp} , o que é um absurdo. Segue então que $\pi \circ \phi_i \neq \pi \circ \phi_j$, para todo i,j, com $i \neq j$. Portanto, $\Gamma(c) \neq 0$, concluindo a nossa demonstração.

O último passo para obter o isomorfismo $\Gamma: S_n(X,T) \to S_n(\frac{X}{T},\mathbb{Z}_p)$ é mostrar a sobrejetividade de Γ . Para tanto, necessitaremos impor duas condições adicionais sobre X, a saber, conexidade e conexidade local por caminhos; isso se deve ao fato de que usaremos o Teorema Fundamental do Levantamento.

Para provar que Γ é sobrejetora, basta provar que $\pi_{\sharp}: S_n(X, \mathbb{Z}_p) \to S_n(\frac{X}{T}, \mathbb{Z}_p)$ é sobrejetora, devido ao seguinte fato: se $\pi_{\sharp}: S_n(X, \mathbb{Z}_p) \to S_n(\frac{X}{T}, \mathbb{Z}_p)$ é sobrejetora, então para todo $\alpha \in S_n(\frac{X}{T}, \mathbb{Z}_p)$, existe $\overline{\alpha} \in S_n(X, \mathbb{Z}_p)$ tal que $\pi_{\sharp}(\overline{\alpha}) = \alpha$. Deste modo, tomando o elemento $\theta(\overline{\alpha}) \in S_n(X,T)$, teremos $\Gamma(\theta(\overline{\alpha})) = \pi_{\sharp}(\overline{\alpha}) = \alpha$ e, assim, $\Gamma: S_n(X,T) \to S_n(\frac{X}{T}, \mathbb{Z}_p)$ é sobrejetora. Por outro lado, para provar que $\pi_{\sharp}: S_n(X,\mathbb{Z}_p) \to S_n(\frac{X}{T}, \mathbb{Z}_p)$ é sobrejetora, precisamos apenas provar isto nos geradores, ou seja, dado $\phi \in C_n(\frac{X}{T})$, basta mostrar que existe uma cadeia $\phi' \in S_n(X,\mathbb{Z}_p)$ tal que $\pi_{\sharp}(\phi') = \phi$, ou particularmente, $\phi' \in C_n(X)$ tal que $\pi_{\sharp}(\phi') = \pi \circ \phi' = \phi$.

Teorema 3.2.2 Seja (X,T) um \mathbb{Z}_p -espaço, onde X é um espaço de Hausdorff conexo e localmente conexo por caminhos. Então $\Gamma: S_n(X,T) \to S_n(\frac{X}{T},\mathbb{Z}_p)$ é sobrejetora.

Demonstração: Seja $\phi: \Delta_n \to \frac{X}{T}$ um n-simplexo singular. Sabemos que Δ_n é localmente conexo por caminhos. Por outro lado, sendo $\pi: X \to \frac{X}{T}$ um recobrimento a p-folhas então, em particular, π é um homeomorfismo local. Assim, como X é localmente conexo por caminhos, $\frac{X}{T}$ também o será. Adi-

cionalmente, Δ_n é um espaço contrátil e, portanto, $\phi_*(\pi_1(\Delta_n)) = \phi_*(\{0\}) = \{0\} \subset \pi_*(\pi_1(X))$. Pelo Teorema Fundamental do Levantamento, temos que existe uma aplicação $\phi': \Delta_n \to X$ tal que $\pi \circ \phi' = \phi$, o que mostra que Γ é sobrejetora através das considerações prévias acima.

Sumarizando, provamos o seguinte

Teorema 3.2.3 Suponhamos (X,T) um \mathbb{Z}_p -espaço, onde X é um espaço de Hausdorff conexo e localmente conexo por caminhos. Então a aplicação Γ_* : $H_r(X,T) \to H_r(\frac{X}{T},\mathbb{Z}_p)$, induzida pela aplicação de cadeias $\Gamma: S_r(X,T) \to S_r(\frac{X}{T},\mathbb{Z}_p)$ acima considerada, é um \mathbb{Z}_p -isomorfismo.

Observação 3.2.2 É conhecido o fato de que $H_j(RP(n), \mathbb{Z}_2) \cong \mathbb{Z}_2$, para $1 \leq j \leq n$. Aqui, RP(n) é o espaço projetivo real n-dimensional, dado pelo espaço de órbitas $\frac{S^n}{A}$, onde a aplicação $A: S^n \to S^n$ é a antipodal. Observe que $H_j(S^n, \mathbb{Z}_2) = 0$, para $1 \leq j \leq n-1$, S^n é um espaço de Hausdorff localmente conexo por caminhos e o fato acima nos diz, em particular, que $H_j(\frac{S^n}{A}, \mathbb{Z}_2) \neq 0$, para $1 \leq j \leq n$. Esse fato pode ser generalizado através da seguinte consequência do teorema acima.

Corolário 3.2.1 Seja (X,T) um \mathbb{Z}_p -espaço, onde p=2q, com q ímpar, X é um espaço de Hausdorff conexo e localmente conexo por caminhos, e $H_j(X,\mathbb{Z}_p)=0$, para $1 \leq j \leq n$. Então $H_j(\frac{X}{T},\mathbb{Z}_p) \neq 0$, para $1 \leq j \leq n+1$.

Demonstração: Pelo teorema anterior, temos que $H_j(\frac{X}{T}, \mathbb{Z}_p) \cong H_j(X, T)$, para qualquer j. Portanto, é suficiente mostrar que $H_j(X, T) \neq 0$, para $1 \leq j \leq n+1$. Sendo X conexo por caminhos e p=2q, com q ímpar, e sendo $H_j(X, \mathbb{Z}_p) = 0$, para $1 \leq j \leq n$, o Teorema 3.1.3 nos diz que o homomorfismo índice $J_j: H_j(X, T) \to \mathbb{Z}_p$ é tal que $J_j(H_j(X, T)) \neq 0$, para $1 \leq j \leq n+1$ e, consequentemente, $H_j(X, T) \neq 0$, para $1 \leq j \leq n+1$.

Outras consequências do mesmo gênero do resultado acima são:

Corolário 3.2.2 Se (X,T) é um \mathbb{Z}_p -espaço, onde p é qualquer par, e X um espaço de Hausdorff conexo e localmente conexo por caminhos, com $H_1(X,\mathbb{Z}_p) = 0$ e $H_2(X,\mathbb{Z}_p) = 0$, então $H_j(\frac{X}{T},\mathbb{Z}_p) \neq 0$, para j=1,2,3.

Demonstração: O argumento é completamente similar ao do corolário 3.2.1, nesse caso utilizando-se o teorema 3.1.2.

Corolário 3.2.3 Seja X um espaço de Hausdorff conexo e localmente conexo por caminhos, admitindo uma ação livre de \mathbb{Z}_p gerado por $T: X \to X$ (p natural qualquer), então $H_1(\frac{X}{T}, \mathbb{Z}_p) \neq 0$.

Demonstração: O argumento é completamente similar ao do corolário 3.2.1, nesse caso utilizando-se o teorema 3.1.1.

Outra consequência na mesma direção é a seguinte: lembremos que no exemplo 1.2.4, se n é ímpar, então S^n admite uma aplicação standard de grau p, $p \geq 2$, $T: S^n \to S^n$, tal que a correspondente ação de \mathbb{Z}_p em S^n é livre. Nesse caso, o espaço de órbitas é chamado "Espaço de Lens" ndimensional, denotado por L_p^n . É conhecido o fato de que $H_j(L_p^n, \mathbb{Z}_p) \neq 0$, para cada $1 \leq j \leq n$ [12]. Se p=2q, com q ímpar, o fato acima é um caso particular do corolário 3.2.1. Analogamente, se p é um número par qualquer e $n \geq 3$, temos que $H_j(L_p^n, \mathbb{Z}_p) \neq 0$, para j=1,2,3. Também para um número p qualquer é verdade que $H_1(L_p^n, \mathbb{Z}_p) \neq 0$.

3.3 Um teorema tipo Borsuk-Ulam concernenteà existência de aplicações equivariantes

Conforme comentamos na introdução, o Teorema de Borsuk-Ulam clássico estabelece que, se $f: S^n \to S^m$ é contínua e A-equivariante (A=antípoda), então $n \ge m$. Uma consequência disso é que se a aplicação contínua $f: S^n \to \mathbb{R}^m$ é tal que $n \ge m$, então existe $x \in S^n$ tal que f(x) = f(-x) (vide teorema 3.5.1). Esse resultado levanta uma questão natural: a possibilidade de estender o resultado para \mathbb{Z}_p , com p > 2, no caso em que n e m são ímpares e a ação de \mathbb{Z}_p em S^n é aquela dada pela aplicação standard de grau p, $T: S^n \to S^n$. Outra questão natural é a investigação sobre até que ponto a geometria do \mathbb{Z}_p -espaço (S^n,T) é ou não fundamental para o resultado. Em outras palavras, questiona-se a existência de uma classe de \mathbb{Z}_p -espaços mais gerais, que inclua a esfera S^n (domínio) com ação standard de \mathbb{Z}_p como caso particular, e analogamente, a existência de uma classe de \mathbb{Z}_p -espaços mais gerais que inclua a esfera S^m (contra-domínio) com ação standard de \mathbb{Z}_p como caso particular, de tal maneira que valha, para tais \mathbb{Z}_p -espaços, resultado tipo Borsuk-Ulam como acima mencionado.

Pensemos primeiro, nesta direção, em substituir a esfera domínio S^n , com a aplicação antipodal $A:S^n\to S^n$, por um espaço topológico mais geral X, dotado de uma involução $T:X\to X$ sem pontos fixos, e tal qual X possua a propriedade homológica de que $H_j(X,\mathbb{Z}_2)=0$, para $1\leq j\leq n-1$. Nesta direção, J.W.Walker provou em [13] o seguinte resultado: se X é um espaço de Hausdorff, conexo por caminhos, equipado com involução sem pontos fixos $T:X\to X$ e satisfazendo $H_j(X,\mathbb{Z}_2)=0$ para $1\leq j\leq n-1$, então não existe aplicação \mathbb{Z}_2 -equivariante $f:(X,T)\to (S^m,A)$, quando n>m.

O teorema de Walker acima foi posteriormente generalizado para

p > 2 por T.Kobayashi em [5]; o seguinte resultado foi provado: se X é um espaço de Hausdorff, conexo por caminhos, equipado com ação livre de \mathbb{Z}_p $(p\geq 2)$ gerada por uma aplicação periódica de grau p $S:X\to X$ e tal que $H_j(X, \mathbb{Z}_p) = 0$, para $1 \leq j \leq n-1$, então não existe aplicação \mathbb{Z}_p -equivariante $f:(X,S)\to (S^m,T)$ quando n>m,onde $T:S^m\to S^m$ é a aplicação standard de grau p e m é ímpar. Notemos que tal resultado é uma generalização simultânea do Teorema de Borsuk-Ulam clássico, o qual não tinha ainda sido provado para p > 2, e do Teorema de Walker. Enfatizamos que tanto na prova de J.W.Walker quanto na de Kobayashi, a geometria do \mathbb{Z}_p -espaço (S^m, T) do contradomínio é fundamental. Informalmente, isso pode ser explicado da seguinte maneira: em S^1 , consideremos os arcos $[e^{\frac{2\pi ij}{p}}, e^{\frac{2\pi i(j+1)}{p}}]$, j=0,1,2,...,p-1, considerados como 1-simplexos singulares $\alpha_j:\Delta_1\to S^1$. É conhecido o fato de que a classe de homologia do 1-ciclo $\alpha_0+\alpha_1+\ldots+\alpha_{p-1}$ é o ge rador de $H_1(S^1, \mathbb{Z}_p)$. Essa idéia pode ser extrapolada para esferas ímpares S^{2q+1} . Nesse caso, considerando S^{2q+1} equipada com a ação standard de \mathbb{Z}_p , existe uma decomposição de S^{2q+1} , chamada "decomposição celular \mathbb{Z}_p equivariante de S^{2q+1} " (vide T.Kobayashi), em p
 células de dimensão 2q+1, a saber, $\alpha_0, \alpha_1, ..., \alpha_{p-1}$, tal que $\alpha_j = T^j(\alpha_0)$, j=0,1,...,p-1. Mais ainda, a (2q+1)-cadeia $\alpha_0 + \alpha_1 + ... + \alpha_{p-1}$, onde α_i está sendo considerada como um (2q+1)-simplexo, é um ciclo que representa um gerador de $H_{2q+1}(S^{2q+1}, \mathbb{Z}_p)$. Em linhas gerais, a idéia por trás da demonstração do Teorema de Kobayashi (e de Walker também) é a seguinte: supõe-se, por absurdo, que exista aplicação \mathbb{Z}_p -equivariante $f:(X,S)\to (S^m,T)$. A seguir, com uso da induzida em \mathbb{Z}_p -homologia singular $f_*: H_*(X, \mathbb{Z}_p) \to H_*(S^m, \mathbb{Z}_p)$, certos ciclos com coeficientes em \mathbb{Z}_p de $S_*(X,\mathbb{Z}_p)$ são transportados para $H_*(S^m,\mathbb{Z}_p)$ e, através da comparação destes com certos j-ciclos geométricos de $S^m, \quad 1 \leq j \leq m,$ provindos da decomposição de S^m obtida através da ação standard de \mathbb{Z}_p ,

comparação esta que culmina com uma análise sobre o gerador m-dimensional (m=2q+1) $\alpha_0 + \alpha_1 + \cdots + \alpha_{p-1}$ acima mencionado, conclui-se que o espaço X obrigatoriamente deve possuir uma classe de homologia singular m-dimensional com coeficientes em \mathbb{Z}_p , $\beta \in H_m(X, \mathbb{Z}_p)$, tal que $f_*(\beta) = [\alpha_0 + \alpha_1 + \cdots + \alpha_{p-1}]$, o que significa que β é uma classe de homologia m-dimensional não nula de X. Se n > m, então $n - 1 \ge m$, o que conduz a uma contradição com a hipótese prévia de que $H_j(X, \mathbb{Z}_p) = 0$, $para \ 1 \le j \le m - 1$.

Em outras palavras, o m-ciclo $\alpha_0 + \alpha_1 + ... + \alpha_{p-1}$ é crucial para o argumento por contradição acima; a classe de homologia não nula de X, que não existe por hipótese, é herdada da geometria de (S^m, T) através da suposta aplicação equivariante $f: (X, S) \to (S^m, T)$.

Os resultados do capítulo anterior, concernentes ao \mathbb{Z}_p -homomorfismo índice, permitem, para alguns valores de p, a substituição do contradomínio (S^m,T) por \mathbb{Z}_p -espaços mais gerais (Y,T), com Y sendo Hausdorff e localmente conexo por caminhos tal que $H_{m+1}(Y,T)=0$. Como $\frac{S^m}{T}=L_p^m$ é o espaço de Lens m-dimensional (é uma variedade de dimensão m), então $H_{m+1}(\frac{S^m}{T},\mathbb{Z}_p)=0$ e, portanto, a categoria de \mathbb{Z}_p -espaços (Y,T) acima descrita inclui (S^m, T) . Portanto, isso mostra que a geometria do \mathbb{Z}_p -espaço (S^m,T) do contradomínio é também dispensável. Por exemplo, no lugar de (S^m, T) , pode-se considerar qualquer variedade m-dimensional M^m , equipada com ação livre de \mathbb{Z}_p gerada por $T:M^m\to M^m$. De fato, M^m é um espaço de Hausdorff localmente conexo por caminhos; além disso, pelo Lema 3.2.2, se $x \in M^m$, existe aberto $U \subset M$ contendo x tal que $T^i(U) \cap T^j(U) = \emptyset$, se $0 \leq i,j \leq p-1, \ \ com \ \ i \neq j.$ Como M^m é m-variedade, U pode ser considerado um m-disco aberto (o mesmo para cada $T^i(U)$). Então, se $\pi:M^m\to \frac{M^m}{T}$ é a aplicação quociente, $\pi(U)$ será um aberto contendo $\pi(x)$ em $\frac{M^m}{T}$, o qual é ainda topologicamente um m-disco. Isso mostra que $\frac{M^m}{T}$ é uma m-variedade e

então $H_{m+1}(\frac{M^m}{T}, \mathbb{Z}_p) = 0.$

Para dar alguns exemplos $(M^m,T)\neq (S^m,T)$ como acima, o seguinte resultado é útil: suponha que G atua nos espaços X e Y via ações $\cdot:G\times X\to X$ $e*:G\times Y\to Y$, respectivamente. Então temos a ação produto

$$\diamond: G \times X \times Y \to X \times Y$$
 dada por $g \diamond (x, y) = (g \cdot x, g * y)$.

Observe que se · é livre e $g \diamond (x,y) = (g \cdot x, g * y)$, então $g \cdot x = x$, donde segue que g é o elemento neutro de G. Isso mostra que se uma das ações que compõem uma ação produto é livre, então a ação produto é livre. Como caso particular dessa situação, se m é ímpar e $T: S^m \to S^m$ é a ação standard de $\mathbb{Z}_p, p \geq 2$, em S^m , então temos a ação produto

$$\underbrace{T \times T \times \cdots \times T}_{q \text{ vezes}} : S^m \times S^m \times \dots \times S^m \to S^m \times S^m \times \dots \times S^m,$$

a qual é livre pois T é livre.

Para dar exemplos que não sejam produto de esferas ímpares, observe que se G e H são grupos atuando livremente em X e Y, respectivamente, então a ação $G \oplus H : X \times Y \to X \times Y$, dada por $(g,h) \cdot (x,y) = (g \cdot x,h \cdot y)$ ainda é livre. Usando isso, seja M^p qualquer variedade p-dimensional, equipada com involução $\varphi : M^p \to M^p$ sem pontos fixos (por exemplo, a antipodal em esferas de qualquer dimensão), e seja V^r uma variedade r-dimensional qualquer, equipada com homeomorfismo periódico de grau p $T : V^r \to V^r$, com p ímpar, o qual gere uma ação livre de \mathbb{Z}_p em V^r (por exemplo, as esferas ímpares com ação standard de \mathbb{Z}_p). Então, pelo fato anterior, temos que $\mathbb{Z}_2 \oplus \mathbb{Z}_p$ atua livremente em $M^p \times V^r$, e sabemos que, como p é ímpar, $\mathbb{Z}_2 \times \mathbb{Z}_p \cong \mathbb{Z}_{2p}$, gerado pela aplicação de grau 2p dada por $\varphi \times T : M^p \times V^r \to M^p \times V^r$. Por exemplo, temos uma ação μ desse tipo de $\mathbb{Z}_2 \oplus \mathbb{Z}_5 \cong \mathbb{Z}_{10}$ em $S^2 \times S^7$, e o teorema que provaremos a seguir abrange o fato de que não existe aplicação equivariante $f : (S^{11}, T) \to (S^2 \times S^7, \mu)$, com T sendo a aplicação standard de grau 10.

Sumarizando, provaremos o seguinte

Teorema 3.3.1 Sejam (X,T) e (Y,S) \mathbb{Z}_p -espaços, com p=2q, q impar. Suponhamos que:

- i) (condições topológicas sobre X e Y) X é conexo por caminhos e Y é Hausdorff e localmente conexo por caminhos.
- ii) (condições homológicas sobre X e Y) Para algum natural $n \ge 1$, $H_r(X, \mathbb{Z}_p) = 0$, para $1 \le r \le n$ e $H_{n+1}(\frac{Y}{S}, \mathbb{Z}_p) = 0$.

 $Ent\~ao,\ n\~ao\ existe\ aplica\~ç\~ao\ equivariante\ f:(X,T)\to (Y,S).$

Demonstração: Suponhamos, por absurdo, que exista aplicação equivariante $f:(X,T)\to (Y,S)$. Então, por ser f equivariante, temos o homomorfismo induzido em homologia equivariante $f_*:H_{n+1}(X,T)\to H_{n+1}(Y,S)$. Como X é conexo por caminhos, $H_r(X,\mathbb{Z}_p)=0$, para $1\leq r\leq n$, e sendo p=2q, com q ímpar, pelo Teorema 3.1.3 temos que o homomorfismo \mathbb{Z}_p -índice $J_{n+1}:H_{n+1}(X,T)\to\mathbb{Z}_p$ é tal que $J_{n+1}(\xi)\neq 0$ para algum $\xi\in H_{n+1}(X,T)$. Pela Proposição 2.4.1, temos que $J_{n+1}:H_{n+1}(Y,S)\to\mathbb{Z}_p$ é tal que $J_{n+1}(f_*(\xi))=J_{n+1}(\xi)\neq 0$. Em particular, $H_{n+1}(Y,S)\neq 0$. Por outro lado, como Y é Hausdorff e localmente conexo por caminhos, pelo Teorema 3.2.3 temos que $H_{n+1}(Y,S)$ é isomorfo a $H_{n+1}(\frac{Y}{S},\mathbb{Z}_p)$. Assim, $H_{n+1}(\frac{Y}{S},\mathbb{Z}_p)\neq 0$, contrariando a hipótese.

Na mesma direção, temos o

Teorema 3.3.2 Sejam (X,T) e (Y,S) \mathbb{Z}_p -espaços, com p sendo um inteiro par qualquer. Suponhamos X e Y satisfazendo as mesmas condições topológicas do teorema anterior e suponha $H_1(X,\mathbb{Z}_p) = 0$, $H_2(X,\mathbb{Z}_p) = 0$ e $H_3(\frac{Y}{S},\mathbb{Z}_p) = 0$. Então não existe aplicação equivariante $f:(X,T) \to (Y,S)$.

Demonstração: Pelo Teorema 3.1.2, existe $\xi \in H_3(X,T)$ tal que $J_3(\xi) \neq 0$. O argumento restante é completamente semelhante ao do teorema anterior.

Exemplo 3.3.1 Um exemplo da situação acima é: $X = S^3$ com ação standard de Z_{2p} , p ímpar, $Y = S^1 \times S^1$, com ação de $\mathbb{Z}_2 \oplus \mathbb{Z}_p \cong \mathbb{Z}_{2p}$, como anteriormente mencionado.

3.4 Um teorema tipo Borsuk-Ulam concernenteà existência de T-coincidências

Seja X um espaço topológico equipado com involução $T: X \to X$ sem pontos fixos, e seja $f: X \to Y$ aplicação contínua, onde Y é um espaço qualquer. Um ponto $x \in X$ é chamado um ponto de "T-coincidência" se f(x)=f(T(x)). Nesta seção, demonstraremos um teorema tipo Borsuk-Ulam, concernente à existência de tais pontos.

Seja X um espaço topológico de Hausdorff e considere $\Delta=\{(x,x);\ x\in X\}\subset X\times X$ a "diagonal" de $X\times X$.

Lema 3.4.1 Se X é um espaço de Hausdorff localmente conexo por caminhos, então $X \times X - \Delta$ é também um espaço de Hausdorff localmente conexo por caminhos.

Demonstração: Sendo X um espaço de Hausdorff, então $X \times X$ também o é e, portanto, $X \times X - \Delta$ é um espaço de Hausdorff pois este é um subespaço de um espaço de Hausdorff.

Como X é um espaço de Hausdorff, temos que Δ acima definido é um subconjunto fechado em $X\times X$ e, desta forma, $X\times X-\Delta$ é aberto em

 $X \times X$. Agora, sendo $X \times X$ localmente conexo por caminhos (já que o produto cartesiano de espaços localmente conexos por caminhos é ainda localmente conexo por caminhos) e como subconjuntos abertos de espaços localmente conexos por caminhos possuem ainda esta propriedade, segue então que $X \times X - \Delta$ é localmente conexo por caminhos.

Em $X \times X$, considere a involução "twist" $S: X \times X \to X \times X$ definida por $S(x_1, x_2) = (x_2, x_1)$, para quaisquer $x_1, x_2 \in X$. Esta tem pontos fixos, a saber, a nossa diagonal Δ . Desta forma, no espaço $X \times X - \Delta$ temos a involução livre, que continuaremos denotando por $S, S: X \times X - \Delta \to X \times X - \Delta$ dada por $S(x_1, x_2) = (x_2, x_1)$.

Definição 3.4.1 Dado X um espaço topológico, denotemos $X^* = \frac{X \times X - \Delta}{S}$.

O teorema a seguir é o resultado tipo Borsuk-Ulam anunciado no início desta seção.

Teorema 3.4.1 Seja X um espaço conexo por caminhos e consideremos T: $X \to X$ uma involução livre. Suponhamos $H_1(X, \mathbb{Z}_2) = 0, H_2(X, \mathbb{Z}_2) = 0, \cdots, H_{n-1}(X, \mathbb{Z}_2) = 0$. Seja Y um espaço de Hausdorff localmente conexo por caminhos e suponhamos que $H_n(Y^*, \mathbb{Z}_2) = 0$. Então, para toda função $f: X \to Y$, existe um ponto de T-coincidência, ou seja, existe $x \in X$ tal que f(x) = f(T(x)).

Demonstração: Suponhamos, por absurdo, que para todo $x \in X$ se tenha $f(x) \neq f(T(x))$ e consideremos a aplicação $F: X \to Y \times Y$ definida por F(x) = (f(x), f(T(x))). Como vimos acima, a aplicação $S: Y \times Y \to Y \times Y$ dada por S(x,y)=(y,x) é uma involução contínua cujo conjunto de pontos fixos é $\Delta = \{(a,a); a \in Y\} \subset Y \times Y$. Dessa forma, $S: (Y \times Y) - \Delta \to (Y \times Y) - \Delta$

é livre de pontos fixos. Como por hipótese, $f(x) \neq f(T(x))$, para todo $x \in X$, segue que F(X) está contido em $(Y \times Y) - \Delta$. Logo, podemos considerar a aplicação $F: (X,T) \to (Y \times Y - \Delta, S)$. Afirmamos que F é \mathbb{Z}_2 -equivariante com relação a T e S. De fato, para todo $x \in X$,

$$F(T(x)) = (f(T(x)), f(T^{2}(x))) = (f(T(x)), f(x)) =$$

$$S(f(x), f(T(x))) = S(F(x))$$

e, então, F é \mathbb{Z}_2 -equivariante com relação a T e S. Como X é conexo por caminhos com $H_i(X,\mathbb{Z}_2) = 0$, $para \ 1 \leq i \leq n-1$, e como $Y \times Y - \Delta$ é Hausdorff e localmente conexo por caminhos com $H_n(\frac{Y \times Y - \Delta}{S}, \mathbb{Z}_2) = H_n(Y^*, \mathbb{Z}_2) = 0$, o Teorema 3.3.1, particularizado para p=2 (2=2.1, com 1 ímpar), nos diz que não existe aplicação equivariante $X \to Y \times Y - \Delta$, estabelecendo a contradição e provando o teorema.

Observação 3.4.1 Seja Y^k um CW-complexo k-dimensional. Então é possível introduzir em $(Y^k)^* = \frac{Y^k \times Y^k - \Delta}{S}$ uma estrutura de CW-complexo 2k-dimensional (por exemplo, vide em [2] um argumento mostrando isso). Desta forma, $H^{2k+1}((Y^k)^*, \mathbb{Z}_2) = \{0\}$. Portanto, uma consequência do teorema acima é o fato de que, dada qualquer função contínua $f: S^n \to Y^k$, onde n > 2k, então existe $x \in S^n$ tal que f(x) = f(-x). Este caso particular do teorema acima foi provado por M. Izydorek e J. Jaworowski em [4].

3.5 Uma generalização do tradicional teorema de Borsuk-Ulam

O tradicional teorema de Borsuk-Ulam nos diz que toda função contínua $f:S^n\to\mathbb{R}^m$ possui coincidência antipodal (ou seja, um ponto $x\in S^n$

tal que f(x)=f(-x)) caso $n \ge m$. Observe que S^n é um espaço topológico conexo por caminhos tal que $H_i(S^n, \mathbb{Z}_2) = 0$, $para \ 1 \le i \le n-1$; desta forma, o teorema a seguir é uma generalização deste resultado.

Teorema 3.5.1 Seja X um espaço topológico conexo por caminhos com involução sem pontos fixos $T: X \to X$ e tal que $H_r(X, \mathbb{Z}_2) = 0$, para $1 \le r \le n-1$, para algum natural n. Então, se $n \ge m$, toda função contínua $f: X \to \mathbb{R}^m$ possui pelo menos um ponto de T-coincidência.

Demonstração: Suponhamos, por absurdo, que exista uma função contínua $f: X \to \mathbb{R}^m$ tal que $f(x) \neq f(T(x))$, para todo $x \in X$. Consequentemente, podemos considerar a função contínua $F: X \to S^{m-1}$ definida por $F(x) = \frac{f(x) - f(T(x))}{\|f(x) - f(T(x))\|}$.

Afirmamos que $F:(X,T)\to (S^{m-1},A)$, onde A é a aplicação antipodal, é equivariante, ou seja, F(T(x))=-F(x), para todo $x\in X$. De fato, dado $x\in X$, então

$$F(T(x)) = \frac{f(T(x)) - f(T(T(x)))}{\|f(T(x)) - f(T(T(x)))\|} = \frac{f(T(x)) - f(x)}{\|f(T(x)) - f(x)\|} = -F(x).$$

Mas, como $n \geq m$, temos então que n > m-1, implicando que $H_n(\frac{S^{m-1}}{A}, \mathbb{Z}_2) = H_n(RP(m-1), \mathbb{Z}_2) = 0$. Temos então os ingredientes: X conexo por caminhos com $H_i(X, \mathbb{Z}_2) = 0$, $para \ 1 \leq i \leq n-1$, S^{m-1} Hausdorff e localmente conexa por caminhos, e com $H_m(\frac{S^{m-1}}{A}, \mathbb{Z}_2) = 0$; nestas condições, o Teorema 3.3.1 (com p=2) nos diz então que não existe aplicação equivariante $X \to S^{n-1}$, estabelecendo a contradição e provando o teorema.

Observação 3.5.1 O resultado acima está em [9] e foi sugerido pelo Prof. Carlos Biasi, do ICMC-USP-São Carlos. Capítulo 4

Referências Bibliográficas

Referências Bibliográficas

- [1] ARAÚJO, A.M. Versão Homológica do Teorema de Borsuk-Ulam para funções Z_p-equivariantes, Dissertação de Mestrado, PPGM, UFSCAR, 1998.
- [2] D'ANNIBALE, W. Coincidências Antipodais para Aplicações da Esfera em Complexos Simpliciais, Dissertação de Mestrado, PPGM, UFSCAR, 1998.
- [3] GREEMBERG, J.M. Lectures on Algebraic Topology, Benjamin, New York, 1967.
- [4] IZIDOREK,M. and JAWOROWSKI, J. Antipodal coincidence for maps of spheres into complexes, Proceedings of the American Mathematical Society, Vol 123, no. 6, 1995; 1947 - 1950.
- [5] KOBAYASHI,T. The Borsuk-Ulam Theorem for a Z_p-map from a Z_q-Space to S²ⁿ⁺¹, Proceedings of the American Mathematical Society, Vol 97, no.4, 1986; 714-716.
- [6] LIMA, E.L. Grupo Fundamental e Espaços de Recobrimento, Projeto Euclides, 1993.
- [7] MATTOS, D.L. Homologia de f-Homeomorfismos e Teoremas de Borsuk-Ulam, Dissertação de Mestrado, PPGM, UFSCAR, 2001.

- [8] MUNKRES, J.R. *Topology: a first course*, Prentice-Hall,Inc. Engleewood Cliffs, New Jersey, 1975.
- [9] PERGHER, P.L.Q., MATTOS, D.L., SANTOS, E.L. *The Borsuk-Ulam theorem for general spaces*, Archiv der Mathematik, a aparecer.
- [10] PERGHER, P.L.Q. $A \mathbb{Z}_p$ -index homomorphism for \mathbb{Z}_p -spaces, Houston Journal of Mathematics, a aparecer.
- [11] VICK, J.W. Homology Theory: an introduction to Algebraic Topology, Academic Press, New York, 1973.
- [12] WHITEHEAD, G.W. Elements of Homotopy Theory, Springer-Verlag, New York, 1978.
- [13] WALKER, J.W. A Homology version of the Borsuk-Ulam Theorem, American Mathematical Monthly, 1983; 466-468.
- [14] YANG, C.T. On Theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobô and Dyson, I,Annals of Mathematics, Vol 60, no.2, 1954; 262-282.