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ABSTRACT

The continuous demand growth for liquid fuels, alongside with the decrease of  fossil oil
reserves, unavoidable in the long term, induces investigations for new energy sources. A
possible alternative is the use of bioethanol, produced by renewable resources such as
sugarcane  bagasse.  Two  thirds  of  the  cultivated  sugarcane  biomass  are  sugarcane
bagasse and leaves, not fermentable when the current, first-generation (1G) process is
used. A great interest has been given to techniques capable of utilizing the carbohydrates
from  this  material.  Among  them,  production  of  second  generation  (2G)  ethanol  is  a
possible alternative. 2G ethanol requires two additional operations: a pretreatment and a
hydrolysis  stage.  Regarding  the  hydrolysis,  the  dominant  technical  solution  has  been
based on the use of enzymatic complexes to hydrolyze the lignocellulosic substrate. To
ensure  the  feasibility  of  the  process,  a  high  final  concentration  of  glucose  after  the
enzymatic hydrolysis is desirable. To achieve this objective, a high solid consistency in the
reactor is necessary.  However,  a high load of solids generates a series of  operational
difficulties within the reactor. This is a crucial bottleneck of the 2G process. A possible
solution is using a fed-batch process, with feeding profiles of enzymes and substrate that
enhance  the  process  yield  and  productivity.  The  main  objective  of  this  work  was  to
implement and test a system to infer online concentrations of fermentable carbohydrates in
the reactive system,  and to optimize the feeding strategy of substrate and/or enzymatic
complex, according to a model-based control strategy. Batch and fed-batch experiments
were conducted in order to test the adherence of four simplified kinetic models. The model
with best adherence to the experimental data (a modified Michaelis-Mentem model with
inhibition  by  the  product)  was  used  to  train  an  Artificial  Neural  Network  (ANN)  as  a
softsensor to predict glucose concentrations. Further, this ANN may be used in a closed-
loop control strategy. A feeding profile optimizer was implemented, based on the optimal
control approach. The ANN was capable of inferring the product concentration from the
available data with good adherence (Determination Coefficient of 0.972). The optimization
algorithm generated profiles that increased a process performance index while maintaining
operational  levels  within  the  reactor,  reaching  glucose  concentrations  close  to  those
utilized in current first generation technology a (ranging between 156.0 g.L ¹ and 168.3⁻
g.L ¹).  However  rough  estimates  for  scaling  up  the  reactor  to  industrial  dimensions⁻
indicate that this conventional reactor design must be replaced by a two-stage reactor, to
minimize the volume of liquid to be stirred.

Key-words: Bagasse  Enzymatic  Hydrolysis  monitoring,  Neural  Network  Inference,
Optimal Control, Optimal Feeding Policies for Semi-Continuous Reactor.
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RESUMO

A crescente demanda por combustíveis líquidos, bem como a diminuição das reservas de
petróleo, inevitáveis a longo prazo, induzem pesquisas por novas fontes de energia. Uma
possível solução é o uso do bioetanol, produzido de resíduos, como o bagaço de cana-de-
açúcar. Dois terços da biomassa cultivada são bagaço e folhas. Estas frações não são
fermentescíveis quando se usa a tecnologia de primeira geração atual (1G). Um grande
interesse  vem  sendo  prestado  a  técnicas  capazes  de  utilizar  os  carboidratos  deste
material.  Dentre elas, a produção de etanol de segunda geração (2G) é uma possível
alternativa. Etanol  2G requer  duas  operações  adicionais:  etapas  de  pré-tratamento  e
hidrólise.  Considerando  a  hidrólise,  a  técnica  dominante  tem  sido  a  utilização  de
complexos  enzimáticos  para  hidrolisar  o  substrato  lignocelulósico.  Para  assegurar  a
viabilidade do processo, uma alta concentração final de glicose é necessária ao final do
processo.  Para  atingir  esse  objetivo,  uma  alta  concentração  de  sólidos  no  reator  é
necessária.  No entanto,  uma carga grande de sólidos gera uma série  de dificuldades
operacionais para o processo. Este é um gargalo crucial do processo 2G. Uma possível
solução é utilizar um processo de batelada alimentada, com perfis de alimentação de
enzima e substrato para aumentar produtividade e rendimento. O principal objetivo deste
trabalho é implementar  e  testar  um sistema para inferir  concentração de carboidratos
fermentescíveis automaticamente e otimizar a política de substrato e/ou enzima em tempo
real,  de  acordo  com  uma  estratégia  de  controle  baseada  em  modelo  cinético.
Experimentos  de  batelada  e  batelada  alimentada  foram  realizados  a  fim  de  testar  a
aderência de 4 modelos cinéticos simplificados.  O modelo com melhor aderência aos
dados  experimentais  (um  modelo  de  Michaelis-Mentem  modificado  com  inibição  por
produto) foi  utilizado para gerar dados a fim de treinar uma rede neural  artificial  para
predizer concentrações de glicose automaticamente. Em estudos futuros, esta rede pode
ser utilizada para compor o fechamento da malha de controle. Um otimizador de perfil de
alimentação foi implementado, este foi baseado em uma abordagem de controle ótimo. A
rede neural foi capaz de predizer a concentração de produto com os dados disponíveis de
maneira satisfatória (Coeficiente de Determinação de 0.972). O algoritmo de otimização
gerou  perfis  que  aumentaram  a  performance  do  processo  enquanto  manteve  as
condições da hidrólise dentro de níveis operacionais, e gerou concentrações de glicose
próximas as obtidas pelo caldo de cana-de-açúcar da primeira geração (valores entre
156.0 g.L ¹  e  168.3 g.L ¹).  No entanto,  estimativas iniciais  de aumento de escala do⁻ ⁻
processo  demonstraram  que  para  atingir  dimensões  industriais  o  projeto  do  reator
utilizado deve ser analisado, substituindo o mesmo por um processo em dois estágios
para diminuir o volume do reator e energia para agitação.

Palavras Chave:  Controle Ótimo, Monitoramento de Hidrólise Enzimática de Bagaço de
Cana-de-açúcar, Perfil de Alimentação Ótimos para Reator Semicontínuo.
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1. INTRODUCTION AND OBJECTIVES

The continuous demand growth  for  liquid  fuels,  alongside  with  the  decrease of

fossil  oil  reserves, unavoidable in the long term, induces investigations for new energy

sources. A possible solution to substitute some liquid fossil fuels is the use of bioethanol,

produced from renewable sources (NAIK et al., 2010).

In Brazil, a massive production of ethanol as automotive fuel occurred in the 1970s,

when the government initiated a national program (Pró-Álcool) to reduce the dependency

on foreign refined oil. The Pró-Álcool program had as main starting material sugarcane

juice. This culture was intensified during this period, especially in southeast Brazil. The

technology used in the program, called first generation (1G), was similar to the one utilized

nowadays.  But  two  thirds  of  the  cultivated  biomass,  i.e.  sugarcane  bagasse  or  other

lignocellulosic materials such as leaves, generates non fermentable substrates when the

current process is applied (FREITAS & KANEKO, 2012).

Even though the biomass that is non fermentable via 1G processes may be used to

generate other forms of energy (bioelectricity, production of syngas and so on), there is

great interest in developing techniques capable of converting the carbohydrates from this

material  into bioethanol,  thus generating more ethanol from each sugarcane mass unit

(DANTAS et al., 2013).

Currently, large-scale 2G ethanol production still presents economic bottlenecks, .

Among the most important technical hindrances is the scale up of the hydrolysis process

to industrial application, in order to generate high product yields while keeping costs low

(MODENBACH & NOKES, 2013).

This work intended to test and implement a softsensor architecture using Artificial

Neural  Networks,  to  predict  the  concentration  of  sugars  in  a  bioreactor  during  the

enzymatic hydrolysis of pretreated sugarcane bagasse using cellulases from a commercial

cocktail.  Besides,  an  algorithm based  on  optimal  control  theory  was  implemented,  to

define feeding strategies of substrate and/or enzymatic complex for the hydrolysis reactor.

It should be stressed that the main goal of this work is not to propose an optimal

operational policy for a specific bioreactor, but rather to establish a consistent methodology

to be applied in industrial  plants.  Besides,  the experimental  data that  were used to fit

models and to tune softsensors, and although the methodology may be consistent, the
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final results hardly could be applied, directly, to industry-scale reactors. 

Nevertheless, the algorithms presented here, using computational intelligence tools

and applying  advanced dynamic control  theory,  are expected,  with  modification,  to  be

useful for further use in the biorefinery, thus contributing for the consolidation of the 2G

industrial process.
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2. LITERATURE REVIEW

2.1. LIGNOCELLULOSIC COMPOUNDS

Second  generation  biofuels  are  fuels  produced  from  lignocellulosic  substrates.

These  are  fibers  found  in  plants  and  vegetables.  Their  main  function  is  to  provide

structural support, while assuring microbiological and chemical protection. The fractions of

lignocellulosic materials are mostly composed by cellulose (32–55%), hemicellulose (19–

24%), lignin (23–32%) and ashes (3–6%) (SANTOS et al., 2012). 

Cellulose (C6H1005)n is the most abundant polysaccharide in the fiber. Its ordered

structure consists of several hundred glucose molecules (XU et al., 2013). The cellulose

spatial conformation is determined by three main interactions. The first interaction is the

glycosidic  bond  that  unites  a  glucose  to  another  glucose  molecule  through  a

covalent bond. This generates cellobiose, and this disaccharide is repeated throughout the

polymer  chain  (ROCHA  et  al.,  2011).  The  second  interaction  is  among  hydrogen

molecules from the  same chain  and the  third  between adjacent  chains.  Due to  these

interactions, part of cellulose macromolecules can form a crystalline region, granting to the

entire structure a high cohesiveness, and rendering it insoluble in water and several other

solvents, and resistant to hydrolysis (SANTOS et al., 2012).

Hemicellulose  differs  significantly  from  cellulose.  It  is  a  heteropolysaccharide

composed by hexoses (glucose,  galactose and mannose),  pentoses (xylose,  the most

abundant  monomer,  and  arabinose),  acetic  acid,  glucuronic  acid  and  4-O-methy-

glucuronic  acid.  The  relation  between  these  substances  differs  from  vegetable  to

vegetable.  This  portion  of  the tissue does not  form crystalline  regions,  thus it  can be

removed or hydrolyzed more easily than cellulose (CANILHA et al., 2012).

Lignin is formed by the polymerization of p-coumaryl alcohol, sinapyl alcohol and

coniferyl alcohol. It is the second most abundant polymerer in the lignocellulosic biomass,

and provides a barrier against foreign agents. Recalcitrance of the biomass is in great part

due to this lignin barrier (ARANTES & SADDLER, 2011). In order to prevent this effect, a

delignification procedure may be applied. From a biorefinery point of view, the recuperated

lignin may be used in other processes (STEWART, 2008). Alternatively, its combustion will

provide an extra heat source to the 2G process.

To  produce  ethanol  from  these  lignocellulosic  materials  the  structural

3



polysaccharides must be hydrolyzed, so that their monosaccharides (mostly pentoses and

hexoses)  become  available  to  fermentative  microorganisms.  However,  before  the

hydrolysis  process,  a  pretreatment  is  required  to  separate  and  render  cellulose  and

hemicellulose available to the hydrolytic action of the enzyme cocktail. A representation of

the process is in Figure 1.

Figure 1 – Lignocellulosic Biomass Processing 

(Source: author’s collection, adapted from: SANTOS et al., 2012)

2.2. BIOMASS PRETREATMENT

The  pretreatment  procedure  destabilizes  the  lignocellulosic  structure,  making  it

more  susceptible  to  further  processing.  This  is  achieved  by  increasing  the  material

porosity, reducing cellulose crystallinity and removing lignin, to a certain degree. The entire

procedure must  be  applied  up to  an intensity  that  generates an optimum platform for

subsequent operations, while considering the formation of inhibitors and cost effectiveness

(CHIARAMONTI et al, 2012). 

Several methodologies are available for this process. Thus, the choice of the most

adequate pretreatment depends on the feedstock, process plant  design and economic

situation (BANERJEE et al., 2010).

Among several available pretreatments, in this work special attention will be given

to  autohydrolysis,  also know as hydrothermal  pretreatment.  This  procedure requires  a
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pressurized reactor to maintain water in a liquid state at temperatures ranging from 150ºC

to  230ºC,  for  different  time  periods.  At  these  temperatures,  biomass  suffers  cooking,

increasing cellulose digestibility, while producing small amounts of inhibitors (KIM et al.,

2009). 

Another  advantage  of  this  technology  is  the  absence  of  additional  chemical

compounds  during  the  process,  yielding  a  less  toxic  effluent  than  other  alternatives.

However,  this  pretreatment  does  not  alters  lignin  to  an  extent  that  may  render  these

molecules  inactive  in  subsequent  processes  (MENON  &  RAO,  2012).  A  typical

composition of sugarcane bagasse, for the most significant compounds, before and after

the autohydrolysis process is presented in Table 1.

Table 1 – Typical Composition of Sugarcane Bagasse Before and After Autohydrolysis.

Compound Raw Sugarcane Bagasse
Autohydrolysis Treated

Bagasse

Cellulose
(% w.w ¹)⁻ 38.0 54.3

Hemicellulose 
(% w.w ¹)⁻ 29.4 5.9

Lignin
(% w.w ¹)⁻ 21.7 24.8

(Source: Adapted from RODRIGUEZ-ZÚÑIGA et al., 2014)

2.3. LIGNOCELLULOSIC BIOMASS HYDROLYSIS

The  pretreated  biomass  must  be  further  hydrolyzed  to  provide  fermentable

fractions. At this stage, the polymers released by the pretreatment are converted to free

monomers, readily available to fermentation.  Two mains technologies are used in order to

hydrolyze lignocellulosic materials,  using acid solution, generally sulfuric acid,  or using

enzymatic complexes (GAMAGE et al., 2010; SUN & CHENG, 2002). 

Acid  hydrolysis  is  usually  divided  in  two  groups,  diluted  and  concentrated  acid

hydrolysis. In diluted acid hydrolysis, acid concentrations range from 1 to 3% w.w -1, at high

temperatures, 200–240ºC. Due to the high temperature toxic compounds and inhibitors,

such  as  furfurals  and  hydroxymethylfurfural,  are  generated  after  the  degradation  of

pentoses and hexoses . This degradation does not only decreases the hydrolysis final

yield, but the generated compounds are toxic to further production stages, such as the

fermentation process (LIMAYEM & RICKE, 2012). 
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Concentrated acid is a more common process methodology. In this operation the

acid concentration is high (90% w.w-1) and, therefore, temperatures can be lower. Thus,

this process generates a smaller amount of inhibitors. However, the utilization of such high

acid concentrations is costly, and also generates a highly toxic effluent (SUN & CHENG,

2002).

This leads to the necessity for a more economically and environmental  suitable

process.  One  alternative  is  enzymatic  hydrolysis.  This  sort  of  procedure  yields  high

conversions, with fewer risks of producing toxic secondary products (LIMAYEM & RICKE,

2012). However, a high cost is inherent to this process, since, the compound itself has a

high value and, with the current technology, direct enzymatic complex reuse is not feasible

when using a soluble enzymatic complex (DANTAS et al., 2013).

To  introduce  enzymatic  hydrolysis  into  the  ethanol  production  route  several

research fronts are explored, among them: enzymatic complex improvement (KUPSKI et

al.,  2013);  implementations  of  the  second  generation  technology  alongside  the  first

generation  process  (FURLAN et  al.,  2012);  utilizing  high  substrate  loading;  hydrolysis

optimization modifying the feeding policy to the reactor in a fed-batch process (HODGE et

al., 2009; CAVALCANTI-MONTAÑO et al., 2013).

2.3.1. Modeling Enzymatic Lignocellulosic Biomass Hydrolysis

To  optimize  the  bioreactor  design  and  operational  conditions  it  is  necessary  to

understand the kinetics that commands the interaction of the lignocellulosic material and

the enzymatic complex. This study is difficult since several effects are reported among

substrate and catalyst (SOUSA JR et al., 2011). To cope with such complexity, a large

number of models are proposed to elucidate this process behavior.

Different  approaches  are  used  to  model  the  process.  A summary  of  them  is

presented in Table 2.

Analysis of Table 2 indicates that the model choice must be based on the goal to be

achieved. As the model's phenomenological foundation increases, so does its complexity,

generating the necessity for more specific data. However, for some reactive systems it

may be unpractical—or even unfeasible—to measure all significant effects, necessary to

validate more complex models. For a macro analysis of an industrial process, these details

may not even be significant at all. Thus an adequate tradeoff between available data and

model complexity must be sought.
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Table 2 – Classification of Cellulose Hydrolysis Kinetic Models

Model Category Features and Basis Utility Limitations

Nonmechanistic
Not Based in

Enzyme/Substrate
Interaction

- Good Data
Adherence

- Does Not Enhance
Phenomenon

Understanding

Semimechanistic
Based in

Enzyme/Substrate
Interaction

- Good Data
Adherence 
- Enhances

Fundamental
Understanding

- No Clarification on
How Substrate

Form Interferes in
the Kinetics

- All Enzymatic
Activity Condensed
in one Parameter

Functionally Based

Based in
Enzyme/Substrate

Interaction and
Includes State

Variables

- May Include
Substrate

Characteristics and
Several Enzymes

Activities 

- Large Amount of
Parameters

Demanding More
Experimental Data
- Difficult Validation

Structurally Based

Based in the
Substrate

Morphological
Information

- Generates
Understanding of

How the Substrate
Characteristics

Affect  Hydrolysis

- Model
Composition is

Difficult
- Demands Specific

Data

(Adapted from Zhang & Lynd, 2004)

A good  equilibrium  point  in  this  tradeoff  is  the  utilization  of  semi-mechanistic

models.  Models  of  this  category  reflect  some—at  least  rough—understanding  of  the

phenomena occurring  in  the  system,  though  only  using  relative  simple  data,  such  as

product concentration throughout time, for model fitting and validation. This class of model

is generally applied for optimization and designing industrial reactors (CARVALHO et al.,

2013). 

The most popular semi-mechanistic models for enzymatic reactions  are derivations

of Michaelis-Menten’s (Michaelis & Menten, 1913). However, Michaelis-Menten model is

based on mass action laws valid for substrates (and products) in the fluid (liquid, in this

case) phase. This is not true for the specific case of lignocellulosic hydrolysis, since most

of the substrate is solid. The excess substrate to enzyme condition ([S]>>[E]), necessary

to the quasi-steady state condition, is also never achieved, since the fraction of cellulose

available to hydrolysis is not high enough. This derives from the fact that hydrolysis occurs

in a heterogeneous medium, and the reaction is occurring on the substrate surface, so the

enzyme must first diffuse to the reactive site to be able to act (BANSAL et al., 2009). 
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Nevertheless, literature has shown that Michaelis-Mentem models may be suitable

to fit experimental results of the hydrolysis of lignocellulosic materials, despite the lack of

physical-chemical background. Yet, in order to use this type of model some assumption

regarding the substrate solid state must be established. Two options are available in the

literature: using a pseudo-homogenous assumption for the solid substrate (Equation 1). Or

using a modified form of the model, which assumes that the soluble enzyme attacks the

solid substrate, but with negligible changes of the substrate initial concentration (Equation

2);  the  soluble  enzyme  has  to  absorb  (and  desorb)  from  the  solid  substrate.  The

concentration  of  enzyme  absorbed  on  the  substrate  must  be  much  smaller  than  the

amount free in the medium ([E]>>[Eads])  (CARVALHO et al., 2013).

v=
k⋅[E ]⋅[S ]

(Km+[S ])
              Equation 1

v=
k⋅[E ]⋅[S ]

(Km+[E ])
Equation 2

Where,  v  is the reaction rate,  k  is the enzyme turnover number,  [E ]  is the

enzyme concentration,  [S ]  is  the substrate concentration and  Km  is  the  Michaelis-

Mentem half-saturation constant. 

Both models are showed to be able of fitting hydrolysis data. However, they do not

account  for  inhibitors  present  in  the  process.  Bezerra  &  Dias  (2004)  showed  that  a

pseudo-homogenous  model  with  competitive  inhibition  by  the  product  was  the  most

suitable model in this case, as other effects that may reduce hydrolysis rates, such as

nonproductive cellulase binding, enzyme jamming and enzyme deactivation were not so

significant,  according  to  these  authors.  Following  this  approach,  Equation  1  can  be

modified into Equation 3.

v=
k⋅[E ]⋅[S ]

K m⋅(1+
[P ]

K ic

)+[S ]

              
Equation 3

Where  K ic  is  the competitive  inhibition  constant.  Even though this  is  a  rather

simplified model, it is expected from the literature results that this structure may hold for

the conditions that will be studied in this work. 
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The same consideration of competitive inhibition can be applied to Equation 2, to

generate a modified Michaelis-Menten model with product inhibition. 

v=
k⋅[E ]⋅[S ]

Km⋅(1+
[P ]

K ic

)+[E ]

              
Equation 4

2.3.2. Enzymatic Complex

Due to the high complexity of the lignocellulosic material,  the enzymatic catalyst

used for biomass hydrolysis is not composed by only one active protein, but by a congress

of several molecules, each interacting with a portion of the substrate.

The  enzymes  that  interact  with  cellulose  to  produce  glucose  are  denominated

cellulases. Cellulases are enzymatic complexes that may be produced by fermentation of

filamentous  fungi  from  the  genre  Trichoderma,  Aspergillus  and  Penicillum (WYMAN,

2003). 

Cellulases  are  divided  in  three  main  groups.  Endoglucanases  (endo-1,4-β-

glucanase) work in the amorphous region of the cellulose molecule and binds randomly,

liberating reductive ends in the chain. Celobiohydrolases (exo-1,4-β-glucanase) act in the

reducing  and  non-reducing  ends  of  the  chain,  both  e  natural  ones,  and  on  the  ones

generated by Endoglucanases. The last group is composed by  β-glucosidases and its

function  is  to  hydrolyze  cellobiose  into  glucose  (THONGEKKAEW et  al,  2008).  Other

enzymes may be used as addictives to enhance the performance of the cocktail. Oxidases

such as lytic polysaccharides monooxygenases are one example (HORN et al., 2012).

Residual  hemicellulose,  that  was preserved in  the solid  substrate  after  the pre-

treatment of the biomass, can be hydrolyzed by the action of a group of enzymes know as

Hemicellulases.  Among  them  are:  endoxylanases,  β-xylanes  and  α-L-

arabinofuranosidase, among others (JORGENSEN et al., 2007).

All these enzymes are commonly found in commercial cocktails, although the exact

composition of such complexes is not disclosed..

2.4. HIGH SOLIDS ENZYMATIC HYDROLYSIS

The  so  called  C6  liquor,  essentially  glucose  for  further  fermentation  (with

Saccharomyces cerevisiae),  is  the  output  of  the enzymatic  bioreactor,  where  cellulose
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hydrolysis occurs. For the economics of the overall  processes, it is very important that

glucose  is  yielded  at  high  concentrations,  thus  reducing  the  amount  of  water  in  the

solution. Ideally, for sugar cane mills, the target should be minimizing the energy demand

by  reaching  glucose  concentrations  as  close  as  possible  to  the  sugarcane  juice’s,

aproximally 180 g.L ¹ (FERNANDES, 2003). Either if the C6 liquor is used in separate⁻

fermenters or if it is mixed with the sugarcane juice, a concentrated C6 liquor will reduce

the demand of heating power in the global process (DIAS et al., 2012; FURLAN et al.,

2012).

Thus, a high solid consistency (load of substrate within the reactor) is necessary,

generating  a  more  concentrated  carbohydrate  solution  at  the  end  of  the  process.  As

previously mentioned, a more concentrated final product would enable the addition of the

2G stream to the 1G’s, before the fermentation (HUMBIRD et al., 2010), without (or with

minimal)  demand of  evaporators after  the hydrolysis  reactor.  High-solids loadings also

generate economical advantages since the operational volume will be lower than with low-

solids operation, resulting in less energy to heat or cool the reactor. Disposal treatment

costs would be lower too, due to the reduction of water usage (HODGE et al., 2009).

High Solids processes are those where the ratio of solid material to aqueous phase

is such that very little free liquid is present (HODGE et al.,   2009). As water becomes

sparse within the reactor two main issues arise. Water is first and foremost necessary in

order to provide a medium in which the chemical reaction will take place. At high solids

content, mass transfer becomes an issue, since the enzyme will be hindered to reaching

its reactive site (MODENBACH & NOKES, 2013).

The  second  issue  is  the  reactive  medium apparent  viscosity.  Water  dilutes  the

solids  inside  the  reactor,  effectively  decreasing  viscosity,  and  increasing  the  lubricity

between the particles. A larger lubricity decreases the required shear rate to agitate the

reactor. A smaller agitation necessity leads to smaller power consumption. Therefore, at

high solids rates, reactor mixing becomes an issue, due to the high power demanded

(KRISTENSEN et al., 2009). Thus, it would be interesting to have a reactor operational

policy that would bypass such conditions.

2.5. BIOMASS HYDROLYSIS IN SEMI-CONTINUOUS OPERATIONS

Biomass hydrolysis in fed-batch processes appears as a promising strategy since

adverse conditions of a standard batch are avoided. A process policy where substrate is
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fed into the reactor continuously avoids the necessity of beginning the process with high

solid loadings, facilitating the system homogenization. Furthermore, in fed-batch process,

when compared to the same process done in a standard batch process, the conversion

and  productivity  is  higher,  since  smaller  solid  loadings  diminish  inhibitions,  especially

enzyme/substrate inhibitions (HODGE et al., 2009).

Studies for the optimization of fed-batch processes may begin by promoting batch

hydrolyses under  high-solids concentrations,  when stirring and mixing in the tank may

become  a  problem  (HODGE  et  al.,  2008).  After  the  reactor  model  is  consolidated,

alterations are made in order to contemplate the feeding flow (HODGE et al., 2009). 

Most of the published studies deal with spreading the initial substrate load evenly

during the batch  time,  and do not  propose optimum profiles  (CHANDRA et  al.,  2011;

GUPTA et al.,  2012).  This implementation does not optimize the system, and may not

maximize its performance. Optimal control theory (dynamic optimization) may be applied

to maximize productivity and minimize the utilization of enzymatic complex (CAVALCANTI-

MONTAÑO et al., 2013). A  summary  of  previous  literature  results  in  the  subject  is

presented in Table 3.

Table 3 brings important points to the discussion. The work of Chandra et al. (2011)

is the only presented research that does not demonstrate an improvement with the fed-

batch system when compared with a standard batch. This work also is the only one that

does not  alters enzyme complex  concentration throughout  the  process,  indicating that

there  can  be  a  relation  between  the  enzyme  feeding  profile  and  fed-batch/batch

improvement .

Another important characteristic is that none of the cited works considers the power

demands  for  stirring  within  the  reactor.  The  papers  do  not  consider  how  the  solids

concentration will influence the reactor operation cost, and when the solid concentration is

considered, the value is related to the reactor operational range, and not related to some

index indicating the performance of the process. Nevertheless, as it will be shown further,

it  is  imperative  to  consider  the  agitation  power,  and  how  it  is  changed  by  solids

concentration, for the optimization of the process.
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Table 3 – Enzymatic Fed-Batch Hydrolysis of Lignocellulosic Biomass

Paper
Manipulated

Variables
Control Policy Conclusion

Hodge et al, 2009
Solids and Enzyme

Feeding

Maintain Solids
Concentration to a

Set-point of 
15% w.w-1

80% Total Cellulose
Conversion in a

Process Equivalent
to Batch With 25%
w.w-1 Intial Solids

Moralez-Rodriguez 
et al., 2010

Solids and Enzyme
Feeding

Proportional-Integral
Control to Maintain

Solids Concentration
to a Set-point and
Minimize Enzyme

Addition

Reduction of 107% in
Enzyme Addition

Chandra et al., 2011 Solids Feeding
Fixed Feeding

Scattered Through
the Process

No Appreciable
Difference Between

Batch and Fed-Batch
Process 

Gupta et al., 2012
Solids and Enzyme

Feeding

Fixed Feeding
Scattered Through

the Process

Fed-Batch
Conversion 56%

Better Than
Equivalent Batch

Process

Cavalcanti-Montaño
et al., 2013

Policy 1:
Solids Feeding

Policy 2:
Solids and Enzyme

Feeding

Policy 1:
Optimal Control

Policy 2:
Control to Maintain

High Hydrolysis
Velocity

200 g.L-1 Final
Carbohydrates
Concentration –

Improvement from
the Batch for High

Enzyme Prices

2.6. OPTIMAL CONTROL

The optimal control problem (or dynamic optimization) consists in, basically, finding

control  variables optimum profiles (several  decisions dynamics),  control  parameters  or

project  variables  values  (static  variables)  and  possibly  the  process  final  time  that

maximizes  (or  minimize)  a  performance  scalar  (objective  function  or  cost  function)

(RIBEIRO & GIORDANO, 2005; RAMIREZ, 2004). The direct formulation of the optimal

control problem is as follows (SRINIVASAN et al., 2003):

min
(u(t ), p , t )

J (u , p)=ψ(x (t f ) , p ,t f ) Equation 5

Subjected to:
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ẋ=f (x(t) ,u (t) , p , t)               x (t 0)=x0 Equation 6

g(x (t) , u(t ) , p ,t )=0 Equation 7

S(x (t) , u(t) , p)≤0            T (x (t f ))≤x0 Equation 8

By  minimizing,  or  maximizing,  the  functional,  or  cost  function,  J  under  the

constraints and weights given by the other equations an optimum profile for the control

variable may be calculated (RAMIREZ, 2004).

Where J is the functional, or cost function, x (t)  is the state variables vector, and

x0  is the, usually known initial conditions, u(t )  is the control variable profile throughout

time, g  is the equality constraint vector, S  is the inequality constraint vector and p  are

static decision variables.

There are several methods to calculate the optimum solution. The solution method

varies with how the state and input variables are handled, and how the numerical solution

is  carried  out.  The  functional  presented  in  Equation  5  may  be  optimized  in  a  direct

approach,  by using  an optimization  algorithm,  or  indirect  approach,  by  using  methods

based in variational calculus such as the Pontryagin's Minimum Principle and the principle

of optimality of Hamilton-Jacobi-Bellman (SRINIVASAN et al., 2003). 

A simple method for solving the optimal control problem stated (Equations 5–8) is

the  sequential  approach.  In  contrast  to  indirect  approaches,  in  this  direct  method  no

analytical  differentiation is  needed and it  is  an  adjoint-free computation,  i.e.  no adjoin

variables (Lagrange multipliers) has to be calculate. In this method however, the control

vector,  u(t) must be parameterized using a finite set of parameters—the actual decision

variables. Though this method is easy to implement, it tends to be slow, especially when

inequality path constraints are included in the problem. (SRINIVASAN et al., 2003).

2.7. ENZYMATIC HYDROLYSIS FED-BATCH OPTIMAL CONTROL 

It should be stressed that the definition of the functional, or cost function, is a key

step to have a well-posed optimal control problem. Defining reasonable criteria to evaluate

the “optimality” of a specific solution in real life is probably the most challenging task for

the process engineer that is implementing optimal control algorithms. 

In the special case of lignocellulosic hydrolysis, some possible performance indexes

are:  productivity  per  enzyme  mass,  fermentable  carbohydrates  conversion,  final
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carbohydrates concentration, some economical index related with the operational cost of

the bioreactor with the selling price of bioethanol. The dynamic control variables may be

the mass inflow of substrate and of enzymatic complex.

Most optimal control techniques presented in the literature for biomass hydrolysis

are open loop, no method for information feedback is used. That is, the optimal policies

are previously computed, assuming that the real process will not deviate greatly from the

model predictions. Thus, disturbances originated from several sources, such as substrate

composition variations or errors in secondary control systems, are not corrected by the

control software (UPETRI, 2013). To consider these variations it is necessary to close the

control loop, enabling the automatic update of control profiles based on the current state

and future possibilities.

The  feedback  of  data  gives  the  control  layer  capabilities  for  dealing  with

uncertainties,  not  considered  in  the  internal  models.  Previously  determined  kinetic

parameters  may  then  be  re-estimated,  and  optimum  trajectories  of  the  system,

recalculated. The feedback may generate a better performance when comparing to open

optimization. However, a closed-loop control mesh may render the system more sensitive

to external variations. This comes from the fact that, to maintain the system optimized, the

controller  distributes  the  error  into  the  controlled  values  by  intensifying  activations

densities.  This effect  generates a stress in the component,  since more activations are

necessary (NAGY & BRAATZ, 2004).

Commonly, the update of optimal profiles for fed-batch processes is translated into

changes  in  the  feeding  streams  to  the  reactor.  This  is  especially  the  case  when

temperature is not an adequate variable to be manipulated, following profiles that change

with time: certainly,  this is not a desirable strategy for an enzymatic reactor,  since the

catalytic action of the enzymes is restrict to narrow ranges of temperature. Essentially, this

kind of reactor will be operated isothermally, in a temperature where the enzyme activity is

high, while thermal inactivation is not significant. Although, this approach may be improved

(considering thermal profiles during operation of the reactor), in this work the reactor will

be isothermal (the temperature closed loop feedback control runs in standalone feature,

with a fixed set point).

Besides  temperature,  other  secondary  variables  may  be  manipulated  by  the  dynamic

control algorithm. One example is  the  agitation rate. 
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2.8. ONLINE FERMENTABLE CARBOHYDRATES DETERMINATION

In the hydrolysis of the cellulose fraction of the biomass, the desired products are

free  carbohydrates,  especially  glucose.  Therefore,  to  optimize  this  compound  final

concentration, a methodology capable of predicting concentrations of this substance online

is necessary. Several methods can be applied to quantify them, ranging from titration and

colorimetric techniques to chromatographic analysis (SLUITER et al., 2010).

Nevertheless, these techniques are used in laboratory scale, demanding qualified

operators and a relatively long time (DEMARTINI et al., 2011). Therefore, usual analytical

techniques are not  suitable to  online monitoring,  and more  suitable  methods must  be

developed, able to be used within an automated supervision/control framework.

A possible alternative to monitor fermentable carbohydrates is the utilization of soft

sensing to infer the state of the system. In a softsensor, a set of measurements, obtained

from different  sensors,  are the input  for  a  model  (usually  empirical,  black box)  whose

output is the inference of the variable of interest. Although extrapolation is not expected to

be accurate with this kind of model, the accuracy and precision of the predictions must

hold when a set of input values is not contained in the original experimental data (but is

within the range of the data used for tuning the softsensor). Among the most popular soft

sensing algorithms are: Principle Component Analysis (PCA) combined with  Least Partial

Square  (LPS)  regression;  Artificial  Neural  Networks  (ANN);  and  Neuro-Fuzzy  systems

(NF) (KADLEC et al., 2009). 

Artificial  Neural  Networks  (ANNs)  are  mathematical  models  inspired  by  the

mechanism that the human brain uses to handle information. One important application of

ANNs is  patter  recognition.  Among several  types  of  ANN architectures,  the  multilayer

perceptrons  (MLP)  can  be  highlighted.  In  this  architecture  each  artificial  neuron  is

connected to all the neurons in the following layer, the input for each neuron is multiplied

by  a  weight  value  and  then  it  is  introduced  into  a  transfer  function.  The  network

composition is carried by a training stage using an optimization method to minimize the

error between the model output and the experimental value, using independent test data

sets (not applied in the tuning of the ANN parameters) to avoid overfitting. After training,

the network may be applied to predict the value of the monitored variable from the primary,

directly measurable, variables (DEHURI & CHO, 2009). 

15



2.8.1. Torque Measurement

Torque  is  an  important  variable  when  analyzing  the  rheometry  of  a  solution  or

suspension.  Usually,  torque measurement is done off-line: a sample of  the medium is

loaded in a bench rheometer (EHRHARDT et al., 2010). 

In studies that monitor rheometry throughout the enzymatic hydrolysis process, a clear

decrease in the torque demanded to agitate the medium is observed when the solids in the

reactor are hydrolyzed (SAMANIUK et al., 2011) However, these authors did not measure

the torque online. Using a system capable of monitoring the torque throughout the process

may enable solids monitoring, and this measured data can be used in the soft sensor.

2.8.2. Visible and Ultraviolet Spectroscopy

An analytical online system, capable of analyzing the supernatant optical properties,

alongside the hydrolysis reactor,  can uncover new behaviors of the hydrolysis kinetics.

Specially the presence of inhibitors of  the enzyme complex within the reactor may be

detected. 

This  idea is  supported  by  the  fact  that  lignin  absorbs electromagnetic  radiation

strongly in the ultraviolet region. Some methodologies use this characteristic in order to

ascertain lignin contents in the biomass (NREL, 2008; GOUVEIA et al., 2009; KLINE et al.,

2010).

Thus, an instrumentation capable of measuring lignin,  as well  as other possible

analytes, can be feedback into the controller unit in order to generate the input of the soft

sensor, and provide information (including inhibitors concentrations) to re-parametrize the

kinetic model used by the optimal control algorithm.

2.8.3. Conductance/Capacitance Spectroscopy

Conductance and Capacitance Spectroscopy (CCS) is based on the generation of

alternating electrical fields in the media (inside the reactor, in our case). Thus, the CCS

sensor  is  an  in  situ  measuring  device.  Under  certain  frequencies,  some  groups  of

molecules are polarized. This polarization changes the dielectric constant of the medium.

This can be measured as variations in the conductance, the capacity of the medium to

allow  an  electrical  current  to  pass  through  itself,  and  capacitance,  the  capacity  of  a

medium to store electrical charge (VOJINOVI et al., 2006).

CCS has  been  recently  reported  for  monitoring  the  hydrolysis  of  lignocellulosic
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material by BRYANT et al., 2013 who observed a linear correlation between capacitance

the contents of solids inside the reactor.

Therefore,  an  instrument  of  this  sort  can  be used to  aid  the  monitoring  of  the

reactor, either as a standalone instrument or as a source of input signals to the soft sensor

layer.
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3. MATERIALS AND METHODS

3.1. ENZYMATIC HYDROLYSIS

Bagasse was donated by Usina Ipiranga S/A (Descalvado, SP), and it is the product

of  milling  sugar  cane  used  to  extract  the  high  carbohydrate  content  juice  from  this

vegetable.

Batch  and  fed-batch  enzymatic  hydrolysis  were  realized  utilizing  hydrothermally

pretreated sugar cane bagasse. The pretreatment was carried out in pressurized reactor,

with a maximum pressure of 200 psi, at 200 RPM. The reactor was loaded with 0.010

grams of dry bagasse per milliliter of reactor (10 % w.v ¹⁻ ) and then programmed to reach

195 ºC  and hold this temperature for 10 min. The pretreated bagasse was then dried in

kiln for 24h at 60 ºC.

The batch experiments were realized using 10% w.v ¹ of dry pretreated bagasse⁻

suspended  in  4.80  pH and  50  mM citrate  buffer  and  50ºC (Wang  et  al.,  2012).  The

hydrolysis was carried out in agitated vessel containing 3 L of reactive media in a 5 L

container. The reactor was stirred at 470 RPM by a pair of Rushton impellers, both equally

distributed  between  the  vessel  bottom and  the  liquid  surface.  Temperature  inside  the

reactor was maintained using a thermostatic water bath set to 50 ºC. The total batch time

was 48 h and manual analysis were performed at 0.0, 0.5, 1.0, 2.0, 4.0, 6.0, 12.0, 24.0,

36.0 and 48.0 h. 

The enzymatic  complex used was Cellic  Ctec  2® donated by Novozymes Latin

America (Araucária, PR). In the batch experiments, 1.04 g (13.84 mL) were added, this

mass is equivalent  to  a  loading of  10 FPU.gBagasse ¹,  which is  the operational  load in⁻

studies within the research group. Filter Paper Unity (FPU) is the unit used in order to

measure cellulase hydrolysis potential.

The fed-batch experiments were performed with similar conditions to those of batch

experiments,  4.80  pH and 50 mM citrate buffer  and 50ºC.  However,  the substrate an

enzymatic complex were not added in the begging of the process, but, however, fed to the

reactor following a feeding profile, presented in Table 4. The experiments lasted for 6h.

The substrate feeding was carried out with a solids concentration of 40% in the inlet flow.

The reactor initial volume was 3 L and was filled until 3.5 L. 

Two experiments were performed for each strategy. Manual samples were taken 2
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minutes before and 2 minutes after each feeding instant. 

Table 4 – Fed-Batch Feeding Profile

Time (h) Solids Feeding (g)
Accumulated

Solids (g)
Enzyme Feeding

(g)
Accumulated
Enzyme (g)

0.00 191.02 191.02 0.31 0.31

0.50 0.51 191.54 0.23 0.54

1.00 5.50 197.04 0.56 1.10

1.50 1.30 198.34 0.33 1.43

2.00 10.83 209.17 0.38 1.81

2.50 8.09 217.26 0.32 2.13

3.00 6.93 224.19 0.14 2.28

3.50 49.25 273.45 0.11 2.38

4.00 10.74 284.19 0.43 2.82

4.50 6.35 290.54 0.22 3.03

5.00 13.37 303.91 0.08 3.11

5.50 0.35 304.25 0.00 3.11

3.2. MONITORING AND CONTROL SYSTEM

This  work  proposes  the  dimensioning  and  construction  of  a  system capable  of

monitoring,  translating  the  data  from  a  sensor  array  into  a  product  concentration

prediction, evaluating the reaction state and optimizing further activations to maximize the

process efficiency. A schematic of how the system works is presented in Figure 2. 

Further explanations on how the systems interact are contained in the following

items.
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Figure 2 - Monitoring and control system

(Source: author’s collection) 

3.3. EXPERIMENTAL APPARATUS 

The reactor where the hydrolysis happens possesses an instrumentation array with

the purpose of monitoring the free glucose concentration inside the reactive media at any

given time during the hydrolysis process. The sensors measurements are relayed to a

server  that  decodes  the  information,  converts  to  the  root  unit  of  measurement  when

necessary and stores the data. 

Figure 3 presents a scheme of the system sensors.
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Figure 3 - Sensor array coupling

(Source: author’s collection) 

3.3.1. Torque Measurement 

The torque measurement is  achieved using digital  dynamometer  coupled to the

stirring shaft. The electric motor is above a ball bearing mount, thus the engine is free to

roll in its own axle. By coupling a dynamometer perpendicularly to a rod fixated in the ball

bearing a force is measured. This force is proportional to the amount of energy necessary

to agitate the reactive media. To convert the straight force into stirring power, Equation 9

was used.

P=T⋅ω Equation 9

Where  P,  is  the  power  necessary  for  the  stirring  motion,  T  is  the  torque

measurement itself  and ω is the axle angular velocity. Torque may be substituted by the

21



variables in Equation 10.

T=F⋅L Equation 10

Where F is  the  force  provided  by  the  dynamometer  and  L the  distance of  the

dynamometer  coupling  to  the  center  of  the  agitation  axle.  Further  modifications  are

provided by Equation 11.

ω=2⋅π⋅N Equation 11

Where N is the rotation frequency, results in a simplification to convert the force

measured by the dynamometer into stirring power presented in Equation 12.

P=2⋅π⋅F⋅L⋅N Equation 12

This instrument relays data through a serial connection to a server under a RS-232

protocol. The server receives this information through a universal serial bus (USB) port

and handles the data in a software layer inside a Python console. This measurement was

made at every minute of the batch.

3.3.2. Supernatant Sampling and Scan

The supernatant optical  properties was measured by an analytical  line once an

hour. The supernatant sampling begins with the filtration of the reactive media by a pumice

stone filter. The driving force for the filtration was provided by a peristaltic pump. Part of

the  filtrated  supernatant,  0.2  mL,  was  destined  to  a  dilution  vessel.  The  dilution  was

accomplished  by  a  series  of  valves  and  a  peristaltic  pump.  The  dilution  line  worked

iteratively, adding 4.0 mL per iteration, and the sample dilution necessity was assessed by

the last scan, updating itself automatically. 

After the dilution, the prepared sample was injected into a flow cuvette inside the

spectrophotometer.  With the sample properly contained, 20 scans ranging from 190 to

1100 nm was performed. This range comprehends the ultra violet and visible region of the

electromagnetic spectrum. The data generated by the scans were transmitted to the server

by a serial connection, under a RS-232 protocol, and the server received the information

through a USB port and decoded by a software layer ran in a Python console.

At the end of the scans, dilution water was injected into the cuvette to clean it. After

the cleaning period, only water was added to the cuvette and 5 scans were performed to

establish a baseline for the next series of scans.
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The automation of sampling system was accomplished by a physical computational

device for data acquisition called Arduino. The Arduino board is an open hardware platform

capable of generating electronic outputs or reading inputs in a standalone method or as a

slave  for  a  server  (BANZI,  2009).  The  signals  to  change  the  controller  states  are

generated by a software layer coded and run in a Python console.

3.3.3. Conductivity and Capacitance Measurement

The conductivity and capacitance measurements was performed by a single probe

connected to a preamplifier and transmission module Fogale Nanobiotech. The frequency

used was 382 kHz.

3.3.4. Enzymatic Hydrolysis Monitoring Through Conductivity

Small-scale studies were carried out to assess how the conductivity changes inside

the hydrolysis media and evaluate this methodology as a tool to monitor hydrolysis inside

the reactor before adding this instrumentation a larger reactor. Three small-scale batch

experiments were conducted in a 500 mL reactor, with conditions similar to the large-scale

experiments. Citrate buffer at 4.80 pH and 50 mM, 10% w.v ¹ dry bagasse, 50 ºC and⁻

adding 0.17 g of enzymatic complex.  In these experiments, the probe relayed its data

through a serial RS-232 connection and the decoding was achieved by the proprietary

software. 

In the larger scales, the rest of the instrumentation was applied, however when

using the capacitance/conductivity system inside the 3L reactor the acquired data by this

probe was relayed to the server through  a 4 to 20 mA connection. The signal was read by

the data acquisition module Arduino Mega through two analog input ports, and then the

data was relayed to the server via serial RS-232 connection. 

3.4. CARBOHYDRATES DETERMINATION

Glucose determination  was carried  out  manually  at  the offline sampling periods

described  in  the  Item  3.1.  The  analysis  itself  was  performed  via  glucose

oxidase/peroxidase enzymatic determination kit  (Doles; Goiânia,  GO, Brazil)  and High-

Performance Liquid Chromatography  (HPLC). 

The samples were withdrawn from the reactor by filling a 2 mL vessel with reactive

media. The container was centrifuged for 7 min at 10,000 RPM. 0.5 mL of the supernatant

was combined with 0.1 mL of sodium hydroxide 0.2 N to maintain storage preservation.
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HPLC was used to determinate glucose, xylose and cellobiose concentrations. The

samples  were  analyzed  in  Shimadzu  SCL-10A chromatograph  using  refraction  index

detector RID10-A, Animex HPX-87H Bio-rad, using as mobile phase sulfuric acid 5 mM at

a flow of 0.6 mL.min ¹. The samples were compared to previously established standards⁻

(NREL, 2008).

Enzymatic  kit  analysis  was  used  to  check  HPLC  glucose  concentration.  The

analysis occurred by combining 10 μmL of the prepared sample and 1 mL of the enzymatic

analysis complex, incubating the mixture at 37ºC for 5 min and measuring the absorbance

at  510 nm. The measured absorbance was compared to  a standard curve of glucose

determined with the kit in the same manner that the sample is analyzed. All analyses were

performed in triplicates. 

3.5. MODEL FITTING

The  glucose  concentrations,  generated  by  both  the  batch  and  fed-batch

experiments, were used to estimate the coefficients for the 4 models presented in item

2.4.1.  In order to calculate the error between model and experimental data, simulated

glucose concentration were obtained by integrating th following components balance. 

dS
dt

=
FSubstrate

V
−v−

[S ]⋅F Substrate

V
Equation 13

dP
dt

=v−
[P ]⋅F Substrate

V
Equation 14

dE
dt

=
FEnzyme

V
−

[E ]⋅FEnzyme

V
Equation 15

dSol
dt

=
FSubstrate

V
−

v
1.10

−Xyl⋅v−Cell⋅v−
[Sol]⋅FSubstrate

V
Equation 16

dV
dt

=F Substrate+FEnzyme Equation 17

Where [S]  is the substrate concentration,  FSubstrate is the inlet flow of substrate,  v is

the enzymatic velocity,  [P] is the product concentration, [E] is the enzyme concentration,

FEnzyme is the inlet flow of enzyme,  [Sol]  is the non-reactive solids concentration, Xyl and

Cell are stoichiometric empirical rates for xylose and cellobiose.

The  stoichiometric  rates  were adjusted  with  the  data  provided  by  the
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chromatographic analysis. The xylose and cellobiose concentrations are estimated from a

linear fitting of these compounds and the glucose concentration. This procedure is carried

separately for the batch and fed-batch experiments.

To avoid inconsistencies in the numerical solving of the model, the feeding profile

cannot be a discrete vector with punctual in certain time instants. Therefore, the vector

was interpolated to a continuous function throughout the time domain. A representation of

this interpolation is presented in Figure 4. 

Figure 4 - Interpolation Example

(Source: author’s collection)  (Where: Discrete feedings (kg) at certain time instants were

approximated to a continuous flow (kg.h ¹))⁻

In  the  Fig.  4,  the  blue  circles  represent  the  discrete  values  (optimized  feeding

vectors)  and  the  blue  solid  line  represents  the  generated  continuous  function.  The

interpolation  algorithm behaved equally  for  the  bagasse and enzymatic  complex  input

profiles.

The numerical method used to integrate the differential system was a Runge-Kutta

4th order with variable step. Particle Swarm Optimization (PSO) algorithm was used to fit

the parameters.

PSO minimizes the average quadratic error between the system output and the
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experimental  value  (cost  function  chosen)  by  generating  a  series  of  particles.  These

particles are scattered in a multidimensional space, with as many dimensions as there are

parameters  to  be  optimized,  in  this  case  a  3  dimensions  space.  A velocity  in  each

dimension is attributed to the particle.  Since the dimensions are the parameters to be

optimized, one particle position is tested inside the model to evaluate its fitting. If the new

fitting is better (smaller error) than a previous one found by the same particle (Personal

Best) the new position is attributed as a new best particular position. The fitting value is

also compared to a Global Best, which is the best value and position achieved by any

particle.  After  the  comparison  stage,  the  particles  velocities  are  updated  to  make  the

particles converge to the best global and individual fitting. To fully emulate a swarm, the

velocities are also regulated by a Momentum parameter. The Momentum decreases with

each iteration, simulating fatigue within the particles in a moment when they should be

near the minimum value (KARIMI et al., 2012). An explanatory pseudocode containing the

described numeric procedure is presented in Table 5.
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Table 5 - Particle Swarm Optimization Pseudocode

# Initialization

Set Initial Parameters: Population Size, Number of Iterations, Initial Momentum, 
Velocity Actualization Parameters

Generates the population with random positions and velocities

Generates best global and particular values and positions

Imports the experimental data for the error minimization and validation

# Main Loop

While: the Number of Iterations < Maximum Iterations OR Error < Tolerance:

     # Error Minimization – Network Optimization

     For - Each Individual in the Population:

          Checks the fitting for the particle this instant

          If - The present fitting is smaller than the personal best Then:

               This vector becomes the personal best (pbest) position and value

          End If

          If - The present fitting is smaller than the swarm's best Then:

               This vector becomes the global best (gbest) position and value

          End If

          # Convergence Improvement

          Updates the velocity according to the best values and social parameters

          Decreases the swarm's momentum by a fixed value

     End For

     If - The number of iterations is enough Then:

               Randomizes positions and velocities to reinitialized the swarm

     End If

End For

# Final Procedures

Tests the experimental data against the system output

During this study, the algorithms worked with a population of 10 particles and for

200  iterations.  The  social  parameters  (KENEDY  &  EBERHART,  2001)  c1 and  c2

responsible  for  the  weighting  in  the  velocities  update  were  set  to  2.00  and  2.10

respectively. The equation that updates the velocity is presented in Equation 18.
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vk+1=vk+c1∗rand()∗(Best Personal−xk )
+c2∗rand ()∗(BestGlobal−xk)

Equation 18

Where, vk is the particle's position, vk+1 is the next position, rand( ) is a random

number between 0 and 1, BestPersonal is the particle's position with the best fitting, BestGlobal

is the position that obtained the best fitting among all  particle's and xk is the particle's

current position. The position update is presented in Equation 12.

xk+1=xk+M⋅vk Equation 19

Where, xk+1 is the particle's next position and M the particle's momentum.

The momentum parameter was initially set to 0.99. However, after all the particle's

velocities were updated, this parameter was decreased until it reached a value lower than

0.20, after this point the momentum was reinitialized to 0.99, and positions randomization

were performed. This approach is necessary to relocate the swarm from a possible local

minimal point.

After  the optimization procedure ends, the confidence interval  for  each adjusted

model is calculated. An approximate confidence region can be calculated using Equation

20 (HIMMELBLAU, 1970).

C .R .=sŶ i

2
⋅F1−α [m,n−m] Equation 20

Where  C.R. is  the  confidence region  range,  sŶ i

2
 is  the  standard  error  for  each

parameter,  F1-α is  the  upper  limit  of  the  F-distribution,  m is  the  number  of

parameters and n is the number of experimental data points.

The contour for the sum of squares surface can be calculated according

to Equation 21.

φ=φmin{1+
m

(n−m)
⋅F1−α[m,n−m]} Equation 21

Where ϕ is the squared error threshold for the region, if a parameters group has a

squared error value higher than this value it is considered outside the confidence error and

ϕmin is the squared error for the optimized parameter (HIMMELBLAU, 1970).

The entire procedure follows the dynamic demonstrated in the Figure 5.
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Figure 5 - Model Fitting Flowchart

(Source: author’s collection) 

3.6. FED-BATCH OPTIMIZATION

With the optimized models and its optimized parameters, the balance presented in

item 3.5 was used to optimize the feeding strategy. The mass flow were subjected to an

optimization  method,  where  the  profiles,  both  for  substrate  and  enzymatic  complex,

changed at each iteration until an optimum bagasse and enzymatic complex addition is

achieved. 

The sequential approach and PSO algorithm, described in the previous item, were

used  to  solve  the  optimal  control  problem.  Therefore,  the  input  flow  had  to  be

parameterized.  Vectors with  equal  amount  of  points  for  bagasse and enzyme addition

were created. The first value is the initial  compound addition, and the other points are

additions throughout the process.

For each evaluated feeding profiles, an integration of the fed-batch product balance

is realized. The performance of the simulated feeding profile was evaluated by converting

the  final  carbohydrate  concentration  into  potential  ethanol,  via  theoretical  maximum

stoichiometric coefficient, and subtracting from the revenue of selling this product the cost

29



of the enzymatic complex and electrical power necessary to agitate the reactor. This value

is  divided by the total  mass of  bagasse added in  the process in  order  to  generate a

revenue  related  to  the  added  mass  (US$.kgBagasse ¹).  Hence  the  objective  function⁻

becomes:

P(
US $
kgbagasse

)=
mEthanol⋅PEthanol−mEnzyme⋅PEnzyme−PPower∫t0

t f
PAgitation

mBagasse

Equation

22

Where P is the Performance Index (PI) generated by the process, mEthanol is the

glucose concentration converted to potential Ethanol, Pethanol is the Ethanol selling price,

mEnzime is the accumulated enzyme mass, Penzyme is the Enzymatic Complex price, Ppower  is

the electric energy price, and PStirring is the power necessary to agitate the reactor.

The price for ethanol was 1.50 US$.kg ¹ (FURLAN et al. 2012), the evaluated cost⁻

of the accumulated enzymatic complex mass was 1.20 US$.kg ¹ (FURLAN et al., 2012)⁻

and the electrical power cost was 59.00 US$.Mwh ¹ (DIAS 2011). The solids fraction in the⁻

feeding flow was 0.40. The total times of fed-batch utilized in the optimization were; 360,

240, 144, 120, 96 and 48 h and feeding points were realized once an hour. The simulated

reactor initial volume was 10 m³ and throughout the simulations no final reactor volume

was applied. 

A representation of how the optimization works is presented in Figure 6.

During the optimization, a series of restriction may be applied, to generate more

feasible solutions. The profiles were subjected to maximum mass addition and maximum

substrate concentrations at any given time.

After the optimization reached its stopping criteria, a batch process was simulated

where  the  accumulated  bagasse mass  and  accumulated enzymatic  complex  from the

optimum profile were added in the beginning of the process. The batch process revenue

was calculate following the methodology of the fed-batch process. This was performed in

order to evaluate the differences between the batch and fed-batch processes.
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Figure 6 - Feeding profile optimization

(Source: author’s collection) 

3.6.1. Stirring Power

A vital part of the process PI is the cost of energy in order to agitate the reactor. To

estimate this cost a relation between the solids inside the reactor and the engine torque,

and subsequent stirring power. 

In order to achieve this relation, an empirical model was fitted between the stirring

power acquired by monitoring system and the solids inside the reactor. However, solids

concentration is  not  available  experimentally.  Thus,  after  the most  accurate enzymatic

velocity model is chosen, the model is adjusted to each batch experiment following the

methodology presented in item 3.5. The balance of the solids output was used in the fitting

of the empirical solids/stirring power model.

3.6.2. Hydrolysis Reactor Plant Equivalence

At the end of each optimization cycle, when the optimum profile was achieved, an

extrapolation was performed to determine the reactor size necessary to operate a second

generation ethanol production plant.

The fictitious plant operated alongside a standard ethanol plant, milling 500 t.h ¹ of⁻
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sugarcane. This generates, approximately, 132 t.h ¹ of bagasse, 20% of this bagasse was⁻

assumed to be used to produce second generation ethanol. Thus, the 2G plant must be

able to process 26.4 tbagasse.h ¹. To estimate the necessary reactor volume, or the volume⁻

sum of parallel  reactors,  the total  processed bagasse was divided by the reactor final

volume and process total time. This calculation is shown in Equation 23.

H .C .(
tbagasse
h⋅m ³

)=
mAccumulated Bagasse

t f⋅V f

Equation 23

Where H.C. is the hydrolysis capacity of the process, mAccumulated Bagasse is the total

accumulated bagasse throughout the process,  tf is the process total time and  Vf is the

process volume at the final time.

 This  value  was  then  multiplied  by  the  necessary  productivity  (26.4  tbagasse.h ¹)⁻

resulting in the volume necessary to process at this rate.

3.7. NEURAL NETWORK OPTIMIZATION

Neural Network (NN) models were used to translate the data from dynamometer

and  conductivity/capacitive  probe  to  glucose  concentration.  The  NN  models  were

implemented in software Matlab 2012 using the Neural Network Toolbox. 

The NN inputs were originated in the data provided by the instrumentation and the

reactor state during the high volume batch and fed-batch hydrolysis and were:  stirring

power  per  reactor  litter,  conductivity,  capacitance,  accumulated  substrate  feeding  and

reactor  volume;  and  the  network  output  was  the  glucose  concentration  from  the

chromatography analysis. However, there were too few glucose experimental data points

to train the NN correctly. To improve the network inference, the best kinetic model was

adjusted for each experiment and the model predicted values were used in the network

optimization.

Cross validation approach was used to avoid overfitting issues (NELLES, 2001).

The sample universe was first randomized. The samples were then divided in 5 sets. To

evaluate an architecture 4 sets were used while training the network (the current training

group) and the unused set was used to validate (the validation group) the current training.

This approach was repeated until all the sets were used as validation set. The average of

the standard error of training and the average of the standard error of validation were used

to evaluate the architecture performance. A graphical representation of this procedure is

32



presented in Figure 7.

Figure 7 – Cross Validation Procedure

(Source: author’s collection) 

The architectures taken into account were multilayer perceptrons with one hidden

layer, the numbers of neurons in the hidden layer were 1, through  15. And the evaluated

transfer functions for the hidden layer and the sum layer are displayed in Figure 8. Each

transfer function was evaluated both for the hidden layer and the sum layer. 

The NN optimum architecture is achieved when the average standard error from the

validation departs from the linear tendency of accompanying the average standard error

from the training. When this happens, a possible interpretation is that the complexity of the

networks has become larger than the necessary for the system. The networks starts to

contemplate, in the pattern recognition, the noise from the samples disrupting the network

inference (overfitting). 

Therefore,  the  optimum  architecture  is  when  the  errors  are  closely  related

(NELLES, 2001). An example of the behavior is presented in Figure 9. In the presented

example, the point in which the validation error departs from the training error is at around

12 neurons in the hidden layer, thus demonstrating to be the optimum architecture for this

hypothetical network. 
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Figure 8 - Evaluated transfer functions

(Source: author’s collection, adapted from Matlab Neural Network Toolbox User's Guide) 

Figure 9 - Training and Validation Data set Error

(Source: author’s collection, adapted from NELLES, 2001) 
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4. RESULTS AND DISCUSSION 

4.1. CONDUCTIVITY MONITORING

The experiments conducted in the 500 mL vessel provided the data presented in

Figure 10.

Figure 10 -  Conductance and glucose concentration during hydrolysis. 

(Source: author’s collection) (Where: Error bars are s.d. of triplicate measurements.)

A linear negative correlation between conductance and glucose concentration in the

medium supernatant was observed (see Figure 10 B), slope of -31.82, intercepting point of

70.51 and determination coefficient of 0.91. Thus, conductance may be a feasible option to

follow real-time hydrolysis kinetics within the reactor. This motivates further studies using

CCS to monitor the process.

Thus  the  conductance/capacitance  probe  was  installed  in  the  3  L  reactor  to

continue the studies.

4.2. FULL ARRAY INSTRUMENTATION

With the full array of sensors properly placed in the reactor, two experiments were

conducted  for  each  hydrolysis  policy.  The  instrumentation  data  for  agitation  power,

capacitance and conductance during the batch experiments are presented in Figure 11.

Figure 12 presents the same instrumentation data for the fed-batch experiments.
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Figure 11 - Full Array Monitoring During Batch Experiments

(Source: author’s collection) 

Figure 12 - Full Array Monitoring During Fed-batch Experiments

(Source: author’s collection) 

The capacitance/conductance probe and dynamometer were able to monitor the

experiments throughout the process. However,  the analytical line and supernatant UV/VIS

scanning did not show a level of robustness necessary for the application.

The  analytical  line  monitoring  system  initially  was  able  to  sample  the  reactive

media, dilute the samples and communicate with the spectrophotometer. However, during

long term experiments, the line had problems both in the software and hardware. At first, a

problem occurred with the serial connections and analysis scheduling. After the solution of

such problems, during the experiment the decrease in size of suspended solids particles
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generated a cake on the filter membrane, which introduced a pressure drop that the used

pump was not able to overcome, disabling the analytical line. Nevertheless, examples of

sample scans in time periods where the analytical line was operating are presented in

Figure 13, for the fed-batch experiments.

Figure 13 – Supernatant Scans During Fed-batch Experiments

(Source: author’s collection) 

The data curves overlapping hinders a better analysis, thus Figure 14 presents an

amplification of the range between 220 and 400 nm.

Figure 14 – Supernatant Scans from 250 to 320 nm

(Source: author’s collection) 

A peak is present around the region of 283 nm. This peak may be correlated with

the amount of lignin in the solution, since the same region is used in order to estimate this
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compound concentration in lignocellulosic materials (NREL, 2008; GOUVEIA et al., 2009;

KLINE et  al.,  2010).  Another  important  characteristic  of  the  data-set  is  that  the  peak

intensity  rises  with  time.  This  may demonstrate  that  lignin  is  being  released from the

lignocellulosic matrix. Since lignin is a interferent in the process, biding irreversibly to the

enzymatic complex (ARANTES & SADDLER, 2011), this instrumentation may be used in

order  to  re-parametrize  the  enzymatic  velocity  model  during  the  process,  in  order  to

assess the necessity of addition of enzymatic complex. 

The robustness of  this  instrumentation  setup was not  reliable  during  the  whole

process,  and  the  data  generated  from  this  analytical  line  was  not  used  any  further.

Nonetheless this system may generate important data for the controller software. Thus,

further studies will contemplate improvements in the analytical line in order to adequate it

to the process.

4.3. BATCH AND FED-BATCH EXPERIMENTAL DATA

The measurements, generated from the HPLC, for the experiments conducted in

the 5 L reactor, are presented in Figure 15 for the batch runs and Figure 16 for the fed-

batch policy.

Figure 15 – Experimental Data for Batch Experiments

(Source: author’s collection) 
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Figure 16 – Experimental Data for Fed-batch Experiments

(Source: author’s collection) 

Since the concentrations of xylose and cellobiose are small, instead of fitting kinetic

models for the production of these carbohydrates, the experimental data were used to

adjust  a  pseudo-stoichiometric  ratio  between  glucose  and  the  xylose  and  cellobiose

concentrations. Glucose concentration and the concentrations of xylose and cellobiose at

the same time were correlated, as it can be seen in Figure 17, for the batch experiments,

and in Figure 18, for the fed-batch experiments.

Figure 17 – Batch Experiments Co-products Linear Fitting

(Source: author’s collection) 

39



Figure 18 – Batch Experiments Co-products Linear Fitting

(Source: author’s collection) 

The parameters for each linear fitting is presented in Table 6.

Table 6 – Co-products Linear Fitting

Policy Compound Slope
Intercepting

Point
Determination

Coefficient

Batch
Experiment

Xylose 0.0384 0.5894 0.9225

Cellobiose 0.0350 0.1595 0.9140

Fed-batch
Experiment

Xylose 0.1050 0.0590 0.9940

Cellobiose 0.0608 0.0214 0.9732

This is an empirical approach, since the ratio between these products is actually

dictated by their rates of formation – which depend on the enzymatic kinetics of a complex

system of reactions, on mass transfer resistances, on the deviation from ideal mixing in the

bioreactor, among other phenomena. This is the reason for obtaining different slopes in the

correlations for batch and fed-batch operation. 

However, since the focus of this work is on implementing and testing automation

algorithms, and taking into account that the linear correlations adhered very well to the

experimental data, this simplification was adopted – implying that only one kinetic model

had to be fitted, describing the formation of glucose. 

4.4. PARAMETERS FITTING

 The  models  presented  in  Item  2.4.1.  were  adjusted  to  the  experimental  data
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presented in Item 4.3. The models and experimental data are presented in Figure 19 for

the batch experiments and Figure 20 for the fed-batch experiments.

Figure 19 - Model fitting for Batch Experiments

(Source:  author’s  collection)   (Where:  MM  –  Michaelis-Mentem;  PH  –  Pseudo

Homogeneous; MO – Modified; NI – Non Inhibit; PI – Product Inhibited) 

Figure 20 – Model Fitting for Fed-batch Experiments

(Source:  author’s  collection)   (Where:  MM  –  Michaelis-Mentem;  PH  –  Pseudo

Homogeneous; MO – Modified; NI – Non Inhibit; PI – Product Inhibited)

The parameters, from the models are presented in Table 7.

The analysis of  the Figures and Table show that the models containing product

inhibition were able to fit the data in a satisfactory manner. The models without product

inhibition did not present an adequate adherence. However, a lack of fitting is observed in
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the  final  stages  of  the  hydrolysis,  especially  for  the  long  term  batch  policies.  This

demonstrates that another inhibition phenomenon is occurring within the process.

To improve modeling at the final stages of the hydrolysis it is necessary to evaluate

other causes for inhibition or deactivation, such as thermal denaturation, or the addition of

other compounds into the balance that may interfere in the system dynamics. 

Table 7 – Models Parameters with 95% confidence intervals

Model
Parameters Average

ErrorKm ( g.L ¹)⁻ K (min ¹)⁻ Ki ( g.L ¹)⁻

Pseudo-Homogeneous
Michaelis-Mentem

Non Inhibited
0.084±0.06 0.146±0.12 - 13.409

Pseudo-Homogeneous
Michaelis-Mentem
Product Inhibited

3.387±1.49 0.805±0.53 0.129±0.06 4.138

Modified Michaelis-
Mentem

Non Inhibited
29.597±24.42 0.055±0.03 - 13.846

Modified Michaelis-
Mentem

Product Inhibited
2.881±0.69 0.666±0.32 0.110±0.04 3.542

From the tested models, the one that presented the smallest average error, as well

as  the  smallest  confidence  intervals  was  the  modified  Michaelis-Mentem  model  with

product inhibition. Table 8 presents their correlation matrix.

Table 8 – Correlation Table for the Modified MM Model with Product Inhibition

Parameter Km K Ki

Km 1.00 0.62 -0.45

K 0.62 1.00 -0.94

Ki -0.45 -0.94 1.00

The relative high correlation between the parameters demonstrates that the model,

even though with very important simplifications, is fitting the data with very acceptable

accuracy. 

Figure 21 that demonstrates the confidence region at 95% confidence.
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Figure 21 – Confidence Region for the Modified MM Model with Product Inhibition. 

(Source: author’s collection) (Where: Blue dots are data points inside the 95% confidence 

region and red dot optimum parameters)

The confidence interval  topology indicates,  once again,  that  the parameters are

highly  correlated,  and so it  is  expected that  the  current  state of  the  reactor  will  have

important effect on the results of the online re-parametrization of the model. This behavior

further demonstrates the necessity of software for online re-parametrization of the model,

in order to predict the kinetics of the reaction more accurately. 

 Carvalho et al. (2013) fitted the same kinetic models, but their substrate was steam

exploded delignified (4% NaOH) bagasse, and the enzyme was Accellerase 1500®. Their

experiments were carried on with 6.54% of solids (w.w ¹), 5.7 FPU.g⁻ Pretreated Bagasse
-1 and in

batch runs only. The modified MM model with product inhibition was also the most suitable

kinetic  model,  and  their  adjusted  parameters  were:  K:  0.0033±7.10⁻⁴ min ¹,  Km:⁻

22.06±10.28 g.L ¹,  Ki:  7.61⁻ ±0.87  g.L ¹.  Furthermore,  a  high  correlation  among  the⁻
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parameters was also found. A nonlinear confidence region with a topology very similar to

the one obtained here was observed as well. 

Although this model is based on very important simplifications of the problem, the

comparison  between  the  two  optimized  sets  of  parameters  may  suggest  some

conjectures: Carvalho et al. (2013) used Accelerase 1500®, thus a lower value for K and a

higher value for Km (when compared to the ones obtained in this work, using Cellic Ctec

2®) is not an unexpected result, since Cellic Ctec 2® is a more recent commercial cocktail.

On the other hand, a higher Ki value in Carvalho et al. (2013) may be attributed to their

bagasse preteatment, capable of diminishing lignin content (that provided a substrate with

only 5.37 % w.w ¹ of lignin, while in this work the lignin content was approximately 25%⁻

w.w. ¹).⁻

The modified Michaelis-Mentem model with product inhibition, with the optimized

parameters, was used in the following items to predict values at times not contemplated by

experimental analysis or to predict variables where experimental data were not available.

4.5. STIRRING POWER/SOLIDS RELATION

With the predicted values from the adjusted models to the experimental batch policy

data, the solids concentration and stirring power scatter is presented in Figure 22.

Figure 22 – Stirring Power/Solids Concentration Scatter Plot

(Source: author’s collection) 

The figure presents two behaviors, with a threshold around 97 g.L ¹. Therefore, the⁻

fitting of only one empirical model to the entire range of concentrations may not generate
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the necessary adherence. Thus, the profile was divided into two regions, one before and

one after the 97 g.L ¹ solids marker. Both regions were subjected to an exponential fitting,⁻

the Figure 23, and Figure 24.

Figure 23 – Solids Above 97 g.L ¹ Region Exponential Fitting⁻

(Source: author’s collection) 

Figure 24 – Solids Bellow 97 g.L ¹ Region Exponential Fitting⁻

(Source: author’s collection) 

The adjusted models are presented in Table 9. 

The analysis of both the figures and table presents that the fitting of the region with

higher solids concentration is more accurate. However, this fitting improvement is achieved

since the data is this region is more sparse and with less inherent noise.

Nevertheless, the models were employed in order to predict the power necessary to
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agitate a vessel in a given solids concentration. 

Table 9 – Stirring Power Fitting Models

Region Exponential Model
Determination

Coefficient

Bellow 97 g.L ¹⁻ Agitation Power=0.36⋅e0.01⋅[Solids ] 0.72

Above 97 g.L ¹⁻ Agitation Power=9.81⋅10−15
⋅e0.33⋅[Solids] 0.97

These models were employed in predict the power necessary to agitate the vessel

in a given concentration of solids. However, further studies must contemplate the utilization

of more appropriate models, as well  as include further assays to elucidate the relation

among agitation power, solids concentration and reactor volume.

4.6. FEEDING PROFILE OPTIMIZATION

The feeding profile optimization, as describe in Item 3.6. was done using as the

model optimized in Item 4.4 to predict reactions rates, and both models presented in Item

4.5 to estimate the energy demand for stirring the vessel. 

The optimizer was applied without any restrictions on the optimization/operational

variables. A summary of the optimizations is presented in Table 10.

Table 10 – Unrestricted Feeding Policy

Total
Time
(h)

Final
Volume

(m³)

Total
Solids

(t)

Total
Enzyme

(t)

Total FPU
(FPU.

gBagasse ¹)⁻

Fed-batch
PI (US$.
tBagasse ¹)⁻

Batch PI
(US$.

tBagasse ¹)⁻

Final
Glucose
(g.L ¹)⁻

Plant
Volume

(m³)

48 17.55 3.56 0.16 137.98 359.46 < -1.10⁻⁶ 122.57 6246.9

96 20.01 4.75 0.25 156.57 361.17 < -1.10⁻⁶ 143.64 10674.0

120 26.86 7.13 0.49 202.69 345.49 < -1.10⁻⁶ 160.62 11932.3

144 30.95 8.42 0.63 219.07 335.83 < -1.10⁻⁶ 164.62 13971.0

240 43.51 12.14 1.16 279.27 310.57 < -1.10⁻⁶ 166.89 22701.6

360 58.95 16.57 1.82 322.22 278.11 < -1.10⁻⁶ 168.35 33815.1

The analysis of  Table 10 demonstrates that all  fed-batch situations generated a

positive PI at the end of the process, while their equivalent batch counterparts, did not.

This is related to the fact that an equivalent batch would with a very high solids (bagasse)

concentration,  generating  a  high  agitation  cost.  During  the  fed-batch  process,  the

optimization tool naturally converges to smaller solids concentrations, to reduce energy

necessities bellow the threshold between the two agitation power models, where electricity

cost  is  lower.  This  behavior  is  presented in  Figure  25,  that  shows the  profiles  of  the
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compounds in the reactor, as well as the accumulated feedings.

Figure 25 – Fed-batch Optimization for 360 h Process

(Source: author’s collection) 

To  maintain  solids  concentration  at  low  values,  a  large  volume  of  reactor,  or

reactors, is necessary to process the stream of bagasse described in Item 3.6.2, especially

in  long term processes,  when the amount  of  bagasse added to  the reactor  increases

considerably.

The simulations show that there is a clear trade-off between PI and the final product

concentration.  This  occurs  because  longer  processes  enables a  longer  interaction

between substrate and enzyme, decreasing solids concentration, and allowing more solids

to be added. Since the addition of solids also dilutes the reactor, more enzyme is added in

order to sustain the reaction velocity. All this generates a higher productivity, with a higher

product final concentration.
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However, more solids generates the necessity for more enzymatic complex, making

the process more expensive. This is also true for the agitation power. As the process time

increases so does the energy necessary to agitate the vessel. This however is not true for

the  48h  process,  where  the  PI  and  product  concentration  are  lower  than  the  other

processes. This is explained by the fact that in a process as short as the 48h there is not

enough time to convert the substrate into product, generating a costly process and with

small product concentration.

This  tradeoff  is  important  since  a  possible  alternative  in  the  utilization  of  the

hydrolyzed lignocellulosic biomass is stream integration (MACRELLI et al., 2012). This is

the  process  of  combining  the  sugar  rich  currents  from  the  sugarcane  mill  and  the

hydrolysis reactor product. However, both streams must have similar concentrations, so

that one will not dilute the other. Since the sugarcane juice carbohydrate concentration is

around 180 g.L ¹  (FURLAN et  al.,  2013),  the  hydrolyzed liquor  must  be  concentrated⁻

through evaporation if glucose end concentrations are too far from this target. Evaporating

the hydrolysis product increases the cost of the process (notice that this cost was not

considered in the PI defined here). Thus, the PI of the 48h process may be diminished. On

the  other  hand,  the  longer  (and  with  smaller  PI)  process  may  need  less  energy  to

concentrate the liquor, possibly generating a more attractive situation.

It  should  be  stressed  that  the  approach  used  here  for  defining  PI  isolates  the

reactor from the rest of the process. The resulting solutions may actually be sub-optimal,

but  an  algorithm  for  online  optimal  control  most  certainly  will  be  working  within  this

approach,  when  dealing  with  real  case  industrial  applications.  Of  course,  some

concatenation with a plant-wide optimization is desirable.  One way to improve the link

between local  and global  optimization is improving the calculation of  PI.  For instance,

energy costs for concentration of the reactor effluent may be correlated to the contents of

glucose in this stream. These ideas will be left as a suggestion for future work.

Nevertheless, in the presented simulations, the amount of enzymatic complex used

in the process is not feasible for a large scale process. Enzyme mass in relation to the

substrate reaches values that would rule out this process. The batch processes used in

the composition of the velocity models used 10 FPU.gBagasse, and the optimizations reached

values 30 times higher than this. This may be related to the fact that the optimizer needs a

small  concentration of solids in order to achieve favorable PI situations. Thus, a large

amount of enzyme is added in order to decrease solids rapidly. 
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To diminish this effect, the same optimization sequence was repeated. But now the cost of

energy  to  agitate  the  reactor  was  not  taken  into  consideration  when  calculating  the

process PI. The new simulation summary is presented in Table 11.

Table 11 – Unrestricted Feeding Policy Without Stirring Cost

Total
Time
(h)

Final
Volume

(m³)

Total
Solids

(t)

Total
Enzyme

(t)

Total FPU
(FPU.

gBagasse ¹)⁻

Fed-batch
PI (US$.
tBagasse ¹)⁻

Batch PI
(US$.

tBagasse ¹)⁻

Final
Glucose
(g.L ¹)⁻

Plant
Volume

(m³)

48 19.40 5.01 0.19 110.98 386.40 445,04 145.76 490.8

96 62.25 28.98 0.67 68.05 402.34 445.62 261.25 545.5

120 61.54 28.71 0.65 67.24 412.98 435.62 268.63 679.1

144 79.42 38.70 0.87 66.14 417.75 425.11 283.35 780.1

240 153.29 85.24 1.22 41.92 421.87 434.33 319.13 1139.4

360 220.23 124.16 1.84 43.41 431.20 415.59 330.87 1685.8

Disregarding the agitation power generated higher PI processes, since a part of

cost was not accounted for, as well as diminished the necessity of enzymatic complex for

each bagasse mass unit. This is because without the solids concentration limitation the

substrate  concentration  does  not  need  to  be  decreased  as  rapidly  as  in  the  last

optimizations set to decrement agitation power. Therefore, less enzymatic complex needs

to be added throughout the process. Higher solids concentration also generates higher

end product concentration, even in short term operations. 

Not having a cost limitation correlated with the solids concentrations also reduces

the need for large operating volumes.

However, since there are no limitations on the stirring energy, solids concentration

is let free to reach unfeasible regions. The profile presented in Figure 26 exemplifies this

condition.

In  this  set  of  simulations  solids  concentration  reached  values  higher  than  30%

w.v ¹.  For  the reactor  design used in  this  work this  is  not  a  feasible  situation.  Solids⁻

deposition occurs at concentrations close to the agitation models threshold (97 g.L-1).
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Figure 26 – Fed-batch Optimization for 360 h Process Without Stirring Power

(Source: author’s collection) 

To overcome the solids concentration and enzyme loading problems, a final set of

simulations were conducted. In these, the agitation power was accounted for in the same

manner as in the first set of simulations. However, at this time a restriction on the enzyme

addition was applied: the total accumulated enzyme could not surpass 50 FPU.gBagasse ¹.⁻

This represents 5 times the amount used in the experiments assays and was considered a

feasible value for large scale processes. 

A summary of the optimizations is presented in Table 12.
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Table 12 – Feeding Policy With Enzyme Addition Restriction

Total
Time
(h)

Final
Volume

(m³)

Total
Solids

(t)

Total
Enzyme

(t)

Total FPU
(FPU.

gBagasse ¹)⁻

Fed-batch
PI (US$.
tBagasse ¹)⁻

Batch PI
(US$.

tBagasse ¹)⁻

Final
Glucose
(g.L ¹)⁻

Plant
Volume

(m³)

48 11.27 0.75 0.01 47.58 297.11 404.67 29.13 19120.5

96 12.38 1.39 0.02 49.55 348.99 419,98 57.97 22540.1

120 13.30 1.93 0.03 49.53 353.97 -6.10⁻4 75.77 21887.1

144 13.85 2.28 0.03 43.68 354.79 < -1.10⁻⁶ 86.64 23100.8

240 16.13 3.56 0.06 49.56 372.50 < -1.10⁻⁶ 124.88 28714.8

360 18.64 5.03 0.09 49.74 352.97 < -1.10⁻⁶ 156.05 35202.6

This strategy generated more feasible profiles, sustaining solids consistency and

enzyme addition to an operational level. This is demonstrated in Figure 27.

Figure 27 – Fed-batch Optimization for 360 h Process With Feeding Restriction

(Source: author’s collection) 
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The plant operational conditions for these simulations were similar to those without

enzyme restriction, since the same behavior of maintaining low solids concentration was

observed. The enzyme restriction would not greatly alter the reactor design, particularly

when dealing with long term processes.

However, in these situations the final product concentration was lower than in the

other data sets, especially in the short term operations. This is because the lower enzyme

addition requires more time to hydrolyze the substrate. This solution would then require

more energy for evaporation of the reactor outlet stream. In order to adequate this process

to the 1G-2G carbohydrates stream combination either a longer operation is necessary or

the final hydrolysis product must be concentrated.

Another  possible  solution  is  achieving  higher  solids  concentrations  without

expanding  a  large  amount  of  energy  with  agitation.  To  do  that  the  reactor  must  be

redesigned to work with higher solids concentrations. 

One design option is the utilization of a Continuous Tubular Screw Reactor (CTSR).

This reactor uses a pressurized screw in order to move the bagasse from one end of the

tube to the other. Meanwhile the solids are in contact with the enzymatic complex and

hydrolysis occurs with lower energy consumption (TOMÁS et al., 1997). 

The utilization of an alternative reactor design would promote a pre-hydrolysis at a

solid consistency where the standard stirred tank would not be operational. After this first

pre-hydrolysis, the more liquefied substrate can be directed to a standard reactor to finish

the hydrolysis.

4.7. NEURAL NETWORK CALIBRATION

The values generated by the optimized model were used to train an artificial neural

network  to  predict  glucose  concentration  within  the  reactor.  The  input  data  were

conductance, capacitance, agitation power, accumulated solids and reactor volume. The

network errors for each network architecture are presented in Figure 28 and 29. 
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Figure 28 – Artificial Neural Network Errors – Poslin and Logsig Architectures

(Source: author’s collection) 
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Figure 29 – Artificial Neural Network Errors – Poslin and Logsig Architectures

(Source: author’s collection) 
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The  majority  of  architectures  presented,  disregarding  certain  deviations,  the

behavior  shown  in  Figure  9,  except  for  the  architectures  containing  a  Pure  Linear

activation function in the hidden layer. The lowest average validation error occurred when

the architecture contained a Tangent Sigmoid transfer function both in the hidden and sum

layers, and with 11 neurons in the hidden layer. The addition of further neurons to this

architecture generates an increase in the validation error, demonstrating that the optimum

amount of neurons already occurred.

A scatter  plot  of  the  simulated  glucose  values  and  the  ones  predicted  by  the

network is presented in Figure 30.

Figure 30 – Optimum Architecture Predicted Values

(Source: author’s collection) 

This figure demonstrates a linear relationship between the input values and the

ones predicted by the ANN. The determination angular coefficient of the data is 0.994,

demonstrating a strong correlation among the predicted and input values.

However, at high concentrations (larger than 12 g.L ¹) the dispersion becomes less⁻

stable. This may be explained by the fact that at these concentrations only batch data are

available This interferes in the prediction in two ways. First, less data are available in the
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region, since the fed-batch experiments did not reached these concentrations of product.

Second, these data are gathered at the final hours of the batch process, when the model

used to generate the data becomes less adequate to describe the process, generating a

deviation between the available data and the actual data.

However, the network demonstrated to be a promising tool in order to estimate the

state of the reactor online, doing so regardless of the policy used in the reactor (batch or

fed-batch). This network, or a variation of it, may be used in order to estimate the reaction

kinetics in real time, and thus, generate feedback information to the controller software,

enabling a closed-loop control strategy.
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5. CONCLUSIONS

The first conclusion of this work is that the presented models were able to describe

the hydrolysis to some extent. A departure between the experimental and predicted values

arises in long term operations. This may be due to inhibition effects not described by the

model. Thus, further inhibition studies need to be conducted so that the model may be

more accurate.

The  ANN,  after  architecture  optimization,  was  capable  of  predicting  product

concentration from available data with a strong correlation (Determination Coefficient of

0.972). Therefore, the softsensor can be tested in further studies to generate feedback of

data to the dynamic control software, in a closed loop architecture.

The optimization software was able to generate profiles that increased the process

performance  index  while  maintaining  operational  levels  within  the  reactor,  reaching

glucose concentrations close to those utilized in current first generation technology even

when a restriction to enzyme feed was applied (156.0 g.L ¹ of glucose after 360h) or not⁻

(168.3 g.L ¹). However, using a stirred tank, fed-batch reactor in the industrial case would⁻

demand a, relatively, large plant (reactors ranging from 490 to 35,000 m³). Thus, reactor

design must improved in order to adequate this technology to industrial use.
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6. FURTHER STUDIES SUGGESTIONS

Further study suggestions include:

- Performing experiments to evaluate enzymatic complex inhibition during the hydrolysis.

-  Performing  validation  experiments  with  feeding  strategies  generated  by  the  feeding

optimizer.

- Generating a more complete model that correlates solids concentration with agitation

power.

- Optimizing the ANN further, while using other tools in order to estimate reaction kinetics

more accurately.

- Coupling a CTSR to the standard reactor to diminish the overall cost of the process.   
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