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Resumo

Nesta tese estudamos as propriedades assintéticas para a solugéo do problema
de Cauchy para a equagdo de Klein-Gordon com potencial ndo efetivo dependente
do tempo. O principal objetivo foi definir uma energia adequada relacionada ao
problema de Cauchy e derivar estimativas para tal energia. Estimativas de Strichartz
e resultados de scatering e scatering modificados também foram estabelecidos. A
teoria C™ e a condicdo de estabilizacdo foram aplicados para tratar o caso em que
o coeficiente da massa oscila muito répido. Além disso, consideramos um mod-
elo de onda semi-linear scale-invariante com massa e dissipacdo dependentes do
tempo, nesta etapa usamos as estimativas lineares de tal modelo para provar ex-
isténcia global (no tempo) de solucdo de energia para dados iniciais suficientemente
pequenos e demonstramos um resultado de blow-up para uma escolha adequada
dos coeficientes.






Abstract

In this thesis we study the asymptotic properties for the solution of the Cauchy
problem for the Klein-Gordon equation with non-effective time-dependent potential.
The main goal was define a suitable energy related to the Cauchy problem and derive
decay estimates for such energy. Strichartz’ estimates and results of scattering and
modified scattering was established. The C™ theory and the stabilization condition
was applied to treat the case where the coefficient of the potential term has very fast
oscillations. Moreover, we consider a semi-linear wave model scale-invariant time-
dependent with mass and dissipation, in this step we used linear estimates related
with the semi-linear model to prove global existence (in time) of energy solutions for
small data and we show a blow-up result for a suitable choice of the coefficients.
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Versdo em Portugués

Motivacao

Equacdes hiperbdlicas sdo usadas na fisica para descrever processos evolu-
ciondrios com a propriedade de que a informacéo se propaga com a velocidade
finita. Esses processos podem ser encontrados em diversas dreas, como por exem-
plo na Teoria de Eletromagnetismo e Eletrodindmica. Um dos modelos padrées é o
da equacéo da onda livre

Uy — 2 Au =0,

que descreve uma corda vibrante para n = 1, membrana para n = 2, ou sélidos
eldsticos para n = 3. A constante ¢ denota a velocidade de propagagéo e A =
>or 0% o Laplaciano com respeito a varidvel espacial.

Outro modelo de interesse é a equacéo de Klein-Gordon

2
Uy — AU+ (%)221 =0, (0.1)
onde h é relacionado com a constante de Planck e m é a massa constante de uma
particula. Esse modelo foi introduzido por Gordon (1926) e Klein (1927) derivando
uma equacdo relativista para uma particula carregada em um campo eletromag-
nético. Essa equacdo também é usada para descrever fendmenos de onda dispersiva
em geral, veja [17].
Nas secdes seguintes vamos discutir resultados conhecidos para esses dois
modelos e também para modelos mais gerais.

Modelos cldassicos de onda com e sem massa

Comecaremos relembrando alguns resultados para o modelo de onda livre.
Considere o seguinte problema de Cauchy para a equagdo da onda livre:

uy — Au =0, u(0,2) =up(z), w(0,z)=1u(x), (0.2)

com (t,x) € Ry x R". O problema de Cauchy (0.2) é H* bem posto, i.e., se
ug € H® e u; € H* !, entdo existe para todo positivo T uma solugéo Unica u €
C([0,T], H*(R™)) N C*([0,T], H*"*(R™)) que depende continuamente dos dados ini-
ciais (ug, uy).

Sew € C([0,T], H(R")) n C([0,T], L>(R™)), entdo podemos definir a energia
cléssica relacionada ao problema

Bw()(®) = [ (u(t.o) + Vautt,a))ds 0.3
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e podemos provar que Ej,(u)(t) = 0 para todo ¢ > 0, em outras palavras, temos
conservacdo de energia, i.e., Ey (u)(t) = Ew(u)(0) para todo ¢ > 0.

Estimativas de Strichartz foram provadas em um primeiro momento por W. von
Wahl com dado inicial (ug,u;) € CP(R™). No artigo [55] ele provou, sem usar
operadores integrais de Fourier, que

1_1

(ue(t, ), Vou(t, £)) e < C(1 + )" G| (ur, Vo) || o (0.4)

para n > 2 com p e ¢ duais, i.e., ; + . = 1, onde 1 < p < 2 e regularidade
r> n(% — %) Para esclarecer as notagdes usadas nesta tese veja o guia de notagdes
no Capitulo 7. Técnicas modernas como operadores integrais de Fourier e o método
da fase estaciondria foram usados por Strichartz [52] e [53], Littman [39], Brenner
[7] e Pecher [43] para provar a estimativa (0.4).

Outro modelo importante é o modelo cldssico de Klein-Gordon introduzido em
1926,

uy — Au 4+ mPu =0, u(0,2) = ug(x), u(0,2)=uy(x), (0.5)

com (t,z) € Ry x R"em > 0.
O problema de Cauchy (0.5) é H* bem posto, i.e., se ug € H® e u; € H*™L,
entdo existe para todo 7' positivo uma Unica solugéo

u € C([0,T], H*(R™)) n C* ([0, T], H* 1 (R™))

que depende continuamente dos dados iniciais (ug, u1).

Nesse problema a massa nos forga a incluir na energia total, além das energias
eldstica e cinética, um terceiro componente que é a energia potencial. Podemos
definir a energia total como:

Erg(u)(t) = %/ (Jue(t, 2)* + [Vult, 2)|* + m?|u(t, z)|]*) dz. (0.6)
Também é possivel provar que E'(u)(t) = 0 para todo ¢t > 0, em outras palavras,
temos também a propriedade de conservagdo de energia.

Em comparacéo com a equacdo da onda livre, a massa melhora o decaimento
nas estimativas de Strichartz. W. von Wahl obteve esse resultado depois de introduzir
a mundancga de varidvel v = v(t, x, z,,.1) por

v(t, z, xpe) 1= exp (—imx,,1) u(t, x),

onde z € R", 2,1 € Ret € R,. Essa mudanca de varidvel pode ser encontrada
em [55]. Facilmente vemos que v é solucdo para a equacéo de onda livre (0.2) com
os dados iniciais

Vo(x, Tpy1) == exp (—imzpy1) uo(z), v1(T, Tpa1) = exp (—imx,s1) ug(x).

Percebemos que o novo dado inicial (vp,v1) ndo pertence a C°(R"). Contudo, a
mudanca de varidvel acima serve como motivagdo para conjecturar quais estimativas
s@o esperadas. E possivel provar que se o dado inicial (ug, u;) € C3°(R™), entdo as
seguintes estimativas de Strichartz para o modelo cldssico de Klein-Gordon

1 1

(ua(t, ), Vou(t, z), ut, ) < CQ+ 872670 (ug, ur, Vo) || 1w (0.7)
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séo vdlidas para n > 2 com p e q duais, p € (1,2] e regularidade r = n(% — é)

A abordagem usando operadores integrais de Fourier também foram aplicadas
por Pecher [43] e Hérmander [30] para o modelo de Klein-Gordon cldssico para
obter as estimativas (0.7).

Para a equagdo de Klein-Gordon néo linear relacionada com a equagéo clés-

sica de Klein-Gordon
Uy — Au + m2u = f(uv U, vafuv Vi“)? U(Oa [[’) = Uo(l'), ut(O’ ‘T) = ul(x)7 (08)

Klainerman [34] e Shatah [50] provaram existencia global de solu¢ées para o prob-
lema de Cauchy (0.8) com dados iniciais pequenos e condi¢cdes adequadas para

f.

Modelos de onda com potencial dependente do tempo

Uma pergunta natural que aparece é: o que acontece quando o termo massa
é dependente do tempo? O que podemos dizer sobre a definicdo da energia e quais
estimativas podemos derivar? Nesta secéo vamos descrever resultados conhecidos
para o problema de Cauchy para a equacéo de Klein-Gordon com potencial depen-
dente do tempo.

Considere o seguinte problema de Cauchy para a equacdo de Klein-Gordon:

uy — Au+m(t)*u =0, u(0,7) = up(x), u(0,2) = ui(z), (0.9)

onde (t,z) € Ry x R™.
O objetivo é definir uma energia adequada para modelos com potencial de-
pendente do tempo e estimativas para tal energia. Um modelo importante que nos

ajuda a definir esta energia é o modelo scale-invariante que foi estudado em [4] e
[3].

Modelos Scale-invariant

Definir uma energia adequada néo é um trabalho trivial como podemos ver no
seguinte modelo que foi abordado em [5]. Vamos considerar o seguinte problema
de Cauchy para a equacéo de Klein-Gordon

12
(1+1)?

Uy — Au + u=0, u0,z) =wup(x), ul(0,z)=ui(x), (0.10)

com (t,z) € Ry x R" e constante real u # 0 desenvolvendo um papel decisivo.
Como u* = u*(t*,z*) := u(t,z) com 1 +t = A1 +t*) e x = Az*, A > 0 arbitrdrio,
satisfaz também o problema de Cauchy, a condicéo scale-invariant é verificada.

Uma vez satisfeita a condicdo scale-invariant podemos usar a teoria de funcdes
especiais e introduzir a energia E® (u) = EW (u)(t) da seguinte forma

1

BO)(t) = 5 (Ihualt, )3 + Vot )Ez + put)llutt )2 ). (0.11)
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onde
(1+1)72, 12>,
put) ={ (1+6)"2(1+In(1+1) ", pr=1 (0.12)
Ao e (0).
Entéo temos a conservagéo de energia generalizada
() EW (u)(0) £ EW (u)(t) S E™ (u)(0). (0.13)

Observagdo 0.1. A estimativa (0.13) exclui o blow-up da energia E™ (u)(t) quando
t — oo. E ainda temos a estimativa por baixo para o decaimento dessa energia.
Vemos que a energia potencial pode ser estimada da seguinte maneira:

lu(t, )72 < pu(t)2EY (u)(0).

Se u — +0, entdo p,(t)~2 tende para (1 + t)?, um comportamento assintético que é
conhecido para a energia potencial do problema de Cauchy para a equagéo da onda
livre. Se i — oo, entéo p,(t)~? = 1+t, entdo a energia potencial tem um crescimento
menor para t — oo.

A solucdo para o problema de Cauchy (0.10) com dados iniciais (ug,u;) €
S(R™) satisfaz as estimativas de Strichartz (veja [5])

1

(et ), Voult, W S O +87T 67D (Juglmres + [ur]|or),  (0.14)
<

[P () u(t, )| Lo du(t) (uollzer + [Jus|Lr.r—1) (0.15)
com
max { (1 + )TG3 144G, pr >
d,(t) = { (1) s i oy ., (0.6
max { (1+6)7 7 G733V (=G} e <l

onder =n(; —1), 7+ =1com1<p<2. Esteresultado implica que as energias

cinética e eléstica ||V, u(t, )| ra € ||ut(t, )| L« medidas na norma L9 decrescem com o

decaimento do tipo onda 3+ (5 — =) como em (0.4).

O modelo anterior nos inspira a considerar dois casos diferentes para o po-
tencial dependente do tempo. Considere o seguinte problema de Cauchy para a
equacdo de Klein-Gordon

Uy — Au + m(t)2u = 07 U(O,ZL') = UO(I)7 Ut(O,ZE) = UI(I)7 (O] 7)
com (t,z) € Ry x R™

Definigdo 0.1. Dizemos que o termo potencial m(t)?u em (0.17) é efetivo se o coefi-
ciente dependente do tempo satisfaz

tm(t) — oo

quando t tende para .
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Definigdo 0.2. Dizemos que o termo potencial m(t)*u em (0.17) é néo efetivo se o
coeficiente dependente do tempo satisfaz

o 1
lim sup(1 + t)/ m(s)*ds < —,
¢

t—o00 4

e se as derivadas de m(t)? satisfazem as seguintes estimativas:

d* 9
a —(k+2)
dtkm(t) S(1+1) K
para algum 0 <y <1,k=1,2nocasoy=1ek=1,2,--- ,m caso contrdrio.

Observacao 0.2. A nomenclatura anterior é motivada pelo decaimento em relagdo
ao tempo das estimativas LP — L4. Se o decaimento é relacionado com o da equagéo
da onda livre, entdo dizemos que a massa é ndo efetiva. Se o decaimento é rela-
cionado com o da equacéo de Klein-Gordon, entdo dizemos que a massa é efetiva.

Equacdo da onda com potencial efetivo

A tese de doutorado [4] foi direcionada ao estudo do caso efetivo, isto é, a
autora estudou coeficientes decrescentes m = m(t) que que satisfazem entre ou-
tras propriedades lim;_,., tm(t) = oo. Neste caso os modelos (0.17) sGo chamados
modelos com potencial efetivo. Em [4] foi considerado o potential efetivo com a
seguinte estrutura m(t) = A(t)v(t) € CM(R, ), M > 2, com fungéo principal A = A(t)
e uma pequena perturbagdo da massa dada por uma fungdo oscilante v = v(t). Se
definirmos a energia de Klein-Gordon

= %/n (Jue(t, ) + [Vu(t, 2)|* + m(t)|u(t, z)|?) dz, (0.18)

F(KG)

entdo ocorre a conservagdo de energia generalizada, isto é,
A EED (u)(0) 5 BX(u)(t) S EXD (u)(0). (0.19)

Se m(t) = At)v(t) € C*(R,), com hipéteses adequadas para A e v, podemos
provar para todo ¢ > 0 a seguinte estimativa de Strichartz:

_n(1_1
(et ) Tt ) AOult, Dl S 0+ 267 (fuollgnrn + o)
comr = n(% — é), Ilj + % = 1com 1 < p < 2. Este tipo de decaimento é conhecido
como decaimento do tipo Klein-Gordon %(% - %) no indice conjugado.
Decaimento do tipo onda
Considere o problema de Cauchy

uy — Au+m(t)*u =0, u(0,r) = up(x), u(0,2) = ui(z), (0.20)

onde (t,z) € Ry x R™ Seja m = m(t) € C*(R,) satisfazendo as seguintes pro-
priedades:
(B1) m(t) € L'(R.),
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para todo ¢, onde C} sGo constantes positivas. Entdo [4] mostrou o seguinte resul-
tado:

Teorema 0.1. Seja m = m(t) € C*(R, ) satisfazendo (B1) e (B2). Entdo para todo
tempo t o decaimento LP — L4

1

| (uelt, ), Vault, ) o0 S (1 +8)7"F G738 (fuglgorer + [Jua ]| o)

acontece para r =n(, —;),com1l<p<2e + =1

Resultado Scattering

A teoria scattering compara o comportamento da solu¢do do problema para
a onda livre com a solu¢éo do problema perturbado num tempo suficientemente
grande. O principal objetivo é construir um operador que mapeia dados iniciais
do problema de Cauchy para a onda livre em dados iniciais para o problema de
Cauchy perturbado. Tal operador é denominado operador de onde de Moeller.

Vamos considerar que u satisfaz o problema de Cauchy para a equagéo de
Klein-Gordon (0.9) e que v satisfaz o problema de Cauchy para a equacgdo de onda
livre (0.2).
Assuma as seguintes condi¢des

m € L'(Ry), m(#)(1+1t) < C for t €[0,00). (0.21)

Entdo o seguinte resultado pode ser encontrado em [4], Teorema 3.26:

Teorema 0.2. Suponha que o coeficiente m = m(t) satisfaz (0.21). Existe um op-
erador scattering W, = W, (D) : L*(R") x L*(R") — L*(R") x L*(R"™) tal que
os dados iniciais para os problemas de Cauchy (0.9) e (0.2) séo relacionados por
(|D)vg, v1)T = W (D)({D)ug,u1)”. Entdo as solugbes para os problemas (0.9) e (0.2)
satisfazem a equivaléncia assintética

[P ). vt ) = (D) yutt, )it ) |

1+t

—0 (0.22)

L2x L2

quando t tende a infinito.

Algumas informacées sobre a tese

O que continua aberto na tese [4] é explicar as propriedades qualitativas para
a solugdo do problema de Cauchy para a equacdo de Klein-Gordon com potencial
dependente do tempo que ndo sdo scattering a equacdo de onda livre e que séo
ndo efetivos de acordo com a Definicdo 0.2. Exemplo tipicos sGo potenciais decres-
cente satisfazendo m ¢ L'(R.) e lim; o, tm(t) = 0. Essa tese se concentra nesse
toépico, i.e., o objetivo é definir uma energia adequada e derivar estimativas para tal
energia para problemas de Cauchy para equagéo de Klein-Gordon com potenciais
dependentes do tempo nédo efetivos.

Para alcangar esse objetivo vamos aplicar uma mudanca de varidvel no prob-
lema de Cauchy para a equacéo de Klein-Gordon e transformd-lo em um problema
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de Cauchy com dissipagéo dependente do tempo e usar resultados conhecidos para
o esse caso, veja [59]. Na préxima secdo vamos descrever alguns resultados para
o problema de Cauchy para a equagdo da onda com dissipagdo dependente do
tempo.

Equacdo da onda com dissipagdo dependente do tempo

Um outro problema de interesse é o problema de Cauchy para a equagéo da
onda com dissipagdo dependente do tempo

U — Au+b(t)uy =0, u(0,2) =up(z), w(0,2) =u(x), (0.23)

onde (t,z) € Ry x R"™. Se b(t) = u(1+t)~! com pu > 0, isto é, estamos interessados
no caso modelo scale-invariant, podemos encontrar em [58] as seguintes estimativas
Lr — L9

1 1

1uat, ), Vau(t, Nl S (1 + )™ G560 (gl orar + [fu | 2.

onder:n(%—%),%+%:1,com1<p§2.

Entdo percebemos que o par@metro p influéncia no decaimento. Esse caso separa
o caso efetivo do caso ndo efetivo, aqui dizemos que a dissipacdo é efetiva se as
estimativas L? — L4 para a energia tem o decaimento no tempo relacionado com a
equacdo de dissipacdo com coeficiente constante e dizemos que a dissipacdo é ndo
efetiva se as estimativas L? — L9 tem um decaimento no tempo relacionado com a
da equacéo da onda livre. Wirth provou estimativas L? — L9 para ambos os casos
em [59] e [60], respectivamente. O caso importante para nés é o caso ndo efetivo,
i.e., se o coeficiente b = b(t) decai mais rapidamente que o termo do caso critico
b(t) = (1 +t)~1. Temos a seguinte estimativa L? — L4 para o caso n&o efetivo:

1

(et ), Vault, )llee S ﬁ(l + )77 G78) (ol ors + ua o),

onder=n(;—.),, +,=1coml<p<2 Aqui

A(t) = exp (% /Otb(T)d7'>.

Além disso, se b € L!, entdo Wirth provou um resultado scattering, que as solucdes
se comportam assintoticamente como as solucdes para equagdo de onda livre.

Se considerarmos v como a solu¢do da onda livre (0.2), entdo Wirth provou o
seguinte resultado scattering modificado.

1
p

Theorem 0.1. Para qualquer dado inicial (uy,us) € H'(R™) x L*(R") existe um o-
perador linear, limitado W, (D) : L*(R") x L?*(R™) — L*(R") x L?*(R") tal que para
o dado inicial de Cauchy (ug,u;) € H*(R") x L*(R") de (0.23) e um dado inicial
associado (vg, v2) = W (ug,u1) para (0.2) as solucées correspondentes u = u(t, z) e
v = v(t, z) satisfazem

H)‘(t)(ut(tv ')7 Vﬂﬁu(t? )) - (Ut(t7 ')7 vmv(tv ))HL2 —0 (024)

quando t — oo.
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Objetivo desta tese

Nesta tese estamos interessados em resultados sobre o comportamento a longo
prazo para solucdes do problema de Cauchy para a equacéo de Klein-Gordon com
potencial ndo efetivo dependente do tempo

uy — Au+m(t)*u =0, u(0,7) = up(x), u(0,2) = ui(z), (0.25)

onde (t,z) € R, xR"™. Mais precisamente, focamos em resultados sobre conservagdo
de energia generalizada, scattering e scattering modificado e estimativas LP — L4,

Também estamos interessados em estabelecer resultados para o seguinte prob-
lema semi-linear de Cauchy scale-invariante com massa e dissipagéo

H1 15

A FEE

uy — Au + u=|ul”, u(0,z)=wup(z), w(0,z)=mu(x), (0.26)
onde (t,x) € Ry x R™. O objetivo é entender a interag@o entre 1, e 115 para provar
existencia global no tempo de solucdes de energia para dados iniciais pequenos em
um espaco adequado e para valores apropriados de p > 1. Resultado de blow-up
também seré provado para uma escolha especial de 1 e fis.

Conteudo desta tese

O contetdo desta tese é apresentado como se segue: No Capitulo 2 estudamos
o problema de Klein-Gordon com potencial dependente do tempo permitindo “os-
cilagdes muito lentas" (de acordo com a classificagéo de [45, 46]) focando em re-
sultados sobre conservacéo de energia generalizada e resultados scattering. No
Capitulo 3 nés estabelecemos estimativas de decaimento L? — L4 para o problema
de Cauchy para a equacdo de Klein-Gordon com massa nédo efetiva dependente do
tempo. Iniciamos o Capitulo 4 provando a otimalidade das estimativas obtidas no
Capitulo 2 e derivamos estimativas de Strichartz para o problema de Cauchy com
massa e dissipagdo néo efetivas dependentes do tempo. No Capitulo 5 focamos
na aplicagdo de propriedades C™ e condigdo de estabilizagdo para considerar “os-
cilacdes muito rdpidas" (de acordo com a classificacdo de [45, 46]) no coeficiente
do termo da massa. Completamos esta tese considerando um problema semi-linear
de Cauchy, scale-invariant com massa e dissipagdo dependentes do tempo. No
Capitulo 6 usamos a teoria de fungdes especiais para provar estimativas lineares e
consequentemente estabelecer existéncia global no tempo para tal problema semi-
linear. Um resultado de blow-up completa nossas consideracdes.

Resultados selecionados

Resultados para modelos lineares: Vamos completar esta introducdo apresen-

tando os resultados desta tese. Por questées de simplicidade vamos assumir que o

coeficiente da massa m = m(t) € C™(R) e satisfaz
1

m(t)] < ek m® ()] <

paratodo k <me0 <~y <1.
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Resultado 0.1. Se (1+t)m(t)* € L', entGo para qualquer dado inicial (ug,u;) € H' x
L2, existe um operador linear limitado W, (D) : L*(R") x L*(R") — L*(R") x L*(R")
tal que

=0. (0.27)

L?x L2

i [|(DJo(t, ), u(t, ) = (D) ult, ), wilt, )|

Onde u = u(t,z) é a solu¢do do problema de Cauchy para a equagéo de Klein-
Gordon e v = v(t,x) é a solugdo do problema de Cauchy para a equagdo de onda
livre.

Para potenciais ndo efetivos e ndo scattering ((1 + t)m(t)*> ¢ L') temos a
seguinte afirmacéo:
Resultado 0.2. Suponha v = 1 (oscilagées muito lentas) e que

2 M2
m0” = T g

onde 0 < p < 3 e g € C(R.) é uma fungéo positiva, crescente com g(0) =1e

t
9910 S A% para todo ke X

Entéo existe uma fungdo positiva ¢ = ¢ (t) € C°(R.) tal que

liirisup 2(1+ t)i((f))

1
+ 1)k

()
<1 ‘¢¢(t(;)’ S

o0 "
t
/ (1 +7')|¢ ®) —i—m(T)Q}dT <1
0 w(t)
e nds temos a estimativa LP — L% para as energias cinética, eldstica e potencial como
se segue:

—1(1_1

et ), Vot ), p@ult, Dllge S (1+07"7 670 (fugll s + [l 20)

para p € (1,2], p e g duais, p(t) = (1 +1t)""(t) e regularidade r = n(; — ).

Resultado 0.3. Suponha 0 < v < 1 (oscilagées muito rdpidas) e

2

2 _ H
= e

onde % é a funcdo principal como no Resultado 1.2 e 6 é uma fungGo periédica

limitada (funcdo de perturbagéo) tal que a condicéo de estabilidade

‘/too 5(3)053‘ <v(l+1)*2

comae[0,1), r<pP<Eey=a+ ﬁ é satisfeita. Entdo temos a seguinte

estimativa para a energia da solugdo:

[ Cua(t, ), Vaults ), p(t)ult, ) [z S lluollmr + [lua]] 2,

onde p(t) = ’17(—3 e 1 sGo definidos em (5.5).
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Vamos considerar o seguinte problema de Cauchy para a equagéo de Klein-
Gordon com dissipagdo

e — Au+ b(t)uy + m(t)u =0, u(0,z) = up(z), u(0,2) = ui(x), (0.28)

onde (t,z) € Ry x R™, b = b(t) é o coeficiente da dissipagdo e m = m(t) é o
coeficiente do termo da massa satisfazendo as seguintes hipéteses:

Resultado 0.4. Suponha que b,m € C*(R,) e que para todo k < ¢ acontece

1\ 2
o< (i) e famol<a ()

lim (14 £)b(t) = by and  lim (1+#)*m(t) = my (0.29)

t—o00

existem e que
|tb(t) — b > [t*m 7
/ ‘()%dt<oo and / | t —mol dt < oo,
1

seja verdadeiro com o expoente o satisfazendo

(A1) oc=1 ou (A2) o€ (1,2].
Se
c=1 e bo(bg - 2) S 4m0 (030)
ou
€(1,2] e  bylby—2) < 4dmg < (by—1)?, (0.31)

entdo a estimativa LP — L4
(U8 ult, ), wl(t, ), Vaeult, ) || L, S ! (1 +t)_%(%_5) (lluoll Lrrer + flusll o)
A(t)

acontece para p € (1,2], p e ¢ duais com regularidade r = n(é - é), onde

A(t) = exp (% /Ot b(T)dT).

Resultados para modelos semi-lineares: Considere o problema semi-linear de
Cauchy com massa e dissipagdo scale-invariant

2
Utt—AU+ ad U + Fa2

Tt gt = il w00 = @), w®w) =w@,  (032)

com (t,x) € [0,00) X R™, p > 1 e u; > 0, us constantes reais. Defina

A= (= 1)* = 4p3

e o espaco de funcdes
D,, = (H' N L™ x (L*NL™),

com m € [1,2) e norma ||(u, v)[13,, = llullim + [lull3: + [[0lzm + [lv]Z:



Contents 21

Resultado 0.5. Sejan <4, A <0 e suponha que 11; >2e

p>2 se n=1,2,
2<p<3 se n =3, (0.33)
p=2=pen(4) se n=4.

Existe uma constante positiva £y > 0 tal que para todo (ug, u1) € D; com
[ (w0, ur) o, < €0

existe uma Unica solugdo de energia para (0.32) em C([0,00), H') N C* ([0, 00), L?).
Além do mais, existe uma constante C' > 0 tal que a sulucéo satisfaz as estimativas
de decaimento

(e (2, -), Vault, -))ll 2
[t )2

“w

=

C(1+1)
Cl+1)"

(1 4+ In(1+ )"l (uo, wr)[
qa )] (uo, ur)l|p,

=
OISN]

<
<

ondey=1se A=0,7v=0se A<0e

To(t) = 1+ In(l+¢) para n>1,
OEZV @ +0))2 1+ (1 +4) para  n=1,
e
Galt) = 1 para n>1,
datt) = (In(1 + t))% para  n=1,
para A < 0.

Resultado 0.6. (Resultado Blow-up) Suponha que u € C? ([0, T) x R") seja a solugdo
para o problema de Cauchy (0.32) com A = 1 e dado inicial (ug,u;) € C3(R") x
C3(R™) tais que ug,u; > 0. Se

p € (L pu (n)];

entdo T < oo, onde
1
Dy, (n) = max {pm (n— 1+ 51) ;po(n+u1)}. (0.34)

Aqui ppy;(n) e po(n) denotam os expoentes de Fujita e Strauss, respectivamente (veja
Capitulo 6).
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1 Introduction

1.1 Motivation

Hyperbolic equations are used in physics to describe evolutionary processes
with the property that information propagate with a finite speed. These processes can
be found in several areas for example in the Theory of Electromagnetic Waves and
Electrodynamics. One of the standard models is the free wave equation

Uy — AAu =0,

which describes a vibrating string for n = 1, membrane for n = 2, or elastic solid for
n = 3. Here ¢ denotes the speed of propagation and A = "7 | 9? the Laplacian with
respect to the spatial variables.

Another model of interest is the Klein-Gordon equation

2
utt—C2Au+ (%)2711:0, (]])
where h is related to the Planck constant and m is a constant mass of the particle.
This model was introduced by Gordon (1926) and Klein (1927) deriving a relativistic
equation for a charged particle in an electromagnetic field. This equation is also used
to describe dispersive wave phenomena in general, see [17].
We will discuss known properties of these two, and, of more general models, in
the following sections.

1.2 Some classical wave models with and without mass

Let us at the beginning recall some results on free wave models. Consider the
following Cauchy problem for the free wave equation:

uy — Au =0, u(0,2) =up(z), w(0,2)=u(x), (1.2)

with (¢, ) € R, xR". The Cauchy problem (1.2) is H* well-posed, i.e., if ug € H* and
u; € H*™1 then there exists for all positive T' a unique solution u € C([0,T], H*(IR"™))N
C([0,T], H*~'(R™)) that depends continuously on the data (ug, u1).

If w € C([0,T], HY(R™)) N C*([0,T], L*(R™)), then we can define the classical
energy

Ew@)(t) =+ [ (jut, ) + |Voult, )P)de, (1.3)
2 n

and we can prove that Ef,(u)(t) = 0 for all ¢ > 0, in other words, we have conserva-
tion of the energy, i.e., Ey (u)(t) = Ew(u)(0) for all ¢ > 0.
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Strichartz estimates were proved in a first moment by W. von Wahl with data
(ug,u1) € C§°. In the paper [55] he proved, without using Fourier integral operators,
that

1

l(uat, ), Voult, )l < CO+ 877 G0 (w, ato) o (1.4)

for n > 2 with p and ¢ from the conjugate line, i.e., ]lj—l— % =1, withl<p<?2

— 1), To clarify the notations used in this thesis see the

and regularity 7 > n(1 — ¢
notation-guide in Chapter 7. Modern techniques like Fourier integral operators and
the method of stationary phase were used by Strichartz [52] and [53], Littman [39],
Brenner [7] and Pecher [43] to prove the estimate (1.4).

Another important classical wave model was introduced by Klein/Gordon in

1926,
Uy — Au + m2u = 07 U(O,LL’) = Uo(.f), ut(07x> = ul(x)7 (.| 5)

with (t,z) € Ry x R™ and m > 0. This problem is the so-called Cauchy problem to
the Klein-Gordon equation.

The Cauchy problem (1.5) is H* well-posed, i.e., if ug € H* and v, € H5 !, then
there exists for all positive T' a unique solution

u € C([0,T], H*(R™)) n C*([0, T], H**(R™))

that depends continuously on the data (ug, u1).

In this problem the mass term forces us to include into the total energy besides
the elastic and the kinetic energy a third component, which is the potential energy.
We can define the total energy

Erc(u)(t) = %/ (Jue(t, 2)* + [Vult, 2)|* + m?|u(t, z)]*) dz. (1.6)
Here we can also prove that Ef(u)(t) = 0 for all t > 0, in other words, we have the
property of conservation of the energy, too.

In comparison to the free wave equation the mass term has an improving char-
acter on the decay rate in Strichartz’ estimates. W. von Wahl obtained this improve-
ment after intfroducing v = v(¢t, z, x,41) by

V(t, x, Tpy1) = exp (—imax,, 1) u(t, ),

where r € R", z,,,1 € R and t € R,. This change of variables can be found in [55].
Easily we see that v is the solution to the free wave equation (1.2) with non-standard
Cauchy data

UO(‘ra In+1) ‘= exp (_imxnﬂ) uo(x), Ul(xa $n+1) ‘= €exp (—imxn+1) Ul(l‘)

Hence, the new data (v, v1) do not belong to C{°(IR™). However, the above change
of variable is a motivation to guess which kind of estimates do we expect. It's possible
to prove that if the Cauchy data (ug, u1) € C°(R"), then the Strichariz estimates for
the classical Klein-Gordon model

1

(ua(t, ), Vou(t, z), ut, ) < CQ+ 872670 (ug, ur, Vario) || 1w (1.7)
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are valid for n > 2 with p and ¢ from the conjugate line, p € (1,2] and regularity

r=n(l 1),
p q

The approach using Fourier integral operators was also applied by Pecher [43]
and Hérmander [30] to the classical Klein-Gordon model to obtain the estimate (1.7).

For the non-linear Klein-Gordon equation related with the classical linear Klein-
Gordon equation

e = A+ mPu = fu,ur, Vou, V2), u(0,7) = uo(a), w(0,7) = uy(a),  (1.8)

Klainerman [34] and Shatah [50] proved the global existence of solutions to the
Cauchy problem (1.8) with small data and suitable conditions for f.

1.3 Wave models with time-dependent potential

The natural question that appears is: what happens when the mass term is time-
dependent? What can we say about the definition and estimates for the energy? In
this section we will write known results for the Klein-Gordon Cauchy problem with
time-dependent potential.

Consider the following Cauchy problem for the Klein-Gordon equation

uy — Au+m(t)*u =0, u(0,r) =up(x), u(0,2) = ui(x), (1.9)

where (t,z) € Ry x R™.

We are looking for a suitable energy for models with time-dependent potential
and estimates for a suitable energy. An important model that helps us to define such
an energy is the scale-invariant model. It was studied in [4] in 2011 and [5] in 2012.

1.3.1 Scale-invariant models

To define a suitable energy is not a trivial thing as the following model from [5]
shows: Let us consider the following Cauchy problem for Klein-Gordon equation

12

(141)2

uy — Au + u=0, u(0,2) =ug(x), u(0,2)=u(x), (1.10)
with (t,z) € R,y x R™ and a real constant i # 0 playing a decisive role. Since
u* = u*(t*, 2*) == u(t,z) with 1 +¢t = AX(1 + t*) and = = Az*, A > 0 arbitrarily, solves
also the Cauchy problem, a scale-invariant condition is verified.

Once satisfied the scale-invariant condition we can apply the theory of special
function and introduce the energy E® (u) = E® (u)(t) in the form

1

EW (u)(t) := §<|lut(ta Wiz + IVault, )72 + pu(t)?[lult, -)||%2>> (1.11)

where

1 10 i
put) =< (1+8)72(1+In(1+1) P2 =1 (1.12)
) )
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Then the generalized energy conservation
pu(O?EW (u)(0) S EW (u)(t) S EY (u)(0) (1.13)
holds.

Remark 1.1. The estimate (1.13) excludes a blow-up behavior of the energy E" (u)(t)
for t — oo. Moreover, it yields a lower bound of the decay behavior for this energy.
We see that the potential energy can be estimated in the following way:

lu(t, )1Z2 < pu(®) 2 E® (u)(0).

If w — +0, then p,(t)~2 tends to (1 + t)?, an asymptotic profile which is known for
the potential energy of solutions to the Cauchy problem for the free wave equation. If
@ — 0o, then p,(t)~2 = 1+, so the potential energy has a smaller growth for t — cc.

The solutions to the Cauchy problem (1.10) with Cauchy data (ug, u1) € S(R™)
satisfy the Strichartz estimates (see [5])

et ), Vault, N <

< 1+ 670 (uollpoess + lurf[zor),  (1.14)
Ipu(t) ult, Ve S d

u(@) (luollzor + flua || zor—1) (1.15)
with
iy = { O R g
max { (14077 Goa) 3V G e ot

where 1 = n(; o)y 5 = 1with 1 <p <2 This result implies that the elastic and
kinetic energies ||V u(t, )||Lq and ||u(t, -)||z« measured in the L? norm decrease with
the wave type decay rate 231 (1 — ¢) asin (1.4).

The previous models inspire us to consider two different cases for the time-
dependent potential. Consider the following Cauchy problem for the Klein-Gordon
equation

Ut — Au + m(t)Q'LL = 07 U(O,Q?) = UO(':C)v ut(07$) = ul(x)7 (] N 7)
where (t,z) € Ry x R™

Definition 1.1. We say that the potential term m/(t)*u in (1.17) is effective if the time-
dependent coefficient satisfies
tm(t) — oo

as t tends to oco.

Definition 1.2. We say that the potential term m(t)*u in (1.17) is non-effective if the
time-dependent coefficient satisfies

o 1
lim sup(1 + t)/ m(s)ids < —,
¢

t—o0 4

and if the derivatives of m(t)? satisfy the following estimates:
em(D2] S (14 6

forsome 0 <~y <1, k=1,2inthecasey=1and k=1,2,--- ,m otherwise.
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Remark 1.2. The above classification is inspired by the time decay behavior of the
LP — L% estimates. If the decays are related with the decays of the free wave equation,
then we call the mass non-effective. If the decays are related with the decays of the
classical Klein-Gordon equation, then we call the mass effective.

1.3.2 Wave models with effective potential

The PhD thesis [4] are devoted to study the effective case. The author studies
decreasing coefficients m = m(t) which satisfy among other things lim; . tm(t) = co.
In this case models (1.17) are called models with effective potential . In [4] the case
was considered, where m(t) = A(t)v(t) € CM(R,), M > 2, with the shape function
A = A(t) and a small perturbation of the mass given by the oscillating function v =
v(t). If we define the Klein-Gordon energy

FEG) _ %/ (Jlue(t, ) + [Vult, )2 + m(t)|u(t, z)|?) dz, (1.18)

then the generalized energy conservation holds, that is,
A B () (0) S EXD(u)(t) S EFD(u)(0). (1.19)

It m(t) = A(t)v(t) € C(R,), under suitable hypothesis for A and v, we can prove
for all ¢ > 0 the following Strichartz estimates:
_n(1_1
et ), Voult, ) At D < 0+ 076 (uollzrs + ullzer)

where r = n(; — 1), 5 + 1 = 1 with 1 < p < 2. This type of decay estimate is known
as Klein-Gordon type decay estimate with the Klein-Gordon decay rate 5 (- — ) on

the conjugate line.

1.3.3 Wave type decay estimates
We consider the Klein-Gordon Cauchy problem
uy — Au+m(t)*u =0, u(0,r) = up(x), u(0,2) = ui(z), (1.20)
where (t,z) € Ry x R™. Let m = m(t) € C*°(R. ) satisfying the following properties:

(B1) m(t) € L'(R4),
(B2) |dfm(t)| S Ce(1+t) % k=0,1,2,---,

for all t, where C), are positive constants. Then [4] shows the following result:

Theorem 1.1. Let m = m(t) € C*(R.) satisfy (B1) and (B2). Then for all times ¢
the L? — L% decay estimate

1 1

| (uelt, ), Vault,)) o0 S (14 8)7F 678 (fugllgorsr + [Jua]| o)

- 1_1 i 1,1 __
holds for r = n( q),wn‘h1<p§20ndp+q—1.

p_
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1.3.4 Scattering result

The scattering theory compares the behavior of the solution of the free wave
problem to the solution of the perturbed problem in distant time. The main goal is
construct an operator that maps initial data of Cauchy problem to initial data of an
perturbed Cauchy problem. This operator is denoted as Moeller wave operator.

O principal objetivo é construir um operador que mapeia dados iniciais do
problema de Cauchy para a onda livre em dados iniciais para o problema de Cauchy
perturbado. Tal operador é denominado operador de onde de Moeller.

Let us consider that u solves the Cauchy problem for the Klein-Gordon equation
(1.9) and that v solves the Cauchy problem for free the wave equation (1.2).

Let us assume the conditions

m € LY(Ry), m(t)(1+1t) < C for t € [0,00). (1.21)
Then the following result can be found in [4], Theorem 3.26:

Theorem 1.2. Let the coefficient m = m(t) satisfy (1.21). There exists a scattering
operator W, = W, (D) : L*(R") x L*(R") — L*(R") x L?*(R") such that the Cauchy
data to the problems (1.9) and (1.2) are related by (| D|vg, v1)T = W, (D)({D)ug, u;)*.
Then for the solutions of the problems (1.9) and (1.2) the asymptotic equivalence

=0 (1.22)

L2x L2

[P ).t ) = (D) yutt, ). it ) |

1+t

holds as t tends to infinity.

1.4 Some more information about the thesis

What remains open in the thesis [4] is to explain qualitative properties of so-
lutions to the Klein-Gordon Cauchy problem with a time-dependent potential which
does not allow on the one hand scattering to free waves and in the other hand
effective mass. Typical examples are decreasing m(t) satisfying m ¢ L'(R.) and
lim;_,o tm(t) = 0. The present thesis concerns with this topic, i.e., the goal is to
define a suitable energy and derive estimates for this energy for the Klein-Gordon
Cauchy problem with non-effective time-dependent potential.

To achieve this goal we will apply a change of variable in the Klein-Gordon
time-dependent Cauchy problem and transform it into a damped time-dependent
Cauchy problem and use known results for this case, see [59]. In the next section
we will collect some results on the Cauchy problem for the wave equation with time-
dependent dissipation.

1.4.1 Some more explanations about the background

A further problem of interest is the Cauchy problem for the wave equation with
time-dependent dissipation

e — Au+ b(t)uy =0, u(0,2) = up(z), u(0,2) = uy(x), (1.23)
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where (t,7) € Ry x R™ If b(t) = p(1 + )~ with u > 0, that is, we are inferested in
the scale-invariant case, we can find in [58] the following L? — L7 estimates:

1_ 1

It ), Voult, Dliee § @+ G780 (gl goss + o),
wherer =n(, —2), s+ =1withl <p<2

Thus, it appears that the parameter . influences the decay rate. This case separates
the effective case from the non-effective case, here we say that the dissipation is
effective if the time decays of the L? — L7 estimates for the energy are related with the
decays of the wave equation with constant coefficients and we say that the dissipation
is effective if the time decays of the L? — L7 estimates for the energy are related with
decays of the free wave equation. Wirth proved L? — L? estimates for both cases in
[59] and [60], respectively. The important case for us is the non-effective case, i.e.,
if the coefficient b = b(t) decays faster than the critical term b(t) = u(1 +¢)~'. This
implies the following L? — L? decay estimate:

1 _n-1(1_1
[ (ue(t, ), Veult,))l[ze < W(l +1)7 7 G ")(Ilttollm+1 + [Jua | o),

Wherer:n(1 l),%—i—%zl,wi’rhl<p§2. Here

A(E) = exp (% /O tb(T)dT).

Moreover, if b € L', then Wirth proved a scattering result, that the solutions behave
asymptotically like the solutions of the free wave equation.

If we consider v as a solution of the free wave equation (1.2), then Wirth proved
the following modified scattering result.

Theorem 1.3. For any initial data (uy,us) € HY(R™) x L?(R™) there exists a linear,
bounded operator W, (D) : L?*(R") x L*(R") — L*(R™) x L*(R") such that for Cauchy
data (ug,u;) € HY(R™) x L*(R™) of (1.23) and associated data (vg, vo) = W (ug, u1)
to (1.2) the corresponding solutions u = u(t, z) and v = v(t, x) satisfy

|’>‘(t)(ut(t’ ')7 Vzu(tv )) - (Ut(tv ')7 va(t, ))HL2 —0 (] 24)

as t — oo.

1.5 Obijectives of this thesis

In this thesis we are interested in statements about the long-time behaviour of
the solutions to Klein-Gordon problems with time-dependent non-effective potential

uy — Au+m(t)*u =0, u(0,2) =ug(z), u(0,2) = u (), (1.25)

where (t,z) € R, x R". More precisely, we focus on results about generalized energy
conservation, scattering and modified scattering states and L? — L7 estimates.

We are also interested to establish results for the following semi-linear scale-
invariant Cauchy problem with mass and dissipation

2
H1 Ha
T+ o2

Uy — Au + u=ul?, u(0,x)=mup(z), w(0,2)=u(z), (1.26)
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where (t,x2) € Ry x R™. The goal is to understand the interplay between 11 and 5 to
prove the global existence in time of small data energy solutions in a suitable function
space and for appropriate p > 1. We will also prove blow-up results for a special
choice of j; and ps.

1.5.1 Content of this thesis

The content is as follows: In Chapter 2 we study a Klein-Gordon problem with
time-dependent potential allowing “very slow oscillations" (according with the defini-
tions in [45] and [46]) with focus on results about generalized energy conservation
and scattering results. In Chapter 3 we will derive L? — L7 decay estimates for the
Klein-Gordon Cauchy problem with non-effective time-dependent mass. In Chapter
4 we start proving the sharpness of the energy estimate obtained in Chapter 2 and we
derive Strichartz estimates for the Cauchy problem with non-effective time-dependent
damping and mass. In Chapter 5 we focus to apply C™ properties and stabilization
conditions to consider “very fast oscillations" (according with the definitions in [45]
and [46]) in the coefficient of the mass term. We complete this thesis by considering
a semi-linear scale-invariant time-dependent Cauchy problem with mass and dissi-
pation. In Chapter 6 we use the special function theory to prove linear estimates and
consequently establish global existence in time for this semi-linear problem. Blow-up
results complete our considerations.

1.5.2 Selected Results

Results for linear models: We will complete this introduction with selected results of
this thesis. For simplicity we will assume that the mass coefficient m = m(t) € C™(R.)

and satisfies .

(1+1¢)r

m(t)
(14 t)vk

m(t)] < MM ()] <

forall k <mand 0 <~y < 1.

Result 1.1. If (1 + t)m(t)* € L', then for any initial data (ug,u;) € H' x L?, there
exists a linear, bounded operator W, (D) : L*(R") x L*(R") — L*(R") x L*(IR") such

that
lim H(!D\U(t, Dy vty ) — (<D>%u(t, ), e (t, )) ’

t—o0

— 0. (1.27)

L2x L2

Here u = u(t, z) is the solution to the Klein-Gordon Cauchy problem and v = v(t, )
is the solution to the free wave equation.

For non-effective and non-scattering ((1 + t)m(t)* ¢ L') potential we have the
following statement:
Result 1.2. Assume v = 1 (very slow oscillations) and that

2 M2
mO” = T g

where 0 < 1 < 1 and g € C*(R.) is a positive, increasing function with g(0) = 1 and

FRIGIES % for all ke N.



1.5 Obijectives of this thesis 31

Then there exists a positive function 1) = 1 (t) € C*(R.) such that

” k) (4 1
1i£igp2(1+t)1i((t))<l’ ‘¢ ()‘S(l—i—t)k

and

/0 (1+ )|Zi/(())+m T)?|dr S 1

and we have the L — L9 estimates for the kinetic, elastic and potential energy as
follows:

et ), Vot ), pyult, Dllge < (1077 670 (full s + [ o)

for p € (1,2], p and q on the conjugate line, p(t) = (1 + t)" ' (t), and with regularity

r= n(— - %)

Result 1.3. Assume 0 < v < 1 (very fast oscillations) and
2

2 _ H
= e O

where (1+t) o) is the shape function as in Result 1.2 and ¢ is a bounded oscillating
function (perturbation function) such that the stabilization condition

/too (5(3)ds‘ <w(l+t)*?

with a € [0,1), v < p? < 22 and v = a + ==% holds true. Then we have the following
energy estimate for the soluflon

[ (we(t, ), Vault, ), p(t)u(t, ) |22 S lluollm + [udllzz,
where p(t) = ”T and n is defined in (5.5).

Let us consider the following Cauchy problem for damped Klein-Gordon equa-
tions

u — Au+ b(t)uy + m(t)u =0, u(0,2) =up(x), u(0,x)=u(x), (1.28)

where (t,2) € Ry xR™, b = b(t) is the coefficient in the dissipative term and m = m(t)
is the coefficient in the mass term under the following assumptions:

Result 1.4. Suppose that b,m € C*(R..) and that for all k < ¢ it holds
1\ FH e 1\ k2
- < -
'dtk ‘— (1+t> and | 7 (t)'_ok(1+t)

lim (1 +t)b(t) = by and  lim (1 +t)*m(t) = myg (1.29)

t—o00 t—o00

and
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exist and that

> [th(t) — bol” > |t*m i
[ ey S E
1

holds true with an exponent o satisfying

(A1) oc=1 or (A2) o€ (1,2].
If
c=1 and bo(bo — 2) < 4m0 (] 30)
or
S (1, 2] and bo(bo — 2) <4dmy < (bo — 1)2, (] 3])

then the LP — L9 estimates

(1 + 07 ult, ), w (), Vau(t, )HLMA(l)(Ht)%l(;q)(||uO||LW+||ul||m)

hold true for p € (1,2], p and q from the conjugate line and with regularity r = n(}%—é),

where
At) = esp /0 b(r)dr ).

Results for semi-linear models: Consider the semi-linear Cauchy problem with
scale-invariant mass and dissipation

2
Utt—AU+ ad t+ a2

AN E [ul”, u(0,2) = uo(), w(0,2) =wi(x), (1.32)

with (¢,2) € [0,00) x R", p > 1 and u; > 0, o real constants. Define
A= (= 1)* = 4p3
and the function space
D, = (H'NL™) x (L*NL™),
with m € [1,2) and the norm ||(u, v)[13,, = [[ullZn + [[ullF + [0l Zn + VI

Result 1.5. Let n < 4, A < 0 and suppose that j1; > 2 and

p>2 if n=1,2,
2<p<3 if n=23, (1.33)
p=2=pan(4) if n=4.

There exists a constant €q > 0 such that for all (ug,u;) € Dy with

H(Uo, ul)HDI < €0

there exists a unique energy solution to (1.32) in C(]0, ), H') N C*(]0, o0), L?). More-
over, there exists a constant C' > 0 such that the solution satisfies the decay estimates

(et ), Voult, Nz < CO+6" (L+In(1+6))7|| (o, )|,
lutt, Iz < CO+ )77 Galt)ll (o, w)llp,,
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where y=1ifA=0,v=0if A<0and

~(t)—{ 1+1In(1+t¢) for n>1,
OV A +0)7 1+ (1 +1) for n=1,
and

ialt _{ 1 for n>1,

aa(t) = (ln(l—i—t))% for n=1,
for A < 0.

Result 1.6. (Blow-up result) Assume that u € C? ([0, T) x R") is a solution to (1.32)
with A = 1 and initial data (ug,u;) € C3(R™) x Cj(R™) such that ug,u; > 0 and
(ug,u1) # (0,0). If

pc (me (n)],

then T' < oo, where
Py (n) = max {pFuj (n— 1+%> ;po(n+u1)}. (1.34)

Here pp,j(n) and po(n) denote the Fujita, Strauss exponent, respectively (see Chapter

6).






35

2 Generalized energy conservation

2.1 Motivation

Let us consider the following Cauchy problem for Klein-Gordon models
U — Au + m(t)2u = 07 U(O, I) = UO(x)a ut(07 J]) = ul(‘r)v (2])

where m(t)?u is a time-dependent potential. Here we consider that m(¢)?u is a non-
effective potential, this means, lim, ., tm(t) = 0 and m ¢ L'(R,) among other things
(see Definition 1.2).

Since we are interested in energy estimates we are looking for a suitable energy
depending on the solution u to (2.1) such that upper and lower bounds of the energy
exist for all times t. To define such an energy we can exploit our good knowledge in
this matter for the scale-invariant case (1.10).

In order to get some feeling for the behavior of solutions to (2.1) we can trans-
form the time-dependent potential to a time-dependent damping and a new poten-
tial. If we introduce the change of variables given by u(t,z) = ¥ (t)v(t, z), then the
Cauchy problem (2.1) takes the form

vy — Av + QZZ((;)) vy + (be((tt)) + m(t)2>v =0, v(0,z) = 1:5((5)), v (0, ) = vy () (2.2)
with vy (z) = %W. Therefore, if we take v such that () +m(t)%y(t) = 0,

then we can apply directly results of [58]. The main difficulty is that, in general, it is
not easy to obtain an explicit representation of ¥ in terms of m(t)?. Fortunately, [13]
gives us sufficient conditions in order to exclude contributions to the energy coming
from the time-dependent potential. A sufficient condition for that is to find a function
1) such that

/000(1 —1—7)‘12}”((:)) +m(7)?|dr < 1. (2.3)

For the damping term that appears, we use some ideas of [59] about asymptotic
properties of solutions to wave equations with time-dependent non-effective dissipa-
tion.

We will give one example for 1" (t) +m(t)*)(t) = 0. Here we consider the scale-
invariant model of Klein-Gordon type and the goal was to find a function 1 such that
the Cauchy problem becomes a scale-invariant model for the wave equation with
dissipation. This example inspired us to define a suitable energy for our case.

Example 2.1. Consider the Cauchy problem

2

ol
(141)2

uy — Au + u=0, u(0,2) =ug(x), u(0,2)=u(x), (2.4)
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and consider the change of variable u(t, z) = ¥ (t)v(t, z), where
t 2
P(t) = exp (0/ (14 T)m(7)2d7'> = (1+1¢)7.
0
If we consider yu € (0,%) and 201> = 1 + /1 — 42, then the Cauchy problem (2.4)

1
reduces to

204117

Utt—AU+ 1+¢

v =0, v(0,z) =vo(x), v:(0,2)=ui(x)— oup(x).

If we choose o_, then we can apply Wirth’s results [59]. Then the suitable v in this
case is

1—/1-442
Pt) =1+ = .

Remark 2.1. The function p(t) = (1 + )14 (t), where 1(t) is from the Example 2.1

coincides with the function p,(t) in the scale-invariant case (1.10).

2.2 Both sided energy estimates

We can not expect conservation of the energy in our case, but we are able
to prove lower and upper bounds for the energy for all times t. Then we state the
property of generalized energy conservation.

Let us define the generalized energy conservation property.

Definition 2.1. If we define the energy

1

B(t) = 5 (el s + 190l s + 0P, )R,

where the function n = 1)(t) depends on the potential term m = m(t), we say that a so-
lution u to the Klein-Gordon model (2.1) satisfies the generalized energy conservation
property if the estimates

$(t)*E(u)(0) S E(u)(t) < E(u)(0)

hold for all times t > 0, where ¢ = ¢(t) is a positive non-increasing function depending
on the function 7.

Remark 2.2. The simplest case is when ¢(t) = c. In this case we have E(u)(0) ~
E(u)(t), forall t > 0.

First we will suppose that there exists a function ¢ = ¢ (t) such that (2.3) holds.
Under this assumption we shall formulate and prove our main theorem. Later we will
find suitable potentials for which we can find ¢ explicitly.

2.2.1 The main theorem

Let us consider the Cauchy problem of Klein-Gordon type (2.1) under the fol-
lowing assumptions:



2.2 Both sided energy estimates 37

Hypothesis 2.1. Let m(t) € C(R, ) satisfy
m@)| S —- (2.5)

Hypothesis 2.2. There exists a positive increasing function ¢ € C*(R,.) with 1(0) =
such that

: V() 1/)” 1
hfeiilolp 2(1+1) e <1, ‘ S aror (2.6)
Besides (2.6) we assume the following relation between m(t) and (t):
P'(7) 2
/O (1+7) o ) dr st (2.7)

Moreover, we define the energy

1

B)(t) = 5

5 (et VB + 0, I+ (@)l )32 ), where p(t) = (1) ().
(2.8)

Theorem 2.1. Under Hypotheses 2.1 and 2.2 the solution of the Cauchy problem
(2.1) satisfies the energy estimate

E(u)(t) < E(u)(0). (2.9)

Here we, additionally, assume that the data (ug,u,) belong to the energy space H' x
L2,

Proof. The proof is divided into several steps. We perform the partial Fourier transfor-

mation of (2.1) with respect to x. If we denote by (¢, &) the partial Fourier transform
Fye(u)(t, &) we obtain

et + |60 +m(t)*a = 0, @(0,8) = To(§), @(0,€) =T (¢)- (2.10)

We divide the extended phase space [0,00) x R™ into the pseudo-differential zone
Z,4(N) and into the hyperbolic zone Z;,,(N) which are defined by

Zpa(N) =A{(t,§) € [0,00) x R" : (1 +¢)[¢] < N},
Zhyp(N) = {(t,§) € [0,00) x R": (1 +1)[§] > N}.

The separating curve is given by
9|§| : (O,N] — [0,00), (1 +9|§|)|§| =N

We put also 6y = oo, and 0 = 0 for any |{| > N. The pair (t,&) from the extended
phase space belongs to Z,4(N) (resp. to Z,,,(N)) if and only if ¢ < 6y (resp. t > fj¢)).
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t
Ol

Z hyp

D

0 N ]

Fig. 2.1: Sketch of the zones.

We define the micro-energy

B P NT
U(t,€) = (h(t,f)u,ut T u) , (2.11)
where
h(tf) ¢pd(t 5) + Z|€|¢hyp(t 5)

1+t

Here ¢,4(t,€) is a characteristic function related to the pseudo-differential zone and
Gnyp(t,€) is a characteristic function related to the hyperbolic zone. We introduce

S, E) = X (“*”'é‘) with x € C=(R"), x(t) = 1 fort < 1, x(t) = 0 for ¢ > 2 and

X' (t) < 0 together with ¢,4(t, &) + ¢nyp(§) = 1. The definition of this micro-energy is
related with the definition of the micro-energy from the paper [59].

Considerations in the pseudo-differential zone

In the pseudo-differential zone Z,,(N) the micro-energy (2.11) reduces to

<1zt’At Zi?gﬁ)T, Uo(§) = (ﬁo(f),ﬁl(@ — il((g))ﬂo(fDT, and U = w(t)ﬁ
So we have
BU(L,€) = Alt, &)U = ( 1+ <%,_ffn(t)2+ I£\2) _21%1_(3 ) 0. (2.12)

We want to prove that the fundamental solution E = E(t,s,£) to (2.12), that is, the
solution to

OLE =A(t,§)E, E(s,s,&) =1
satisfies the estimate ||E(¢,0,8)|| S ¢(t) 2 forall t € [0,0)]. If we put E = (Ei;); j=12,
then we can write for j = 1,2 the following system of coupled integral equations of
Volterra type:

Ey;(t,0,6) = (1+t)7! (51j —i—/t Egj(T,O,g)dT), (2.13)
0
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Eny(t,0,6) = (1) (6 — / e wm?(%’m +m(r)? + [ ) iy (7, 0,€)dr ).
(2.14)
By replacing (2.14) into (2.13) and after integration by parts we get
Eyj(t,0,8) = (1+1)7" (61 + 6o t 2dr) -1+
50,6 = (107 (848 [ 0(7) %r) — (141
t " t
[+ () mir) + €R) Bur.0.6) [ (s s (2.15)
By using (2.6) (see Proposition 7 of [59]) we have
! t
“2ds ~ 2.16
[t~ (2.16)
and W is increasing for large ¢. Introducing

hy(t,€) = || B¢, 0, )l ()?
and by using ¥(t)?> < 1+t (see (2.6)) for large t we conclude from (2.15) and (2.16)

that . .
m@@gc+0£@+@<t£¥

Applying Gronwall’s type inequality we conclude
w//(,]_)
()
In Z,4(N) we have (1+t)|¢] < N. So, from the last estimate we get
P(7)

dr ).
v(7) )a)

Finally, by using (2.7) we get ||E1;(¢,0,8)| < ¢(t)2 From the boundedness of
| E1;(t,0,8)||v(t)?, using again (2.7), we can estimate || Ea;(t,0,&)|| < (¢) 2 There-
fore, we proved || E(t,0,&)|| S ()2 for all t € [0, 0. This gives

+m(7)?

+1€2) s (7. E)dr.

hi(t,§) < Cexp (C /Ot(l + T)( + m(T)Q‘ + |§|2>d7>.

+ m(1)?

hj(t,f) < Cexp (C’/{:(l +7.)(

1T < Cv(t) " [Us(§)] for all t € (0,¢]. (2.17)

Considerations in the hyperbolic zone

In the hyperbolic zone Z,,,(N) the micro-energy (2.11) reduces to

ST o R V' (B)g)
) - U@ = (16308, €). 7010, — S

and U = 4(t)U, so that

0 g (00 Vg 0 0 _
o,U = ((1) é) Z'|’S|U-i- <0 _2%> U + (_ﬂ(t) —m(t)2 0) (i|f|)71U (2.]8)

T
3

U:Qm@@— W%wﬂ
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40

for t > 6 with initial datum fj'(em,g) = Y(0e)) ' Us(§). Let P be the diagonalizer of
the principal part (with respect to powers of |¢]) of (2.18) given by

s res0 )

If we put V(t,€) := P~'U(t,€), then we get

ov = (73 1) e+ Bag v + Bioile) 2.19)
where
w1 -1 oy 1 -1
By(t) := o (_1 ] ) . Bi(t) = —3 (E(t) +m(t)2) < L ) .
Now we define the second diagonalizer that depends on the anti-diagonal entries of
Bo(t)l
1 a0
(t,€) = ( " M') . q) = : (2.20)
_21-(|§)| 1 ¢(t)
Thanks to (2.6) we have
. ¢ _c

€~ a+nlEl — N
for t > 0, hence, |det K| > 1 — C?/(4N?). Therefore, K(t,&) and K'(¢,&) are
bounded for a sufficiently large N. We replace V (¢,&) =: K(t,{)W(t,€). We get

o = (0 D) iew - £2 (0 ) w ateom, 2.21)
H(tvg) = K(t>€) -1

where J(t,§) = K~'(t,§)R(t,€) with Do(t,&) = diag(—il¢], i[¢]),

and
R = DoK + BoK — 8,K — KDy — KdiagB, + (il¢]) "B, K
= By + DyH — HD, — diagBy — HdiagBy — ,H + BoH + (il¢]) "' Bi K

By construction the sum of the first four terms of R(¢, &) vanishes. Thanks to condition

(2.6) and Hypothesis 2.1 the matrix R(¢,&), and therefore also J(¢,&), satisfies the

following estimate in Zj,,,(N):
C

Jt, )| € . 2.22

9.9l < 7 (2.22)

After substituting W (1, €) = “0 D(t,€) Z(t,€), where

D(t,€) = diag ( exp(=il¢](t = 0ig)), exp(lE](t = Oi) )

we obtain the following Cauchy problem in Z,,,,(N):

{atz =J(t,)2Z, >0, 2.23)
Z(0,€) = K10, )P~ U (g, ),



2.2 Both sided energy estimates 41

where the matrix J(t,&) = D1(t,€)J(t,€)D(t,€) satisfies again (2.22). For any s,t >
0)¢) we have

1 C’ C’
/ 17 )l dr < C/ﬂ a2 S 6y N

hence, | Z(t,&)|| < C||Z(0¢},€)|| and, by using Liouville’s formula we may conclude,
1Z(t,&)|| > C'[|Z(0¢|, &) Indeed, let E = E(t,s,§) be the fundamental solution of
(2.23), then Z(t,£) = E(t,0,&)Z (0, §). By Liouville’s formula, det E(t,0,&) =
eXp(fet‘&, tr J(s,€)ds) ~ 1. Therefore,

1Z(0e, Ol = |1 E7 (£, 01, ) Z(#, Il < ClIZ (O

Summarizing we have proved in Z,,(N) the both sided estimate

U () w(%)
P(t)? 2 (1)

Cy 1T (O, I < [T <

1T g, €)1 (2.24)

Verification

We conclude the proof of (2.9) under the use of (2.8). We claim that

PO + [ OF < (14 PN + ()P (2.25
and N 9
Pl < () + 16 (2.26)

uniformly with respect to £ € R™. By integrating these inequalities with respect to ¢
and by Plancherel’s Theorem we have our desired estimate (2.9).

Let us first prove (2.25). By using Cauchy-Schwarz inequality, the first estimate
in (2.6) and the considerations in the pseudo-differential zone we conclude for all
t < B¢ the estimates

2

1 Y'(t) Y1)

0O = ol OF + (e OF + [ fate. O — 2. 01| S a(t,a\
> el + St - (2] e
> ﬁma,w F Sl 6P
> NPl OF + 2l o)
Therefore, by using (2.17) we have for all ¢ < | the estimate
SRl &) + [t OF S IUEOIP S —5 U (2.27)

¢()

For t > 6| we have to glue the estimate (2.24) with (2.17). By using again Cauchy-
Schwarz inequality and the first estimate in (2.6) we have

(1= ) EPI P + 5106, OF S U for all ¢ 2 0,
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By using (2.24) we get ||U(t,6)[1* < |Uo(€)]|*. Moreover, since 6 = 0 for any (| > N,
then

1T < (1 +[€*)ao(€)]* + [@i(§)[* for all €] > N.
By applying (2.17) we conclude

9 1

Therefore, (2.25) follows by taking N sufficiently large and by using that ¢ is increas-
ing.

(o(E)* + [@(§)[*) forall |¢] < N.

Now let us prove (2.26). For t < ¢ we have from (2.17) the estimate

(1+1)°
P(t)?
In order to estimate |u(t,£)|” it will be convenient to split the considerations for the

hyperbolic zone into the cases [{] < N and || > N. Indeed, by definition, 6 = 0 for
all [¢] > N, and from (2.24) we have

[t O < 1T (E)II*.

| 2

e < TGO w@ATEOI - ITOOIP & oy, 81O
S e g~ gp O e
Since W is increasing for large t the same is true for ﬁ and (2.26) holds. On the
other hand, for |£| < N, from (2.24) and (2.17) we have
o < UGN D) 1T e O U@
|u(t7£)‘ ~ ‘5’2 ~ ‘€|2 |f|2
~ 2 1 Vo 2
S lu(Be, 17 + GG (O, §) — E(@\él)u(e\af)
(1+6)g)? 2 (1+6))? 2
< U U
T R T T R
14 0j¢)?
s O 0alp )

elarae)=n  Y(0¢)?

_t

Consequently, (2.26) follows again by using that o)
proof of Theorem 2.1. O

is increasing. This completes the

Now, the purpose is to get estimates from below for solutions to our Klein-
Gordon models. If we rewrite the proof that we did in the pseudo-differential zone,
under the same hypothesis of Theorem 2.1 we can prove the following corollary.

Corollary 2.1. Under the Hypothesis 2.1 and 2.2 the following estimate holds:

2
IE(t, s,8)| < %, for all t,s < 0,

where U(t,€) = E(t,5,)U(s,€), and U = ¢(t)U.
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The Corollary 2.1 and the proof of Theorem 2.1 give us the following estimates
from below.

Corollary 2.2. Let u be a solution of the Cauchy problem (2.1). Under the Hypothesis
2.1 and 2.2 the inequality

is satisfied for all times t > 0.

Proof. The proof is divided into two steps.

Considerations in the pseudo-differential zone:

In the pseudo-differential zone the micro-energy (2.11) reduces to

U= (1= Sa) s ) = (@020 - L Ha0(©) . ond U= w(n)l

w(0) "
Using U(t,€) = E(t,s,€)U (s, €) for all ¢, s < 0| it follows for s = 0 that

100,81 = 1€0.£,OTUEEI S L@ UEE)].
Then

10,17 < w@)*|IUt, ) for all t < 0. (2.28)
If we use (2.27) with t = 0 we get

LRI + 5l O £ 100, (2.29

From the definition of U(t,§) it follows that

1 .
L@ £ 00,9
Then

1 . 1 N 1 .
ST(©F + SIEP O + 5@ P S U0,
< POIUE O forall ¢ < bg.

Considerations in the hyperbolic zone:

In the hyperbolic zone the micro-energy (2.11) reduces to

!/ T ) 9
U= <i|€ u, iy — %a} , Uo(§) = (z’|§|a(elﬂ,g)@t(9l§|,5) _ 1/;((08

and U = 4(t)U. It follows from (2.24) that for all £ > 6/ we have
IO~ U0, O1*

Using the considerations in the pseudo-differential zone we conclude that

T
)

m%%»

SO + SIEPIBOP + S @m(OP < vEHIU g, O S vOPIU ()
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Conclusion

We proved that
1 1 - 1

L@ + 5RO + L@ < vIUE O

for all (¢,£) € Ry x R™ Then, using Plancherel’s formula we get that

1

PTOERAAES U < E(u)(t).

]

Therefore we conclude that if u is a solution of the Cauchy problem (2.1), then
u satisfies the generalized energy conservation property, i.e., we have the following
theorem.

Theorem 2.2. Under Hypotheses 2.1 and 2.2 the solution of the Cauchy problem
(2.1) satisfies the generalized energy conservation property
1
»(t)?

Here we, additionally, assume that the data (ug, u;) belong to the energy space H' x
L2,

E(u)(0) S E(u)t) < E(u)(0). (2.30)

Remark 2.3. Applying Theorem 2.1 gives the following estimate for the potential
energy:

lut, Iz S 1+ )% ()2 E(u)(0).

Remark 2.4. After differentiation of the Klein-Gordon energy Ex(u)(t) with respect
to ¢ we get

n

Biealw)(t) = m(o)n'(¢) [ fu(t.o)Pds,
If m(t) is a positive decreasing function, then Exq(u)(t) < Exa(u)(0). In particular
lue(t, )72 + I Vault, )72 S E(u)(0).

What remains to prove in this case is the desired estimate to |[u(t,-)||3. in Theorem
2.1. However, one needs to be more careful if m has some oscillations.

2.2.2 Explicit representation of

At first we pose a question:
To which models can we find an explicit representation for v such that condition (2.7)
is satisfied?

If we consider the Cauchy problem (2.1) with a coefficient m = m(t) having the
special structure

v : i
= —————— with t .
m(t) D with a positive constant 1, (2.31)

and a suitable function g = ¢(t), then we are able to answer that question under
some conditions for g(t) as follows:
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Hypothesis 2.3. Let ¢ € C*(R.) be a positive, increasing function with g(0) = 1
satisfying

, g9(t)
Jgt) < Tt (2.32)

Remark 2.5. From (2.32) functions m which are given by (2.31) satisfy |m/(t)

|< T
The following remark shows how to define v, at least for coefficients (2.31),
such that Hypothesis 2.2 holds.

Remark 2.6. Consider m(t) asin (2.31). If (1 + tym(t)> € L', then we take ¥(t) = 1

If (1+t)m(t)* ¢ L', then we suppose that 1+t)g(t)4 € L'. If we consider

vii) = exp (“ /ot Wd) ’

W) o ottt ot 2020 ()
Yt)  (14+t)2%gt)* (14+1)2%g(t)2  (L+t)g(t)®
Therefore, if we choose 0 = 1 we have
V(1) , ut 2%
EE O A () O I (W Pkl

then

Then (1 —i—t)( o)

v m(t )2) € L', and we can apply Theorem 2.1.

Taking into consideration the previous remark let us suppose the following con-
dition:

Hypothesis 2.4. There exists an integer N > 0 such that

> 1
/0 T St (2.33)

Remark 2.7. From (2.33) we get lim;_,, g(t) = co. This implies tm(t) — 0 as t — oo.

So, under Hypothesis 2.4 we really consider a class of non-effectives masses m(t)*u
in (2.1).

For coefficients (2.31) we can explicitly give the function ¢ in Hypotheses 2.2.
Under Hypothesis 2.4 it turns out that in the case (1+¢)m(t)* € L' we can take ¢ = 1.
Otherwise, we choose

N t k—1
1
Y(t) = exp < 521 Vi /0 (1 + 7)g(r)% d7>7 Tk ;:1 YeVk—e, N1 = 1. (2.34)

Remark 2.8. The sequence {7}« in (2.34) is well-known as Segner’s recurrence for-
mula given by Segner in 1758. It gives the solution to Euler’s polygon division problem.
The solution is described by the Catalan numbers which are given by the explicit for-

mula [35] 2k —2)

it (2.35)

Ve =
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By using (2.35) one can explicitly compute the radius of convergence R of the power
series Y oo, Tep** by
k2 1

= i = lim —— = -
= lim koo 2k(2k — 1) 4

k—o0

‘ Yk
Vk+1

and the series converges uniformly for ;? < 1.

In the definition of the function v given by (2.34) we can take N as the smallest
integer satisfying Hypothesis 2.4.

Theorem 2.3. Under Hypotheses 2.3 and 2.4 the solution of the Cauchy problem
(2.1) with m(t) given by (2.31) satisfies the generalized energy conservation property

L
b(t)?

where the energy E(u)(t) is defined by (2.8), with 1(t) given by (2.34). The data
(ug,u1) are from the energy space H' x L.

E(u)(0) S E(u)(t) < E(u)(0), (2.36)

Proof. The desired statement will be a consequence of Theorem 2.2. It is clear that
Hypothesis 2.3 implies that m(t) from (2.31) satisfies Hypothesis 2.1. Moreover, in
the case (1+t)m(t)* € L' it follows from Hypothesis 2.4 that Hypothesis 2.2 holds by
taking 1) = 1. Otherwise, we have lim; ., g(t) = 0o, which implies the first condition
of (2.6). It remains to prove that the function ¢» which is given by (2.34) satisfies (2.7)
and the second condition in (2.6). Indeed, by using the Cauchy product, i.e.,

<ki:0ak> . <§bk> Z;albk Z—Z@}ﬁj";;b +bkz2§1ai>

with ag = by = 0 it follows by using the definition of the constants 7, that

V) N~ e 2k (1) S G
o) _Z (1+1)%g(t)* Z T+ gt <,§ (1 +t)g(t)2’“>

I Z 2k 9 (t) + Z Vel
(1+1)29(t)? — (L +t)g(t)*+ W (1+4t)2g(t)%
N-1 ek 2N—k o y M 2N—k
k i k
- ((1+t) D)7 2 A+ 0)g0)% 1+ 00> Z 1+t )
k=1 g i=N+1 g N+1

w"<t>_m(t)gz_i(zw% g XNZ ( e

o) T+ 0902 T 2 [T 120
N—

2%k 2N—k 2
_ ( ’qu Z Yrl Z Yilt )
2\ 4 t)g(0) T 0507 T T 0507 e W tyg(0F )

[ay

Therefore, by using Hypotheses 2.3 and 2.4 we get the second condition of (2.6) and
(2.7), respectively. O
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If we can not find any N satisfying Hypothesis 2.4, then we replace N by infinity
in (2.34). In addition, in the case of g, = lim;_,., g(t) < oo we introduce the following
condition:

Hypothesis 2.5. With v, from (2.34) we assume

% 2%
nyk’LLQ for all ? < 2= g°° (2.37)
= I 4

Remark 2.9. For given t, > 0 and p2 < 20 " the series

o0

(2.38)

k=1 g

converges uniformly for all t > t,. Indeed, by using that 1 < ¢(t) and by taking into
account the benefit that ¢(t) is an increasing function, then for all t > t, we have

[e.e] o

k=1 k=1

By using that "7, % converges for p? < @

we can apply the Weierstrass
M-test to conclude the uniformly convergence of the series in (2.38) for all t > t,.

. 2k—1 .
Moreover, the power series y -, % has the same radius of convergence ;> <

M because it is the derivative on 11 of the series Y-, %. This implies, together

with (2.32), that for p? < £ tO) , the series > 7~ | %ﬁf@ converges uniformly for all
t > to.

Remark 2.9 allows us to choose a function vy, € C?[ty,00) with a large t, if
necessary, which is defined by

Wi, () = exp (szk/ mm). (2.39)

k=1

Theorem 2.4. Under Hypotheses 2.3 and 2.5 the solution of the Cauchy problem
(2.1) satisfies the generalized energy conservation property

2 EW)(0) S E(u)(t) < E(u)(0), (2.40)

where the energy E(u)(t) is defined by (2.8) with 1 (t) = 1y, (t) from (2.39). The data
(ug,u1) are from the energy space H' x L.

Proof. We can follow with a slightly modification the proof to Theorem 2.1. We split
the pseudo-differential zone for t < t, and and for ¢ > ¢, with a large t,. For ¢t < ¢,
we are in a compact subset of this zone. Therefore, we only have to take into account
the definition of ¢, for large t. From Remark 2.9 the function v, which is given by
(2.39) is well-defined. The first condition of (2.6) is immediately satisfied if g(t) goes
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to infinity as ¢ goes to infinity and, otherwise, it follows from (2.37). By using the
Cauchy product we obtain

V) i 2/~mu2’“ (t)

w(t) — 1—|—t 2k+1

Therefore, (1 + t)( (()) + m(t)?) € L', and Hypothesis 2.2 is satisfied. By using
Hypothesis 2.3 we get the second condition of (2.6) and the conclusion of Theorem
2.4 follows again from Theorem 2.2. O

2.2.3 Examples
We conclude this section with examples.

Example 2.2. If g(t) in (2.31) is given by ¢(t)? = In(e+t) - - - In™ (el ) with elF+1] =
e and I (¢) = In(In¥(¢)) , then we have (2.33) for N = 1, i.e., the conclusion of
Theorem 2.3 holds with ¢ (t) given by (2.34). We have that ¢(t) ~ (Inl™ (el™] 4 ¢))»*

Example 2.3. Let g(t)? = (In(e + t)) for some 0 < v < 1. In order to have (2.33) one
should take N such that (N 4 1)y > 1. Then the conclusion of Theorem 2.3 holds with
Y(t) given by (2.34).

Example 2.4. Let us consider the Cauchy problem (2.1) with m(t) = 5 and p # 0,
i.e., we consider the scale-invariant case from [5]. Here ¢(t) = 1, hence, there does
not exist any positive integer N such that (2.33) holds. In order to apply Theorem 2.4
one has to verify Hypothesis 2.5. Let us take the function 1) from Theorem 2.4 as

) = exp Z/o R =(1+41)°

with o = 312 yp?*. By using the infinite Cauchy product and from the definition of

Y, we get
o0 2 o0
0’ = ( Z%uz’“> = g =
k=1 n=2

i g 1/’ ) 4 m(r)2 = 0. If we take o_ = Y ”;W), then

Therefore, 0. = 5 =

20_ < 1and (2.37) holds. In this way we derived the decay estimate which is proposed
by (1.12) and (1.13) for pi? € (0, ).

Remark 2.10. This example shows us that our choice for the function i) which is
proposed in (2.34) and (2.39) is quite optimal. It shows that our choice works in a
good way for the well-known scale invariant case.

Example 2.5. If g(¢)> = In(In(e® +t)), then we can take for t > t,, to > 1, the function

%M
= = >
- Z/ 1+T T

which is well defined for ;% < g(to . It is clear that the condition (2.37) holds and the
statement of Theorem 2.4 is apphcable
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2.3 New scattering results

In this section we are interested in scattering results between the solutions of the
Klein-Gordon time-dependent equation

uy — Au+m(t)*u =0, u(0,2) =ug(z), u(0,2)=u (), (2.47)
and the free wave equation
vy — Av =0, v(0,2) =vo(x), v(0,2) = v1(x). (2.42)
We are interested in a scattering result under the assumption
(1+t)m(t)* € L*. (2.43)

This hypothesis is weaker than the hypothesis that was assumed in the thesis [4], in
other words, (1.21) implies (2.43) but not conversely.
Before stating the result we define for any € > 0 the following closed subset of L% x L?:

Foi={Us € I* x I*: Ty(¢) = 0 for any |¢| < ¢}

We remark that £ = U.»oF, is a dense subset of L2 x L2.

Theorem 2.5. We assume the Hypothesis 2.1 and (1 + t)m(t)*> € L'. Then, for
any initial data (ug,u;) € H' x L?, there exists a linear, bounded operator W, (D) :
L*(R™) x L*(R") — L*(R") x L*(R") such that

lim H(|D\v(t,~),w(t,-)) - ((Duu(t, -),ut(t,-))

t—o00 1+t

— 0. (2.44)

L2x L2

Here w = wu(t,z) is the solution to the Cauchy problem (2.41) and v = wv(t,x) is
the solution to the Cauchy problem (2.42), where the initial data are related by
(|D|vo, v1) = W (D)((D)nyug,u1). Moreover, on the dense subset L we can state
the decay rate as

| D1ote ). mte.9) = (10) gttt ) |, S (Do, w) [ 1+ ryme)ar
t (2.45)
as t goes to infinity.

Proof. With a slightly modification we can follow the proof of Theorem 3.26 of [4].
Let us define the micro-energy U by

~ . IR ~ 2 N? Y
U= (h(t,&)a, Da)", h(t,) = (|€| + m) 2

Considerations in the pseudo-differential zone

Here we consider the first order system

Dt%(tvg) 7
hlt,¢) ) U (2.46)

DU(t,&) = A(t, §)U := ( m(Z)(éf-)\ﬂQ 0
h(t,€)
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We can get an integral representation by using the fundamental solution E = E(t, s, §)
to (2.46), i.e., the solution to

D:E=A(t,&)E, E(s,s,€)=1.

If we put E' = (E;;); j—12, then we can write for j = 1, 2 the following system of Volterra
integral equations:

Elj(t,s,f)zﬁ(t,f)(h%jh / zEzj(T,sg)dT), (2.47)
Eay(t,5,€) = 6y + / m—WEU(T,s,g)dT. (2.48)

Under the hypothesis (1 + t)m(t)> € L' we derive by using Gronwall’s inequality the
estimate | E(t, s,£)|| < C. Indeed, by replacing (2.48) into (2.47) and after integration
by parts we get

Byt s,€) :E(t,g)(ﬁé”é) +i / t (52 +i / T%Eu(@ 5,€)do ) dr)

= %(t’f)(%(il,jg) +z'/: §ojdT— /: %Eu(m,g)(t—ﬂw).

integration by parts

Elj(t s

Then, after defining wy;(t, s,€) == Teon (5 and using that (1 + t)A(t, €) ~ 1 whenever

(t,€) € Zpa we get
1 t—s

[[wi;(t, s, S e + 1+t+/( ()7 + 1) [y (7, 5, O I(1 + 7)

t—T

d
1+

2/\

/ e sy (5, )] (1 + )b

Applying Gronwall’s inequality we conclude

Juss(t. 5.l S exp (C [ (14 7)m(r) + e ).
Since (1+¢)|¢| < N and (1+t)m(t)* € L' (R;) it follows ||w1,(t, s,&)|| < 1. Therefore,

| E1;(t,5,€)]| < C. This estimate together with (2.48) gives us that || E;(t, s,£)]| is also
bounded in Z,4(N).

Considerations in the hyperbolic zone

Here we define the wave type micro-energy
Uw = (|¢]a, D)’

This allows to derive from (2.10) the system

DUy = ((1) é) E[Tw + <m(0t)2 8) (I~ U (2.49)
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As in the proof of Theorem 2.1 let P be the constant diagonalizer of the principal part
of (2.49). Defining U; = P~'Uy, then we get the system (D, — D — By(t,£))U; = 0,

where € o (0 '
_ _m _]_ _
p= () mea=Tg (3 7))

Let Q) = Q:(t, s,£) be the solution of (D, — E;'B1E)Q, =0, Q1(s, 5,&) = I, where

i-9lel g
e
El(ta 876) - ( 0 ei(t—s)ﬂ) :

Then we can estimate
1By (t,€)|| < C(1+t)m(t)?,

hence, after using (1 + t)m(t)? € L' brings ||Q1(t,s,€)|] < C; and by Liouville's
formula, ||Q1(t, s,€)|| > C2. Now, let us infroduce

h(t.€) 0
H(t.) =€ ).

It is clear that in the hyperbolic zone we have h(ﬁ;f) ~ C. Then the inverse matrix !

exists and ||H (¢, &), |H'(t,§)|| = C for all t > bj¢.
Since U(t, &) = H(t,&)Uw (L, €) = (h(t, )T, D))" we can write U(t,€) = £(t,0,6)U(0,€),
where

g(t 0 5) _ { E<ta 07’5)7 0<t< e\ﬁlv
P H(t,§)PEL(t, 0, §)Qu(t, 01, )P H (O, §) " E()g), 0,6), t > b)¢.

We have proved that ||E(¢,0,¢)|| < C for all ¢, €.

Scattering operator and properties

If m = 0, then the fundamental solution of the system (2.49) can be written as
PE,(t,s,&)P~L. Then, if v solves the free wave equation (2.42), by putting V (¢,£) =

(1€]0, D0)T, we can write V(t,€) = E(t,5,£)V (s, &), where
E(t,s, &) = PE\(t,s,6)P7L.
Our aim is to prove that the limit

W (€) == s-lim E(¢,0,8)'E(¢,0,€) (2.50)

t—o00

exists as strong limit in L?(R™) x L?(IR"™). After proving this property we are able to
relate the Cauchy data by

V(0,8) =W, (&) U(0,&) forall €.

First we prove the existence of (2.50) for |¢| > €. Indeed, for t > 6| we have

E7Nt,0,6)E(t,0,8) = PE1(t, 0, )Q1(t, )¢, )P H (01, £)E(0)¢), 0, €)
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with i
El(t,em,f) = El(ovtas)P_lH(t>€)PEl(t7 9\£|>€)

By using the explicit representation of Ej (¢, B¢, &) we can prove for all [£] > € that
limy oo E1(t, 01, &) = E41(0, 8¢, £), and the existence of the limit is proved if Q1 (¢, O¢|, &)
converges for t — oo in L. For t,s > 6 we introduce

Cl(t, S, 6) = E1(87 t, f)Bl(t, g)El(t, S, 5)

Then the matrix Q1 (¢, 0, §) is given by

Q1(t,0,) —I+Z / o wm/ Crlta 0.+ [ Coltn, B, )t
|€]

Ole| Ole|

For t,s > 0j¢| we obtain the estimates

Q1 (2, 0\5| f) — Q1(5,0¢,8) || L~

1 t1 k—1
< Z HCl t1, 0, 5)’\( 1)_</ |C1(t2, O, f)Hdtz) dt,

k=1"Y° O]

< [ Img ||2 2] i)

Ole|

/HB1 b€ |exp</ 1112, ) |dt2) dty

Olel

< [ 1B ain) 5 [+ umnpan

For the last inequality we used the representation of By = Bj(t, ) and the definition
of the hyperbolic zone. Since (1 + t)m(t)* € L' it is clear that Q1(00, 0, &) exists
uniformly for |{| > €, because {Q1(tk, 0, &) }i is a Cauchy sequence uniformly for
|€| > € in L™ for any sequence {{;} tending to infinity.

Then, we already proved the existence of the limit (2.50) on the dense subset £ of
L? x L*. By using

1Q1(00.0161.€) — Qi (1,0, )| < / (1 + 1)m?(r)dr,

where Q1(00, 8¢, &) = limy_,o0 Q1(2, 8¢, §), we conclude (2.45).

According to the estimates proved in Z,4(N) and Z,,(N), £(t,0,£) is uniformly

bounded and the same is true for E=1(t,0, £)E(t, 0, ). Therefore, applying the Banach-
Steinhaus Theorem 7.3 we conclude that the operator W, (&) is well-defined for all

¢ e R

Finally, we study the difference

AU, ) = V()2 = [[AR)E(,0,-)U(0, ')_§0<t»0>'>v(07')”L2
— H ()E(1,0,) IE(t,O,-)—W+(-))U(O,-)

Y

L2
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under our assumption (ug, u;) € H' x L? and by definition of W, (¢) we may conclude
that

ABU(E, ) =V (E, )]z =0
as ¢ tends to infinity. The proof is completed. O

Remark 2.11. From a scattering result to free waves for solutions to the damped wave
equation (see [58])

wy — Aw + b(t)wy = 0, w(0,z) = wo(x), w(0,z) = w(x), (2.57)
one can understand that (1 +t)m(t)? € L' is a reasonable condition to be assumed in
Theorem 2.5. Indeed, let us assume that b(t) = (1+t—pjg(t)' where ¢(t) satisfies Hypothesis

2.3. After performing the change of variables

w(t, z) = exp ( - %/Ot b(s)ds)u(t, x)

we get
uy — Au~+m(t)u =0, u(0,z) = up(z), u(0,2) = uy(x)
with
L oy L p pg'(t) >
mit) = =3 (0" + 2(1) = 5((1 TiRgt) T L+ hg®? 201 —|—t)2g(t)2>'

Therefore, if g(t) goes to infinity for t to infinity the condition (1+t)m(t)? € L' is a nec-
essary and sufficient condition to have b € L' which guarantees scattering behavior
of solutions to (2.51) to free waves (see [58]).

Remark 2.12. Due to the energy conservation for the free wave equation we conclude
from Theorem 2.5 that

B)(0) = 3 (e, e + (D) s, u(t, ) = Bul0)(0) as t = oo,

with Ey,(0)(0) = [|Vvol|22 + [Jvr]|2-.

Remark 2.13. If (1 +t)m(t)* € L', then (2.7) holds for ) = 1. Consequently, p(t) =
(1 +t)~'in (2.8). This already hints to a scattering behavior to free waves. This
conjecture is now proved in form of Theorem 2.5.

Remark 2.14. The Strichartz’ estimates from Theorem 1.1 remain true for our model
(2.41). This means, we can assume weaker hypothesis over m = m(t), Hypothesis
2.43, and get the same LP — L7 estimates for the model (2.41). More precisely, let
m = m(t) € C*(R,) satisfy the following properties:

(B1) (1+tym(t)® € L'(Ry),
(B2) |dfm(t)| S Ce(1+) % k=0,1,2,---,

for all t, where C), are positives constants.
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Theorem 2.6. Let m = m(t) € C*°(R.) satisfy (B1) and (B2). Then for all times ¢
the L? — L% decay estimate

1

| (uelt, ), Vau(t, ) e S (14672 G8) (ug| rrsr + [Juall o)

isvalidforr:n(%—é>,wifh1<p§1,

the Cauchy problem (2.41).

% + % = 1 and u = u(t, x) is the solution to

Example 2.6. If g(t) in (2.31) is given by g(t) = In(e + t)---In™(el™ + ¢), then
(1+t)m(t)* € L' and the conclusions of Theorems 2.5 and 2.6 hold.

Example 2.7. Let us choose m(t) = W in (2.31) for v > 1. Then (1 +
t)m(t)* € L' and the conclusions of Theorems 2.5 and 2.6 hold.
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In this chapter we apply a diagonalization procedure to Klein-Gordon problems
(2.1) with sufficiently smooth time-dependent coefficient m = m(t) aiming to find a
representation for the solution by Fourier multipliers and then derive LP? — L9 decay

estimates on the conjugate line. This procedure is well-known as WKB-analysis and
was introduced by K. Yagdjian in [62], M. Reissig and K. Yagdjian in [45].

3.1 Representation of the solution
Let us consider the following Cauchy problem for Klein-Gordon models
e — Au+ m(tfu =0, u(0,2) = uole), 1 (0,2) = (), 3.1)

where u = u(t,z) and (t,z) € [0,00) x R™.
We perform the partial Fourier transformation of (3.1) with respect to z. If we
denote by u = u(t, &) the partial Fourier transform F,_,¢(u)(t,£) we obtain

et + [€]70 +m(t)*a =0, @(0,€) = To(§), @l(0,€) = (§)- (3.2)

To derive a representation of solutions we apply a diagonalization procedure to a
first-order system corresponding to equation (3.1) in the hyperbolic zone.

Here we follow some ideas of Wirth [59] and Yagdjian [62]. We will consider a
system with a coefficient matrix composed of a diagonal main part and a remainder
part. The goal of this diagonalization is to keep the diagonal part in every step of the
diagonalization. However, after every step we achieve a better normwise estimate for
the remaining part in some scale of symbol classes.

We consider the Cauchy problem for the Klein-Gordon equation (3.1) under the
following assumptions:

Hypothesis 3.1. Let m(t) € C*(R.,) satisfy

) < —— O < M forall k<0 (3.3)
1+t 1+ 1)k

Hypothesis 3.2. There exists a positive increasing function ) = 1)(t) € C*(R.), such
that

! (k)
lirtriipo(lth)zi((;)) <1, mk(g)‘ < (1+1t)k forall keN.  (3.4)

And we assume the following relation between m(t) and v (t):

/OOO(HT)\ M(:)) +m(7)2‘dT§ 1. (3.5)
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In order to derive I? — L9 estimates for the solution and its derivatives we divide
the extended phase space [0, o0) x R™ into three zones:

Zpa(N) = {(1,€) € [0,00) x R : (L +)[¢| < N},
Zip(N) = {(.€) €[0,00) x R" : |¢] < N < (1 +0)[é]},
Zh,(N) = {(t,€) €[0,00) x R" : [¢] > N},

where N is a positive constant.

t,
Ol

0 N €]

Fig. 3.1: Sketch of the zones.

Remark 3.1. In the zone Zf;yp(N) we consider only large frequencies and in the zones
Zpi(N) and Zj;, (N) we consider only small frequencies. We have that the hyperbolic
zone from the previous chapter is Zy,,(N) = Zj;, (N)U Z;, (N). Furthermore, the
separating curve between zones Z,4(N) and Z}; (N) is given by

O - (0, N] = [0,00), (1 +6)[¢] = N.
We put also 8y = oo, and ¢ = 0 for any |£| > N.

Remark 3.2. For the estimates of the potential energy we need to deal with the factor
|€]7L. For this reason we shall divide the phase space into three zones because we shall
proceed in a different way in the hyperbolic zone for small and large frequencies.

In order to separate the extended phase space into three parts we introduce the
function x € C*°(Ry) such that x(t) = 1fort < 1, x(t) =0for ¢t > 2 and x/(¢) < 0.

We can define the characteristic functions ¢,4, cpf;yp and ¢;,, of the zones
Zpa(N), Z,,(N) and Z;  (N), respectively, by

epa(t,€) = x(IEINTY) x (L+B)EINTY),
Orpt6) = X (IEINTY) (L= x ((L+1)[EINT)),
Chp©) = 1=x(JEIN7Y)

such that @ua(t, €) + ¢}, (€) + @, (1, €) = 1. Let us consider the same micro-energy
that we defined in the Chapter 2, that is,

/ T
Ut ) = (h(t,g)a, g Y (t)a> , (3.6)

where

h(t,€) Ppa(t, €) 4 1l€] (Phyp(€) + ©hyp(t,6)) -

BN
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3.1.1 Considerations in the pseudo-differential zone

In the pseudo-differential zone Z,,(N) the micro-energy (3.6) reduces to

V(0) .\ T
0 uo(g)) , and U = o).

U= (1= 3 ®)  a(©) = (9, 7(6) -

So we have

1 1
_ - T e |0 :
QU(t,§) = AL, OU : < —(4+1) (4 +me? + 1) —258 ) R

If we consider the fundamental solution £(t, 5, &) of the system (3.7), i.e., U(t,€) =
E(t,s,&)U(s,&) and E(s, s,£) = I, then we proved in Corollary 2.1 that in the pseudo-

differential zone we have the following proposition:

Proposition 3.1. Assume the Hypothesis 3.1 and 3.2. Then the fundamental solution
E(t,0,¢) satisfies the estimate

1€, 0,91 <

b(t)*
for all (t,€) € Z,a(N).

Consider H(t, s,&) such that U(t, &) = H(t,s,&)U(s, &) and H(s,s, &) = I, that

is, H(t,s, &) = z((?)é’(t, s,€). Then it follows from the Proposition 3.1 that
1
H(t,0, < —— forall t < 0. 3.8
0,901 5 55 ¢ 2.

The properties of the matrix A = A(t, &) imply the following symbol-like estimate.

Lemma 3.1. Assume the Hypothesis 3.1 and 3.2. Then for |{| < N the symbol-like
estimates

D¢ (V2 (01 € (611, 0, €))|| < Calé]
are valid for all |o| < ¢+ 1.

Proof. Observe that the matrix A(t, &) has the same properties of the matrix of the
Lemma 3.10 of [58], what is sufficient to show the lemma. O

From Lemma 3.1 it follows that

1 D¢ ((01¢)H (B¢, 0,€)) || < Calé] ™, (3.9)

forall o] < ¢+1.
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3.1.2 Considerations in the hyperbolic zone: Z; (N)uU Z; (N)

First of all let us introduce the symbol class S5 {my, m,} in the hyperbolic zone.

Definition 3.1. The time-dependent amplitude function a = a(t,§) belongs to the
symbol class Sﬁ}’gz’{ml, mo} with restricted smoothness (1, (5 if it satisfies the symbol-
like estimates

« mi1—|« 1 math
DEDga.6)] < Cualel™ (1) 310
for all (t,&) € Zy,,(N), all non-negative integers k < ¢, and all multi-indices oo € N"
with |a| < £s.

We will denote by Sy{mi, my} the symbol class when ¢; = /5, = oo, that is,
Sn{mi, mo} = S {my, mo}.
The rules of the symbolic calculus are collected in the following proposition.

Proposition 3.2. (1) S4*{my,m,} is a vector space, for all non-negative integers (;
and /5.

(2) S {my — k,ma + €} € S%{my, ma}, for all £>Fk > 0,6, > ¢, and €, > 5.
(3) S {my, my} - SJ%’KQ {m),my} C SE{my + m}, my + my,}, for all non-negative
integers (; and {; with (; = min{¢;, (}} for j = 1,2.

(4) DfD?Sfi\}’EZ{ml, ma} C Sﬁ}_k’&_w{ml — |a|, ma + k}, for all non-negative integers
¢y and Uy with k < {1 and |a| < £s.

(5) S {-1,2} ¢ L L{(Znyp), for all non-negative integers (1 and (5.

In the hyperbolic zone Z,,,(N) = Z; (N)U Z; (N) the micro-energy (3.6)
reduces to
e~ VO NT e _ V' (0)e) T
U= <Z|£ U, Uy — w(t) U) > Uo(f) - <Z|€|U(9|§‘,f),Ut(9|§|,§) - ¢(9|£‘) U,(Qm,f)) ’

and U = ¢()U, so that
~ 0 1\ .. ~ 0 0 ~ 0 0\ . ... i~
oU = (1 0) iU + <0 _2%> U+ (—%"(t) — m(t)? 0) Glenp~tu o (3.11)
for t > O with initial datum U (8¢, €) = ¥ (6¢)) " Us(€).

Let M be the diagonalizer of the principal part (with respect to powers of [¢])
of (3.11) given by

N O N )

If we put V(t,€) := M~1U(t,€), then we get

pv = (" D)1ev - @) +caev. 3.12
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where

so=i (4 1) o= gg(Goeme) ()

Note that B € Sy{0,1} and C(t,€) € S5°{—1,2} c 55>{0,1}.

Now we want to carry out further steps of the diagonalization procedure. The
aim is to transform the previous system such that the new matrix has diagonal struc-
ture and the new remainder belongs to a special hyperbolic symbol class.

We construct recursively the diagonalizer N (t,&) of order k. The construction
of the diagonalizer matrix was developed by Yagdjian [62]. Let

k k

Nk(tag) = ZN(j)(t7€)7 Fk(tag) = ZF(j)(t7£)7

j=0 Jj=0

where NO© = [ B© = B + C and FO = diagB® = Fy(t,¢). Following Yagdjian
[62] and Wirth [58] the construction goes along the next scheme. We define

FY .= diagBY, (3.13)
O _Bg)

NG = 59 2[¢] , (3.14)
2[¢] 0

BUtY .= (D, — D+ B+ C)Nj41 — Ny (D, — D+ Fj). (3.15)

Proposition 3.3. Assume the Hypothesis 3.1 and 3.2. Then NU) € AR B )
and BU+Y ¢ S]{,_J_l’oo{—j— 1,j+2} for all j > 0. Moreover, the matrix Ny is invertible
in Zpyp(N) for all k € N.

Proof. We will prove the statements by induction on j.
1) The Hypothesis 3.1 and 3.2 imply that

FO@t &) = Fy e §5°40,1}, NW(t,¢) e S5°{-1,1}.
So we have,
BY = (D;~D+B+C)N,— N, (D; — D+ F)
= (D;,~D+B+C) (N9 + NOW) - (NO 4 NU) (D, - D + F)
= D,NW + (BO + [NV D] - R) - NOE, + (B+C)NW.
Now B® + [N D] — Fy = 0 imply that
BY = p,NY - NOE, + (B4 C)NW.
Taking into consideration the rules of the symbolic calculus we have

it NU e §5°{—1,1},then D,N® e §51°{—1,2},
it Iy e 550,13, NY e §5°{—1,1},then NV F, € 55°{-1,2},
it B+C e 55°{0,1}, NV € §5°{—1,1},then (B + C)NW e §5°{-1,2},
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summarizing BM e S5 {—1,2}.

2) For j > 2 we suppose that B™ e S™{—m, m+1} forall 1 < m < j. Then,
by definition of N1 we have from [£|' € Sy{—1,0}, that N0"D € S5 —m —
1,m+ 1} and F™ e 85 ™{—m,m+ 1} forall 1 <m < j.

3) For BU*Y we have

BYUY = (D; = D+ B+ C)Nj1 = Njpa (D = D + F)
J+1 J+1 J
= (Di=D+B+C) Y N -3 N (D,— D+ FO)
v=0 v=0 v=0
j+1 j+1 j—1 j+1 ‘
= (D=D+B+C) > N =3 N(D, =D+ 3 FW) = 3" NOIFO)
v=0 v=0 v=0 v=0
j-1
= BY 4 (D, — D+ B+ C)NUtH — NG+ (Dt — D+ ZF(U)>
v=0
j+1
— Z NORG _ pG)
v=1
j-1
— BU 4 [N(J”rl)’D] —FU 4 DtN(jJrl) — NU+D )
v=0

J+1

+(B+ C)NU*D Z N
We have that

therefore,

j—1 Jj+1
BU+D — D,N G+1) _ NG+ Fw + (B + C’) NG+ Z N® pG)
0 v=1

v=

Then BUTD € S5 — 1,542}
Now we are able to prove that Ny is invertible on Z,,,(N). This follows from
N, — I e S _1 1} and by the choice of a sufficiently large zone constant N.
In fact,
T S S S
WIS e S g~ N
|Np — I|| = 0, N — oo.

The proof is complete. O

If we denote R(t,€) = —Ni(t,&)"'B®)(t,£), the previous results give us the
following lemma:

Lemma 3.2. Assume the Hypothesis 3.1 and 3.2. For each 1 < k < ( there exists a
zone constant N and matrix-valued symbols such that



3.1 Representation of the solution 61

1. Ni(t,€) € Sy ">{0,0} is invertible for (t,6) € Zn,,(N) with Ni(t, &)~ €
Sy {0, 0%

2. Fy_1(t,€) € S50, 1} is diagonal with Fj,_1(t,&) — F© € & > 1,2},
3. Ry(t,€) € S {—k, k+1}.
Moreover, the identity
(Di=D(&)+B(t)+C (¢, &) Ni(t,€) = Ni(t, ) (Dy—D(€) + Fi—1(t,€) — R (¢, €)) (3.16)
holds for all (t,£) € Zy,(N).

The next proposition shows us that the multiplication by e*¢l is not a well-
defined operation on the symbol classes Sﬁ}’b{ml, mo}.
In order to simplify the calculations the following remark is important.

Remark 3.3. Let g be a sufficiently smooth function such that g = g(|¢]|) satisfies
DLl < l¢1
for all £ € R". Then we have for all multi-indices « the estimates

[Dgg(lED] < 1€l
Indeed, applying Fad de Bruno’s formula for a multivariate version we get that

|a| J

IDEgENl = 1D D oD T DI

|a|

Yo Y G sllg? (e

J=1 pi+-+Bj=a

J
Bi
110
=1
o

= Z Z |C'51,...,5j||g|—j|5|—(|ﬁ1|+~~+|5j|)+j

=1 Br++B=a

< Culelle

IN

d

Proposition 3.4. We have that
1. exp (Fib) [€]) SN ? {my, ma} € S {my, ma},
2. exp (it|€]) S {my, my} € S {my +1,ma — 0} with 7 = 4 + 0,.

Proof. In fact, let a(t, &) € S5 {my, my}.



62 3 Strichartz estimates

First let us prove 1. If a(t, &) € S5 {my, my}, then

|DFDE (exp (£iblg|E)a(t. )| = | D Coya, Dt (e5761) DFDE2a(t, €)

a1 tas=a
o |
<Y Caran | Ol [Ty Y H% (Bigle)| | |DFDE2alt, €)|
altar=a J=1 b1+-Lj=|az] =1
|
< ) Caw|CLY D II|§|“ |DfDg?alt, €|
ar1taz=a §=1 by 4-l;=|ay | i=1
Ganiaay (L )™
< C or.0n m1—(|a1|+|az
< Y Cuuald =
al1tas=«a
1 mo+k
= O |¢]m e .
kol (1+t)

To prove 2 let a(t, &) € S {my, my}. Then

|DEDE (exp (itle )at, ©))|
S| Y Y Cumene Dl DR DR D)

k1+ko=k a1 +az=a

< Z Z Clt|a1||Dk1 izt|§|‘ ‘Dksz (t,f)‘

k1+ko=k a1 +tas=a

ma+ka—|ai] ol
< C/ my—|az|+k
<> ¥ (i) €

k1+ko=k a1 +tas=«a

o (L)
< Calefmi-le .
N o)

3.1.3 Fundamental solution of the diagonalized system

We are interested to find a representation for the fundamental solution of the
diagonalized system

To find such a representation we are going to consider the fundamental solution & =
Eo(t, s,&) of the free wave system, i.e., the fundamental solution to D; — D(&). Then
we study the influence of diag B and, finally, we check the influence of Fj,_; — F©),
diag C and Ry on the construction of the fundamental solution.

Step 1: We have the fundamental solution &y(t, s, €) for

(Dt - D(f)) SO(tv‘S?g) = 07 50(87875) = I7
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pilt=s)l¢]
atos. ) = - 0@ = (7 lag ). B
Step 2: To analyze the influence of diag B let us define & = &(t,s,&) =
(t,s,€). Then
Dtg()<t757§) = Dt (%) 50(t737€)+Zi((j))Dth(taS?g)
Y)Y (t) | P(s)
(R o) s
(0 LOPS
- (Gt +o0) Fgatne
() -
= (L4 0©) &t

= (D(¢) — diag B(t)) &o(t, 5, €).
Therefore &(t, s, £) satisfies

Di&(t,5,€) = (D(€) — diag B)&(t, s,£). (3.19)
Step 3: Now we will study the influence of F,_; — F(, diag C and Rj. Therefore,
we define
Pp(t.5.6) = Eols,1,6) (~Femr(t,€) + Ri(t,§) + FO(1,€) — diag C) & (. 5.€).
But Fy_1(t, &), FO(¢,€), and diag C are diagonal. Hence,
Oy (t,s,6) = —(Fr1 — FO(1,€)) + Eo(s, 1, ) Ri(t,€)E(t, 5,€) — diag €. (3.20)
Let us consider the following system:

D;Qu(t, s,&) = Pi(t, s, &) Q(t, s,6),
{ Qi(s,5,§) = 1. (3.21)

The fundamental solution &, = &(t, s,&) of the diagonalized system can be repre-
sented as

¥(s)

Eult5,6) = &o(t 5, Qult5.8) = s

Eo(t, s,£)Qk(t, s, ). (3.22)

In fact,

D&, = (Dta))Qk+<§)(DtQk)
= (D —diag B) &9 + & (9494)
= (D —diag B) &Qx + (—Fio1 + Ry + F© — diag C) &9y
= (D- dlogB diag C — Fj_1 + Ry + F© )Sk
= (D-FO-F_,+R.+F9)¢&,
= (D- Fk 1+Rk)8k

We have that Ry (t, &) € S5 >{—k,k+1}, and if £—k > 0 we can prove the following
lemma:
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Lemma 3.3. The matrix-valued function ®,(t, s, &) belongs to the symbol class
Dp(t,s,6) € SV 1{~1,2} (3.23)

for all s > 0.

Proof. Let us consider the case where s = 0|, the case s > 0 is analogous. The
representation of @ (¢, s,£) in (3.20) implies that

Dy (t, 0, &) = —(Fu_1(t,€) — FO, ) + Eo(0je), t, €) Ric(t, €)Eo(t, Oe, €) — diag C.

We have that diag C' € S5°{—1,2} ¢ S¥" '{—1,2} and the Lemma 3.2 implies that
Fr1(t,6) = FO(t,6) e Sy {—=1,2} ¢ S%*'{—1,2}. The only remainder term is

~ agfl a?QeQi(e\El_t)‘gl
Dr(t,0¢), &) = EolO)g, t, ) Ri(t,§)E0(t, 0, &) = ( K 2i(t-0,¢)) €] ! ) :
(g€ (99
where by Lemma 3.2 the entries afj e SN~k k+1} ¢ SY{—1,2}. Applying

Proposition 3.4 we deduce that ®,(t, Oie, ) € SN T~k k+1-n} = SY 11,2},
where n = k — 1. O

Remark 3.4. Moreover, we may conclude that ®(t, s, &) € SW?{—1,2} if n = {4 +
ly < k—1.

Taking account of S%*'{-1,2} ¢ LEL{(Zyyy) it is allowed to apply the Peano-
Baker formula (7.2) and to conclude that the fundamental solution of the system
(3.21) is given by

00 t t1 te—1
Qk(t,S,é) :]—i‘ZZZ/ (I)k(tl,S,g)/ @k(tg,s,f)--~/ q)k(tg,s,f)dtg'”dtl.
=1 s s

(3.24)
This series representation for solutions to (3.21) and Proposition 7.2 imply that

In fact, first of all look that F,_, — Fy € Sy ™{—1,2}, Ri(t, &) € S57{-1,2},
diag C € S5 "{—1,2} and ||&(t, s, €)|| = 1. Then

1

— | < -
[Px(t, 5, O < [1F1 — Foll + | Ri(t, §)]| + || diag C|| S A+ 02
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Then,
HQk(t,s,f)H - HI+;%/S @k(tl,s,g)/s @k(tg,s,f)---/s @k(tg,s,f)dtg---dtlH

0o t t1 to—1
1+ / |04 (t,5,6)] / 1@ty 5,6)]] - / |®u(tr, 5, &)ty - - dt
(=1 s s

1 h 1 tg—1 1
ﬁ/s m/s mdté”'dtl
td_T)e
{= s ( )2
! dr
- ([ mter)
< exp (/9{| W) = exXp (N) § 1.

This leads to the following estimate for the fundamental solution of the diagonalized
system in the hyperbolic zone:

IN

VAN N
— —
+ +
10 10
=| = N w
— ., =
—
_ —
L +
— ~
+
\]

(s)
()

The goal is now to estimate the {-derivatives of Qy(t, s, &).

&4, 5,01 NZ

Lemma 3.4. Assume that a(t, s, §) € Sjov’k_l{—l, 2}. Then

00 t t1 tj-1
b(t,s, &) =1+ a(ty, s, §) a(te, s, &) - a(t;, s, &)dt;---dt; (3.25)
X otwn [ atton | 1

defines a symbol from S3"~'{0,0} uniformly in s > 6.

Proof. First of all let us analyze the « derivatives with respect to £ in the representation
(3.25) for b(t, s,£). We have that

t1 tg—1
Dgb(t, s,€) = ZD5 (/ a(ty, s, g)/ a(t2,s,§)---/ a(tg,s,f)dtg-ndtl).

Let us consider the terms of the form

¢ t1 te_1
/ D¢ta(ty, s,§) / D¢?a(ty, s,§) - - / D?]CL(U, s, &)dty - - - dty

with Zaz = q.

s> QKI then the Lemma 3.3 implies that the norm of these term can be estimated
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1 2
—1-]a| —1—]az]
e (LY
—1-|ay dt, - - dt
. X/s € <1+tj> ‘ '

< Ca,k,N|£’7|a"

If s = 6)¢|, then we also have to care for derivatives of the lower integral bound
Oj¢|. Then there arise terms as

D¢’ (a(9|s\79|s\7f)D?9|s\>-

For |3| = 1 we can estimate as follows:

HDg”(a(em,9|5‘,§)a\§|e|ﬂ)H — H Y CarasDEa(B), 0, €) D %H

a1 |+|az|=|al-1

- 1 2
< —1—|au] —2—|aa|
<G X ()l

a1 |+|az|=|al-1

< Ca,N’ﬂiM'

We use that the terms D¢ a(0)¢|, 0|, §) can be estimate in the following way:

1 2
Dal < —1—|0¢‘ )
1D al6i. 0. 11 < I (1575

Indeed, following the Remark 3.4 we know that if /1 + ¢y < k — 1, then ®(¢,s,£) €
5% If we denote by a(BOle), O, €) = G(b¢), &) and apply the generalized version of
Faa di Bruno’s formula, see Lemma 7.6, we obtain for the case |a] =n

"G ; gi1 o ¢\ 22
9|f\ f ZZ ZC TL kl’qu aa2( \f|7£> H (Dgle\él) (Dflé) ’

where the respective sums are taken over all non-negative integer solution of the
Diophantine equations as follows:

> = ki+2ks -+ +nk,=n

Z — qut Qe+t qr=Fk
1

Z — Qn1+Qn2++Qnr:kna

and

= ZQi]’a || = Zqz'z
i=1 i=1

k| = ki+ko+- +ky,=p1+ |l
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By virtue of ¢, &, = d;; we may conclude that ¢ = 0, for all i > 2 and |as| = ¢12. This
yields the estimate

24p1 n

1
IDEG (0, Ol < ZZ---ZISI_l_"Q(lJr%) [ ]~ Uo+Ds
0 1 n
1

=1

24p1
= ;;...;Krlﬂ,‘m (1+0|£> |§|—p1—n—fI12

1 2
S et :
~ 1+ (9|§\

Therefore | Dgb(t, s, )| can be estimate by Co.n|€]719. This complete the proof.

]

After all these discussions we arrive at the following representation of the fun-
damental solution to system (3.17).

Theorem 3.1. Assume that the Hypothesis 3.1 and 3.2 are satisfied. Then the funda-
mental solution &(t, s, &) of the diagonalized system (3.17) can be represented in the
hyperbolic zone as

¥(s)
e(t)

with a symbol Qy(t, s, ) subjected to the symbol like estimates

En(t,s,&) = Eo(t,s,8)Qux(t, s, &) for all t,s > b (3.26)

| DgQu(t, ,€)|| < Calé™! for all t,s > ¢ (3.27)
and for all multi-indices |a| < k — 1.

Remark 3.5. One use of this representation is to derive later LP — L% estimates for
the Cauchy problem for Klein-Gordon models (3.1). To derive these estimates we will
apply the Marcinkiewicz’s multiplier Theorem 7.1. One basic assumption to apply this
theorem is that an amplitude b = b(§) € C™(R™ — {0}) is subjected to the symbol-like
estimates

DEN(E)| S €7 for all [¢] < m,

where m = (%W + 1.

The previous remark shows us how many steps of diagonalization are necessary,
at least, for applying the Marcinkiewicz’s theorem. In other words, if k is the number
of steps of diagonalization, then k—1 > [%£] + 1. Here the regularity of the mass m(t)
should be at the least equal to 2(k — 1).

Transforming back to the original problem:

After constructing the fundamental solution &(t, s, £) we want to transform back
to the original problem and get in the hyperbolic zone the representation that we are
looking for. We know that,

Nk(t7§>_1(Dt - D(&) + B+ C)Nk(t7§> = (Dt - D(f) + Fk—1<t7§) - Rk(t7§))
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If Ek(t, 5,€) is the fundamental solution to (D, — D(€) + Fi—1(t, &) — Ri(t,€)), then
(Dy — D(€) + B + C) Ni(t, €)&xl(t, s,€) = 0.

In this way we have that £ (¢, s, &) Ni(s, &) and Ni(t, £)E(t, s, &) satisfy the same
initial value problem, where £©)(¢, 5, ¢) is the fundamental solution to D, — D(&) +
B + C. Therefore,

8(0)(t737§)Nk(3’§) = Nk<t7§)gk(tvsv€)7 5(0)(t7 575) = Nk(t75)5k<tvSag)Nk(svf)_17

respectively. Moreover, £ (t,s,€&) and M~'E(t, s,£)M satisfy the same initial value
problem. So, the representation of the fundamental solution in the hyperbolic zone is

E(tv S 5) = MNk(tv é)gk(t7 S, f)Nk(Sv g)ilMil

DMV Ealt, 5, Qult, 5, ONi(5,6) M1,
with uniformly bounded coefficient matrices Ny, N, € S5 {0, 0}.

The above representation will be used for large frequencies. We will consider a
different representation for small frequencies, because in this case we shall use the
"gluing procedure”. For small frequencies we should remember that for 0 <'s < ¢ <
t we have

g(t,S,g) = g(t79|5\7€)5(0\£|78a )
Taking this into account for £(t, ¢, &) we get

1
E(t,s,€) = WMNk(ta E)E(t, 011, &) Qu(t, O, ) Ni(Og, ) M p(0eE (B¢, 5. €)

fOI’OSSS@m <.
IfU(t,&) = H(t,s,§)U(s,§) and H(s, s,&) = I, then H(t,s,§) = %5(1&, s,€).

Summarizing we arrive at
H(t,s,£) = MN(t,6)E (L, 5,&)Qk(t, s, ) Ni(s,&) " M1, t,5> O, (3.28)
and
H(t,5,) = MN(t, §)E(t, 01g, &) Qult, Ojg, ) Nio(Bey, €)™ M~ H(B)g,5,6)  (3.29)
for0<s <O <t

3.2 L” — L7 decay estimates on the conjugate line

In Chapter 2 we proved results about generalized energy conservation. In this
way we find out L? — L? estimates for energy solutions to Cauchy problems for Klein-
Gordon models. In this section we will use the representations for the solution, we
have discussed in the previous section, to extend our L? — L? estimates to LP — L¢
decay estimates on the conjugate line for solutions to Cauchy problems for non-
effective Klein-Gordon models.

Basically the LP — L% decay estimates are given by the decay estimates of the
fundamental solution operator &y(t, s, D) of the free wave equation. This result is
well-known and we will present it in the next theorem and give a proof.
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Theorem 3.2. The fundamental solution operator of the free wave equation satisfies

n—1

1€0(t,0, D) 10 < Cpg(1 + )7 G3) (3.30)

for p € (1,2], p and q on the conjugate line and with regularity r = n(% — %)

Proof. Let us divide the extended phase space into three zones:

Zy = {(t,§) €[0,00) x R" : (L +1)[¢] < N},
Zy = {(t,§) €[0,00) x R": [{] < N < (L+0)[¢]},
Zy = {(t.€) €[0,00) x R": [¢| > N}.

If we consider the function x € C*(R4) such that x(s) =1 for s < 3, x(s) = 0 for
s > 2 and x'(s) < 0. Then the functions x1 = x1(¢, &), x2 = x2(t,€) and x3 = x3(&)
are defined by

xi(t,6) = x(EIN"Hx((t+1)IEINT)
xa(t,6) = x(EINT) (1= x(t+1)EINT)
xs(6) = 1=x(gNT),

such that x1 + x2 + x3 = 1. These functions are the characteristic functions for the
zones 7y, Z, and Z3, respectively.

The diagonal matrix &(t,0,&) has entries e
Fourier multipliers

+itlel - Therefore, we shall investigate the

F~Y e P(v)) for v e S.

Considerations in 7,

In Z; we have that ||Eq(¢,0,8)x1(¢, )| < 1. How ¢ > 2 if we suppost that v =
v(z) € LP(R™) follows the estimate

1F~1 (Eo(t,0,)x1(t,€)5()) (1, ) o < N1€0(8,0,)xa(t, )l 2o
<€t 0.z It I, 2 17120
S (146G o),

which is a better decay estimate in comparison with the statement of the theorem.

Considerations in Z3

In this zone we will consider large frequencies |{| > N. We have to analyze

1~ (s (€) e < 0(€)) (2, ) o

with2<g¢<ooandv e S.

Take ¢ = ¢(s) € Cg°(Ry) with supp ¢ C [4,2] such that Z P(2775) = 1.
j=—00

Let us define a dyadic decomposition {¢;} ez by ¢;(&) = ¢ (277[§|N 7).
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Since x3(£)¢;(€) = 0 for j < 0 we have

x3(§) < Z¢j(€)-

=0

This enables us to investigate every sum stated in the right-hand side for j € N
separately. The goal here is apply the Riesz-Thorin interpolation Theorem 7.2.
For every j € N let us examine the oscillatory integral

F~Y(o;(€)¢] e k.

L' — L* estimates: Let us substitute £ = 2/ N1). Therefore,

|F~ (05Ol e ) (¢, )|, = 20

ol (¢<|m>eﬂ2“N'"w ) )

Loo
< K20 (14 2Nt) 7 Y [0l |
la| <M
. . _n=1
< CP0 (14 27Nt) T sup [p|
3<In|<2

~ . _n—1
< CPTI(14t) 2
Here we use Lemma 7.1 in the first inequality with a suitably positive constant M.

Moreover, we have that (1 +t) < (1 + 2/Nt) for j > 0 and N sufficiently large.
Therefore (1) in Lemma 7.2 implies that

1 (50616l 15(€)) (2, )| oo S 2 (14 8)7"7 0.
L? — L? estimates: We have that

5 (1€ e* N[ e < sup G(|n]) (2Nn|) ™" S 277"

3<Inl<2
The application of (2) in Lemma 7.2 yields the estimate
171 (65 (©)lel e 5(€)) (¢, )| 2 < 277" [l -

LP — L7 estimates: Applying Riesz-Thorin’s Theorem 7.2 we have

[E7 (i@l e 50(0)) ()] o £ 27067077 (L 5 67 s

Y

for 1 < p <2 and p, ¢ from the conjugate line.
The hypothesis for the regularity r allows us to estimate the right-hand side
uniformly for all 7 > 0. Thus, due the Lemma 7.3 we conclude

1P (xa(€) Il e 5()) (1)) 10 S (1467 F G72) o).
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Considerations in Z,

In this zone we consider small frequencies |£| < N and (1 +t)|¢| > N. We have
to analyze

1~ (xa (8, €)™ () (2, ) s

with2 <g<ooandv e S.
We introduce a dyadic decomposition {¢;}jcz in this part of the extended phase
space by defining ¢;(t,&) = ¢(277(1 + t)[E|N1), j € Z, where ¢ = ¢(s) € C°(Ry)

with supp ¢ C [3,2] such that Z $(277s) = 1, > 0. Then the product xa(t, &) (, €)
j=—00

vanishes for all 7 < 0. This implies
XQ(t7£) S Z(bj(t’é)u
=0

so we have to investigate the Fourier multipliers for every j > 0 separately.
For every j € N let us examine the oscillatory integrals

(8, €)1€] e,

L' — L estimates: Let us substitute (1 + t)¢ = 27 N1. Therefore,

[P~ (658, )] e e0) (2, - Hm
S ) B (e ) )]
< P14 )T+ 2N) T Y D))l | e
|a|<M

PCET A0 sup |l
3<le<2

91 ("5 =) (1 4 )=+,

N

A

where M is a positive constant and ¢t > 1. For t < 1 it suffices to observe that the set
{(t,€);t <1 and || < N} is compact. Summarizing,

1F=" (65t )Ll 05(€)) (¢, )| oo S 27027+ 1) o] 1.
L? — L? estimates: We have that
5 (£, )€1 M| oo S 2797 (1 4-2)".
Therefore, it follows from (2) in Lemma 7.2 that
[F1 (8,8, 9)1€ e () (¢,)]| 1o S 2777 (1 + ) o]l 2.

LP — L1 estimates: Applying Riesz-Thorin’s Theorem 7.2 gives

Q=

[P (6508016l e=145(0)) (1), $ 2CF G0 (14 57 G+ o,
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If we take r = HTH(% — é), then we can estimate the right-hand side uniformly for all

j > 0. Thus, due the Lemma 7.3 we conclude

|77 (ot I 95(©)) (&) S (14077 673 o

All this considerations imply that the corresponding operators possess the mapping
property

+it|D| . pr q
e 1By — L

with the regularity » = n(% — 1). Finally, the embedding relation L»" ¢ B, N L? for
gularity 11 Y. g "

r >0 and p € (1,00) yields the desired result. O

Remark 3.6. The decay in the previous theorem comes from the hyperbolic zone. The
regularity comes from the large frequencies in the hyperbolic zone.

Using Theorem 3.2 we can deduce L? — L? estimates for the fundamental solu-
tion operator of the Cauchy problem for Klein-Gordon equations (3.1).

Theorem 3.3. Assume that the Hypothesis 3.1 and 3.2 are satisfied. Then the funda-
mental solution operator of the Cauchy problem for Klein-Gordon equation satisfies

IH(t.0, D)gpa(t, DY oo py < Cpg—e (1 4+ 1) (673,

1
U(t)
_n=1(1_1
| (#4(2,0, D)gh, (D), H(E 0, D)3 (6 DY o < Cogl1 )77 G0
for p € (1,2], p and q on the conjugate line and with regularity r = n(% — %)
Proof. The proof is divided into two steps.
Considerations in the pseudo-differential zone

In the pseudo-differential zone we have the estimate

IH(,0,8)epalt, Ol S -

1
(1)

If v =v(z) € LP(R™), then

HF_1 (H(t7 07 g)@pd(t 5)6(5)) (ta ')”Lq < ||H(t> 07 ')@pd(tv ')@\HU’
< IHE 0, )z llpalt, I, 2o 1[0]] 2o
< (147G Do,

e(t)

which is a better decay estimate in comparison to the statement of the theorem.
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Considerations in the hyperbolic zone

For large frequencies we have from (3.28) that

H(t7 07 D)Qoﬁyp(D) = MNk(tu D) §0(t7 07 D)J\Qk@? 07 D)JNk(Oﬂ D)_IM_llgpryp<D)‘
Lq:Lq pr::Lq LPJ:LPJ' LPv7:LPv7'

Indeed, the mapping properties of all operators appearing in this representation can
be explained as follows:

o We know that M Ny (t,€) € Sy *7°°{0,0}, then M Ny(t, &) € Y, ,,, Marcinkiewicz's
Theorem 7.1 implies that M Ny (t,£) € M uniformly in t. Here it is essential that

(—k+1>[2]+1.

e Theorem 3.2 implies &(¢,0, D) : LP" — L9 with a decay rate (1 + t)*Tl(%*%).

e Theorem 3.1 implies that Q(£,0,&) € S?_,. Then Marcinkiewicz’s Theorem 7.1
implies that Q(£,0,&) € M uniformly in ¢. It is essential that, k —1 > [2] 4 1.

Let us take ¢ = 2(k — 1) and k — 1 > [2] + 1. Then we can apply the Marcinkiewicz's
Theorem 7.1. Therefore, if v = v(z) € LP"(R"), then
|7 (M0, )64, OE) (¢ )l S 1+07T 673 o]
For small frequencies we have from (3.29)
H(t,0, D)y, (t, D) = MNk<t D) &(t, 9|D\ )J\Qk(tQ\DhDZ:Nk(QthD)_lM_I
Lq—>L‘I Lps T_>Lq LP,T:LP«T LPJ”:LPJ”
X 7—[(0|D\7 0, D) @Zyp(t D)
— —

LT — LT

In fact, the mapping properties of all operators appearing in this representation can
be explained as follows:

o We know that M Ny (t,€) € S§ *7>°{0,0}, then M Ny(t, &) € Y, ,,, Marcinkiewicz's
Theorem 7.1 implies that M Ny (t,£) € MZ uniformly in ¢.

e Follows from part 1 of Proposition 3.4 that £(0,0,&) € S%. In fact, we
have that the entries of the matrix £(0, 6, &) are e llEl How the constant
function 1 € Sx{0,0} then e*?elél . 1 ¢ Sy{0,0}. Therefore Theorem 3.2
and the propagator property &(t,8¢,&) = Eo(t,0,£)E0(0,60¢, &) implies that

&(t,0)py, D) : LP" — L7 with decay rate (1 + t)’*l(zlv 7).,

e Theorem 3.1 implies that Qy(t,0,¢,&) € SY_,. Then Marcinkiewicz’s Theorem
7.1 implies that Qy(t,0¢,§) € MPT uniformly in t. It is essential that & — 1 >

(2] +1.

e We have that H(f,0,&) = qp(a‘ | 03P Oe)H(b)g), 0,€). Lemma 3.1 guarantee that
V(0 )H (01, 0,€) € S, and Hypothesis 3.2 ensure w(a;.a) € S%. Therefore,
,H(¢9|§|, 0,5) S MI‘T:”Z
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If v =v(z) € LP"(R"), then

|F (R 0,008h,,(6: 7)) ()]s S (14077 673 ],
for small frequencies. This completes the proof. O

The following lemma is important to derive Strichartz estimates for the potential
energy in the hyperbolic zone for small frequencies.

p(t) 50, where = -1
PO 5 where plt) = (107 ()

Lemma 3.5. Assume Hypothesis 3.2. Then

t > b)¢, and t is sufficiently large.

p(t)

p(Be)
Applying Faa de Bruno’s formula (Lemma 7.4) we get

(0 _ nl e "
e (p(%)) =2 P P (Bie) H( )
(3.31)

where the sum is taken over all n—tuples of non-negative integers (m, ms,--- ,my,)
satisfying

Proof. We know that p(t) is decreasing for large ¢, i.e., < 1.

1lmi+2ms + -+ - +nm, =n.

We hove that ]dme‘g” < [€|717 for every j = 1,2, -+ ,n. The Hypothesis 3.2 together

p(t
with R ) < 1 implies that

1\ ()
s < |gm
() B Sl for ol n>0
Indeed, first of all we have

YR T A )
p (t) — Cl<1_’_t)n+1—i'

7=

Then Hypothesis 3.2 implies

P (t) wt 1 1
| t)’ ‘Z ORI Z! 1+t ~are @892

Applying the Faa de Bruno Formula (Lemma 7.4) for the function () we arrive in

n

1\ () 1 n! ! ()™
ht t) = rw)”
<p> ®) p(t) Z my ! 1mimg12m2 -y, Inlmn p(t)mit--+mn 31;[1 )

where the sum is taken over all n—tuples of non-negative integers (my, ma, - ,m,,)
satisfying

1my +2me + -+ +nm,, = n.
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Therefore we conclude from (3.32)

(n)
1 1 ! 1
‘ - (t)‘ < E -
D p(t) ma!1Imimyl2Ime - omy, Inlmn (1 4 ¢)mat2met-tnmy

PR

p(t) (144"

Summarizing,

1\ ™ 1 1
‘ (13> (%)‘ S p(fep) (14 O))"

1\ p(t) 1 n
=00 (5) 00 s T sl

)| <19

what we wanted to prove. O

Therefore (3.31) imply

After these considerations we can formulate the following corollary.

Corollary 3.1. Assume Hypotheses 3.1 and 3.2. If the Cauchy data ug,u; € S(R™),
then we have the LP — L1 estimates for the the kinetic, elastic and potential energy as
follows:

et ), Voult, ), pBult, Ve < 0+ G5 (Juollgorsr + [ | o)

for p € (1,2], p and q on the conjugate line, p(t) = (1 + t)~'4(¢), and with regularity
(1 _ 1
Proof. The proof is divided into two steps.
Step 1: First let us prove estimates for the derivatives of the solution.

Considerations in the pseudo-differential zone

In the pseudo-differential zone we have the following relation:

(_uft)% (f) (a((:;) )sopd@,f):mt,o,é)%d(t,g)(_J,(O) ?) (gg).

If we denote by H,;;, i,j = 1,2, the entries of the matrix H = #(¢,0,¢), we have

~ 2
M t6) = 2 .0, €)1 15,0(E) + Hilt.0.€) (0 19,1 €
2
at(t7 5)%0pd(t> 5) = Z (ﬁlj <t7 07 f)@pd(t, 5)77] (t) + H?j (ta Oa f)(ppd(t’ f)éj)ao(g)
j=1

D (1, 0,0)0ult, 51 (6),
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where

and
ni(t) ==

The Hypothesis 3.2 implies that (1 + t)2 is bounded. Therefore the Theorem 3.3
implies

|F= (€]t ©)ppalt, ©)) (1,)] 0 S (146768 (Juoll o + fewr [ 20)

1
(1)

1P~ (@, pat, ) ()] 10 S (146763 (ol o + [Jual] o) -

1
(1)
In this part of the extended phase space we do not need to assume higher regularity
for the data. Moreover, the decay behavior is better than those from the theorem.

Considerations in the hyperbolic zone

In the hyperbolic zone we divide our considerations for large and small frequen-
cies. For large frequencies it holds

U(t>€) = H(t7 glé\vf)U(elé\vf) - H(t’ O7£>U(0>€)

Therefore,

v ) (S elte = f 6, 0 (@
(—%f’p{f)’ 1 >< Uy (t,€) )Sphyp(g)—fﬂ(t,o,f)gphyp(g) ( o )( ) )

Then,

<|§|>H11<t 0, €)2h, (€)(E)0(€) — it (0)Has(t,0, )2l (€)T0(€)

_iH12(t7 0, 5)¢hyp<£)al <€>7
Wt €)Php(©) = D Hir(t,0,€)@h,, ()¢t €)(€)Uo(€)

i=1

[€1(t, €) 0y (€)

=3 Haa(t,0,6)04, ()G (t, ) &)

=1
2
+ Z Hi?(t7 07 5)@%;;;0(5)5(@ f)al (5)7
=1
where
1Y) i)
_?W’ 2—1 — ?‘d)(t)’ 17 =
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and

4P s
eilt) = {f'””’ e

Y

Note that %%, %% |—‘> € Sy{0,0}. Then we can apply the Marcinkiewicz’s the-

(€
orem for these multipliers. Applying Theorem 3.3 the following estimates can be
concluded:

1 (lefatt, €)0h,(©) (8 )]s S @+ 67T 678 (lugll pmoss + [l o)

S
[E~ (@t €) ngp(©)) )| S
For small frequencies we have

i 0 |g|a(t,g)> s
( _El‘ﬁ((tt)) 1 > ( ﬂt(t7 ) SDhyp(t7€)

r q

—~
—_
+
~

~—
|

—~

-

~—

(luo|| orser + |Jur || or) -

00 Ot [ v
Vgl S ) Phyp\ls _w(G\lj) a(e\§|)+at(9|§|)
= H(t, 0, ) Phyp(t, E)H (b)), 0,6)U(0, )

= H(t,0,£)p},,(t,€) ( _2'520) (1) ) ( Zf ) '

Therefore,
Ela(t, €)g5,, (1, €) = %Hn(z&,0,§)¢;yp(t,g)<§>ao(§)—w’(O)le(t,0,€)soiyp(t7£)ﬂo(€>
_iHIQ <t7 07 5)()0Zyp(t? 5)@1 (5)?
2
e = 3 %wao,smzw(t,§>¢j<t,s><s>ao<f>
=1
2
- Z HiZ(t7 07 £>(pz,yp(t> S)Ej(t, 5)% (5)
=1
2
+ Z HiQ (ta O? g)@Zyp(m €)€(t7 S)al <£)7
=1
where
Cz(tf) : {Z’ 2227 Cl(t7§> . _w/<0)7 222’
and
i (1) _
_ JEem 1=1
ei(t) {1’ i=92

Analogous as above we may conclude
- s _no1(1_1
|F= (€l €)php . ©)) (1), S 077 G0 (Juol o + ]| zr)

1

1P~ (@t ©)0h:6) (6] e S (407" G8) (fugl| orsr + [fu][ o)

Step 2: Now let us devote to estimates for the potential energy.
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Considerations in the pseudo-differential zone

In the pseudo-differential zone we have

( 100 ) (ahiie )t =1e0.80m00 (o 1) (2).

This leads to the representation

@ff;i)%d(t,.) = (Hn(t,0,00(t &) = ¥ (O Hs(t,0,E)palt,€) ) o (€)
FH1a(8,0,)palt, )T (€):

The application of Theorem 3.3 implies

[ (M 0.00) 0.0

1+t La W
= || F~1 (p(t)a(t, €)ppalt, €)) (8, )| o S (14 6) 767 (fugllzn + Jluall) -

—

(1+4)"Ga) (Juoll o + Jual|ze)

N

In this part of the extended phase space we have a better decay estimate than the
expected one from the theorem.

Considerations in the hyperbolic zone

In the hyperbolic zone we have for large frequencies

Hence, it follows

A, (€) = (wt 0,6)¢ hyp<5>—¢,'§‘>ﬂm<t 0,6)¢ hy,,(s)) (©)
%ﬂ%z(t,o,5>soiyp<f>u1<§>.

For large frequencies we have that [£|™! is bounded, so |¢|7! € Sy{0,0}. We can
conclude from Theorem 3.3 that

1P~ (@t €)¢h,p©) ()0 S (1407 678 (Juol s + fJur 1)

which is a better decay estimate in comparison with that one from the theorem. In
the hyperbolic zone we have for small frequencies

Pt E) \ | hE o . el 0\ [ o
("5 )¢hyp(t’§)_<|%w'<‘3 1)W’O’@%”“’@<—w'<o> D)

Hence, we get the representation

p(t)a(t, é)@iyp(u g) = p(t)Hll(t7 07 g)SOZyp(t f)%(f)

Ll >w|'§|0)%12<t 0,6)01, (1, )i (€) + f—g‘)%?(t 0,6)08, (1, £)70a ().
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As before the Fourier multiplier related to the first term is estimated by p(¢)(1 +
t)_T(%_%) |ug||Le.r+1. Due to the decreasing behavior of p we get a better estimate

as we wanted to have in all extended phase space.
We need to deal with the terms ’%3’-[12@7 0,8)¢5,,(t, §)F(v). The representation

of the solution for small frequencies (3.29) gives

@H(toa D)g; (t,D) = _plt) M Ny (t, D) &(t, 0py, D)

| D] o Np(0p)) ~—
N——— LiL1 Lrr— L4
Li—L4
X Qk(t, by, Dl{\fk(e\m, D)y ‘Mt E/J(9|D|)%(9|D\, 0, DZ Ohyp(t; D).
Lo Lpr Lo Lo Lo Lpr

Here we use (3.9) together with Lemma 3.5. Summarizing

1P~ (0Ot )25 (1,€) (1), S A+ 07T 578 (fugl s + [ o)

We obtained all desired L? — L7 decay estimates on the conjugate line. This completes
the proof. O

Remark 3.7. The decay behavior for the potential energy comes from the small fre-
quencies in the hyperbolic zone. The regularity of the data comes from the hyperbolic
zone.

Remark 3.8. The L? — L% decay estimates for the kinetic and elastic energy from
Corollary 3.1 coincide with the corresponding estimates from Theorem 2.6.

3.2.1 Examples

We conclude this section with examples. In Chapter 2 we explained the function
) for models with masses having the following structure:

i
m(t) = ———— 3.33)
Y= 040 (
with a positive constant 1 and with a function g satisfying Hypotheses 2.3 and 2.4.
If we assume estimates for further derivatives of g, i.e.,

(k) < ﬂ
g™ ()] < a10° for all keN, (3.34)
then we can find explicitly v = ¢ (¢). The mass term m given by (3.33) satisfies
Hypothesis 3.1.

Example 3.1. If g(t) in (3.33) is given by g(t)? = In(e+t) - - - In!™l (el 1) with elf+1] =
e and In* () = In(In™!(¢)) , then we have (2.33) for N =1, i.e., the conclusion of
Corollary 3.1 holds with v (t) given by (2.34). We have that 1(t) ~ (In™ (el™ 4 ).
Observe that 1) satisfies Hypothesis 3.2.

Example 3.2. Let g(t)? = (In(e + t))? for some 0 < v < 1. In order to have (2.33) one
should take N such that (N + 1)~ > 1. Then the conclusion of Corollary 3.1 holds with
W(t) given by (2.34).
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If Hypothesis 2.3 is not satisfied, then we can find functions v if Hypothesis 2.4
is satisfied for models with coefficient (3.33). In the following example we have that
situation.

Example 3.3. Let us consider the Cauchy problem (3.1) with m(t) = and p # 0,

i
i.e., we consider the scale-invariant case from [5]. Let us take the function 1 as

) = exp Z/ i =(1+1)°

with o = 32 yu?". By using the infinite Cauchy product and from the definition of

Y we get
(o] 2 [o.¢]
0® = (Zmﬁ’“) = =0 — i’
k=1 n=2

If we take o_ = 1— VI then the Corollary 3.1 holds.

The last example shows us that if we have the scale-invariant case, for p? €
(0,1), we derived the same L? — L7 estimates on the conjugate line for the kinetic
and elastic energy, which is proposed by (1.14) and (1.15). Although, for the potential
energy we have the same estimates only for p = ¢ = 2.

Example 3.4. If g(t)? = In(In(e® +t)), then we can take for t > tq, to > 1, the function

Z / 1 +Wf-u dT)

which is well-defined for ;i? < @. It is clear that the condition (2.37) holds, i.e.,
Hypothesis 3.1 is satisfied and the statement of Corollary 3.1 is applicable.
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4 Wave models with mass and
dissipation

The main goal of this chapter is to prove the sharpness of the energy estimates
obtained in Chapter 2 and to derive Strichartz estimates for solutions to the Cauchy
problem for damped Klein-Gordon equations. For the first reason we will prove
in Section 4.1 a modified scattering result to solutions for the Cauchy problems for
wave equations with scattering time-dependent mass term and non-effective time-
dependent dissipation. Later we will investigate in Section 4.2 damped Klein-Gordon
equations with variable in time mass and dissipation analyzing the interplay between
both coefficients and asymptotic properties of solution as time tends to infinity. In
former papers authors intfroduced precise classifications of effective or non-effective
mass, see [5, 6, 19], or dissipation, see [57, 59, 60], terms. There exists a “grey zone”
around the scale-invariant models where difficulties appear in a systematic study. If
models are scale-invariant, then theory of special functions allows to derive precise
results. But already “small perturbations” make the treatment difficult. The goal of
Section 4.2 is to study models from this “grey zone”.

4.1 Scattering producing time-dependent mass versus
non-effective time-dependent dissipation

Let us consider the following Cauchy problem for wave equations with time-
dependent mass and dissipation
u — Au+ b(t)uy + m(t)u =0, u(0,z) = up(z), u(0,2) = ui(x), (4.7)
where (t,z) € Ry x R"™, b = b(t) > 0 the dissipative term and m = m(t) > 0 the mass
term under the following assumptions:

Hypothesis 4.1. Suppose that b(t) and m(t) satisfy

dk 1 k+1 1 2

el < _ < _—

'dtkb(t)’_Ck (1—|—t) and m(t)_C(1+t) :
for k=0,1.

Hypothesis 4.2. Suppose that b(t) and m(t) satisfy
limsuptb(t) <1 and (1+t)m(t) € L'

t—o0
Remark 4.1. The Hypothesis 4.1 and 4.2 coincide with the hypothesis from Section
2.2. To be more precise, if we consider the Cauchy problem (2.1) and choose a func-
tion v like in Hypothesis 2.2 performing the change of variable u(t,z) = ¥ (t)v(t, x),
then we have the same model of the Cauchy problem (4.1) under the above hypothe-
sis.
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4.1.1 Representation of the solution

Applying the partial Fourier transformation in (4.1) we obtain

We divide the extended phase space [0,00) x R" into the pseudo-differential zone
Z,q(N) and into the hyperbolic zone Z;,,(N) which are defined by

Zpa(N) = {(t,€) € 0,00) x R": (1 +1)[¢] < N},

Zhyp(N) = {(t7£) € [0,00) X Rn : (1 +t)|£’ Z N}7
with N determined later on. The separating curve is given by
6|§| : (07N] — [0700)7 (1 +9|§|)’£| = N.

We put also 6y = oo, and 0 = 0 for any |{| > N. The pair (t,&) from the extended
phase space belongs to Z,4(N) (resp. to Z,,,(N)) if and only if t < 0 (resp. t > 6j¢).
We define the micro-energy

U(t,€) = (h(t,€)a, D)’ (4.3)
where .
h(t>€) = 1—_H¢pd(ta f) + ‘€’¢hyp<t7€)'

Here ¢,4(t,€) is a characteristic function related to the pseudo-differential zone and
Gryp(t,€) is a characteristic function related to the hyperbolic zone. We introduce the

function ¢y, (£, &) = X(%) with x € C®(R™), x(t) =1fort <1 x(t) =0fort¢ >2
and x/(t) < 0 together with ¢,q(t, &) + Pryp(t, &) = 1.
Considerations in the pseudo-differential zone
In the pseudo-differential zone Z,,(N) the micro-energy (4.3) reduces to
m \T
U= (7 0) -

So we have

QU(t, &) = A(t, U := ( 1+1) (7}7&) kD) z'zly_ﬁ) )U. (4.4)

We will prove estimates for the fundamental solution £ = £(t, s, &) to (4.4), that is, the
solution to

€ =AtE, E(s,s,8) =1.

A(t) = exp (% /0 tb(T)dT) | (4.5)

that describes the influence of the dissipative term.

Let us define the function
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Lemma 4.1. Assume Hypothesis 4.1 and Hypothesis 4.2. Then the fundamental solu-
tion £(t,0, ) to (4.4) satisfies the estimate

1€, 0,911 S

G (4.6)

uniformly in ¢t and for all (¢,§) € Z,4(N).

Proof. If we put €& = (&;5)i =12, then we can write for j = 1,2 the following system of
coupled integral equations of Volterra type:

£,(t,0,8) = (1 +t)—1<§1j —|—i/0t52j(7',0,§)d7>, (4.7)

£;(£,0,6) = A2(t>(52j—¢/0(1+T)A<T>2(m(7)+15\2)51j(7,o,5)d7). (4.8)

After replacing (4.8) into (4.7) and integration by parts we get
t
gu(t, 0,5) = (1 + t)_l (51]‘ + i(sgj/ )\(T)_2d7'> + (1 + t)_l
0

« /0 (1 + A (m(r) + [€2)E1(7,0,€) / As)2dsdr. (4.9)

By using Hypothesis 4.2 (see Proposition 7 of [59]) we have

t ot
/0)\(3) dSNW, (4.10)

and is increasing for large ¢. Introducing

og
hi(t,€) = [[€1;(£,0, I A®)*

and by using A(t)? < 1+t (see Hypothesis 4.2) for large ¢ we conclude from (4.9)
and (4.10) that

t
hi(t,&) < C+ C/ (L4 7)(m(7) + [€]*) hy(T, §)dT.
0
Applying Gronwall’s type inequality we conclude
t
hi(t,&) < Cexp (C/ (1+7)(m(r) + |§|2)d7>.
0
In Z,4(N) we have (1 +t)[¢| < C. So, from the last inequality we get
t
h;(t,&) < Cexp <C’/ (1+ T)m(7’)d7'>.
0
Finally, by using Hypothesis 4.2 we get ||€1;(¢,0,&)|] < A(t) 2. From the boundedness

of [|€1;(¢,0,9)|A(t)?, using again Hypothesis 4.2, we can estimate ||£3;(,0,8)]| <
A(t)~2. Therefore, we proved ||£(¢,0,€)|| < A(t) > forall t € [0, 0. O



84 4 Wave models with mass and dissipation

Considerations in the hyperbolic zone

In the hyperbolic zone we will carry out two steps of diagonalization aiming to
derive decay estimates for the energy and then to derive a modified scattering result.
The ansatz is the same as in the paper [61].

In the hyperbolic zone the micro-energy (4.3) becomes

U(t,€) = (I¢a, Da)",

0 ¢ 00
(K\O)+<%?w@)

The goal is to transform the principal part in a diagonal matrix such that the remain-
der has a suitable normwise estimate. Take the matrices

1 /1 o1 11
=751 ) =540,

then

DU = U(t,€). (4.11)

Then

1 0 €| B
M <m+%?w@>M—D@+A@+MM%

where

MQz(@_%O,szﬁ?(ii)aMB@Q:%g(iii)

In the second step we want to transform the second matrix on the right side without
changing the structure of the first and the third one. For this we set

‘ b()
0} 0 ST
NO@¢) = 3 ( e 2‘5' >,

2[¢]

—

Then we have by construction

€l 0 (1) () &[0 @) 001
such that with Ny (t,&) = I — NW(¢, €) the following operator identity holds:

(“‘(%’jﬁ)‘ﬂg(ii)—%%(}ﬁj))Mwo

:_@+M@Q<%’;g>—£?M@@—Bm@Q
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Choosing a sufficiently large constant, we have that

et Nyt =1 2D oy POy

L ————>0.
1662 =7 16(1+1)2[€2 = 16N?

Then Ny (t, &) is uniformly bounded away from zero on Z;,,,(N). Therefore Ny(t,£)™*
exist and N (¢, &), Ni(¢,&)! are both uniformly bounded on Z,,,,(N).
Setting R (t,&) = Ni(t, &) ' BM (¢, &) we obtain

e (o (5 ) H(11) 5 (1 s

= Dt - < |g’ 0 ) _Z@Nl(taf) _Rl(t’g)

—[¢] 2
with the remainder term R, (t, £) subjected to the pointwise estimate
1
Ry (t < — 4.13

After this considerations we are able to derive the main result of this section.

Lemma 4.2. Assume Hypothesis 4.1. Then the fundamental solution of (4.11) can be
represented by

E(t,s, &) = %Mlj\fl(t,g)150(t,s,§)Q1(t, s, )Ny (5,6 )M (4.14)

fort > s and (s,&) € Zp,,(N), where

1. the function \(t) = exp (3 [ b(r)dr) describes the main influence of the coeffi-
cient b = b(t) in the dissipation;

2. the matrices Ny(t,€), N1(t,£)™" are uniformly bounded on Z,,(N) tending on
{&: €] > £} uniformly to the identity matrix I for all £ > 0;

3. the matrix &y(t, s, &) is given by

gt
ot s,8) = 0 o—ilt—s)le] (4.15)

and is the fundamental solution of the free wave equation;

4. 9Qi(t, s, &) is uniformly bounded on Z;,,(N) tending uniformly on {¢ : |{| > ¢} to
the invertible matrix Q(c0, s,€) for all ¢ > 0.

Proof. The construction of the representation of solution will be done in two steps.
Step 1: If

Eolt,s,€) = %50(15,3,5), (4.16)

then

Di&(t,5,€) = (@@H ( 'g' _?5’ )) Eolt,s,6), Els,s,&)=1.  (4.17)
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Step 2: If we define
O(t,s,8) = E(s,t,&)Ri(t,&)E(t, s, €) (4.18)
and consider the Cauchy problem
DiQi(t,5,6) = ®(t,5,§)Qu(t, 5,§) Quls,s,6) =1, (4.19)

then the fundamental solution of the transformed operator

€l 0 b(t)
Dt— < 0 —’f‘ ) —ZTI—i‘Rl(t,f)

can be represented by &(t,s,£)Q:(t, s, €). After transforming back to the starting
problem it follows (4.14).

Using that &y(t, s, &) is unitary we see that ®(t, s, £) satisfies the same estimates
as Ri(t,€). This allows us to estimate in a second step the solution Q;(t, s, &) directly
from the representation by Peano-Backer formula (7.2)

%) t t1 tp—1
Qts ) =1+Y [ 0tis6) [ @l [ 0t s o dn. 14:20)
Z:1 S S S
Therefore,

joiits. )~ 1< [ IR drexs ([ 1 elar)

= \%/ (1?—77)2 exp (%/ {a TT)?) = %eXp (%)

uniformly for ¢t > s and (s,§) € Zp,,(N). A large N implies that @Q; is uniformly
invertible on Z,,,(N).
If |£] > ¢, then

1 < 1
IE[(1+1t) — e(1+1)

INi(8,€) = I = [INV(E, )l < — 0, (4.21)

when t — oco. Analogously we can show that Ny (¢, &) ™! convergesto I on {¢ : [¢] > ¢}
for all & > 0. Finally, assuming |{| > & and using the representation (4.20) for
Q1(t,s,&) we get

1Q1 (00, 5,8) — Qul(t, 5,8l S / [[Ra(7, &) ldT exp (/ IIRl(T,S)IIdT)

t

<

when t — co. Thus Q(t, s,£) converges uniformly on {¢ : [£]| > €} to Q1(00, s, &) for
all e > 0. The lemma is proved. O
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4.1.2 Modified scattering result

First let us find an energy estimate for the solutions to Cauchy problem (4.1).
This result is a directly consequence of the Lemma 4.1, Lemma 4.2 and the definition
of the micro-energy (4.3). The next theorem is a particular case of the paper [13].

Theorem 4.1. Let u be the solution to (4.1) for data (ug,u;) € H' x L?. Assume
Hypothesis 4.1 and Hypothesis 4.2. Then the estimate

(e, -), Vault, )l 2 S ﬁ(llmllﬂ1 + [Juallz2) (4.22)

holds true, where \ = \(t) is defined by (4.5).

In this section we are interested in modified scattering results between the solu-
tions of

g — Au+ b(t)uy + m(t)u =0, u(0,2) =up(x), u(0,x)=ui(x), (4.23)
and
v — Av =0, v(0,2) =vo(z), v:(0,2) = v1(x), (4.24)

where we assume Hypothesis 4.1 and Hypothesis 4.2 for the coefficients b and m.

The goal is construct an operator that maps initial data of Cauchy problem
(4.23) to initial data of Cauchy problem (4.24) such that after multiplication by (%)
the asymptotic behavior of the energy of solution to (4.23) coincides with the asymp-
totic behaviour of the energy of solutions to the related Cauchy problem (4.24) for
large times. The operator relating (ug, u1) to (vg,v1) is denoted as Moeller wave
operator which was mentioned in Lax-Phillips approach [36].

Theorem 4.2. Assume Hypothesis 4.1 and Hypothesis 4.2 . Then there exists a
bounded operator

W, : (ug,uy) € H'(R™) x L*(R™) — (vg,v1) € H'(R™) x L*(R")

such that for Cauchy data (ug, u;) of (4.23) and associated data (vg, v1) = W (ug, uy)
to (4.24) the corresponding solutions v = u(t, x) and v = v(t, x) satisfy

A (e (2, -), Vault, ) = (wi(t, ), Vou(t, )|z —= 0
as t — oo.
Proof. Let us define for any € > 0 the following closed subset of L? x L?:

Fo={Uye I* x 12 Ty(€) = 0forany J¢ < ¢}

We remember that £ = U.oF. is a dense subset of L? x L2. If we introduce & =
Eo(t,s,€) as in (4.15) and if v solves the fr(ie wave equation (4.24), after defining

V(t, &) = (|¢|v, Dti;\)T we can write V(t,€) = gg(t, $,£)V (s,€), where

é\;(t, S, 5) - M_IEO(t7 S, é)M
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The proof is based on an explicit representation of the modified wave operator
W,. Our goal is to prove that the limit

W2 () = lim MOE(0.6)E(L,0.€) (4.25)

exists uniformly in |{| > ¢ for all ¢ > 0. After proving this property we are able to
relate the Cauchy data by

From Lemma 4.2 we know that the limit

Ql(OO, 9\§|7 6) = tlirg Ql <t7 9|§|7 5)

exists uniformly when |¢] > ¢ for any € > 0. Hence, if we consider &(t, 0, &) 1E(t, 0, ¢)
on L we obtain in hyperbolic zone

Tim A(DEo(t,0,6)(£,0,)
= t]i%A(t)g)(t,O,g)_lg(t,0|§|,§)g(e\§|,0,f)
= }gglj(%)c‘i(t,075)’1M’1N1(t,£)’150(t,9\&75)@1(@9|§|7f)N1(9\s|7€)M5(9\s|aOaf)
= tlirglo/\<0|E\)M_1€0(07t7§)N1(tag)_lgO(ta0\£|7§)Q1(t’0|£\ag)Nl(e\ﬂ?g)Mg(Q\ﬂ’O?g)
= MOe)ME(0,0)g,€) Qu(00, B¢, ) Ni(B)e, §) ME(By¢), 0, €),
using the fact that

E(0,t, ) N1(t, )E(t, Orep, €) = E0(0, b)), §) + E0(0, 2, §)(N1(L, &) — I)Eo(t, O, €)

and Ny (t,£) — I uniformly for |£] > €. In the pseudo-differential zone the boundness
of the fundamental solution of the free wave equation and the estimative in Lemma
4.1 guarantee that the limit 4.25 goes to zero.

According to the estimates for the energy from Theorem 4.1 we conclude that

(D) (t,0,6)E(t,0,€)

is uniformly bounded on L. Therefore applying Banach-Steinhaus Theorem 7.3 we
conclude that B
W (D) = s-lim A(t)&(t, 0, D)~*&(t,0, D)

exists as strong limit in L2(R") x L*(R").
Finally, we study the difference

INOU(E) = Vit = INOEE0,IU(0, ) — Eo(t,0, )V (0, )1
= | (g0 e - wo)vo.)

under our assumption (ug, u;) € H' x L? and by definition of W, (¢) we may conclude
that

?
L2

as t tends to infinity. The proof is completed. O
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Remark 4.2. The statement from Theorem 4.2 gives us the sharpness of the energy
estimates derived in Chapter 2. In fact, suppose that w = w(t, z) satisfies the Cauchy
problem (2.1) and that v = v(t,x) satisfies the Cauchy problem for the free wave
equation (4.24). Choose a function 1) as in Hypothesis 2.2 and perform the change
of variable w(t,x) = ¥ (t)u(t,z). Then the Cauchy problem (2.1) takes the form of
the Cauchy problem (4.23) with A\(t) = v (t). The Hypotheses 2.1 and 2.2 allow us
to apply Theorem 4.2. Then there exists a bounded operator that maps initial data of
the Cauchy problem (4.23) to initial data of the Cauchy problem (4.24) such that the
corresponding solutions satisfy

Hw(t)<ut(t7 ')7 vru(tv )) - (Ut(t7 ')7 vrv(t> ))||L2 - 07

or, equivalently,

H (wt(t, ) Z/((tt;w(t, ), Vault, .)) ~ (1), Vet )| =0
Taking into consideration the energy conservation for the free wave equation it follows
/ 2
0 < a< H (wt(t, - Z/Z)((tt))w(t, ), Vault, .)> )
(¢ 2
= e - Suea| w1901
/ / 2

< ot M+ 2ot M S e e+ (S5 ) ot s + 190601

< 2wt )72 + 20wt )17 + 2[[Vawl(t, )72

~ E(w)(?),

where E(w)(t) is defined in (2.8).
This guarantees the sharpness of our energy estimate.

4.1.3 Examples

We will conclude this section with examples.

Example 4.1. Let i,0 > 0 and s € N with s > 1. Then we consider

U o
b(t) = and m(t) = ,
Q (elsl + 1) log (el + ) - - - logl! (els) 4 1) ®) (1+1t)7

with v > 2. Then the hypotheses of Theorem 4.1 and Theorem 4.2 are satisfied and
we obftain

=

A(t) = <log[s] (e[s} + t))i :

The decay estimate for the energy is

1

||(ut(ta ')7 qu(t, ))HLQ ~ m
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Example 4.2. If we consider

2 4 cos(alog(e + t))
2(e + 1)

log(e + t)
(1+1t)

b(t) = and m(t) =

with v > 3, then the hypotheses of Theorem 4.1 and Theorem 4.2 are satisfied and
we obtain

A(t) = exp <% log(e +t) + i sin (alog(e + t))) :

The decay estimate for the energy is

||(ut(ta ')7 qu(t, ))HLQ ~ W

4.2 Non-effective dissipation versus non-effective
potential

In this section we will prove P — L7 estimates for p € (1,2] on the conjugate
line and modified scattering results for Cauchy problems as in (4.1), but now we
will consider in the models non-effective time-dependent mass and dissipation. The
results of this section was published in the paper [41].

4.2.1 Representation of the solution

Let us consider the following Cauchy problem for damped Klein-Gordon equa-
tions

u — Au+ b(t)uy + m(t)u =0, u(0,z) = up(z), u(0,2) = ui(x), (4.26)

where (t,x) € R, xR", b = b(t) is the coefficient in the dissipative term and m = m(¢)
is the coefficient in the mass term under the following assumptions:

Hypothesis 4.3. Suppose that b,m € C*(R,) and that for all k < ¢ it holds

dk 1 k+1 dk 1 k+2
'ﬁb()‘ C’“(1+t> and ﬁm”‘ Ck<1+t) ’

the number ¢ will be specified later on. Some statements need a higher regularity.

Hypothesis 4.4. Suppose that the following limits
lim (1 +t)b(t) = by and lim (1 +t)*m(t) = myg (4.27)

t—o00 t—o0

exist and that
o) tbt —b o 0 t2 o
[ gy [T ERO
1

holds true with exponent o satisfying

(A1) o=1 or (A2) o€ (1,2].
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Results will depend on relations between the constants by and myg. It will not be
necessary to restrict considerations to by > 0 and mg > 0, results will however depend
on the constraint 4mq > by(by — 2) or additional conditions imposed on initial data.

We further define the auxiliary function

A(#) = exp (% /O tb(T)dT) (4.28)

related to the dissipative term b(t)u;. It will play an important role in the resulting
estimates. Under part (A1) of Hypothesis 4.4 it follows that

At)~ (L+8)7% for t — oo (4.29)

When assuming (A2) a further sub-polynomial correction term appears.

Zones and general strategy

Applying the partial Fourier transformation in (4.26) we obtain
Uy + [T+ b(t)a, +m(t)a =0, @(0,8) =To(E), wl(0,&) =1u(f). (4.30)

In order to derive LP — L1 estimates for the solution and its derivatives we divide the
extended phase space [0, 00) x R" into three zones:

Zpa(N) = {(t,§) €[0,00) x R": (1L +1)[¢] < N},

Ziyp(N) = {(t,§) €[0,00) x R" : [¢| < N < (1 +1)[¢]},

Zip(N) = {(t,€) €[0,00) x R" : [¢] > N},

where N is a positive constant that will be specified later on.

Remark 4.3. In the zone Zj, (N) we consider only large frequencies and in the zones
Zpi(N) and Zj;, (N) we consider small frequencies. Furthermore, the separating curve
between both zones Z,4(N) and Z; (N) is given by

Ot : (0, N] = [0,00), (1+0g)[¢] = N.
We put also 6§y = oo, and 6 = 0 for any |£| > N.

In order to divide the extended phase space into three parts we introduce the
function x € C*°(Ry) such that x(t) = 1fort < i, x(t) =0for ¢t > 2 and x/(¢) < 0.
We define the characteristic functions ¢4, ryp and goflyp related to the zones Z,4(N),
7z (N)and Z} (N), respectively, by

epa(t, &) = x (IEIN") x (A +1)[EINTT),
h(6) = X (EINTY) (1 —=x (A +D)EINT)),
Chp©) = 1—=x(JgIN7Y),

such that @,a(t, &) + ¢4, (1, &) + ¢}, (§) = 1. Let us consider the same micro-energy
that we defined in the Section 4.1, i.e.,

U(t,€) = (h(t,&)a, D))", (4.31)
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where
h(t7 5) = 1—_+_t§0pd(t7 g) + |§’ (907Lyp<t7 5) + goﬁyp<€))

In the hyperbolic zone we apply a diagonalization procedure to a first-order
system corresponding to equation (4.30) in order to derive a representation for the
fundamental solution. We follow some ideas of Wirth [59] and Yagdjian [62]. We will
consider a system with a coefficient matrix composed of a diagonal main part and a
remainder part. The goal of this diagonalization is to keep the diagonal part in every
step of the diagonalization and to improve the remainder terms. The strategy is the
same one as in Chapter 3.

To derive the asymptotic behavior of the fundamental solution to (4.30) in the
pseudo-differential zone we will perform, for L! condition (A1), one step of diagonal-
ization and apply the Levinson Theorem 7.5 and, for L condition (A2), we will apply
the Hartman-Wintner Theorem 7.6. For the L° condition we need one more step of
diagonalization (see proof of Theorem 7.6).

Considerations in the pseudo-differential zone

In the pseudo-differential zone the micro-energy (4.31) becomes
L.
U(t, f) = <1—HU,, DtU,) .

Therefore we shall consider the system

7 1

DU(t,€) = A(t, U (t,€) = < (1+t>(@+m(ﬂ) Z.% )U(t,g). (4.32)

Let us consider the fundamental solution £(¢, s, £) of the system (4.32). The strategy is
to apply Levinson’s Theorem 7.5 obtaining the asymptotic behavior of the solution in
the pseudo-differential zone. For this reason we shall apply steps of diagonalization
on the matrix A = A(¢, ).

Note that the Hypothesis 4.4 proposes us to rewrite (4.32) in the following way:

r0ouee = (0 U

0 0
i (i(1+t)2|§|2+@'((1+t)2m(t)—mo) —(1+t)b(t)+bO)U(t7§).

Let us denote by R = R(t,&) the matrices

A= ( —b ) R= ( 0 y ) .
img —by )’ i1+ %€ + (14 t)*m(t) —mo) —(1+6)b(t) +bo
Therefore, we study the system
(1+8)0,U(t,€) = (A+ R(t,£))U(t,8). (4.33)
By Hypothesis 4.4 in the form (A1) and the definition of the zone we know that

0 d
sup /1 “ HR(t,f)H?t < (4.34)

[El<N
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and R(t,£) is a remainder term in the sense of Theorem 7.5. Furthermore, as tr A =
—1 — by and det A = by + my the eigenvalues of A are given as

12
ui:—b0+1:t\/u—mo. (4.35)
2 4
In particular we see that

implies that the eigenvalues are distinct.

Theorem 4.3. Assume Hypothesis 4.4 with o = 1 together with (4.36). Then the
matrix-valued fundamental solution of the system (4.33) satisfies

A
1+ s

1€t 5,0 < ( (4.37)

uniformly in 0 < s <tand (t,§) € Z,a(N).

Proof. This follows from Theorem 7.5 applied to (4.33) with R(t, ) extended by zero
outside Z,4(N). Let P be the diagonalizer of A given by

_ -1 __ i+bo+p—
pP= < imot1bpy  imotdtu ) and P~ = imoti oy [y (4-38)
i+bo+p+ i+bo+p— i+bo~+p4

with det P = ’Z’f;gl;;’f — ’Tf;}:;’f Then, if we define U®) = P~'U we will get

(1+t)0,UO(t,¢) = K “0+ MO_ ) + PlR(t,f)P} UO(t,¢). (4.39)

We have that
PR(LEP = M(‘f ‘1)+<1+t>b(t>—bo( T )

det P 1 det P —Ccy —cC_
i ((L+6)*m(t) —mg) [ —1 —1
det P 1 1 ’
with cL = % Note that c. is an imaginary number. In fact,

oo = HEA o+ Dpg A+ (mo+bo) 1+ (1= mo)ps —mobo
+ 1+ (bo + ps)? 1+ (bo + p1+)?
14 (1 = mo)pt — mobo

- ! 1+ (bo + ,ui)2

From u. # pu_ and Hypothesis 4.4 together with the zone definition implies that
P7IR(t,&)P € L' ([0,00), %) uniformly in v = [¢]. Then from Levinson’s Theorem 7.5
we can conclude that there exist two linearly independent solutions to (4.33) of the

form
UL(t,&) = (ex +0(1))(1 4+ t)"* for t = o (4.40)
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within Z,4(N) and uniformly in &, where e, are the two normalized eigenvectors
corresponding to p, i.e.,

Z'm()—i‘l"—,ui)
_ (g M0 I TR 4.41
- ( Z+b0+,ui ( )

Constructing the fundamental solution as in Remark 7.2, we see that

E(1,0,€) = (U_(t, O|U4(t,€)) (U-(0,6)[U(0,)) ", (4.42)

and, hence, we obtain
IE(£,0,6)] < (14 1)Fer (4.43)

for any (¢,&) € Z,a(N). Using the scaling from Remark 7.3 (taking into account the
shift in time) we obtain (4.37) uniformly in 0 <'s <t < 6. O

In order to treat the form (A2) of Hypothesis 2 by the Hartmann-Wintner Theo-
rem 7.6, we need to ensure that Re . # Repu_. This happens if both are real and
distinct. The latter is equivalent to

4dmg < (bo — 1)2 (444)

Theorem 4.4. Assume Hypothesis 4.4 with o € (1,2] together with (4.44). Let further
o' be the conjugate line to o. Then the fundamental solution of the system (4.33)

satisfies
1L+\"* 14\
L
1€, 5,8 < (1 n 8) exp (C (ln o S) > (4.45)

uniformly in 0 < s <t and (t,£) € Z,a(N).

Proof. As in the previous case we extend R(t,&) by zero outside Z,,(N) and denote
by e+ normalised eigenvectors of A corresponding to jii.. Forming the unitary matrix
P = (ei]e-) with these eigenvectors as columns and defining R(t,§) = P~'R(t,£)P

given by (4.38) allows to rewrite (4.33) in the new unknown vector U(t,§) = PU(t,§)
as

We apply Theorem 7.6 to this system. As 4 are real and distinct, they clearly satisfy
(7.36). Furthermore, the matrix R(t, ) contains combinations of (1 + ¢)b(t) — by and
(1 + ¢)*>m(t) — mo controlled by (A2) and terms of the form (1 + ¢)?|¢|> which are
uniformly bounded and integrable with respect to dt/t by the definition of the zone.
Hence, Hypothesis 4.4 in the form (A2) implies (7.35) with o € (1,2]. Therefore,
Theorem 7.6 applies and gives a matrix N(¢,£) € L°(R,,dt/t) transforming (4.33)
for t > ¢, into Levinson form

(L+ 10V (¢, €) = (diag(ps + Ty, pie +7-2) + Ra(t, )V (£,€) (4.47)

in the new unknown vector V (¢, &) = (I+N(t, E)LU(t, €) and with the new remainder
Ry € L'([tg,00),dt/t). By 7y, (t,€) and 7__(t,£&) we denote the diagonal entries of
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ﬁ(t, €). The new diagonal part satisfies the dichotomy condition (7.11), the additional
diagonal entries satisfy by Hélder’s inequality

b dr 1+t\7
< .
[ Fstn o <o (me) (4.48)

with ¢’ the dual index and are thus small compared to

/:(u+ - u—)lczT = (p+ — p-) (ln iii) : (4.49)

Hence, Levinson’s Theorem 7.5 yields a fundamental system of solutions together
with the estimate

€t 0, )l < (141 exp (C (1 +8)7 ), > 1o, (4.50)

for the matrix-valued fundamental solution to the transformed system. The scaling
argument from Remark 7.3 extends this estimate to variable starting times t; < s <

t <0 as
1€, s,8)] < —1 L Me Cl1 Lt " (4.51)
) S, S\ T Xp n 1+ s . 4.

Transforming back to the original system combined with compactness of the remain-
ing bit of Z,;(N) where the transform was not defined yields the desired statement.
The theorem is proved. O

Remark 4.4. If 2Re . < —by, i.e., if
bo(bo — 2) < 4dmy, (452)
then Theorems 4.3 and 4.4 imply

A(s)
[FACAERI S )’ (4.53)

forall 0 < s < tand (t,§) € Z,u(N). In the first case this is obvious, while in the
second case we observe that for all € > 0 there exists a constant c. such that

14¢\7 1+t\°
< . .
(e (n22)) < (12 ass
Therefore

1+ t\" 1+t\7 1+¢\"e
il exp [ C'(In i < +
1+s 1+s 1+s

uniformly in 0 < s < .
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In order to combine the estimates from the pseudo-differential zone with the
treatment in the hyperbolic zone, we need one further estimate. It is conditional in
the sense that it is entirely based on the final estimate from the pseudo-differential
zone and not on the precise assumptions used to prove it. It is also the first statement
using Hypothesis 4.3.

Lemma 4.3. Assume Hypothesis 4.3 and Hypothesis 4.4 in combination with (4.52).
Then for || < N the symbol-like estimates

1
| DEE(B1e1,0,6)]| < Camlfl“"' (4.56)

are valid for all |a] < L.

Proof. Observe that the properties of the matrix A(t, £) allow to apply Lemma 3.10 of
[58]. This lemma gives the desired statement. ]

Remark 4.5. The result of Lemma 3.1 can be reformulated in the following form. The
symbol A(0j¢))E (0|, 0, &) is an element of the homogeneous symbol class

$0 = {m e C®(R"\ {0}) : |D2m(&)| < Calé| ™™ forall |a| < €} (4.57)

of order zero and restricted smoothness /.

Considerations in the hyperbolic zone

First of all, let us introduce symbol classes S {my, m,} in the hyperbolic zone.

Definition 4.1. The time-dependent amplitude function a = a(t,§) belongs to the
symbol class Sﬁ}’gz’{ml, mo} with restricted smoothness (1, (5 if it satisfies the symbol-
like estimates

1 mo-+k
‘DfD?a(tvf)} < Ck,oc|§|m1_|a‘ (1—‘|‘t) (458)

for all (t,€) € Zp,,(N), all non-negative integers k < ¢, and all multi-indices o € N"
with |a| < £s.

If /1 = {5 = oo, then we introduce the notation Sy {m, ms}.

Remark 4.6. This symbol class coincides with the symbol class from Definition 3.1.
So, Proposition 3.2 gives us the rules of the symbolic calculus in this set of symbol
classes.

In the hyperbolic zone the micro-energy (4.31) becomes
U(t,€) = ([€lu, D) .
Then we consider the system

_ ._ 0 <
DU = A(t, U = ( €| + ,Tg) ib(t) ) U. (4.59)
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We denote by & = £(t, s, £) the fundamental solution of (4.59), i.e., the solution to
Di&(t,s,8) = AL, §)E(t, 5,8), E(s,5,8) = 1. (4.60)

The goal is to transform the “principal part” to a diagonal structure such that the
remainder allows a suitable normwise estimate. We shall apply several steps of diag-
onalization to system (4.60). In the first step let us choose the matrix

() e ()

M7YA(t, )M = D(€) + B(t) + C(t,€)

Then we obtain

with D = D(¢) — (‘g’ _Tg‘),B:B(t):@<1 1)ond(]:(](t,§):

m 1 -1 00 ,00
o ( L1 ) . Note that B € $5°{0,1} and C € S5>{—1,2}.

Now we carry out further steps of the diagonalization procedure. Like in Chapter
3 the aim is to transform the previous system to a diagonalized system with a remain-

der belonging in some sense to a better “symbol class”. We construct recursively the
diagonalizer N, = Ny (t, &) of order k. Let

k k

Nk(tvf) = ZN(j)(tvf)7 Fk(tuf) = ZF(j)(t7§)7

j=0 7=0

where NO(t,&) = I, BO(t,&) = B(t) + C(t,€) and FO(t,¢) = diagBY(t,&) =
Fo(t,€). Following the construction of Chapter 3 we define

FY9 = diagBY, (4.61)
0o b
NG+ G (4.62)
By ’
oy O
BUtY = (Dy— D —B—C)Njj1 — N1 (Dy— D — Fj). (4.63)

Analogous to Proposition 3.3 the following result can be proved.

Proposition 4.1. Assume the Hypothesis 4.3 with derivatives up to order (. Then
N e 85770 —j.j} and BYD e §57°{—j,j+1} forall j =1,2,--- L. Moreover,
for any k we find a zone constant N such that Ny, is invertible in Z,,,,(N).

If we denote Ry (t,€) := —Ni(t, &) ' B®) (¢, ¢) the previous results yield the fol-
lowing statement:

Lemma 4.4. Assume the Hypothesis 4.3. For each 1 < k < ( there exists a zone
constant N and matrix-valued symbols such that

1. Nip(t,€) € 85751°°{0,0} is invertible for (t,€) € Zpyy(N)
with Ny (t,€)~" e 857140, 0};
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2. Fy_1(t,€) € S5 " 1>{0,1} is diagonal with Fj,_1(t,&) — F© € S5 1> —1,2};
3. Ry(t,€) € S {—k, k+1}.
Moreover, the identity
(De=D(&)=B(t)—C(t, §)) Ni(t,€) = Ni(t, &) (Di—D(&) = Fr-1(t,€) — R (t,€)) (4.64)
holds for all (t,€) € Zpy,(N).
We are now in a position to derive the main result of this subsection.

Proposition 4.2. Assume Hypothesis 4.3. Then the fundamental solution & (t, s, &) of
the diagonalized operator D; — D — F},_y — R}, with remainder R}, can be represented
as

E(t, s, &) = %&)(t, $,€)Qu(t,5,€), (4.65)

fort > sand (s,§) € Zy,,(N), where

1. the function A(t) = exp (L [ b(r)dr) describes the main influence of the dissipa-
tion b(t)uy;

2. the matrices Ni(t,€), Ni(t, €)' € S5 (0,0} tending on {¢ : |¢] > &} uni-
formly to the identity matrix I;

3. the matrix Ey(t, s, ) given by

dt-9e
&o(t,s,8) = 0 —it=s)e (4.66)

is the fundamental solution of the free wave equation;
4. the function Qy(t, s, &) is the fundamental solution to the operator
Dy — ®(t,5,), (4.67)
where ®(t,5,6) = Fi_1(t,6) — FO(t, &) + E(s,t, &) Ri(t, §)E0(s, 1, €) + diag C;

5. the matrix Qx(t, s, &) satisfies for all multi-indices || < min{k — 1,/ — k — 1} the
symbol-like estimates

| DgQu(t, s, &)|| < Calé]™™ for all t,5 > (4.68)
uniformly in O < s < t.
Proof. In fact,

Di& = (D + Fpy + Ry + diag(B) + diag(C) — F)&,
= (D+ Feey + Ry) &
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From the Proposition 4.1 we have that N, — I € Sy °{—1,1}. Therefore, ¢ > ¢
implies

IV — IS =t <~ C 0 when t - oo

ne ST+ T (14t '

Using that &(t, s, ) is unitary and Lemma 3.3 we see that ®(t, s,&) € SV {-1,2}
for all s > 6)¢. Taking account of S3* ' {~1,2} C LEL{(Zyyyp) it is allowed to apply
the Peano-Baker formula (7.2) and to conclude that the fundamental solution to the
operator (4.67) is given by

00 t t1 te—1
Qk(tvsyg) :]+ZZ£/ q)k(t1787£)/ (I)k(t%‘s)f)'”/ (I)k(tf7sa§)dtf"'dtl~
ezl S S S
(4.69)
Therefore, Lemma 3.4 implies the estimate (4.68). O

The next result is important for deriving a modified scattering result for the
Cauchy problem (4.26).

Lemma 4.5. Assume Hypothesis 4.3. Then Qk(t,s,&) is invertible on Zﬁyp(N) U
Z1,»(IV) tending uniformly to the invertible matrix Q. (00, s,&) for {£ : [§] > €}

Proof. It follows from (4.69) that

[e%¢) t t1 te—1
Qk(t,s,g)zuzz’f/ cbk(tl,s,g)/ @k(t2,5,5)~~/ Dy (tg, 5,&)dty - - - dty,
/=1 S s

(4.70)
where ®,(t,s,€) € Sy*'{—1,2}. Therefore, the desired result follows by the Cauchy
criterion applied to the series (4.70) or by the estimate

||Qk(OO, Sag) - Qk(ta Svf)” < / ||<I>k’(7—v Svf)HdT €xXp (/ ||(I)k(7—>s7§)||d7—)

t

1 o 1 C
< dr < .
~ |§|/t T2 =i+t

The invertibility of Qx(¢, s, &) follows from

j0ut,56) 11 < [ 1A ©)ldrexo ( / ||Rk<n§>||df)

<£/td_TeX (E/td_7> < % (Q)
Sl e S, ) S NN
uniformly for t > s and (s,¢) € Z;,,(N) U Z;;, (N). Alarge N implies that Q. is
uniformly invertible on Z; (N) U Z;;, (N). This completes the proof. O

Transforming back to the original problem:

After constructing the fundamental solution & (¢, s,€) we transform back to the
original problem and get in the hyperbolic zone the representation of fundamental
solution

A(s)

E(t,s, &) = WM_lNk(t,f)So(t,s,f)Qk(t,s,g)Nk(s,S)_lM (4.71)
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Fig. 4.1: Collecting the estimates

with uniformly bounded matrices Ny, N, ! € S5 1>°{0,0}.
The representation is true in the hyperbolic zone for large frequencies. For small
frequencies we will use the following: For 0 < s < ¢ <t it holds

g(t, S, S) = ﬁM_lNk(t, f)go(t, 0|§|, f) Qk<t, 9|§|, g)Nk(Qm, 5)‘1M/\(0|§|)5(0|§‘, S, f)
(4.72)

4.2.2 [? — [? decay estimates

The representation of fundamental solutions obtained so far allows us to con-
clude estimates for the solution and their derivatives. This section is devoted to derive
energy estimates.

The influence of high frequencies is described by a WKB-representation of solu-
tions giving an overall decay estimate based on the function A(¢). In Figure 4.1 this
corresponds to the dashed line in the complex plane. The two dots correspond to the
exponents 14 arising from the Levinson’s Theorem. They are responsible for the small
frequency behaviour and the interplay of the relation of these dots and the dashed
line will be the major reason for the appearing different cases of final estimates.

The main estimates obtained so far can be seen in Tables 4.1 and 4.2. We shall
distinguish between the situation of condition (A1) in Hypothesis 4.4 and the situation
of condition (A2) in Hypothesis 4.4. In the latter case we can only treat mass terms
satisfying 4mg < (by — 1)%.
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| conditions on my and by | behaviour in Z,4(N) | behaviour in Z;,,(N) |
(bo — 1)? < 4myg (t/s)~BoFD/2 (t/s)bo/2
dmg = (bo — 1)? (t/s)" Pt D2t (t/s)™/
bo(bo - 2) S 4m0 < (b[) - 1)2 (t/S)'u+ r M+ S —b0/2 (t/S)ibO 2
0<4dmy < bo(bo — 2) (t/S)M+ ; M > —b0/2 (t/S)_bO 2

Tab. 4.1: Estimates of fundamental solutions assuming (A1).

| conditions on mg and by | behaviour in Z,4(N) | behaviour in Z,,,,(N) |
bg(bo — 2) < 4m0 < (b[) — 1)2 (t/S)u+ ;M < —b0/2 (t/S)ibO/Q
0<4mgy < bo(bo — 2) (15/8)“Jr ;) Ut > —b0/2 (t/S)_bO 2

Tab. 4.2: Estimates of fundamental solutions assuming (A2).

Choice of parameters

The number of diagonalization steps needed in the hyperbolic zone determines
the zone constant N and thus the decomposition of the phase space. When proving
energy estimates it will be enough to apply one non-trivial step of diagonalization in
the hyperbolic zone and for this any choice of N sufficiently large will be good. When
proving L? — L7 estimates several such steps are necessary and N has to be chosen
large enough.

The number ¢ of derivatives required in Hypothesis 4.3 depends on the number
of diagonalization steps to be used and the needed symbol properties of the matrix
function Qi (t, 0, £). When proving energy estimates, ¢ = 1 is sufficient.

Theorem 4.5. Assume Hypothesis 4.3 with ¢ = 1, Hypothesis 4.4 with o = 1 and
bo(bo — 2) < 4myg. Then the L* — L? estimate

A(s)
Hg(t7 Sy D)||L2—>L2 5 m

holds true, where \ = \(t) is defined by (4.5).

Proof. The proof is divided into two steps.

Considerations in the pseudo-differential zone:

Here Theorem 4.3 in combination with Remark 4.4 yields

1+ 6\ \(s)
t < < —= :
s ol s (12) 550 (4.73
uniformly with respect to 0 < s < ¢ < fj¢. Therefore, if v = v(z) € L*(R"), then
. . A(s) )~
1, 5, )epalts JullL2 S NEE s, )epalt, Lo [Vl S ml\UHL?-

Applying the formula of Parseval-Plancharel we have

[P (E(t 5, €)palt, D)) (£ 12 S %HUHLQ.
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Considerations in the hyperbolic zone:

In the hyperbolic zone we will use the representation of the fundamental solu-
tion. Let us consider v = v(x) € L*(R™). We proved that Ny(t,&), Ni(t,€)~! and
Qi(t,s,€) are uniformly bounded for all t > s and (s,¢) € Z;,(N). Therefore by
(4.71) with k = 1 it follows for large frequencies

||g(t> S, ')przypi}\HL2

A(s) -1 1
= WHM Nl(tv')50<t757')Q1(t757') ( ) M(phyp HLQ S

>
—~

S

(t)

~—

0] 2

>~

Applying the formula of Parseval-Plancharel brings

F7 5, b OFE) ) S 3 el

Remark 4.5 implies that A(f¢)E(0)¢|, 5,€) is also uniformly bounded for |£] < N.
Therefore for small frequencies it follows from (4.72) that

1E(t, 5, )hyp(t, )0 L2
- LHf\lel(l‘a')50(@9“7‘)Ql(lfﬁuy')1\71(9\4,')*1]\/1)\(9\~|)<‘3(9\|7 8, ) Phyp(ts )V L2

At)
1

< — ||| 2.

Applying the formula of Parseval-Plancharel brings

|F (&t 5,608, (1,60 <s>)<t,->||L2sﬁ||vuL2,

which is a better decay in comparison with the statement of the theorem. O

Corollary 4.1. Assume Hypothesis 4.3 with { = 1, Hypothesis 4.4 with 0 = 1 and
bo(bo — 2) < 4myg. Then the L? — L? estimate

I+ 8) " ult, )z + [1Vult, e + [luet, )2 /\(1>(||UOHH1+||UIHL2) (4.74)

holds true for any solution u of (4.26) to initial data uy € H'(R"™) and u; € L*(R™).

Proof. The proof is divided into two steps.

Considerations in the pseudo-differential zone:

The micro-energy in the pseudo-differential zone becomes
Ut ) = (1t alt.6)).
From U(t, &) = £(t,0,£)U(0, &) it follows

—a(t7 é)cppd(u é) = 811<t, 07 é)@pd(t é)ﬂo + 512@7 07 f)(ppd(t, §)i21,
at(tv 5)9017(1(157 5) = 521 <t7 07 é)Qde(u 5)@0 + 522 (tv 07 g)gppd(ta f)alﬂ
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where &;;(t,0,€),4,j = 1,2, are the entries of the matrix £(t,0, £). Therefore, Theorem
4.5 and the definition of the pseudo-differential zone imply

[F7H(+ )7t Owpa(t, ) ()| luol|z2 + Il l2),

1
Ok

(ol 2 + [Juallz2),

[EH (€Lt wpa(t. ) (t )| 2 S

=

t

‘ ~

HF (ut (t, &) ppalt, 5)) HLz S (HUOHL2 + ||U1||L2).

>

(t

Considerations in the hyperbolic zone:

The micro-energy in the hyperbolic zone becomes

U(t7 g) = (|€|iz(ta g)v at(tv 5)) :

We have for large frequencies

(148710t €)phyp (&) = (L + 1) 01 (£, 0, €)h,, (€0
+((1+)]E]) " E12(t,0, ), (€)n,

€[t €)phyp(€) = E11(£, 0, €)hy, (E)I€[To + Era(t,0,)h,, (€)1,

Te(t, €)Phyp() = Ex(t,0, )00y, ()IE[To + Enn(t, 0,€) g, ().

Therefore, Theorem 4.5 yields with ((1 + t)|§|)_

111+ 071 €0l () ()], < ﬁ;mmmﬁwmma,
|F (€At )t () (1) o < igmmhp+Mﬂm%
|FL @, )t () () o < ﬁ;mmmp+Mﬂyy

For small frequencies the approach is analogous. We have that

(1+ )71t €)@h, (1, €) = (1 + )7 E1(t,0,6)p5,, (L, €)Tio

(A +1)]E]) T E12(t, 0,605, (¢, €,
E[AE, €)php(t €) = E1(£,0, €)@, (£, ) [E]To + E12(£,0, ) h, (t, €)1,
Ur(t, &) Phyp(t: §) = E1(L, 0, ) phy (1, §) €U0 + Eaa(t, 0,§) o}y, (¢, §)Un

Consequently, we may conclude

[FH((L+ )7t )@, (1)) (8 )| e S ﬁ;wmmwumﬂpy
[F (€Mt ©)phyp (8 )t )] 2 S ﬁ;wwmn+mwp%
[P (@t O)hyp (8 0) (8|2 S ﬁ(HuOHHlH\ulum).

This completes the proof. O
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If we assume Hypothesis 4.4 with & > 1 we have to restrict the admissible values
of my further. The proof goes in analogy to the above one replacing Theorem 4.3 by
Theorem 4.4 for the treatment in the pseudo-differential zone.

Theorem 4.6. Assume Hypothesis 4.3 with ¢ = 1, Hypothesis 4.4 with o € (1,2] and
bo(bo — 2) < 4mg < (by — 1) Then the L* — L? estimate
A(s
€t Doz S 35
holds true.
Then we may conclude the following energy estimate:
Corollary 4.2. Assume Hypothesis 4.3 with ¢ = 1, Hypothesis 4.4 with o € (1,2] and
bo(bo — 2) < 4mg < (by — 1)2. Then the L? — L? estimate
1
1L+ 6 alt, e + Valt e + lluelt, ez m(llﬂollHl + lullz2)  (4.75)
holds true for any solution u of (4.26) to initial data uy € H'(R"™) and u; € L*(R™).
Example 4.3. Let us consider for by, mg € R

o b() hl (t)
bt) = T+ 10, (4.76)
m(t) = ha(t) (4.77)

(14+t)?2  (1+1)?
with uniformly bounded h;(t), 7 = 1,2, and uniformly bounded t9;h;(t) and with the
integrability condition

o dt ,
/0 |hj(t)|1—+t < 00, Jg=12 (4.78)

Then Hypothesis 4.3 is satisfied with ¢ = 1 and Hypothesis 4.4 is satisfied with o = 1.
If we further suppose that by(by — 2) < 4my, then the energy estimate
bo
() ult, ), uelt, ), Voult, ) e S (14872 (luolla + luallzz) — (4.79)

holds true. The decay is independent of mq and related to the decay for non-effective
wave damped models treated in [59].

Example 4.4. We consider the same situation as in the previous example, but replace
(4.78) by

— <

1+1
then under the more restrictive condition by(by — 2) < 4mg < (by — 1)? on the numbers
mg and by the same estimate (4.79) holds true. To be more specific, this allows to treat

/|hj<t>|" ¥ e =12 (4.80)
0

b() b1
Mﬂ:1+t+Gﬂ¢Xm®+ﬂﬁ’ (4.81)
m(t) = —20 m (4.82)

A+02 (et DZ(n(e+ )
with arbitrary by, my and v € (1/2,1]. It satisfies (4.80) with o € (v1,2].

Remark 4.7. The Examples 4.3 and 4.4 show us that small mass terms have no in-

fluence on the decay estimates for a suitable energy of solutions to Cauchy problem
(4.26).
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4.2.3 Modified scattering result

Now we discuss the sharpness of energy estimates again and formulate a more
precise statement. In fact, there is a relation between solutions to the Cauchy problem
with mass and dissipation

ug — Au+b(t)us + m(t)u =0,  u(0,z) =uo(z), w(0,2)=uw(z),  (4.83)
under our hypotheses and solutions of the free wave equation
v — Av = 0, v(0,2) =vo(z), v(0,2) =v1(x), (4.84)

with appropriate related data. We follow some ideas of Wirth [61] and give (in
combination with the energy conservation for free waves) a very precise description
of sharpness of the above energy estimates.

Theorem 4.7. Assume Hypotheses 4.3 with { = 1 and 4.4 with
o=1 and bo(bo — 2) < 4my (4.85)

or with
S (1, 2] cmd bo(b() — 2) S 4m0 < (bo — 1)2 (486)

Then there exists a bounded operator
W, HY(R") x L*(R") — H'(R") x L*(R") (4.87)

such that for Cauchy data (ug,u;) € H'(R™) x L*(R") of (4.83) and associated data
(vo,v1) = Wy (ug,uy) € HY(R") x L*(R"™) to (4.84) the corresponding solutions u =
u(t,z) and v = v(t, x) satisfy

||/\(t) (ut<t7 ')a vxu(ta )) - (Ut(tv ')7 va(ta )) HLZ — 0,
ast — oo.
Proof. First let us define for any ¢ > 0 the following closed subset of L? x L?:

F, = {UO €L’ x I”: Uy(¢) =0 forany [¢| < 6}-

We remember that £ = U.oF. is a dense subset of L? x L?. If we introduce & =
&o(t, 5,€) asin (4.66) and if v solves the free wave equation (4.84), then after defining

V(t,€) = (|€[0, Do) we can write V(t,€) = &(t, s,£)V (s, €), where
éi(t, 5,6) = M & (t,s,6)M.
The proof is based on an explicit representation of the modified Moeller wave opera-
tor W,.. Our goal is to prove that the limit
W(©) = lim ADE(t,0,€)E(2.0.) (4.88)

exists uniformly in |{| > e for all € > 0. After proving this property we are able to
relate the Cauchy data by
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From Lemma 4.5 we know that the limit

Qi(00, 019, €) = lim Qu(t,61g.&)

exists uniformly when |£| > € for any € > 0. Hence, if we restrict Eo(t,0,6)71E(t,0,€)
on L we obtain

thiilo /\(t)go(t, 0,£)7'E(t,0,¢)

= tlg?o /\<0|§‘)§)(t7 0, 5)_1M_1N1 <t7 g)gO(ta 0\£|7 g) Q (ta 0|£\a g)Nl (0\£|7 5)_1Mg(0\§|7 0, f)
= fli{& >\(6|§\)M7180<07 L, £)N1 (ta 5)50(t7 9|£|7 5) Q (t, 6|£\7€>N1 (9\£|7 ’5)71M8(9\£|7 0, 5)
= AOg) M E(0,0)¢,§) Qu(00, ey, ) N1 (Blg, §) ™ ME(8g, 0, €).

Here we used the fact that

(0,1, E)N1(t,E)E (L, O, §) = E0(0, b)), &) + Eo(0, 2, E)(N1(t, &) — I)Eo(t, O, €)

and Ny(t,£) — I uniformly for |{] > €. In the pseudo-differential zone the boundness
of the fundamental solution of the free wave equation and the estimates in Theorem
4.3 and Theorem 4.4 guarantee that the limit (4.88) goes to zero.

According to the estimates for the energy from Theorem 4.5 and Theorem 4.6
we conclude that

A()Ea(t,0,€) 1€ (1,0, €)

is uniformly bounded on L. Therefore applying Banach-Steinhaus Theorem 7.3 we
conclude that

W.(D) = s-lim A(£)Eo(t, 0, D)'£(¢,0, D)

t—o00

exists as strong limit in L2(R") x L*(R"). Finally, we study the difference

INOU) = Vil = IADEE0, )00, ) - Eult, 0,9V 0,
- | (g0 - wo)vo.)

L2

Under our assumption (ug, u1) € H' x L? and by definition of W, (£) we may conclude
that

AU, ) =V (E, )|z = 0
as t tends to infinity. The proof is completed. O

Remark 4.8. The modified scattering result involves only the hyperbolic energy terms
Vu(t, ) and w(t,-). If we are interested in results containing also the solution u(t,-)
itself, we can not hope for the same kind of (non-weighted) result. Note for this, that
the estimate |[v(t,-)||z2 < t(||vo|lz2 + ||v1]|z-1) is in general sharp for solutions to the
Cauchy problem for the free wave equation, nevertheless there are no initial data with
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this precise rate. We only have ||v(t,-)||z2 = o(t) as t — oo for each (fixed) solution.
Similarly one obtains for solutions to (4.83) to initial data from L*(R™) x H~*(R™)

A B
Jim = u(t, )l 2 = 0. (4.89)

This rate is sharp for general data and can only by improved by further assumptions
on initial data. We omit the proof.

4.2.4 [P — L1 decay estimates on the conjugate line

Finally, we want to give Strichartz estimates for solutions. These are LP—L?
estimates for conjugate dual indices. The estimate is again independent of mg, but
the range of admissible by, depends on mg. For this statement we need to use the
representations of Subsection 4.2.1 with k > 1 and, therefore, we also need higher
regularity of the coefficient functions compared to the energy estimates given before.

Theorem 4.8. Assume Hypothesis 4.3 with { = n + 1, Hypothesis 4.4 with
c=1 ond bo(bo — 2) < 4m0 (490)

or with
o€ (1,2]  and  by(by —2) < 4mg < (by —1)% (4.91)

Then the P — L4 estimate

1 Cni(11
||g(t7 OyD)||LP—>Lq S C’pgﬁ(l +t) 2 (p q)

holds true for p € (1,2], p and q from the conjugate line and with regularity r =

()

Proof. The proof is divided into two steps.

Considerations in the pseudo-differential zone
In the pseudo-differential zone we have the estimate

1

1E(E,0,8)palt, O S D)

If v =v(z) € LP(R™), then

| (E(1.0.)pa(t. OBE) ()]0 < (0. )pult. ol
< 11,0, e llpalt, N, g 51l
< (14 )G o,

At

This is a better decay estimate than the desired one of the theorem.
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Considerations in the hyperbolic zone

Let us consider v = v(z) € LP(R"). For large frequencies we use the represen-
tation of (4.71) to split the propagator into several parts and estimate each of them
separately. For this we choose k such that

(=20k-1) and k-1> {g] Y (4.92)
Then,
1
LaLa [PrsLa  Lpr—Lpr LTS Lpor

with the under braced mapping properties. Indeed,

o we know that M~ Ny(t, &) € Sy "T°{0,0}, then M Ny (t,€) € S9_,,,, Marcinkiewicz’s
Theorem 7.1 implies that M N(t,£) € MZ uniformly in ¢, here the condition
(—k+1>[2] +1is essential;

e Theorem 3.2 implies &y(t,0, D) : LP" — L9 with a decay rate (1 + t)_TlG_é);

e Proposition 4.2 implies that Qi (¢,0, D) € SY_,, then Marcinkiewicz’s Theorem
7.1 brings Qx(t,0,&) € My Un|form|y in ¢, here the condition k —1 > [2] + 1 s
essential;

e Finally, N;(0,€) € SY_, by construction and Phyp € SO,

Therefore, it follows that
N 1 no1(1 1
7 €80, )N D10 S 550+ 077 G ol

For small frequencies we conclude from (4.72) the representation of fundamental
solution

1
E(L,0, D)y, (t, D) = WM 1Nk(t D) &1, 9|D\ D) Qi(t,0)p), D) Ni(0)p|, D) M

X MOp)E(0)py, 0, D) @, (1, D)

TV
Lpsr—[,pT

Vv Vv
L’IHL‘I p; r_>Lq Lpr— [P Lpr— [P

with the under braced mapping properties. In fact,

o we know that M1 Ny(t,€) € Sy 40,0}, then M N, (t, &) € SY, .., Marcinkiewicz's
Theorem 7.1 implies that M N (t,£) € MJ uniformly in ¢, here the condition
(—k+1>[2]+1is essential;

e Theorem 3.2 and the property & (t, O, &) = Eo(t,0,£)E0(0, B¢, &) with £5(0, 0, &) €
SO imply that Ey(t,0,p), D) : LP" — L7 with decay rate (1 + ¢ )_%(%_5);
e Proposition 4.2 implies that Qy(t, 0, &) € SY_,, then Marcinkiewicz's Theorem

7.1 gives Qu(t, 8¢, &) € M uniformly in ¢, here the condition k — 1 > (2] +1
is essential;
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e By Lemma 4.4 and the properties of 0¢| we know that Nj(0¢,&) € S
e Remark 4.5 implies A(6¢))E (0, 0,€) € SY, ;.

Hence, it follows that
1 n—1(1_1
|E 7 (E05,0, €008 ) (1) | o S 5 (14 )7 F 675 oo,

for small frequencies in the hyperbolic zone. N

Taking account of Theorem 4.8 allows to conclude the following Strichartz” esti-
mates for a suitable energy of solutions to damped Klein-Gordon models (4.26).

Corollary 4.3. Assume Hypothesis 4.3 with ¢ = n + 1, Hypothesis 4.4 with
oc=1 and bo(bo — 2) < 4m0 (493)

or with
€(1,2] and  by(by —2) < 4mg < (by — 1) (4.94)

Then the LP — L4 estimate

H ((1 1)t <), w(t, ), Veul(t HLq < )\(1 n (1+ t)_%(%_%) (||u0||LP,r+l + ||U1||Lp,r)

hold true for p € (1,2], p and q from the conjugate line and with regularity r = n(%— %)

Proof. Analogous to the proof of Corollary 4.1. N
We will conclude this chapter with significant concluding remarks.

Remark 4.9. The estimates of the solution u(t, -) itself following from Theorems 4.5,
4.6 and 4.8 are not optimal in the present form. Indeed in Chapters 2 and 3 we
established better decay estimates for the solution itself in case where b = 0. This is
due to the attempted o—dependent formulation of the results. Under Hypothesis 4.4
with o = 1 it is possible to improve the estimate for the solution in the following way

lut, ez S @+ 05 (fluoll e + [Juallz2)-

We will give the essential argument behind this improvement. The improvement is
based on (4.29). Within Z,,(N) the construction gave the estimate

1

()] S (400 @lt,€) + 0 (1,6)).

If we consider the hyperbolic zone Zhyp(N), we obtain in analogy
(1 +t)  (Jefao(t, €) + W (1,€)), €l >N,
L) (1 )R (@o(t,€) + W1,6), [ <N,

I§lu(t, §) = <

and together with [£|(1 + 6¢) = N, the positivity of § = 1+ % + Rep; > 0 and
the monotonicity of t° the desired estimate follows. For o > 1 the latter needs not to

be valid any more and improvements depend on the behavior of the quotient of the
right-hand side of (4.45) and A(t).
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Remark 4.10. The restriction of Assumption (A2) to the range o € (1,2] is due to
just one application of the Hartmann-Wintner transform of Theorem 7.6. Applying
finitely many such transformations in an iterative way allows to extend Hypothesis 4.4
to arbitrary o > 1. The price to pay for this is a series of correction terms in (4.45)
instead of just one. The estimates of Theorems 4.6, 4.7 and 4.8 still depend on the
hyperbolic zone and (as long as the right-hand side of (4.45) with s = 0 is still majored
by A(t)~!) are valid unchanged.

Our last remark will give some comments on the relation of the results in this
chapter to the known treatments:

Remark 4.11. For m(t) = 0 we are in the non-effective damped wave equation case,
i.e., Wirth [59]. If mg =0 and by € [0,1) U (1,2), then we are in the setting of Wirth
[59] (or [57] for the particular case b(t) = by(1 +¢)~ ') and the estimates of Theorem
4.8 reduce to results from these papers.

If by = 0, then we can treat arbitrary mq and obtain from Theorem 4.8 with ¢ = 1,
uniform bounds on the energy as well as the standard wave type LY — L9 decay
estimates. The scale-invariant case was considered in [5] with similar observations.
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5 Wave models with structural
properties of the time-dependent
potential

In this chapter we will apply C™ theory and a stabilization condition for Klein-
Gordon equations with non-effective time-dependent potential. The idea of C™ the-
ory together with the introduction of some stabilization was at first developed by
Hirosawa to investigate the asymptotic behavior for the total energy of wave equation
with time-dependent propagation speed in the paper [27], note that without stabiliza-
tion condition the oscillations on the coefficient of speed of propagation may have
a very deteriorating influence on the energy behavior (see [10, 46]). In 2009 Hiro-
sawa/Wirth extended the result to wave equations with speed of propagations having
non-trivial shape functions in [28]. In 2008 the C™ theory and stabilization condition
was applied to wave equations with non-effective time-dependent dissipation in [29].
In 2010 Béhme/Hirosawa used C™ theory to prove generalized energy conservation
for Klein-Gordon equations with effective time-dependent potential, see [6], where
a stabilization condition is not required. In the semi-linear theory the C™ theory
and stabilization condition was applied to wave models with smooth time-dependent
propagation speeds by Hirosawa/Inooka/Pham in [26] to prove globally (in time)
existence of solutions.

5.1 Idea of stabilization

Basically what we have done in Chapter 2 was to prove both-sided or general-
ized energy estimates for Klein-Gordon equations with non-effective time-dependent
mass term. The basic hypothesis for the derivative of the time-dependent coefficient
of potential term was

d 1
‘Em(t) SAT

This assumption is a sort of "very slow oscillations". We are interested in the behavior
of the energy as ¢ — oo for the coefficients bearing "very fast oscillations", in the
classification of Reissig and Yagdjian [46] and [47]. Indeed, very fast oscillations are
allowed under C™ properties and stabilization condition. Roughly speaking we are
interested in the interplay between stabilization and behavior of the derivatives.
Under C™ properties and some stabilization condition the hypothesis for the
related symbol-like estimates are thought to be weaker than the ones from Chapter
2. The stabilization allows to use weaker assumptions on derivatives by shrinking
the hyperbolic zone, details are given in Section 5.4. We pay for this by using more
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steps of diagonalization requesting in that way more regularity of the time-dependent
coefficient of potential term. The number of steps for diagonalization will be the
number m that describes the regularity of the coefficient of potential term. Performing
m steps of diagonalization we guarantee that the remainder terms are uniformly
integrable over the hyperbolic zone. The basic ideas follow from the consideration

made in Chapter 2 and in the papers about C™ theory and stabilization condition
[27], [28] and [29].

5.2 Motivation

Consider the following Cauchy problem
Utr — Au + m(t)2u = O, u<07 ZL’) = u0<513'>, ut(07x> = ul(x)7 (5])

with (¢,z) € [0,00) x R", m(t)*> € C™(R) and m(t)*> > 0. Like in Chapter 2 we
want to have some feeling about the behavior of solutions to (5.1). For a general
mass term m(t)? we may transform the time-dependent potential fo a time-dependent
damping and a new potential. If we introduce the change of variables given by
u(t,z) = n(t)v(t, z), then the Cauchy problem (5.1) takes the form

_ (1) 1" (t) 2\, _ _ uo(x) _
vy — Av + 2 0 v + ( 0 + m(t) )v =0, v(0,2) = 20) v (0, 2) = v1(z) (5.2)
. . u1($)*%ﬂ0(x) .
with vy () = —— 57— Therefore if we can take 71 such that

0" (t) +m(t)n(t) =0, (5.3)

then we may apply the results of [29]. Indeed, we shall solve the previous ordinary
differential equation with time-dependent coefficient of the non-effective potential
term (see Definition 5.1). We will give more details in the next section.

5.3 Models with structural properties

First we will prove statements for a general non-effective mass term and later
we shall consider a special structure for the time-dependent coefficient m/(t)?.

Definition 5.1. (Non-effective mass) Consider the Cauchy problem (5.1). We say
that m(t)?u is non-effective if the time-dependent coefficient m(t)? satisfies:

lim sup(1 + t)/ m(s)?ds < E (5.4)
t

t—o00 4

and if the derivatives satisfy the following estimates:
Sem(2] S (1447,

forsome 0 <~y <1, k=1,2inthecasey=1and k =1,2,--- ,m otherwise.
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A solution of equation (5.3) can be represented formally by

7 =n(t) = exp (i / t | q]-(s)dsdT) , (5.5)

where
m(t)? ifk=1
k—1
=qr(t) = > > itk=234,---. 5.6
dk qk() Z(/ (b(S)dS)(/ Qk_j(S)dS> I ) ( )
ot t
Note that ¢, > 0 for &k = 1,2,---. If the coefficient m(¢)? satisfies the non-effective

condition, then the series converges. Actually we have the following proposition:

Proposition 5.1. We define the sequence {nx(t)}%_; by

nn(t) :== exp (i/ot /Too q;(s)ds dT). (5.7)

If m(t)*u is non-effective, then {ny(t)}%_, is a uniformly converging sequence on
[0, 00) and limy o nn(t) =: n(t) € C™ ([0, 0)). Moreover, we have

+m(t)* = 0. (5.8)

Proof. By the definition of ny(t) we can verify that 1 solves the equation (5.8) if
{nn(t)}35-; converges uniformly. Indeed,

RO SNy g

The Cauchy product formula

(i an> ( i bm> = i c¢j, where ¢; = i&kbj—k
m=0 =0 k=0

n=0
implies that
[e9) oo 9 9]
(Z/ qj(s)ds) => g(t).
j=1"1t =2
Therefore,
n"(t) 2
+m(t)* =0
n(t)
We shall investigate the uniform convergence of {ny(t)}n. Let us denote the
k-th Catalan number by ~;, = % Then we have

k
Yo = 17 Ve+1 = ZVJV’C*Q? (59)
=0
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and
~kt1

lim % — 4 (5.10)
k=00 [1IFyg
for any i > 0. It follows that the series >, fi*v,_1 converges since 1 < 1/4. By (5.4)
there exists a constant 1z € (0, 1/4) such that

0< /too q1(s)ds = /too m(s)?ds < (1 +t)"" = pfyo(1 +1)* (5.11)

for t > 1. From now on we suppose that t is large enough, so (5.11) is valid.
Therefore, we have

o0 2
wl®) = ([ a(s)ds) <R+ =Tl o)
t
Here we assume that the following estimates are established:

q(t) < [ yea (1 +1)72 (5.12)

fork=2,---,j. It follows that
/ qr(s) ds < iy (1 + 1)~ (5.13)
t

Then we have

gj+1(t) =

(/too Gk (s) ds) (/too ¢j—rk+1(8) ds)

(v (L + )71 (7 (L +8) J“Z’yk k(1 + )72

M~ -

:/ﬂ 1%’(1 +1)7°

Thus (5.12) and (5.13) are valid for any k£ > 2. Consequently, the sequence {Zjvzl q; (1)}
converges uniformly in C°([0, c0)), and thus

N t 00
13511002/0 / 4s(s) dr ds € C*([0,50)). (5.14)
]:
This implies
n(t) € C2([0, 50)). (5.15)
Recalling that the estimate (5.12) is valid, thus we have
gr(t) < Py (1+1)7%, (5.16)
for 0 < 8 < 1. Let us assume that for ¢/ = 1,--- | j there exist positive constants C;

such that the following estimates are established:

‘q;(f)(t ‘ < Copi* e (14 £) 727, (5.17)
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Then, noting the equalities

SR (T [ wos) (5 o)

r=1 h=0
k-1 -
:_Z(/ ¢-(s)d )qkr Zq (/ qk_r(s)ds)
r=1 t
k-1 j .
j+1
+ Z( " )q(h V(" (o),
r=1 h=1
the estimates (5.12) and (5.13), we have
k-1
q;?“)(t)] < (@ (87 (G a1+ £)70F20)
r=1
k-1
+ 3 (i yma (L4 1) FD8) (L (1))
r=1
k—1 j—1 j + 1
O - 1 t —(h+1)8 o ~k—r . 1 " —(j—h+2)8
—l—;;(h)(CthW 1(1+1) ) (Cjnf " pra (14 1) )
S i+
=205 Y " o1 Phmpa (L4 1) 770 Y ( ) )Oh_lcj_hﬁk
r=1 h=1
k-1
X3 Y hra (14 £) 707
r=1
[+ 1
=1k (2@(1 +) LY (‘7 N )Ch_lcj_h> (1 4 )~ G+9)8
h=1

<Gy (14 1)~ 0D,
where O, = 2C; + 3217} (jzl)Ch,le,h. Consequently, (5.17) is valid for any ¢ =

0,---,m. Moreover, we may conclude by (5.5) that n(t) € C"™2([0, x0)). O
Now we shall investigate the Cauchy problem
UAQ)
—Av 42—~ =
Vgt v+ (@) v, =0

(1)

0] in the dissipative term. This coefficient sat-

with the time-dependent coefficient 2122
isfies the following estimates:

Lemma 5.1. Assume that m(t)? satisfies the non-effective condition. Let us define

bi(t) by -
by (t) == :Z/t q;(s) ds. (5.18)

Then we have the following estimates

-1
(k) < (1 + t) , k= O,
b]_ (t)’ ~ {(1 + t)_(k+1)ﬁ7 k _ 1’ . 7m. (5.]9)
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Proof. The inequalities (5.13) and (5.17) imply this lemma. In fact, for k = 0 we have

i) = 2803 [t
< S Fpa 0T < e

once that i < . For k=1, ,m we have

ol = |3 g / t

Z D (5) S g2 (1 4 6) D8 < O(1 4 )03
j=1

So, the desired inequalities (5.19) are proved

0
If the potential term is non-effective, then 224
this means that

i e is @ non-effective dissipation

: n'(t)
limsup 2(1 +¢ < 1.
msup2(1+4)

Indeed we have the following result

Proposition 5.2. Assume that m(t)?u is a non-effective potential. Then

: ' (t)
Lmsup2(1 +¢ < 1.
t—>oop ( ) n(t)

Proof. If we consider the k—th Catalan number ~;, then recalling (5.13) there exists
a constant 7 < 1 such that

140 [ s <o
t

fork=1,2 . Therefore

't . o _ )
n(t)) = 2(1+t)jz_;/t g;(s)ds < Q;Mgvj_l'

2(1+1)

(5.20)

Let us denote o = > > | iiy;_1. On the one hand the Cauchy product formula implies
that

oo 2 o0
o = <Z ﬁj7j1> = Zﬁj%'—l =0 —H
j=1 J=2

1 1 —
= -4 —+\/1—4nu.
O+ S M

therefore
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On the other hand 11 < 1. Thus
o< iﬁl_j’}/‘ 1= l
= 2 j— 9
7=1
We can conclude that ¢ = o_ < 1. From (5.20) follows that

limsup2(1 +¢
n e 20 )

<20 <1,

what we wanted to prove. O

From now on we will consider a special structure of the coefficient m(t)?, namely,

2

2 _ :u— 2
m(t)? = (1+t)2g(t)2+6(t), 12 0, (5.21)

where % is the shape function (see Chapter 2) and 6 = 4(¢) is a bounded
oscillating function with

o) < (1 +1)72 (5.22)

Remark 5.1. The goal is to deal with m(t)? bearing very fast oscillations. The following
time-dependent potential term is a perturbation of the scale-invariant potential and it
is an example of a mass term m(t)?u that we want to deal within this chapter:

_ PP P sin(t?)

m(t)2 (1 —I—t)2

with o € (0,1). Note that this example shows us that the choice of u? in the non-
effective potential will be smaller than in the scale-invariant case [5]. Indeed, when
sin(t”) = 1 we expect that p? < £.

We shall enforce hypothesis for § such that the oscillations have no contributions
to the energy estimates. For our purposes let us take ¢ and § satisfying, for a non-
negative integer m, the following hypothesis:

Hypothesis 5.1. Let ¢ = ¢(t) € C™([0,00)) be a positive, non-decreasing function
with ¢(0) =1 and
g (1) < erg®)(1+6)7,

where ¢;, is a constant depending on k.

Hypothesis 5.2. For a real number 3 from the interval (1/(m+1),1) and 6 € C™ ([0, c0))
we suppose the following estimates:

|5(k)(t)‘ S48 ® 8 for k=1,-- m. (5.23)

Here the parameter 3 describes the asymptotic behavior of derivatives of m(t)? for
large t.
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Hypothesis 5.3. (Stabilization condition) There exists a constant « € [0, 1) such that
the perturbation function 0 satisfies

] /OO 5(3)ds’ < (1 + 1) (5.24)

with v < 2 andﬂ—a—{—mH
Remark 5.2. The condition for the function g implies the following estimates for the

derivatives of the shape function:

dF ILLQ
2 )< —(k+2) < (1 (k+2)8 f, =1,- ) 2
‘dtk ((1—|—t)2g(t)2)‘ S(1+1) <(1+1)°¢ or k .m. (5.25)

Therefore the derivatives of the shape function satisfy better estimates than the pertur-
bation function §(t).

Remark 5.3. The exponent a — 2 inspires us to call Hypothesis 5.3 stabilization con-
dition because it is a more restrictive assumption for the potential term. Indeed, for
3 > 2 the Hypothesis 5.2 implies that

‘/ /5/ d7>d8‘</ </Sw<1+7>‘36d7)ds~(1+t)2—367

which is, in general, a worse decay than (1 %—1&)‘“2 because the condition f = a+ m_+1
implies o —2 < 2 — 30, since 8 < 1. For 3 < 2, we have from (5.22)

A

which is a worse decay than (1 +t)*~% because of a —2 =3+ 21 —2 < —

<(1+1)

COI»J>

Remark 5.4. We do not suppose a sign condition for §(t) although we require m(t)2 >
0.

Remark 5.5. The mass term m(t)?u satisfies under Hypotheses 5.1 and 5.2 the as-
sumptions we asked so far if ;> < 1. Then from now on we will use for Klein-Gordon
models with potential m(t)*u all the results we have proved for Klein-Gordon models
with a general non-effective potential term M (t)u.

5.4 Representation of solutions

We perform the partial Fourier transformation with respect to x in (22) . If we
denote by u(t, ) the partial Fourier transform F,_¢(u)(t, &), then we obtain

Tyt + [€170 +m(t)*T = 0, @(0,€) = To(§), @l(0,€) = (§)- (5.26)

We divide the extended phase space [0,00) x R™ into three zones: the pseudo-
differential zone Z,;(N), the hyperbolic zone Zy,,(N) for m = 1,2,--- and the
intermediate zone Z;(N). The zones Z,4(N) and Zg ,(N) are defined by

Z(N) = {(,€) € [0,00) x R": (1 +)|¢] < N},
Zum(N) = {(£,€) € [0,00) x R" : [¢](1+1)* > N}.
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Here we note that a = § — Q < 1lsincem > 1and 8 < 1. If we consider the
zone Z,,(N) (hyperbolic zone as defined in Chapter 2) it follows that Z,,,,(N) D
Zym(N) for m > 1. The gap between the zones Z,,,(N) and Zy,,(N) we define as
intermediate zone, i.e.,

Z1(N) = Zpyp(N)\ Zgm(N)
= {(t,§) €[0,00) x R": (1 +)*§| < N < (1 +1)[¢]}.

The separating curve between the pseudo-differential zone and the intermediate zone
is given by

Ole) - (0,N] = [0,00), |¢](1+06)) = N.
We put 0(()1) = oo, and 9‘%) = 0 for any |{| > N. The pair (¢,£) from the extended
phase space belongs to Z,;(N) if and only if ¢ < 0%'). The separating curve between

the intermediate zone and the hyperbolic zone Zy,,(N) is given by

0+ (0.N] = [0,00),Jel(1+6%)" = .

We put 6 = oo, and 9\(£|) = 0 for any [¢| > N. The pair (¢,£) from the extended

phase space belongs to Zy,,,(N) if and only if t > glf\

£y o)
O1e)

Q\EI

0 N €]

Fig. 5.1: Sketch of the zones.

We define the micro-energy

_ ~ ()N
Ut €) = (h(t,{)u,ut— E u) , (5.27)
where
h(t,&) = ——¢1(t, &) +il¢|pa(t, &).

141
Here ¢1(t,€) is a characteristic function related to the pseudo-differential zone and
$2(t,€) is a characteristic function related to the hyperbolic Z;,,(N). We introduce
do(t,€) = x (L) with x € C=(R™), x(t) = 1 fort < I, x(t) = 0 for t > 2 and
X' (t) < 0 together with ¢ (¢, &) + ¢2(t,€) = 1.
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5.4.1 Considerations in the pseudo-differential zone

In the pseudo-differential zone we estimate solutions by brute force reformulat-
ing the system related to the Cauchy problem (22) as a system of integral equations.
The ansatz is similar as in the paper [19]. In the pseudo-differential zone Z,;(N) the
micro-energy (5.27) reduces to

U= (1= T8a) v = (le. o) - Do), and U =)0

So we have

__1 1 _
AU (L, &) = A(t, &)U = ( L+t Lt > U. (5.28)
—(L+ o)l -2

Let us consider the fundamental solution E = E(t, s,£) to (5.28), that is, the solution
to
b =A(t,E, E(s,s¢) =1

Lemma 5.2. Assume Hypotheses 5.1 and 5.2. The fundamental solution E(t,0,¢)
satisfies the estimate

10,9 < n(t)
for all (t,€) € Z,a(N).

Proof. If we put E = (E;;); =12, then we can write for j = 1,2, the following system
of coupled integral equations of Volterra type:

t
Bu(t.0.6) = (1+07(8y+ [ Ey(r0.0)ar), (5.29)
0
t
Ey(t,0,6) = n(t)~? (52j —/ (1+ 7)77(T>2‘§|2E1j(7—7O’§)d7—>' (5.30)
0
By replacing (5.30) into (5.29) and after integration by parts we get

Eyj(t,0,6) = (1+ t)_1(51j + 9y /tn(T)_QdT> —(1+t)7!

t t
x / (1+ T>n(7)2|gy2E1j<T,o,g)/ n(s) 2dsdr. (5.31)
0 T
From Proposition 5.2 together with Proposition 7 of [59] we have
t ) t
n(s) *ds ~ —, (5.32)
o=
and ﬁ is increasing for large ¢. Introducing

hy(t,€) == [|E1;(,0,8)||n(t)?

and by using 7(t)> < 1 +t (see Proposition 5.2) for large ¢t we conclude from (5.31)
and (5.32) that

hi(t, &) < C+C/O (1 + 7)[€]2Ry(T, &)dT.
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Applying Gronwall’s type inequality we conclude

t
hy(t,€) < Clexp (0/ (1+ 7')|§|2d7').
0
In Z,4(N) we have (1+t)|{] < C. So, from the last estimate we get

hi(t,§) S 1.

Therefore we get ||Ey1;(t,0,€)|| < n(t)~2. From the boundedness of || E1;(t,0,&)||n(t)?
we can estimate ||Ey;(t,0,&)]| < n(t)~2. Summarizing we proved || E(t,0,¢)|| < n(t)™2
forall t € [0,0]. O

This lemma implies

U I < Cn(t) [Us(€)]| for all ¢ € (0, f¢]- (5.33)

5.4.2 Considerations in the hyperbolic zone

In the hyperbolic zone Zy ,,(IN) we follow basically the approach of [45], in par-
ticular, the diagonalization procedure. However, to cope with the stronger oscillating
behaviour of b;(t) we need in our approach more diagonalization steps and we shall
restrict the considerations to a smaller hyperbolic zone in the phase space. The basic
ideas are taken from [28] and [29].

First of all let us introduce the symbol class S&{m;, ms} in the zone Zg . (N).

Definition 5.2. The time-dependent amplitude function a = a(t, &) belongs to the
symbol class S5 {mi,my} with restricted smoothness ¢ if it satisfies the symbol-like
estimates

1\ (matk)B
|DEDZa(t,€)] < Cealé™ ()

1+t
for all (t,€) € Zy,»(N), all non-negative integers k < ¢ and all multi-indices o € N".

(5.34)

We will denote by Sy {mi, ms} the symbol class when ¢ = o, that is, Sy{mi,ms} =
Sﬁ,o{ml, m2}.
The rules of the symbolic calculus are collected in the following proposition.

Proposmon 5.3. (1) S {m1, my} is a vector space for all non-negative integers .

(2) st Nvimi — k,my +€} C Szl{ml,mg}for all £>k>0,0>¢.

(3) Sﬁ{ml, ma} - SN{ml, m2} C SN{ml + my, my 4+ my} for all non-negative integers
¢ and ¢ with £ = min{¢, ('}.

(4) Dng‘Sﬁ,{ml,mz} C S5 {my — |a|,mq + k} for all non-negative integers ¢ with
k<.

(5)_551,{—1, 2} C LEL{(Zm) for all non-negative integers (.

In the zone Zy ,,(N) the micro-energy (5.27) reduces to

)

/ 9(2)
)T, Us() = (iléla0), ), w6, ¢) - LJE'))@<HE§|>7§>)T,

U= (i|¢|u,u, —
( 77(9\& )



122 5 Wave models with structural properties of the time-dependent potential

and U = 5(t)U, so that
~ 0 1\ ..~ 0 0 ~
U = (1 0) iU + (0 _2%) U (5.35)
n(t

for t > 07 with initial datum U (67),€) = n(0]7)) ' Ua (€).

Let M be the diagonalizer of the principal part (with respect to powers of |¢]) of

(5.35) given by
11 -1 L1 /1
-7 7) (o)

If we put VO(£,£) := M1U(t, €), then we get
D,V = (Do(t, &) + Ro(t,£)) V' (5.36)

with

(g o =m0
Do(t,Q—( 0 ! |f|+im ’Ro(t’f)_ln(t) <_1 O).

n(t)

Note that Ry € S3/{0,1} and % € C™*1([0,00)). Now we apply an iterative diago-
nalization procedure.

Lemma 5.3. Let us assume the Hypotheses 5.1 and 5.2. There exists a zone con-
stant N > 0 such that for any k = 0,1,--- ,m there exist matrices with the following
properties:

e the matrices N}, = Ni(t,£) € Sv"{0,0} are invertible and N;/' € S%~*{0,0}.
Furthermore, the matrices tend to the identity as t — oo for all fixed & # 0;

e the matrices Ry, = Ry.(t,¢&) € Sw"{—k, k + 1} are antidiagonal;
e the matrices Dy, = D (t, &) € Sw"{1,0} are diagonal and
Di(t, &) = diag(r! (t,€), 7 (¢, €))
with [ (4,€) — 77 (1,€)] = Cile:
all these matrices are defined in Zy ,,, such that the operator identity
(D¢ — Dy, — Ri) Ny = Ni(Dy — D1 — Riy1) (5.37)
isvalid for k=0,1,--- ,m — 1.

Proof. The proof goes by direct construction. Let us denote the difference of the
diagonal entries by

5k<t7 g) = le—<t7 5) - Tk_ (t7 5)
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Assume that we have given a system D,V ) = (Dy(t,€) + Ri(t,£)) V) with Dy (¢, €) =

t,€)
diag(r (t,€), 7, (t,€)) € Sy~*{1,0} satisfying |0 (t,€)| = |7 (t,§) — 7 (£, §)] = Cul¢]
and antiagonal remainder Ry (t,&) € Sw*{—k, k4 1}. Set

O _(Rk)12
Ni(t,8) =1 + ((Rk)21 5’“ ) (5.38)

Ok
such that [Dy, Ni] + Ry, = 0 and, therefore,

B*Y  — (D, — Dy — Ry) Ny — Ny (Dy — Dy,) = D;Ny, — [Dy,, Ni,] — RNy,

= DN, — R, (N, —I)e Sy Yok —1k+2}
The matrix NV}, is invertible if we choose the zone constant N sufficiently large. Indeed,
we have that Ny, — I € S¥*{—k — 1,k + 1}. Therefore
8\ —k—1 18\ k-1 k-1
IN =11 S (el +07) 7 s (lga+ 0P ) T SN o0
as N — oo. Thus by defining

Dk-i-l(ta 5) = Dk(t7 5) - dlag (Nk(tv f)_lB(k+1)(t7 5)) )
Ria(t,€) = diag (Ni(t, &) " B*D(t,€)) — Nio(t, )" B*HV(1,¢)

we obtain the operator equation
(D¢ — Dy — Ri) N, = Ni(Dy — Diyq — Rys1)

with Dy (¢, &) € Sv 71,0}, Ry (t, &) € Sp "~k — 1,k + 2}. The estimate for
B¥+1) implies that

C
T (€)= T (O] = (70 (4,6) = 7 (1] = €l -

If we choose N large enough, then the statement is proved with Cy; := C}, — ]QV O

Finally, we obtain for k = m that the remainder R,,(t,&) € SY{—m,m + 1} is
uniformly integrable over the hyperbolic zone,

—m

= —(m —m -8

[ Rl €)1ds < 00t = (14 00 el) 1 (5.99)
€l

Lemma 5.4. Assume the Hypotheses 5.1 and 5.2. Then the difference of the diagonal

entries of Dy isreal forall k =0,1,--- ,m — 1.

Proof. Let us proceed by induction over k following the diagonalization scheme. We
will show that the above statement and the following hypothesis

(H,) Ry has the form Rk:i(ﬁo ﬁok) with complex-valued (i (¢, ¢)
k

are valid. For k = 0 the assertion (H,) is satisfied. Suppose that (Hy) is true. The
_(Rk)m
construction gives Ni(t,§) = I + <(Rk) 05k ) with det N, = 1 — @42‘2 # 0 after
21 k
Ok
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a suitable choice of the zone constant N. Following the diagonalization scheme of

[27, 28, 29] and set d), = ‘fj;;‘ , then

N, ' (D + Ry) Ny, =

(dlag( — dka — (Skdk, Tk — dka + 5kdk) + dkRk)

1 —d
and 3 By
g - L[ (g 0 N (0 ok
Vet o) = = | (0 g m ) las
kU Ok k
such that
e (5kat5k) B <5kat5k 5kat5k>
B B Br - B
— 2atd,€fR (5k8t5k)
implies

+ Tk
Thi1 = Tk :|:1 a (dk5k+lm(5kﬁt6k)) Z2(dk o5

Hence 0,1 is real again and Ry, satisfies (Hy.1) and, therefore, both statements
aretrue forall k =0,1,--- ,m — 1. O

Now we want to construct the fundamental solution £(t,s,£) for the system
D; — Dy — Ry. For this purpose it is sufficient to construct the fundamental solution for
the diagonalized system D; — D,, — R,,. At first we devote to the diagonal operator
D; — D, (t,€). lts fundamental solution is given by

t
exp (z/ Dm(ﬁ,ﬁ)cw) = diag <eif; T”t(e’g)de, ei s T;L(e’é)de).
Since 6, — 7, is real, it follows that Im 7,; = Im 7, := 7, and thus the matrix

exp (/St ]me(Q,g)dQ) exp <@ /: Dm(9,§)d9>

is unitary. The integrability of the remainder term R,,(¢,&) over the hyperbolic zone
implies as in Chapter 3 that the fundamental solution of D; — D,, — R, is given by

exp <z /: Dm(e,g)de) Qnlt, ,€)

with a uniformly bounded and invertible matrix Q,,(¢, s, £) that can be represented as
Peano-Baker series

m(t, s, €) _I+Z/ (b1, 8,6) - Ron(t, 8, &) dty - - - diy,
where

Ron(t, 5,€) = exp ( —i /: Dm(e,g)de) Ron(L,€) exp (z /: Dm(e,g)cw)

is an auxiliary function. We obtain the following statement:
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Lemma 5.5. Assume Hypotheses 5.1 and 5.2. The fundamental solution £(t,s,€) is
representable in the following form:

E(t,s,&) =M1 <ﬁ1 Nk(t,g)—l) exp (z /: D,.(0, g)de) Qun(t,s,€) (ﬁNk(s,§)>M

for all (t,€),(s,&) € Zum(N), where

e the matrices Ny = Ni(t,€) and N, ' = Ni(t,£)~* are uniformly bounded and
invertible;

e the matrices Q,, = Q,(t,5,£) and Q1 = Q. 1(t, s,£) are uniformly bounded and
invertible.

Proof. The representation as Peano-Baker series implies the uniform estimate
t
1Qntts &)l < exo ([ I1Fa6.5.01)

1—(m+1)B
< exp ((1 + efgf) |§|m> <1
Additionally, we know that Q,,(¢, s, &) satisfies
Dy Qu(t,5,6) = Bn(t,5,6)Qu(t,5,€), Quuls,5,6) = 1.

Then after applying Liouville theorem and the invariance of the trace under multipli-
cation we get

t t
det Qu(t, 5, €) = exp (z / trRm(e,s,g)cm) — exp (z / trRm(e,g)de) —1
and [|Q,!(t, 5,8 < 1. O

The asymptotic behavior of the fundamental solution £(¢, s, €) is given by the
following corollary:

Corollary 5.1. Assume the Hypotheses 5.1 and 5.2. Then the fundamental solution
E(t, s, &) satisfies
(s

)

3
~—r

1€ s, I S
uniformly in (t,£), (s,€) € Zym(N).

Proof. The statement of Lemma 5.5 implies that

1€, s, 6)]| §exp<—/tlm7m(9,£)d9) for t — oo

S

—~

U

uniformly in (¢,£),(s,€) € Zum(N). We can use our representation of 7,,(t,&) to
deduce

8 =) 25, -1
such that
exp ( —/s ]me(Q,ﬁ)dQ) = exp ( —/S Zég;d@) (%) ’ < Z(—;)

This completes the proof. O
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5.4.3 Considerations in the intermediate zone

In the intermediate zone of the extended phase space we will use for the first
time the special structure of m(t)? given in (5.21). We relate the fundamental solution
E(t, s,€) to the fundamental solution E(t, s,&) to the corresponding Klein-Gordon
model with non-effective time-dependent potential and without any perturbation, i.e.,
with § = 0. We remark that in Chapter 2 we did estimates for the fundamental solution
gsf(ta Sy 5)

The key idea is to rewrite 2 as a sum of two functions x(t) and o(t), where

n(t)
u(t) is a shape function and o(t) is a perturbation function (see [29]). Denote

Q;(t) = / ¢i(s)ds, j=1,2,---, (5.40)
t
where ¢; is defined in (5.6) and v; = % are the Catalan numbers. We have that
Nt N
= Q;(t). (5.41)
n(t) ; i)
Investigating @Q;(t) for each j = 1,2,--- we arrive at the following proposition:
2—a

Lemma 5.6. If the stabilization condition of Hypothesis 5.3 is satisfied and p* < %2,
then there exist a positive shape function o = u(t) and a perturbation function o = o(t)
such that

T = o)+ (0
with
W) SA+07" and o) < (1+ 1) (5.42)

for t > 0 large.

Proof. Let us construct the functions i and o step by step. For j = 1, we have

Qi(t) = /t " n(s)2ds = /t ) ﬁzg(s)gdﬁ /t " 5(s)ds.

Denoting the shape function

o0 ,UQ
t) = ——d
w0 = [
and the perturbation
o1(t) = / d(s)ds
t
of Q1 (t) after using properties of g and the stabilization condition we arrive at

2y 147
(2—a)(1+1t)g(t)?

p(t) < and oy (t)] < g (1 +1)772 (5.43)
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By definition ¢ = Q1Q;. So, it follows

Qa(t) = /t‘x’ (M1(8)2 + 2u1(8)o1(s) + 0'1(8)2) ds.

Denoting the shape function

and the perturbation

of Q»(t) we get

4y
(2—a)*(1+1)g(t)*

Indeed, recalling a < 1 we obtain

) _
pa(t) < and [o3(t)] < mﬂ472(1 )0

& 5
loa(t)] < ,u472/ (4(1 +5)* 3 4 (1 + 3)20‘_4) ds < mﬂ4’}/g(1 +t)* 2
; _

By the representation of g3 we have

2

Z Qr(t)Qr—3( Z )+ 0k(t)) (pr—3(t) + ok—3(t)).

k=1

The shape function and the perturbation of Q3(t) will be defined by

i/too (8)pz—r(s)ds,

and by
= Z/ (1x(8)o3—1 () + pz—r(s)or(s) + on(s)oz_x(s)) ds.
k=171t
Therefore,
631 19
plt) < g ond (0] < (14 0

Indeed, the first inequality is trivial to conclude. The second one follows by

(0] < ran (g1 072 4 (4 0°7%) < G g

(2 —a)?

By the same way the shape functions 11;(t) and the perturbations o;(t) will be defined

by

1

pi(t) == /too 1k (8) -k (8)ds,

1

<.
|

B
Il
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=3 [ (s)in(s) + mis(s)on(s) + ons)osas) s

Let us suppose that

2k7kﬂ2k d 3k _ Qk 2k a—2 44
i) < Gt and (D) € L 07 (544
for k=1,2,---,j. Then we my conclude for j;;; and for o;;; the estimates

= 2 o) 1+s>g<s>% (2 — )Tk (1 4 s)g ()20 1R

_ 2”1 L 120D / s
(2—a)tt e (820 (1+s)
_ 9i+1 20D
(2 —a)7 (1 +1)g(t)20+D)’
and
|0j1(2)]

2k . 3J.+17k + 2j+1,k . 3k —92. 2j+1 + (3k _ Qk) (3j+17k N 2j+17k)

2+1,, a—2
< 7T Y4 Gy (1+1)
) 3j+1 _ 2j+1 o
= MQJH%‘HW“ +1)°7
Consequently, (5.44) is valid for all j = 1,2,3,---. Therefore, we choose p(t) and
o(t) as follows:
t)=> p(t) and o(t) =Y o;(t). (5.45)
j=1 j=1
Both functions satisfy the desired estimates. Indeed,
7]”
) < -(1
Z Gy (147

and taking into consideration

i 2 2 a4 1
jooo (2—a)itt 20yp 2—a 3

it follows p(t) < (14 ¢)~*. Furthermore,

I — 20y
Z B (1 + )2

2 — a
and from
B9y 0 (@ apTt g
i (2 — ) (B =2y (2—a)

it follows immediately o(¢) < (1 +¢)*~2. The proposition is proved. O
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Remark 5.6. Let us denote 7(t) = n,s(t) when we have no perturbation in the mass
term, i.e., § = 0. We can conclude that n(t) ~ ns(t). Indeed, the stabilization
condition ensures that

t

n@wwwp(é7ﬁjdg::wp(AYMﬁ%ww@wQ:wwp(A;A@m)mng@»

The following proposition is important to estimate the fundamental solution in
the infermediate zone Z;(N).

Proposition 5.4. If {(t) € C'(R) and ((t) is bounded, then there exists a constant
C > 0 such that

t
/me<»—uw<o/W¢|@
0
forall t > 0.

Proof. From the continuity of ( it follows

Amww4msA;
saggfmw
< ¢ [ icias

e"p(co . The statement is proved. =

where C' =

Now we are able to describe the asymptotic behavior of the fundamental solu-
tion £(t,s,£). In the intermediate zone Z;(N) the micro-energy (5.27) reduces to

- <Z|§|a; at - n/(t)a>T7 U ( ) < |§”LL( 76)7 t( ag) /(0(1|)>a( 7§)>T
() €l €] 2(60) O
and U = n(t)U, so that
= (Y €] U = A, )0 (5.46)
' &1 20 (u(t) + o(t)) ’ '
for 9I£| <t< (9'5‘ Let us consider the fundamental solution £ = £(t, s,&) to (5.46),

i.e., the solution of
D&(t,5,8) = A(t,§)E(L, 5,€) and E(s,s,&) = 1.

If 6 =0, then Z/—;(t) = u(t). Hence,

Ags(t,€) = (|2‘ 225215)) : (5.47)
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We denote by &5 = E¢(t, s, &) the fundamental solution to (D; — Asf) U= 0, i.e., the
solution to

Dtgsf(t,s,f) = Asf(t,f)gsf(t,&f) cnd (c:sf<8, S,f) =1.

In Z;(N) we relate £(1,s,€) to E¢(t, s,£) and use the stabilization condition. For this
reason we solve

DUA(t,5,€) = (A(t,€) — Ayy(t, ) Alt,5,€) and A(s,s,€) = I

which gives t
A(t, s, &) = diag (1,exp ( - / a(7)d7>>.

We make the ansatz £(t,s,£) = A(t, s,£)R(t, s,£). It follows that the matrix R(, s, &)
satisfies

R(t,s,&) = A(s,t,8)Ass(t, OA(L, 5, )R(E,5,€) and R(s,s, &) =1,

where the coefficient matrix Avsf = Avsf(t, s,€) has the form

Agp(t,s,6) == Als,t,€) At EA(L, 5,€)

0 exp (= ] o(r)dr) 5) |

- <exp (/! o(r)ar) 2in(t)

Note that .
1 aTh o0
‘/ ds‘</ lo (s)|ds§%} < 00,
— 0
so exp ([0 ds) = w < o0, where w is a non-negative constant. Define &(s) :=
wexp (— [, o(A)dh), the stabilization condition implies 0 < ¢ < &(s) < C' < oo with

suitable cons’ran’rs cand C.
Denote by W,y = Wy¢(t, s, &) the matrix

(0 @(s) e
Wo(t, s, &) = (@(S)m 2ipu(t) )

The diagonalizer of the |£|—homogeneous part of W is given by
— 1 (1 - — 1 (1 @(s)?
M(s) = =5 (w(s) @(s))’ M= (—1 s)71)

Wt wotts o = ()i (5 1)

MM (s)""Wap(t 5, )M (s)M ™" = Ayy(t,€).

So,

This means

Then we can conclude that the solution gsf(t, s, &) to the auxiliary problem

DiEyy(t,s,€) = Wig(t,5,6)Es(t5,6),  Egls,5,6) =1,
satisfies £, (t,5,&) = M(s)MEs(t, 5, &) MM (s)™"
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Corollary 5.2. Assume the Hypothesis 5.1 and 0 < p? < 222, Then the fundamental
solutions gsf(t, s,€) and E(t, s, €) satisfy

IEss(t, 5. )1, I1Eas (25,6l S 1
uniformly in (t,€), (s,§) € Z;(N).

Proof. First note that when 6 = 0 we are in the same position as in Chapter 2. It
follows from Hypothesis 5.1 and the condition for ;% that the mass is non-effective.
We will prove this result in a larger zone Z;,,,(N) which is defined by:

Znyp(N) = {(t,§) € [0,00) x R": (1L +t)[§] > N}.
The separating curve is given by
Ot - (0,N] = [0,00), (L+0g)[¢] = N.

We put 6y = oo, and 0 = 0 for any |[£| > N. In the zone Z,,,(N) we define the

micro-energy
~ (1) \T
n(t)

and U = 5(t)U. When & = 0, then we can write % = u(t), where u(t) < (1+t)~! and

|dep(t)] < (1 +t)72 (remember that for very slow oscillations we only need regularity

C1). Then
~ 0 1\ ..~ 0 0 ~
o0 = (1 o) ile|0 + (0 —2u<t)> 0 (5.48)

fort > ). Let P be the diagonalizer of the principal part (with respect to powers of
|€]) of (5.48). It is given by

O ]

If we put V(t,€) := P~1U(t,€), then we get

0 1

st =0 (2, 7).

Now we define the second diagonalizer that depends on the anti-diagonal entries of
Bo(t)l

oV = (_1 O> i|€|V 4 Bo(t, €) V, (5.49)

where

q(t)
Kﬁ£%=( L)”ﬂ), a(t) = u(t). (5.50)

“afg 1
Using limsup,_, . (1 + ¢)u(t) < 1 it follows

a) ¢ _cC
ERREDIE R
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for t > 0. Hence, |[det K| > 1 — C?/(4N?). Therefore, K(t,£) and K~'(t,&) are
uniformly bounded in Z,,,(N) for a sufficiently large N. We replace V(t,§) =

K(t, &)W (t,£). We get
oW = ( ! 0) iew - <>(§ ‘1)) Wt (W, (5.51)

where ‘](t7£) = K_1<t7£)R(t7€> with DO(tvf) = dlag(_2’£|72|€|>l H(t7€> = K(t7£) -1

and

R = DoK + B()K - 8tK - KDQ - KdICIgBQ
= BO + DoH — HDO — dIGgBO — HdlCIgBO — 3tH + B()H

By construction the sum of the first four terms of R(t, &) vanishes. Thanks to the non-
effectiveness of the dissipative term the matrix R(t,&), and therefore J(t, &), satisfies
the following estimate in Zj,,(N):

C
J _ 5.52
6.1 < s (5.52
After substituting W (t,€) =: 8 D(t,£) Z(t, ), where
D(t,€) = diag  exp(—ilg|(t — ), exp(il¢](t — 5) ).
we obtain the following Cauchy problem in Z,,,(N):
(%Z J( ) Z t 2 S,
N 5.53
{Z( & = K \(s,6P~ U(5,), 19:53)

where the matrix J(¢,&) = D7(t, €)J(t,£)D(t,€) satisfies (5.52), too. For any s,t >
b)¢) we have

1 ' C’
[vrgiinse [t eag = v

Hence [|Z(t,&)|| < C|Z(s, €], i-e.,
[€s(t, s, 8|l S 1 (5.54)

forall s,t > 0. O

Now we use the stabilization condition to find R(t, s, &) = E4(t, s,£) Or(t, s, €).
The coefficient matrix of the Cauchy problem

DiQr(t,5,6) = Eupls,t,€)(Auplt,5,€) = Wiglt,5,) ) Eupt, 5,€) Qr,
Q’R(S787£) - Ia
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satisfies the estimate
S 16l [ e ([ otors) -5
w exp ( /OO (G)dG) —w
[ o@ajir<ia [ / 0)\dor

S lld +t)°‘ SL
Now the standard construction of Qx in terms of a Peano-Baker series gives
uniform bounds for this matrix and for its inverse within the intermediate zone Z;(N).
Thus we arrive at the following lemma.

Eur(5,0,6)(Ap(0,5,€) = We(6,5,) ) €5 (6, 5,€) |t

exp / o(6)do

exp /a d9 —1‘d7’

I
m
o\“

A
™
\“

Lemma 5.7. Assume the Hypotheses 5.1 to 5.3. Then the fundamental solution
E(t,s,&) can be represented in Z;(N) as

E(t,5,6) = Alt,s,€)Es(t, 5.6) Qrlt, s,€),
where A(t, s,&) and Qr(t, s,&) are uniformly bounded in (t,€), (s,&) € Z;(N).

Corollary 5.3. Assume the Hypotheses 5.1 to 5.3 and 0 < p? < 2. Then the
fundamental solution £(t, s,§) satisfies

1€, s, )] S 1
uniformly in (t,€), (s,&) € Z(N).

Remark 5.7. We have a decay for the fundamental solution within the hyperbolic
zone. In the intermediate zone, we have that the fundamental solution is bounded.
This allows to conclude our results using our special micro-energy. In [19] we proved
that the micro-energy is bounded in Z;(N) U Zy ,,,(N).

5.5 Energy estimates

Consider the following Cauchy problem
wyy — Au+m(t)*u =0, u(0,2) =uo(z), u(0,2) = wui(x), (5.55)
with (¢, z) € [0,00) x R™ and

2 _ % 2
m(t)” = W +4(t), p°#0, (5.56)

where is the shape function and § = §(¢) is a bounded oscillating function

with

(1+t) g(t)?

o) < (1 +1)72 (5.57)
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If
n(t) = exp <§_O: /Ot /TOo qj(s)dsdr> , (5.58)
where
m(t)? if k=1
an(t) = § </°° qj(s)ds) </°° qk_j(sms) k=234, (5.59)

then we can conclude the following theorem:

Theorem 5.1. Let us consider the Cauchy problem (5.55) with (ug,u;) € H'(R") x
L*(R™) and the mass term satisfying Hypotheses 5.1 to 5.3 and 0 < p? < 222, Then
the solution u = u(t, ) to (5.55) satisfies the following energy estimate

I Cue(, ), Vault, ), p(t)ult, ) 2 S (luolla + [Juallz2) (5.60)

with p(t) = 2.

Proof. This theorem basically follows from Lemma 5.2, Corollary 5.1, Corollary 5.3
and the estimates made in the verification of the proof of Theorem 2.1. O

Remark 5.8. We shall prove the sharpness of the choice of the function 1. For this
we will compare the behavior of n with the behavior of the function v chosen in
Chapter 2. We already know from Remark 5.6 that the function 7 in (5.5) has the same
asymptotic behavior as 1, and that ¥(t) ~ exp (350, 1y [, MIW)' where 7,
are the Catalan numbers. We will prove at least for ;1 < 15 that

Y'(t) _ . (t)
P(t) Nsy(t)

From (5.61) we can conclude

-en([ ) o ([ 1) 0

To prove (5.61) we pose further assumptions to the function g(t). Let us assume that
there exists an increasing function a(t) such that

e L'(R). (5.61)

o 24(t) 1 : 1 1
ds < th L'(R). (5.62
| T S T M T S L ® (562
We have

N ESS (—”%% - / ) ak(5)ds) (5.63)

w@t)  nsg(t) e NA+gt)* ' '

By induction we will prove that for all k = 1,2, - - - the following statement is valid:

= _ 125 _

| ators = e — ) (5.64)
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with non-negative functions hy(t) satisfying

Indeed, for k = 1 using integration by parts we will arrive at

> Y ! R o
| was= | T 02 =~ Wrngme 0

where hi(t) = 1y [~ Hs—s)gds is a non-negative function once that g is positive
and non-decreasing. Let us suppose that (5.64) it is true for k = 1,2,--- , ¢/ — 1. Then
we have for k = {:

[ = [ ww) ([[acs)

M w
— d s)h
/t (1+ s)2g S+Z/ (s

. 2( I %hgj(s)dst | a fj)_gjgf;é_ﬂ y(s)ds)

Performing integration by parts we arrive at

[e%9) Iu%,w - :U’%'W o oo 269/(8)
ds = — e ds.
o (145)%g(s)* (1+1)g(t)* ¢ (L4 s)g(s)>+

If we take

(e = e [ s = 3 [ (b (o)

/-1

e 2 Ye—;
— by i(s)d h(s)d
T 1 (/t (1+s)g(s)@ () S+/t (1+s)g(s)*) () S)’

J=

then

/OO q(s)ds = % — h(t).

1+1t)g(t)

From the previous equality we can conclude that hy(t) > 0 once

> M%’Ye
/t ()45 < g
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Moreover, after using the induction hypothesis we arrive at

20g' (s > 7
he(t) < u%’yg/t (Er 32€+1d8+2/ J hg_j(s)ds

2(f J)
’sz
+ Z/ 1+ 5)g(s) 20 ])hj(s)ds
il et = -
< 3 43 -2
S At 0a)g0)? 20+ al)g(t Z'W K + )

o (20—-1)4+2-371—1  pu 74(35—1)
< # 20+ HalgF = 2(1+ Dalb)g(t?

Therefore (5.64) is true forall k = 1,2,--- , and (5.63) is reduced to

P nglt) &
hu(
U(t)  nu(t) Z e
Once
/~02(k+1)’7k+1<3k+1 _ 1)

li = 122
o 7R (3F — 1) "

it follows that the series ;7 | 1**~;,(3F — 1) convergence for 1i* < 5. Finally, from the
estimates for h;, we may conclude

Y'(t) _ . (t)
V(t)  msp(t)

for ;> < . This completes the proof.

L'(R),

5.6 Examples

Let us conclude this chapter with some examples:

Example 5.1. First we set g(t) = 1. Then the hypothesis for g are fulfilled. If we
choose y
0= T

then the hypothesis for the derivatives of the perturbation is satisfied taking 3 = 1 —§.

Furthermore,
& v v
———sin(s? ds‘ <
/t (1+s)? (57) -

sin(t”), o € (0,1),

sin(s )ds‘
1+s

1 s
e A
ol+1tl /e 97 0
1 v / sin(f d@’

cl+t
1 v o
= —1Is )l

cl+t
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If v < 1, then limy_,, t77si(t”) = 0. For more details see [25]. Therefore, for ¢ large
we have

/ ﬁsm(s")ds <v(l+t)"
] s

Take v = 2. Then the stabilization condition of Hypothesis 5.3 is satisfied after choos-
ingv <p®, m=1and a=1— 2. Indeed,
-«
B = + 2 )

thus Theorem 5.1 is applicable. Note that the condition (5.62) is trivially satisfied.

Remark 5.9. In the previous examples it is allowed to choose ¢(t)? like in Chapter
2, i.e., we can consider g(t)? = In(e + t)---Inl™ (el + ¢), g(t)> = (In(e + 1)) for
0 < v < 1and g(t)* = In(ln(e + t)). Naturally the decay estimate for the solution
itself will depend on the function g. Note that all the above choices for g satisfy the
condition (5.62). Indeed we shall take a(t) = In(e+t) - - - In™ (el +1), a(t) = In(e+1)
and a(t) = In(e® + t) In(In(e® 4 t)), respectively.
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6 Semi-linear wave models with
scale-invariant time-dependent
mass and dissipation

In this chapter we will consider the following semi-linear Cauchy problem with
scale-invariant mass and dissipation:

M1 M% D - o
——w+ ———u=[ul’, w0,2)=uo(x), w(0,x)=u(x), (6.1)

—A
e T BUE T T

with (t,z2) € [0,00) x R", p > 1 and u; > 0, uo are real constants. Our goal is to
understand the interplay between 1, and ps to prove global existence in time of small
data energy solutions.

If 41 and py are zero, then we are in the situation of the semi-linear Cauchy
problem for the free wave equation. The critical exponent p,,.;; is the Strauss exponent
po(n) which is the positive solution to

(n—1)p*—(n+1)p—2=0.

Critical exponent means that for small initial data in a suitable functional space there
exist global in time energy solutions for some range of admissible p > p..; and it
is possible to find suitable small data such that there exist no global in time energy
solutions if 1 < p < peir. For po(n) < p < ;‘%:f, n > 1, it was proved global existence
in time for small data energy solution, see [54, 32, 24, 22, 65] for n = 1 solutions for
the semi-linear Cauchy problem for the free wave equation blow-up for any p > 1,
see [24], hence we put po(1) = oo. If 1 < p < po(n) and n > 1, then the energy
solutions for the semi-linear Cauchy problem for the free wave equation blow-up for
a suitable choice of small initial data, see [64, 32, 31, 48, 24, 49].

For the classical semi-linear Klein-Gordon equation Lindblad-Sogge proved in
1996 global existence in time for small data energy solution for n < 3 and p >
Pruj = 1+ %, see [38]. Note that the critical exponent pg,,; is related with the heat
equation, see [21]. For 1 < p < ppy,; and n = 1,2, 3 blow-up results are established,
see [30] for a one-dimensional counterexample due to B. lordanov and [33] for the
higher-dimensional case. In the paper [33] Keel-Tao conjectured that for sufficiently
large dimensions the solution for the semi-linear Cauchy problem has a blow-up for
p=1+2+ewithe >0, i.e., for sufficiently large dimensions we do not expect ppy;
as the critical exponent.

If p1o = 0, then D’Abbicco has recently shown in [14] that if p > pg,; and

e ifn=1andy; >3,

e ifn=2and pu; >3,
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eifn>3and yu; >n+2,

then there exist global (in time) small data energy solutions. Note that the assump-
tions for u; imply that the damping term is not non-effective according to the clas-
sification of Wirth [60]. If the coefficient 11, of the damping term is small, then it is
expected a shift in the Strauss critical exponent. Indeed, D'Abbicco-Lucente-Reissig
have proved in [16] that the critical exponent for pu; = 2 is a shift of the Strauss
exponent po(n) to po(n + 2).

We will show that the presence of the mass term, for suitable choices of ;; and
12, allows us to prove for n < 4 global (in time) solutions for p > 2 even for a smaller
range of u; compared with those of the paper [14].

Let us define

A= (= 1) —dps,

It is convenient to consider two cases: The case, where the mass term is predominant,
i.e., when A < 1 and the case where the dissipative term is predominant, i.e., when
A > 0. Note that in the overlapping case A € [0,1) it is possible to choose which
term is going to be predominant. The case when the dissipative term is predominant
was studied by Palmieri in his Master thesis [42]. In this chapter we will prove global
existence in time of small data energy solutions in a suitable function space for A <0,
i.e., when the mass term is predominant excluding the case A € (0,1). We will also
prove blow-up behavior for solutions in the case A = 1.

6.1 Motivation: Duhamel’s principle

Let us consider the family of linear parameter dependent Cauchy problem

M1 115

RANTEE

1+t
and denote by FEy(t,s,z), Ei(t, s, z) the fundamental solution to the linear homo-
geneous Cauchy problem (6.2) with the initial data (v, v1) = (d4,0) and (vg,v1) =
(0,9,), respectively, where 0, is the Dirac distribution in the z-variable.
The solution v(t, z) to the linear Cauchy problem (6.2) is given by

v(t,x) = Eo(t, s, ) %) vo(x) + Ei(t, s, 2) %z v1(2). (6.3)

vy — Av + v=0, v(s,x) =vo(x), vi(s,z)="101(x), (6.2)

By Duhamel’s principle we get that

¢
v"l(t,x) = / Ei(t,s,2) %) [v(s,x)[Pds (6.4)
0

is the solution to the inhomogeneous problem

1

,Ugl . Avnl 4+ =

2
P e = WP, (2 =0, ' (s,2) = 0. (65)

Hence, the solution to the Cauchy problem (6.1) can be written in the following form:
t
u(t,x) = Eo(t, s, x) %) uo(x) + Ei(t, s, x) %) ui(x) +/ Ei(t,s,x) x@) |u(s, z)[Pds.
0

Therefore, in order to apply Duhamel’s principle we shall derive estimates for
the solutions to the family of linear parameter dependent Cauchy problems (6.2).
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6.2 Linear decay estimates

Performing the dissipative transformation v(t,2) = (1 + t)"w(t,z) the Cauchy
problem (6.2) becomes

29+ (= 1) oy +
—A
Wt (1+41)?

=0, w(s,z) =w(x), wys,x)=w(z),

(6.6)
where wy(z) = (1 + ) 7vg(x) and wy(z) = (1 + s) v (x) — (1 + 8) 7 Lug(z). If we
choose v = —£, then the Cauchy problem (6.6) takes the form

1

— A
& w+(1+t)2

w=0, w(s,z)=wo(r), ws,z)=w(z), (6.7)

2
where =& — £ 4+ ;2. Note that A =1 — 4 < 0if, and only if, > 1, i.e., we are
dealing with not non-effective masses.
Performing the partial Fourier transform with respect to z in the Cauchy problem
(6.7) and denoting by w = w(t, £) the partial Fourier transform F,_¢(u)(t, ) we obtain

R

Wy + €0 + mw

= 0. (6.8)
The scale-invariant property allows us to derive explicit representations of solutions in
terms of known special functions. In this case we will perform, like in [5], a change
of variables to reduce the ordinary differential equation (6.8) in a confluent hyperge-
ometric equation. If

T=[El(1+1), w(t§) =7"(r),
then choosing 2p = 1 + /1T — 411 we have that v = (1) satisfies

TV + 2p0; + 70 = 0. (6.9)

We can reduce the equation (6.9) to a confluent hypergeometric equation if we per-
form the change of variables

z = 2it, v(z) =e"o(T).
Then v = v(z) solves the following equation
20, + (2p — 2)v, — pv = 0. (6.10)

This describes a confluent hypergeometric equation with o = 2p and 5 = p. lis
fundamental solutions are called confluent hypergeometric functions and depend on
the parameter p. If > 1, then we are in the situation where Rep = £ and Im p # 0.
If o = 1, then p = 1. For more details about confluent hypergeometric functions
see [3, 1]. In the next proposition we will list two important properties of confluent

hypergeometric functions.

Proposition 6.1. Let ® = ®(«, 3; z) be a confluent hypergeometric function, where «
and 3 are complex parameters. Then,

1. ® is an entire function;
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2. 0.9(a, B;2) = $0(a + 1,8+ 1;2).
If p # %, then the fundamental solutions vy 4(z), v2,6(2) to (6.10) are given by
nels) = B(p,20;2)
va(z) = 27HO(1—p,2p;2) = 2 ED(1 — p, 2 — 2p; —2).
If p= %, then the fundamental solutions v; ¢ (2), v2.w(2) to (6.10) are given by
nals) = U(p20:2)
vaw(z) = 277W(p,2p;—2) = 2 TFEU(1 — p,2 — 2p; —2),

where @ and ¥ denote the confluent hypergeometric functions. Note that in both
cases for the second solution we used Kummer’s transformation.
If we define

[ ®apiz), BEL
Sola, 5 2) ‘{ V(o 6:2), BEL

then we can write the two fundamental solutions of the general confluent hypergeo-
metric equation as

vi(z) = Oolp,2p;2), (6.11)
v(z) = 2'7%e*O(1 — p,2 — 2p; —2). (6.12)

Then we can state two fundamental solutions ¢;, e; to the problem (6.8) as follows:

er(t,&) = ((L+1)|&])” e " ORle,(p, 205 2),
e(t,€) = ((L+1)|¢]) 22’ HElOy (1 = p,2 — 2p; —2).

Denoting 0:e; = ey, differentiation with respect to ¢ gives

ere(t,8) = (M40 " [Ele O, (p,2p; 2),
e2:(t,€) = ((L+1)|¢])’ 272l TORlO (1 — p, 2 — 2p; —2),
where

[ 505+ (B a)®(a—1,6;2), GEZ
@1(“’5’2)_{2 00, 5i2) ~W(a - 1,02,  BeEZ

The solution of (6.8) can be represented by
w(t, &) = ci(s, §en(t, §) + ca(s, §ea(l, €)

with the fundamental solutions ¢, e, depending on ¢ and &, and the coefficients ¢y,
¢ depending on & and the initial time s > 0. The coefficients can be found after
imposing the initial conditions as follows:

eZt( ) (375)_62(57 ) ( )

A58 = (5. 8ea(5,8) — enyls, E)eals, €)
(s, ) e1(s,§)we(s, &) — 61,t(3=§) w(s,§)
’ 6215( ) 1(875) - 61,15(875) ( )
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Let us write the solution of (6.8) as

W(t, &) = Hyo(t,s,&)wW(s, &) + Haplt, s, §)we(s, &), (6.13)
where
o eals et §) —erq(s, Hea(t, §)
Hiolt,s,8) = e21(8,€)e1(s, &) — eni(s, §)ea(s, §)’
o 61(57 5)62@75) - 62( ) (t7 )
Haoll: o8] = s en(5,) = era(s, E)eas, &)

with ¢ > s > 0. Therefore, the derivative of w = w(t, &) with respect fo ¢ is

@t(t,f) = H1,1<t7 S, 5){0(87§> + HQJ(t, S,g)@t(é‘,é), (6]4)

where Hy1 = 0;Hyo(t,s5,€), k = 1,2. These fundamental solutions satisfy Hy 4(s, s,&) =
(Oke41), K = 1,2, £ = 0,1. Moreover, due to the formulas for the Wronskian of con-
fluent hypergeometric functions we can calculate the denominator of Hy o for k = 1,2
by

62,t(t75)€1(ta§) €1 t(t §ea(t, &) = (2@)1 2p|§|

where C, = (1 — 2p) for 2p # 1, C, = €™ for 2p = 1. The representations for
Hy o(t,s,&) are given in the following lemma.

Lemma 6.1. Denote by z = z2(t) = 2i(1 + t)|¢| and zy = z(s). Then we have for
k=1,2, ¢ =0,1, the representations

Hkg<t,8,§) ( 22|f|)1 k—MdetGkg(t S f) (6]5)
where C, = (1 — 2p)~' for2p # 1, C, = e for 2p = 1 and

2P~te=30,(p, 2p; 2 P30, (1 — p, 2 — 2p; —2
it - ( Frciow s tpazyo )
0

e RO 4(p,20i20) 20" e T Oy i (1 — p,2 — 2p; —20)

To study the behavior of the solution and their derivatives, according to (6.15), it
is necessary to analyze the behavior of the function ©, for small and large arguments.

Proposition 6.2. Let o and 3 fixed parameters in C and k = 0, 1.
1. For p =1 and small |z] it holds
O(a, B;2) ~ sgn(I'(e — k)) In z,

where we suppose that z is a pure imaginary number and, therefore, Inz =
In|z| +i5sgnlmz and I'(-) is the Gamma function.

2. For 8 ¢ Z and small arguments |z| we have

3. For 5 =1 and large arguments |z| we have

[Ok(a, By 2)] < Czftee.
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4. For B ¢ Z and large arguments |z| we have

1O1(av, B; 2)| < O 5|z |mexlbtRe(@=B)h—Rea}

Proof. See [3]. O

In the next result we will see that additional regularity for the initial data brings
better estimates for the solution itself, but for the derivatives of the solution we have
no further improvement of the estimates. Let us define the function space

Dy, = (H'NL™) x (L>NL™),
with m € [1,2) and the norm ||(u, v)[|3, = |lullim + [ullF: + [[v]|7m + V)]

Theorem 6.1. Suppose that (vg,v1) € D,, and A < 0. Then the solution v €
C([0,00), H') N C* ([0, 00), L?) for the Cauchy problem
H1 15

vtt—Av+1+tvt+ <1+t)2v

=0, v(s,x) =vo(x), v(s,x)=v1(x),

satisfies the following estimates:

_ k1 1 +t vy 1
[t ) Voot Dle S A+~ % (141 (355)) (ol + 1+ ) oillz2).
ot e S (L4872 qalt,s) (lvollaacs + 1+ 5) o1l z2azm).

forallt >s>0, wherey=1ifA=0,v=0if A <0and

1+ln<%—iz) for n > ;7

Qo(t,s) = <1n(i—j:)>22m<1+1n (i—ii)) for n= 3",

and
. 1 for n> 3",
— 2—m
QA( ,8) (ln (i_ii))?m for n = QTm7
for A < 0.

Proof. The aim is to estimate the fundamental solutions Hy,, k = 1,2, £ = 0,1, where
the representation is given by (6.15). In that way we can derive estimates for the
solution w of the Cauchy problem (6.8) and its derivatives. For this reason we shall
divide the extended phase space into three zones: For 0 < s < ¢, we introduce the
zones

Zi(N) = {(t,§) €[0,00) x R™ - (1 +#)[¢] < N},

2% = {geooxre o< < 2

Zy(N.s) = {(t,€) € [0,00) x R": (L +8)|¢| > N}
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Furthermore, the separating curve between Z;(N), Zs(N,s) and Z;(N), Z5(N,s) is
given by
0} : (0,N] = [0,00), (1+06))lgl =N.
We put also 6(()1) = 00, and 9‘%) =0 for any |¢| > N.
The separating curve between Z,(N, s) and Z3(N, s) is given by

(1+ 3)0(2) N for t>6%

lel — le| -
ty o) @)
O O
Ly
Ly
Z
. R
0 & N €]

Fig. 6.1: Sketch of the zones.

In order to separate the extended phase space into three parts we introduce the
function x € C*(R.) such that x(t) = 1 for ¢t < 1, x(¢t) =0for¢ > 2and /() < 0.
We can define the characteristic functions 1, 2 and 3 of the zones Z;(N), Z(N, s)
and Z3(N, s), respectively, by

p1(t,5,6) = x (A +)EINT) x (L+D)[EINTT),
ea(t,5,6) = x((L+ )N (1—x(L+)EINT)),
e3(5,) = 1—x((L+s)[EINT)

such that 1 + 2 + 3 = 1, where 1 = ¢1(t,5,§), Y2 = @al(t, 5,€) and @3 = p3(s,§).
The proof is divided into three steps:

Considerations in Z;(N):

If (t,€) € Z1(N), then |z| and |z| are small. If A < 0, then from Lemma 6.1
and Proposition 6.2 we obtain the estimates

|Hyolt,s,€)pr(t, 5,6l S (1 + )71+ 5) 5+ (6.16)

forallt>s>0and (¢,&) € Z1(N).
The following proposition is useful for the analysis of the case A = 0.

(1)

| we have

Proposition 6.3. For all times s <t <6

z2—z z—20

In(—2)In(zp)e 2. —InzIn(—z)e™ 2

11t
51+1n( + )
1+ s

where z = z(t) = 2i(1 + t)|¢| and zy = z(s).
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Proof. See [4]. N

If A =0, then from Lemma 6.1, Proposition 6.2, 6.3 it follows

t\.’)\»—A

||Hk,5<t757£)901<t737£>” (1+t)

(1+5)3+k(1+ln<iii)>. (6.17)

Case A < 0: From the representations (6.13) and (6.14) we can estimate the
behavior of @ and w;. Therefore for the elastic energy we have,

Nl enl S 1el(I1Holts 5, )eall[@(s, )] + | Haolt, 5, arllln(s, )
S 16+ 0% (14 9)H (s, )1+ (1+ 5)H (s, )
S (407 (L4 9) 3 @(s, ) + (1+ )b (5. €)])

Therefore, applying Parseval’s equation we deduce the following L? — L? estimate:

1

I (€l €)¢n) () e S (L4073 (1 8) Hfwollzz + (1 + 5) w1z )
For the kinetic energy we have

@t el S IHialt s, O@ulllB(s, )] + 1 Haalt, 5, ) [@i(s, €)
S W03 (14 9)H@(s, 6] + (1+ 9)F (s, €)] ).

Therefore, applying Parseval’s equation we deduce the following L? — L? estimate:

1

I @t €)1) ()l S (L4673 (L 8) 5 wo gz + (1 + 8) o |2

For the potential energy we have

[H1o(t, s, 8)ei ll[w(s, @i | + [[Haolt, s, &)t [[|Wi(s, §) o7 |

S (W+0F (14 9) 2 (s, 9|+ (1+ )3 @(s i)

Let us denote by m’ the conjugate to m. Then using L™ regularity on the data, Hélder
and Hausdorff-Young inequalities we get

2—m

a6 OPalts e < ([ 67 i) " ot )1

—m

( / d&) ol
(1+)|EI<N
m 2

n(2—m)
< 1+ %

R

IA

Analogously,

|wt( )| (pl(t787£)d£ < (1—|—t)_n(27; E

Rn
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Applying Parseval’s equation we arrive at
IF7H @) (1)l S (L4107
Case A = 0: For the elastic energy we have,
o, en| < |§!(|IH1,0(75,875)801H|@(87€)|+||H2,o(t,8,5)901|H@t(87€)!
1 1+1¢ 1 1
< 2 “2|w 2w
S e+ 03 (14 (1) ) (1 4+ )7 3@, 01 + (1+ )3 s, )]

S 07 (1 (2)) (9280, 1+ (1 -+ 9)H (s, ©))

S

n(2—m) 1 1
5 (U4 5) ol + (14 )l )

Therefore, applying Parseval’s equation we deduce the following L? — L? estimate:

177 (1t ) (1)l S (407 (10 (1)) (o) ol (1) 12

For the kinetic energy we have

@&, )il S [Hia(t, s, Eall[w(s, ) + [ Haa (2, s, ) n[[wils, €

< (1—|—t)_<1+ln<11—z>><(1+5)_5]@(s,§)|+(1+s)5|1ﬁt(s,§)]>.

Therefore, applying Parseval’s equation we deduce the following L? — L? estimate:

177 @0t €)en) 6, Mzr S (07 (10 (1)) (0 5) Hwllaa + 0+ 8) ).

For the potential energy we have

1. €)0d b 1o, €03
@, )il S Mot s, Ot l[[w(s, et |+ [[Hzolt, 5, [l[wels, )i
1+t

< @0 (1em () (A + 9 Hals gt + 1+ )@

Let us denote by m' the conjugate to m. Then using L™ regularity of the data, Hélder
and Hausdorff-Young inequalities we get

2—m

a6 OPns0d < ([ pitsoed) ool

RTL
< (/ dg) ol
(14+0)le|<N
(2 m)
< (141)” [[wol|Zm-

Analogously,

(@e(s, )Pt 5, 6)de < (L4 1) "

R

Applying Parseval’s equation we arrive at

1F (@ E)¢n) ()l S (1483 5" (1+ln(i H))

+ s
X ((1 +5) 72 [|wol| Lm + (1 + 8)%Hw1\|m) :
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Considerations in Z5(N, s):

If (s,€),(t,&) € Za(N, s), then |z| is small and |z| is large. Suppose A < 0. Then
from Lemma 6.1 and Proposition 6.2 we obtain the estimates
| Hie(t, 5,)at, 5, )| S J]7= (1 +5)7= " (6.18)
for all (¢,¢) € Zy(N, s).
If A =0, then

0]

| Healt, 5, )22(t5,€) | S 11741+ )72 In(zo)e 3" —In(—z0)e

. (6.19)

Observe that

zZ—2(0

(o)™ — )5 -
(@01 + s)gl) + Zi)e e — (In(2(1 + s)[¢]) = Za) e el =
(21n<2( + 5)[€]) sin((t —S)]ﬂ)—|—7Tcos((t—s)]§\))z‘.

Therefore,

[In(z0)e 7" — In(—z0)e™ 7] S 1+ [ (2(1 + s)[€]) sin(t — 5)I€])].

Since [¢](1+s) < N in Zy(N, s), then for |¢] # 0 the second term in the last inequality
is bounded. While for small frequencies we have

Jm In(2(1 + s)[¢]) sin((t — s)l¢]) =

Thus we may conclude that
| Hielt, 5, )palt, 5, )| S €77+ (14 5) 72, (6.20)

If (¢,€) € Zy(N, s), then 9‘%) > s, i.e., it is necessary to apply the "gluing proce-
dure". Therefore, for the elastic energy we have

@t el S Il (IHolt, 08, Oeall@O), €)1 + | Haolt, 6. O all @6, €)))
S Il (920, 1+ 1+ )6, 0)l)
For the kinetic energy,
(@it )pa| S 1 Hia(t, 0, ©)eall [ B(OF), &) + | Han (.05, ) pall|@1(0), )]
Sl (0 +9) @0, 01+ (L + )R €)l)

Now we use the estimates derived in the zone Z;(N) to estimate |§| (1+4s) %| (QI(&II)’ 3]
and [¢]% (1 + 5)2|@,(6),€)|. We have the following
€121+ 5) "2 [B (0], €|
S 16+ s)72 (1 H0(0) 5, Ol@(s, Ol + [ Hao(0) 5, ) |@(s,€)1)

(11 (22)) (@ + 9 a5, €)1 + 1, )

S

AN
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and
€121+ 5)2[@(0)), ©)|
S B+ )b (11 05, ) 11@(s, O] + [ Haa (6], 5. €)1 1(5, )

s (14 (1) (I8 01+ 1+ 9)2als, ).

Therefore, applying Parseval’s equation we deduce the following L? — L? estimates:

[F7 (€l ©alt, 5, ) (4]
S (14 () () ol + (1 )% w12

157 @41, )l .€)) 1. )1
S (1 (1)) (@ 9 wollzs + (04 5) 1)

For the potential energy we get

@t E)pal S IIHolt, efgﬁ,@soémm f;ﬁ,wé |+ HHmu,ef;ﬁ,wéumt(ef;ﬁ,smé |
S 100, €)03] + 62 (1 + )2 @64, )3
s a1 ())
x (14 9)7H@(s, 093] + (1 + )3 |@ils, €)s )

Using the L™ regularity of the data, Hélder and Hausdorff-Young inequalities we get
for n > 5™ the estimates

m 2—m

| asodlaobat ot < ([ (0+0059)77 d) T a0l

2—m

< /; =) ™

1+t

m— n(2

S (I+s) w20

Analogously,

m— n(2

w2

[ A+ 0DIas. 0P s.0d S 1+5)

Applying Parseval’s equation we arrive at

~ 1+1¢ v m—n(2—m
I @ e ()l § (1 (1)) (495

() Hwolln + (14 8)Fwalm )
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For n = 37— we have
—m

m 2—-m

[ arodias ot < ([ (0+6pls0) ) 7 10l

5(/N o

=) " ol

o (m (D) e

,_.

Analogously,

| A+ oDl 0P 5.0 < (i () 7

Therefore we can conclude for n = 7 the following estimate:

[F= (@(t, o) ()2 S (ln (1 H))W(”ln (1“))7

1+s 1+s
_1 1
x (14 ) Hlwollgn + (1+ ) )

Considerations in Z3(N, s):

If (s,€),(t,€) € Z3(N,s), then |z| and |z| are large and s > (9'(51'). So, we do not
need any "gluing procedure". From Proposition 6.2 we see that the estimates for Hy,
coincide for the cases A = 0 and A < 0. Therefore from Lemma 6.1 we obtain the
following estimate:

[ H et 5,€)3(s, )| S €1, (6.21)
forallt>s>0, (t,&) € Z3(N,s) and A < 0. Then for the elastic energy we have
Ellw(t, )ws| < €] ([Hro(t, s, E)esll|w(s, )] + [| Hao(t, 5, §) sl @i (s, £)])
Applying Parseval’s equation we deduce the following estimate:
1F=H (Il (¢, E)s(s,€)) (t, )2 < llwollmn + [l |z
For the kinetic energy,
@it sl S [[H1a(t, s, &) esll|w(s, &) + [[Haa(t, s, &) @sll[wi(s, )]
[Ellw(s, )| + |we(s, §)I.
Applying Parseval’s equation we deduce the following estimate:
1F =1 (@ (1, ) ps(s,€)) (¢, )2z S Mwollm + [Jwr|za-
Finally, for the potential energy,
[, E)esl S ([Hio(t, s, E)esll[w(s, )] + [ Hao(t, 5, §)sll[wi(s, €)])

S J@(s, O] + €17 @i(s, €))
S w(s, O+ (1 + s)|we(s, )]
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Applying Parseval’s equation we deduce the following L? — L? estimate:

1= (@(t, €)ps(s,€) () e S Ilwollzz + (1 + s)llwy | 2.
Using the relation v(t, z) = (1 +t)~ 2 w(t, z) the proof is completed. O

Remark 6.1. In the case where the potential term is non-effective, i.e., when 0 < u <
%, D’Abbicco has proved in the paper [14] that additional regularity L* on the initial
data brings better estimates for the potential energy. This is a similar result obtained
in the last theorem for the not non-effective case.

In the previous theorem, the best decay behavior appears when m = 1. Actually
with additional regularity L' on the data we have the following decay for the solution
and its derivatives:

Corollary 6.1. Suppose that (vg,v1) € Dy and A < 0. Then the solution v €
C ([0,00), H') N C* ([0, 00), L?) for the Cauchy problem (6.2) satisfies

K1 1+t 0l 1
. . s < 2 1 3 9
[t ) Voot Dlee § @+ % (1 (35=)) (ol + @+ )3l )
It S 1+6)7Fqalt,s)([vollmear + (14 8)vrllzenz)

forallt > s>0, wherey=1ifA=0,v=0if A <0and

1+1n<%—frz> for n>1,

Golt,s) = (hl (%_jri))%(l—l—ln (%—iﬁ)) for n=1,

and
. 1 for n>1,
= 1
S Z n ()F for m=1,
for A < 0.

Remark 6.2. Indeed, L' regularity improves the estimate of the solution. If the initial
data (vg,v1) € H! x L? then we can only prove

K1

lo(t, YMzz S L+ 221+ (1 + 1) (ool + 1+ 8)[[or|2),

where vy =1if A =0and v = 0if A < 0. This is a worse estimate than the one derived
in the previous theorem. For the derivatives we can not use L! regularity because the
integral [ w,r""'dr is infinity, i.e., for large frequencies we have no benefit of the
additional L' regularity.

6.3 Global existence in time and decay behavior

Here we follow the techniques for semi-linear problems contained in the papers
[14], [15] and in the PhD thesis [2].
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6.3.1 Application of Banach'’s fixed-point theorem

The goal is to prove global existence (in time) of small data energy solution for
the Cauchy problem (6.1) and decay estimates for the solution and its derivatives.
For this purpose we introduce for ¢ > 0 the family of spaces

X(t)={uec(o,,H)YnC' (0,8, L%}
with the norm

Jullxi = sup (1) (@a(r) ulr, sz + (1+ I+ 7) 7 (Taulr, ) w(r, ) 22) |

where y=1ifA=0,v=0if A <0 and

1+1In(1+7) for n>1,
wo(r) = (ln(1+7)>;(1+1n(1—|—7)) for n=1,
and
_ 1 for n>1,
aa(r) = { (In(1 —{—7’))% for n=1,
for A < 0.

We remark that the norm of the space X(¢) is defined according to the linear
estimates. Therefore, if we show the existence of solutions for the semi-linear Cauchy
problem in X(¢), then automatically this solution will have the same decay estimates
as the solutions in the linear case.

Let u € X (¢t) and define the following operator

¢
Nu(t,z) = Eo(t,0,2) *@) uo(x) + Ei(t,0, ) %) ui(z) —I—/ Ei(t, s, ) x@) |u(s, z)[Pds.
0

Our goal is reduced to prove the existence of a fixed point for the operator N. We
know that (X (t),] - [ x«)) is a Banach space, so to use Banach’s fixed-point theorem
we shall prove the following two estimates:

INullxey < Cll(uo,un)llp, + Cllull, (6.22)

INu = Nollxy < Cllu—vllxe (lulle + el (6.23)

for u,v € X(t), uniformly with respect to ¢ € [0, ).

Theorem 6.2. Let n < 4, A < 0 and suppose that i1 > 2 and

p>2 if n=1,2,
2<p<3=paen(3) if n=3, (6.24)
p=2=pen(4) if n=4.

There exists g > 0 such that for all (ug, u1) € Dy with

| (w0, u1)[lp, < €0
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there exists a unique solution to (6.1) in C([0, 00), H')NC'([0, 00), L?). Moreover, there
exists a constant C' > 0 such that the solution satisfies the decay estimates

I(uelt, ), Voult, Dlle < CAL+1)"7F (1+In(1+1)| (o, ur) 1,
lult, e < CO+8) 2 Ga®)] (o, u)lp,,
forallt >0, where y =1ifA=0andy=0if A <0.

After these considerations we know that to show global existence in time for
small data solution is equivalent to show the inequalities (6.22) and (6.23). More
precisely, we put

lullxue = sup (1) @) ulr )l + (1 +In(1+7) 7 Veulr, ) 2z)|
o (6.25)

where y = 1if A =0,y =0if A <0 and we prove two stronger inequalities than
(6.22) and (6.23), that are

INullxy < Clituo,un)lip, + Clully - (6.26)
INu = Nollxi < Cllu=vllxoo (lullty + o1ty (6.27)

uniformly with respect to ¢ € [0,00). The motivation to introduce the space X (t)
comes from Gagliardo-Nirenberg inequality (see Lemma 7.7). These conditions will
follow from the next proposition in which the restriction on the power p and on the
dimension n will appear.

Proposition 6.4. Let us assume the condition (6.24) for p. Let (ug,u;) € D; and
u,v € X(t). For j+¢=0,1 it holds

(1+1)2 (1 + In(1 4 ) 0G0 (6) | V20! N x 0

< Cluo,w)lo, + Clullyy g, (6.28)
(146 (14 In(1+ ) 75955 ()| V30 (Vu = No) [
< Cllu = vlxow (el + 10150 ) (6.29)

where y=1if A=0and v=0if A <0.

Proof. We first prove (6.28). Basically we use the definition of the norm in Xy (¢), the
estimates for the linear Cauchy problem in Corollary 6.1 and Gagliardo-Nirenberg
inequality (see Remark 7.1). First we have that

IVIOfNu(t, )12 < C(L+1)77 (1+In(1+ 1))V, ()"~ (uo, w) |,
b [ 1920 (810,29 1 o 2P
for j +¢=0,1. Then,
(1407 (1+In(1+ 1)U, (0 VIO, Nu(t, )12 < Cll (o, w) o,

t
—(3+0)
1 C/ (14 8) 2 [|u(s, )P r2nrds.
0
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We have that

lfuls, )P llzzane S Mluls; )Pl + [lfuls, ) Pllzz = [Juls, ) ILe + [[uls, )2

Applying Gagliardo-Nirenberg inequality (see Remark 7.1) for ¢ = p and ¢ = 2p we
get

HU(S,-)HIE/I, f§ ||U(S, )le O H y U’( )H 7 (630)
HU(S’ ')”12,217 5 ||u(87 )Hp (o 2p))|| y xu( )||p9(2p ) (63])
where (v—2) ( 0
() 2" p ( p) 27

We note that the requisite #(p) > 0 implies that p > 2 and the requisite 6(2p) < 1

implies that p < pan(n) = -5 for n > 3. Now we are able to estimate ||[u(s, -)[?|| 2q 1
using (6.30), (6.31) and the definition of || - || x,)

K1

Huls, MW llrzan S Nullf,@ (1 +5)" 7%(s)p“‘e(p”(l +1In(1+5))7) (6.32)
= Jull, (1 + )2 7qa (s (1 4 In(1 + 5))*7 (6.33)
since 0(p) < 0(2p). Therefore, if n > 1, then we have for all £ > 0
(1487 (1+1In(1+ )V VI Nu(t, )| 12

2—-(+0) Hl n
= CH(““’ul)”Dl+C”“H§<o(t>/<1+5)2+ P(1+1In(1 + s))"(*+3)ds
0
t
< CH(UmUl)HDl+C|]uH§(O(t)/ (14 syi-4regs
0

Our assumption implies that 4 < u1p, then we can conclude
(145 (14 In(1 + ) VIR Nu(t, )12 < Cll(uio, wr)llpy + Cllule
If n =1, then forall e >0
(1+6)7 (1 +In(1+£)) UG ()| V50f Nu(t, )| 12
S C||(u0au1)||D1

t
+<mwzméu+$

2— (JM) M1

~F2(In(1 + 5)) 5 (1 + In(1 + 5)) P2 ds

t
B,
< C||(U0,u1)llpl+C]|u||§(0(t)/0 (1+ )5 Preds,

Therefore we conclude
(1+ t)%l(l + In(1 + 1)) OGN ()T HVIO Nu(t, ) || 2 < C||(ug, w1)]|p, + CHuH&O .

Now we prove (6.29). We remark that

t
V0= Nollxig = | [ Buttos o) <o (Juts o) = fo(s,2)) ds
0

X(t)
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Thanks to the linear estimates for the solutions to the family of parameter dependent
Cauchy problems we can estimate

(L+0)7 (1+ In(1 4 6)) 790G () | VIO[Ev(t, 5. 2) %y (Juls, )P = [o(s,2) )]

5 (1 i 8) (J+€)

lfu(s, 2)[" = |v(s, )"l 2
for j+¢=0,1. Now

lu(s, )" = Jv(s,2)["] < lu(s, x) = v(s,2)| (Ju(s,2)[P~" = |v(s,2)[P7).
Applying Hélder's inequality we can arrive at

s, P = Tols, )Pl S Hluls, ) = vls, e (luls, 5"+ [lols, )5

s, NP = To(s, )Pl < Hluls, ) = v(s,lzee (luls, Mz + lols,)z) -

Using Gagliardo-Nirenberg inequality we get

lu(s,) = v(s, e S luls, ) = o(s, 1" IVe (uls, ) = v(s, ) |79
S (L4970 F (Il + ) F fuls, ) — o(s, llxo
lu(s, ) = v(s, Moz < Nuls,-) — v(s, >|”<2p IV (u(s, ) = v(s, ) |I757
S (149 7)™ F (Il + )5 fluls, ) — v(s, llxo
and
(s, M S Nuls, )"V uls. ->|ri<5’>
S <1+s>*‘%a<> a0 < +s>>7 5 (s, Mxoco,
(s, Mz S s, )" Va u( I
S (149 T @) F I+ ) F [uls, )llxo-

Therefore, after using 4 < u1p we may conclude
(14+ )% (1+ In(1 4+ )09 (07| V40f (Nu = No) Lo
t
S = ol (lalfly + Roltty) ([ 19 %0vas)
0
S lu=vlx0 (||u||§<;§t) +ol%ty )

what we wanted to prove. O

Remark 6.3. It is possible to prove global existence (in time) of small data energy
solutions for 1 < 2 for n = 1,2,3 imposing new hypothesis for p. Indeed, let us
suppose that

p>14 2=k (6.34)

M1

and 0 < p; < 2 formn = 1,2, % < < 2forn =3and A < 0. There is a constant
g0 > 0 such that for all (ug,u1) € Dy with ||(ug,u1)||p, < €o there exists a unique
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solution to (6.1) in C(]0,00), H') N C'([0,0), L?). Moreover, there exists a constant
C' > 0 such that the solution satisfies the decay estimates

It ), Vault, Dl < CO+ )77 (1+In(1 + )| (o, w) |1p,
lu(t, Yz < COA+E2Ga(t)] (o, w)]m,.

Remark 6.4. When 5, = 0 and 0 < py < 1, then Wakasuki has proved blow-up results

for
2

n+(p—1)

in his PhD thesis [56]. Note that the only case that we can choose s = 0 is when
A = 0and pu; = 1. From Remark 6.3 we can conclude that there exist a global solution
in time for p > 4 and Wakasuki has proved blow-up for 1 < p < 1+ 2. There is a gap
for1+2<p<4

l<p<1+

Remark 6.5. Note that for n = 2,3,4 we proved global existence (in time) of small
data energy solutions for p; > 2, which is a large set of choices for j1; compare with
the results in [14]. For n = 1 we improve the choice of the power of non-linearity for
p > 2, but we pay a price choosing u1 > 2. In the paper [14], D’Abbicco proved
global existence of small data energy solutions for p > 3 and py > 2, if we restrict
ourselves to p > 3 it is possible to prove global existence (in time) for yy > 3 which is
also a large set of choices for ;. So, in general, the presence of the mass term allows
us to consider smaller ;. We will write this information in the next corollary.

Corollary 6.2. Let n = 1 and suppose 1 > 3, A < 0 and p > ppyi(1) = 3. There
exists €9 > 0 such that for all (ug,u;) € Dy with

H(u(b ul)HDI < &g

there exists a unique solution to (6.1) in C([0, 00), H')NC([0, 00), L?). Moreover, there
exists a constant C' > 0 such that the solution satisfies the decay estimates

I(ue(t, ), Vault, )le < C(1+ t)*%u +1In(1 + )7 (ug, w) ||y
lult, Nz < C+ )77 Gat)] (o, w)]lp,

wherey=1ifA=0and v=0if A <0.

6.4 Expectations for A =1

The goal in this section is to prove blow-up results and to show that in the case
when A = 1 we expect a shift for the critical Strauss exponent as observed in [16].

Let us consider the following semi-linear scaling-invariant Cauchy problem for
the wave equation with time-dependent mass and dissipation

M1 13

- A
Uy u+1+tut+(1+t)2

u=|ul’, u(0,z)=mup(z), w(0,z)=mu(z), (6.35)

with (t,2) € [0,00) x R", p > 1 and p; > 0, ps are real constants. Let us suppose that

A= (u— 1) —4us = 1. (6.36)
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Performing the change of variables
ut,z) = (1+1) 2 o(t, ),
we arrive at the following Cauchy problem:

92— 4443 L

I LU — (1) H I, o(0,2) = (o), 00.2) = (o)

(6.37)

with vo(z) = wo(x) and vi(z) = wui(z) + Hug(x). Note that A = 1 implies that

p1(2 — py) = —4u, then the Cauchy problem (6.37) becomes the Cauchy problem
for the semi-linear wave equation with non-linearity (1 + )~ 2 ®= D}y, i.e.,

Vgt — AU +

M1

vy — Av = (1+t)" 2P VP 0(0,2) = vo(z), v:(0,2) = v (). (6.38)

Therefore we can expect that the critical value of p is a shift of the Strauss expo-
nent and we can apply the blow-up methods developed in the paper [64] to the
Cauchy problem (6.35). The following theorem was conjectured by D’Abbicco-
Lucente-Reissig in the paper [16] and we will give a formal proof in this section.

Theorem 6.3. Assume that u € C*([0,T) x R™) is a solution to (6.35) with A =
(u1 — 1)* — 43 = 1 and initial data (ug,u;) € C3(R™) x C§(R™) such that ug,u; > 0. If
p € (Lpu(n)],

then T < oo, where
P () = max {pray (n = 1+ 52 ) spo(n + ) }. (6.39)

Remark 6.6. In the paper [16] the number p,, (n) was clarified as follows:

g

1. pu (1) = proj (4),

(1+ 1) if py>2

2. 2) = pFug( D) ) 1 )

P (2) { po(2+m) if pe0,2],
3. pu(n) =po(n + 1) if n > 3.

For the proof of this theorem we will use the following lemma on the blow-up
dynamics for ordinary differential inequalities with polynomial non-linearity.

Lemma 6.2. (Kato’s Lemma) Let p > 1, ¢ € R and F € C?*([0,T)) be positive,
satisfying

2
%F(t) > ki(t+ R)TYF(t))?, (6.40)
forany t € [T}, T), for some ki, R > 0and Ty € [0,T). If
F(t) > ko(t+ R)* (6.41)

for any t € [Ty, T), for some a > 1 satisfying a > Z;_f and for some ky and Ty € [0,T),
then T < oo. Moreover, let ¢ > p + 1 in (6.40) and suppose that the constant
ko = ko(k1) > 0 is sufficiently large such that, if (6.41) holds with a = Z:—f for some

Ty €[0,T), then T < .
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Proof. See [16] and [49]. O

Transforming the problem (6.35) in (6.38) with A = 1, Theorem 6.3 follows as
a consequence of the next proposition. In the proof we follow the techniques of the
papers [64, 63, 16].

Proposition 6.5. Let f € C*(R™) and g € C'(R") be positive and compactly supported.
Assume u € C*([0,T) x R") is the maximal, with respect to the time interval, solution
to

Utt — Au = (]- + t)—%(p—1)|u|p, u<07 (L’) = f(x)a Ut(O,ZE) = g(l’) (642)

If1 <p<p,(n), with p,, (n) asin (6.39), then T < 0.

Proof. In the proof we choose R > 0 such that supp f,suppg C B(R), where B(R)
is the ball centered in the origin with radius R. Therefore, suppu(t,-) C B(R + t).
Define

F(t) = / u(t, x)dz.
Thanks to the finite speed of propagation of u we have

2
@ pr) = / wn(t, 2)dz = (14 1)~ 20D / u(t, )P da. (6.43)
dt n B(t+R)

Halder’s inequality implies that
For < ([ o)
B(t+R)

-1
< / |u(t,x)\pdx</ d:v)p
B(t+R) B(t+R)

~ (t+R)"(p_1)/ lu(t, x)|Pdx.
B(t+R)

Therefore, we can conclude from (6.43) the following relation:

d? o
P 2 (1+ ) e . (6.44)

We want to apply Lemma 6.2 and for this reason we need to show that F'(t) is positive.
So let us consider the functions

o) = [ e it = o@e,

where S"! is the n — 1 dimensional sphere and

Fi(t) = / ult, )it 7).

Applying Hélder inequality once more we have

AwP < ([ o)

_p_ p—1
/ u(t, )P / ot 2) )
B(t+R) B(t+R)

IN
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Therefore, from (6.43) it follows

—(p-1)

i i) L (648)

LR 2 1+ R@P ( /|

x| <R+t

Note that ¢(t,2) > 0. Let us estimate the last integral. Recalling that ¥4 (¢, 2) =
e '¢1(x) we see that

/B ()T < O A p) e+ R

for any fixed K < ¢+ R and A > 0. Using that (see [12])
o1(z) < |x|” el as |z| — o0

we get for large t and K the estimate

P t+R (n=L)p _p
/ (r(t, )77 de < / (14 p) "2 e 1 0dp,
B(t+R)\B(K) K
After integration by parts we have
t+R g
K
1 (n=p (n—1Dpy\ [ o, o (n—)p
< 1 tn12(_1)_< _1__)/ ,1(P)1 n 2( Ud
fn—1- (27(1 1)’)’ > 0, i.e., p > 2 we may immediately conclude
t+R (n—1) » (n—1)
/ (L4 p)" 20 er 10 dp < (L4 4)" 2 (6.46)
K
The same estimate holds if n — 1 — (27(1;_137; < 0. Indeed, we may write
(n—1)p 1 e —1-{=le ( n—1-{-bp
1+<n—1— > ) 1+ -1 e Pty S (1+t 2(p-1)

and for large K and ¢ we recover (6.46).
Thus we can conclude from (6.45)

d2
dt?

The sign of the non-linearity comes into play to estimate |F}(t)|P. More precisely,
the following result, which proof can be found in the paper [64], holds for any smooth
solution to uy — Au = G(t, x,u) with positive G.

Lemma 6.3. (Lemma 2.2 in [64]) It holds

SF(t) 2 (14 1) 2 S By (). (6.47)

AOZ50-¢™) [ (@) +ga)a@drte® [ f@owds (648

n

N —

fort > 0.
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In particular, our assumptions for the initial data imply that F1(¢) > ¢ > 0, for all
t > 0. Then,

d2 _7L71+H1p+n_1+ﬂ
@F(t) >+t 2 2 (6.49)

for all t > 0. Integrating twice we arrive at

n—14p © d
F(t) 2 (LT 8 2 0(0) + 1 (0)
> (14 ¢yme{ e g1 (6.50)

once that our assumptions for the initial data also imply that F(0) > 0 and £ F(0) > 0.

The subcritical case:

From (6.44) and (6.50) we can apply the Lemma 6.2 under the following con-
ditions:

n—1+m i Hi 2
—_ 1+ = i 6.51
5 p+n+ +2 > n—|—2 PEEE ( )

1 2
1 > —_—— 6.52
n+ 2 T p_1 ( )

The condition (6.51) holds if, and only if, p < po (n + p1) and the condition (6.52)
holds if, and only if, p < pry; (n -1+ %) Then the proposition is true for the
subcritical case

p < max{pFuj(n— 1+ %),po(n—l—ul)}.

The critical case if n =1 :

For n = 1 we have that p,, (1) =1+ Mil. By (6.44) it follows that ¢ = 2 + Mil. We
note that in this case the maximum of the right-hand side of (6.50) is 1. Thus, from

(6.44)
d? S 1
—F(t 14+1¢) .
F() 2 (1+1)
Integrating twice we arrive at
F(t) 2 (1+t)In(1+1).

Note that Z%f = 1 and g = p+1, then the result follows from the application of Lemma
6.2 with a = 1.

The critical case if n = 2:

Let us suppose that 1y > 2, then for n = 2 we have that p,,(2) = 1 + 2fu1'

By (6.44) it follows that ¢ = 22’:&—;?. We note that in this case the maximum of the
right-hand side of (6.50) is 1. Thus, from (6.44)
d2

SFH) 2 1+
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Integrating twice we arrive at
F(t) 2 (1+t)In(1+1¢).

Note that }% = 1 and g = p+1, then the result follows from the application of Lemma
6.2 with a = 1.

If 111 € ]0,2), then p = p,,(2) = po(2 + p1). This case will be treated together
with the critical case for n > 3.

The critical case if n > 3 or n = 2 with u; € [0,2):

For n > 3 and for n = 2 with i; € [0,2), we have that p,, (n) = po(n + p1). We
can suppose, without loss of generality, that (¢, -) is radial. This is so because one
can use Darboux’s identity to transform the problem into a suitable one for the radial

case. Let us define .

u(t,r) = —/ u(t, rw)do,,,
Wn Jw|=1
where w,, = f|w|ﬂ do,.

From Hélder’s inequality it follows that u satisfies that following problem:

Uy — AT = [ulp(1+¢) @D

“w

=

1
(=1 _— lu(t, rw)[Pdo,,
Wn J|w|=1

> (14t) 2@V gp.

o)

= (1+1)”

Following the technique of [64] we consider the Radon transform of u with respect to
the space variable defined by

Ru(t, p) := / B u(t, z)do,, (6.53)

where do, is the Lebesgue measure of the hyperplane {z : - w = p} and w € R"
is a unitary vector. Next we show that Ru is independent of w. From (6.53) and the
assumption that u(t, -) is radial it follows that

Ru(t,p) = /{ } u(t, pw + a')do,
z’:x!-w=0

_ cn/ u(t, /77 + P2,
0

Using the change of variables r? = p? + |2/|, we have

o0

Ru(t,p) = cn/ u(t,r)(r* — pQ)HT%frdr, (6.54)

ol

this shows that Ru(t, p) is independent of w. Now let us derive a lower bound for
Ru(t, p).
Since u is a solution of (6.42), then Ru satisfies the one-dimensional wave
equation
97 Ru(t, p) — 92Ru(t,p) = (1 + )" 2 PV RJul’(t, p).
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From the D’Alembert’s formula and the assumptions for the initial data it follows

1 oy pE(t=s)
fmmmzﬁ/u+@2@”/1 Rlul’(s, p1)dpids. (6.55)
0 p—(t—s)

Note that suppu(s,-) C B(s + R). Therefore, if |p1| > s + R, then, for any vector y
which is perpendicular to a unit vector w, it holds

lpw +yl = I+ |y]? > [p1] > s+ R.

Thus
Rlul? (s, p1) = / (s, preo + )| dor, = 0.
{y:y-w=0}

This shows that
supp R|ulP(s,-) C B(s+ R). (6.56)
Assume p > 0. If s < @, then
p+({t—s)>s+R, p—(t—s) <—(s+R).

By this, (6.55) and (6.56) we deduce

t—p—R

1 “ ¢
Ru(t,p) > 5/ i (1+s) 77]0 1)/ R]u\p s, p1)dp1ds
0 p—(t—s)
1 t_pQ_R K1 1
= 5/ (1+s)" 2" )/ Rlu|P(s, p1)dp1ds
0 —00
1 t—p—R
2 B
= 5[ e e [ s ypagas
0 R”
t—p—R
1 = d?
= = —F(s)ds.
2/0 gzt (8)ds

Recalling (6.49) we have

t—p—R
2

1 o
Ru(tap) > 5/ (1 + 5)_%p+n—l+%d8‘
0

Now note that -
"’L_
—TM]H— —1+%;&—1.

Indeed, observe that

2n +

=14 H1 e
n—1+p

5 p+n —1—1—7:—1 if, and only if, p=po(n+ 1) =

Then recalling that

(n+pm—1)p° —(n+m+1p-2=0
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we arrive at
2n% + (uy — 4)n — 3y —2) =0

which is a contradiction once n > 3. Note that this is also a contradiction for n = 2

and p; < 2.
So, we arrive at

Ru(t,p) 2 (R4t —p)~ 2 wimts,

Note that for any f € L? the operator T': LP — LP defined by

tHR n—3
n—1 / f(T)|/r - 7-| 2 dr
2 T

N0 =

is bounded. Indeed,
1 t+R
OO < g [ 0l

9 t+R
T E—— f(r)|dr
2t =7+ R| /—(t+R)+2T #r)
< 2M([f[)(7),
where M(|f|) is the maximal function of f. Therefore,

1T e < el flle-
Applying (6.58) to the function

we have

t+R 1 t+R 1 e
| = [ ) =) )
0 (t — p + R)T p

< C/ lu(t,r)|Pr"tdr
0

= C/ lu(t, z)|Pdz.

When r > p and 1 < p < 2, we observe that

Hence,

(6.57)

(6.58)

t+R 1 t+R et 23 NP 1 (e
( = )l =) ar) dp
0 ( )z Jo

t—p+R

< C |u(t, z)|Pd.
Rn

(6.59)
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From (6.54) and the fact that supp u(t,-) C B(t + R) we know that
t+R s
Ril(tp) = e [ Ju(t.n)lrc? = )" ar
pt-‘rR n—3 n—3
Y R e
fr
< c/ u(t, V)2 (r — p) "2 dr. (6.60)
p

Substituting (6.60) to (6.59), we reach

t+R P
/ (R|u’(t,p)) - ppnflf(nfl)%dp < C/ ’u(t,{ﬂ)‘pdﬂf (66])
o (t—p+R)VE

n

Using the lower bound of R|u] in (6.57) and (6.61), we arrive at

t—R—1 pn—1—(n—1)g
p
/n |u(t, z)[Pdx = CR/O (t—p+R) (n—1+u1)p22—(n+1+#1)1’ dp-

Recalling
(n—=1+m)p’ —(n+1+m)p—-2=0

t—R—1 pn—l—(n—l)
/ ju(t, 2)Pde > Cn / i
n 0

it follows that

Hence,

t—R—1 pn—l—(n—l)
[ uteorar = oo [ I
n t
2

and we obtain
/ lu(t, )Pdz > Ca(t — R -8 In(t — R).

Thus

d2 _n—1+4pg I A
@F(t)2(1+t) Tz PP E n(t — R).

Integrating twice we arrive at
F(t) > (14 0)~ 22 pn5 10 R),

and the result follows for sufficiently large t after applying again Lemma 6.2 with
a:——”’lg‘“p—i—n—i—l—i—%. [
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Summarizing, we expected for A = 1

pcm‘t(n) = p,u1(n) = max {pFu] <TL -1+ %),po(n + ,U/l)}

We collect in the following table the results obtained in this chapter for j; > 2:

| \ A <0 \ A=1
. .. !
n=1 Global existence in time for p > 2. Blow-upforl <p <1+ —.
241
n=2 Global existence in time for p > 2. Blow-up for 1 < p <1+ S
21

n =3 | Global existence in time for 2 < p < 3. | Blow-up for 1 < p < po(3 4 p1)-
n=4 Global existence in time for p = 2. Blow-up for 1 < p < po(4 + p1)-
n > 5| No result for global existence in time. | Blow-up for 1 < p < pg(n + pu1).

Tab. 6.1: Interplay between global existence in time and blow-up result for the solution depending on
the choice of A.

If A =1, then we feel a shift of Strauss exponent py(n) — po(n + p1) for n > 3
(cf. with [16]).
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7 Notation-Guide to the reader

7.0.1 Preliminaries

()
|- |
€]

which stands for (z) = /1 + |z|2,

denotes the absolute value,

with definition [¢] = )

[ denotes the smallest integer then a given number,
i.e., [x] = min{m € Z;x < m},

Il - | denotes the norms for a vector or a matrix.,

|-z norm in L” spaces,

P — L1 for L(LP, L), endowed with the norm topology

| - || oL for operator norm in LP" — L9,

f<g if there exists a constant ¢ > 0 such that for all
arguments f < cg.

fzg if there exists a constant ¢ > 0 such that for all
arguments cf > g.

f=g iffzgand f Sy

f~g if lim o) = 1,i.e., f and g have the same asymp-

t=vos g(t)

totic behavior.

D, denotes D, = 20,.

o denotes the partial derivatives 951092 - - - 99~ with a
multi-index o = (g, s, -+ , ), where «a; is non-
negative forall i =1,2,--- ,n.

A denotes the Laplace operator with respect to = €
R", ie, Ay = 02 + 92, +---+ 02 .

f(t) =o(g(t)) iflimsup /) = 0.

=00 g(t)

7.0.2 Frequently used function spaces

We collect function spaces with are frequently used within this thesis.

LP(R") L? spaces , 1 < p < oo,
LPL"(R™ x R™) mixed space LP(R", L"(R™)) ,

LPY(R™) Bessel potential space, LP*(R") = (D) “LP(R")

C*(R™) space of k times continuously differentiable func-
tion,

C>®(R") space of infinitely continuously differentiable func-

tions,
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CP(R™) space of infinitely continuously differentiable func-
tions with compact support,

H*(R") Sobolev space based on L?(R"),

S(R™) Schwartz space of rapidly decay functions,

D'(R") space of distributions,

S'(R") space of tempered distributions,

B, (R") Besov space,

MI(R") space of multipliers inducing bounded translation

invariant operators LP — L9,

7.0.3 Symbols used throughout the thesis

h(t,€) h(t, &) = %chpdw(t,g) + i|€|nypn (L, €), with the

characteristic functions ¢pqn(t,&) and ¢py, N (2, €)
of the zones,

Mo e = (I + )5

(1+41)?
U(t,§) micro-energy U = (h(t, &), Dyu)", satisfies D,U =
A(t, U,
E(t,s,&) fundamental solution of the D, — A(t, ),
Eo(t,s,€) fundamental solution of the free wave equation,
Ex(t,s,&) fundamental solution of the system after k steps of

diagonalization, k£ > 1,
W, (£) multiplier corresponding to the Moeller wave oper-
ator.

7.1 Basic tools

7.1.1 Fourier multipliers and multiplier spaces

The next theorem is very important for we state LP-L? estimates.

Definition 7.1. Let f € §’. Define the following operator

m(D)f = F ! [m(&)F(f)],

for a suitably regular function or distribution m(§). These operator are so-called
Fourier multipliers.

Definition 7.2. Denote by p < ¢

M? = {m(&);m(D) : L (R") — LYR")},

p

that so-called multiplier space.

The multiplier space M7 is a Banach space endowed with the corresponding
operator norm. Holds
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Proposition 7.1. 1. MZ(R") = L>(R"),

2. M¥(R") C Mz(]R") for all p € [1, 00],

3. M”(IR") = MJ(R"), for dual p and g,

4.L1(]R") C M°°(]R"),

5. M>*(R™) N M3(R"™) € MZ(R"), for dual p and q.

Let us enunciate the Marcinkiewicz multiplier theorem.

Theorem 7.1. Assume that m(¢) € C*(R"™ — {0}) for k = [4] + 1 and
|Dgm(&)| < Calé] TV || <k

in other words, m(¢) € SY. Then m(¢) € ME(R™) for all p € [1, 00].
Proof. Look [51]. O

7.1.2 Further lemmas of importance
According to the papers [43, 7] we can conclude the following estimate.

Lemma 7.1. Let us assume that K = K (t) is a real-valued function and a = a(t,§) €
C5°(RE). Then there exists a positive integer M such that
|~ (e WRla(t, )|, < C 1+ K(2) Z IDga(t, &) re,
|a|<M
with a constant C' independent of t and &.

In order to handle with L' — L> and L? — L? estimates, we have the following
lemma:

Lemma 7.2. Leta € L.

1. If |F~1(a)|| = < Co, then | F~(aF (u))|| 1~ < Collul|z:.

2. If ||a||p= < C4, then ||F~YaF(u))||z~ < Cyllu| 2.

In order to handle the LP — L7 estimates we state the important Riesz-Thorin
interpolation theorem.

Theorem 7.2. (Riesz-Thorin Interpolation Theorem) Lets p;,q; € [1,00], for i = 0,1
and if 0 < 0 < 1, defines p and ¢ by
1 1-60 ¢ 1 1—-6 6

= +— +—

P mw  p 4 @ @
If T is a linear operator of (LP°, LP*) — (L%, L)  such that
[Tul| oo < Mo|[ul| oo,

|Tu||pa < My ||ul|ze,

thus,
I Tull e < My~ MY ||ul| o
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Lemma 7.3. Let a € L>°(R"™) and assume that
1F~ (a; F(u) | re < Cllullzs

uniformly for all j € Z with 1 < p < 2 and p, q conjugate line. Then there exists a
constant A independent of the function a such that

1~ (aF (u) | e < AC]|ul|r.

The next theorem was strongly used to define Moeller wave operator with the
goal to prove modified scattering theorem in the Chapters 2 and 4.

Theorem 7.3. (Banach-Steinhaus Theorem) Let A and B Banach spaces and sup-
pose that {F,} is a sequence of continuous linear operators from A to B. Then F,
converges pointwise to a continuous linear operator F' : A — B, i.e., F,(x) converges
to F(z) for all x € A or F = s-lim F,, if and only if

1. the sequence of operator norms ||F,,|| is bounded;
2. the sequence F),(x) converges to F(x) for all x € L, where L is a dense subset
of A.

7.1.3 The Peano-Baker formula
Theorem 7.4. Let A(t) € L}, (R, C™*"). Then the fundamental solution £(t, s) to

L (t,5) = A(H)E(L, s)
{ Sl =1 . (7.1)

is given by the Peano-Baker formula,

E(t, s) :I+i/tA(t1)/t1A(t2)---/tk_lA(tk)dtk---dtl. (7.2)

Proposition 7.2. Assume r € L,.(R). Then
<2 ([ v 7.3
k: r(T)ldr | .

/Str(tl)/:lr(tg)---/:kl r(t)dty -

for all k € N.

7.1.4 Faa di Bruno’s formula

In this section we will write two well-known form of Fad di Bruno’s formula. The
most simple one can be founded in [8] and [9] and says

Lemma 7.4. Let f(g(x)) = (f o g)(x) with z € R. Then we have

n! -
(- +mn) ()
%f( 9(x)) = Zm1!1!m1m2!2!m2---mn!n!mnf (9@ ] (5"

j=1

where the sum is taken over all n—tuples of non-negative integers (my,--- ,m,,) satis-
fying the condition
1lmqy 4+ 2me + -+ +nm, =n.
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A multivariate version of Fad di Bruno’s formula can be founded in [11], [37]
and is given in the next statement.

Lemma 7.5. Let y = g(x1,--- ,x,). Then the following identity holds regardless of

whether the n variables are all distinct, or all identical, or partitioned into several
distinguishable classes of indistinguishable variables

8 = 8|B|y

mell B€7r jeB

where,
e 7 runs through the set I1 of all partitions of the set {1.--- ,n},

e B € 7 means the variable B runs through the list of all “blocks” of the partition
7w and

e |A| denotes the cardinality of the set A (so that |r| is the number of blocks in the
partition m and | B| is the size of the block B).

Let us give some generalizations of Fad di Bruno’s formula for a composite
function with a vector-valued argument, see [40].

Lemma 7.6. If f and t are scalars, x(t) = [z1(t), 22(t), - -+ , z.(t)]" is an r—vector and
f(x(t)) is a composite function for which all the necessary derivatives are defined, then

ok o A _
D”f Z Z Z C n, ki, ng O €18$g2]'£' e H(xll)Qn(le)qiz ... (Izr)qw’
" =1

where the respective sums are taken over all non-negative integer solution of the Dio-
phantine equation as follows:

> = ki+2k -t +nk,=n

Z — qut Q2+t qr =k
1

Z — Qn1+qn2++Qn7’:kna

n

and the differential operator D = %, p; is the order of the partial derivative with
respect to x;, and k is the order of the partial derivative, more precisely

Pji = Qjtqttaqn, =121
k prtpet+ - tp =k that+kn
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7.1.5 Gagliardo-Nirenberg inequality

Here we write Gagliardo-Nirenberg inequalities which come into play in the
semi-linear theory to prove global existence of small energy data solutions for wave
models with scale-invariant mass and dissipation.

Lemma 7.7. Let j,m € N with j < m, and let u € C™(R"), i.e., u € C™ with compact

support. Let - < a <1, and let p,q,r € [1,00] such that

j—%z(m—;)a—g(l—a).

Then
1Dl < Crpmjopra |l D™l ¢ |e]| (7.4)

provided that
n .
(m-2)-igN. (7.5)

e, ™ >m—jor® ¢ N. If (7.5)is not satisfied, then (7.4) holds provided that
% <a<l.
Proof. See Theorem 9.3 in [20] part 1. O

Remark 7.1. If j =0, m =1 and r = p = 2, then (7.4) reduces to

el S IVl 5 ull 2", (7.6)
where 0(q) is given from
n n n n
—=(1-5) 0@~ 50~ 0a) =6) - 5, (7.7)

that is,

n o n 1 1
=55 =n(3-3)
It is clear that 6(q) > 0 if and only if ¢ > 2. Analogously 0(q) < 1 if and only if

2n

. (7.8)

either n=1,2 or ¢<qgn =

Applying a density argument the inequality (7.6) holds for any u € H'. Assuming
q < oo the condition (7.5) can be neglected also for n = 2. Summarizing the estimate
(7.6) holds for any finite ¢ > 2 if n = 1,2 and for any q € [2, qan] if n > 3.

7.2 Asymptotic integration lemma

In this appendix we collect some theorems on the asymptotic integration of
ordinary differential equations, which are particularly useful for the treatment on the
Chapter 4 of the pseudo-differential zone. We formulate them in more general form
than used in the Chapter 4. They follow [18, Sections 1.3 and 1.4] adapted to systems
of Fuchs type.
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7.2.1 Levinson type theorems
We consider the following system of ordinary differential equations
to,V (t,v) = (D(t,v) + R(t,v))V(t,v), t>1, (7.9)
depending on a parameter v € T. The matrix

D(t,v) = diag (i (t,v), ..., pa(t,v)) (7.10)

is diagonal and R(t,v) € C?*? denotes a remainder term.

Under a dichotomy condition imposed on D and appropriate smallness condi-
tions on the remainder R the diagonal matrix D determines asymptotic properties of
solutions to (7.9). We denote by ¢, the k-th basis vector of C<.

Theorem 7.5. Assume that fori # j

t ds

limsupsup® [ (pi(s,v) — pi(s,v))— < 400
t—oo  veY 1 S
liminf inf % [ (0 4 ds (7.11)
or liminf inf 1 (pi(s,v) — ,uj(s,y))? > —oo (7.
together with
> dt
Sup/ |R(t,v)||— < oc. (7.12)
veY J1 t
Then there exist solutions Vj.(t,v) to (7.9) satisfying
t dr
Vilt) = (et o) esp ([ lrn) 7.13)
1

uniformly in the parameter v € T.

Proof. This is a reformulation of Theorem 1.3.1 from [18] with the substitution ¢ = e*.
For the convenience of the reader we sketch the main idea of the proof. We may
replace the dichotomy condition (7.11) by an ‘either-or’ statement assuming in the
first case that in addition

e i ds

liminf inf ® [ (pi(s,v) — w;(s, 1/))? = —00 (7.14)

t—oo veYT 1

holds true. This yields an ordering of the diagonal entries according to their strength
and we may assume without loss of generality that for i < j the first alternative holds
true. Furthermore, if we write

V(tv) = Z(t 1) exp (/lt i (r, y)dT—T) (7.15)

for a fixed index k then the function Z(t, v) satisfies the transformed equation

to Z(t,v) = (D(t,v) — up(t,v)I + R(t,v)) Z(t,v) (7.16)
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and we have to show that there exists a solution to that equation tending to ¢, uni-
formly with respect to v € T. Thus it is sufficient to prove the original theorem for
the case p, = 0. Let ®(t) = ®_(t,v) + P, (t,v) be the fundamental solution to the
diagonal part, split as

®_(t,v) = diag(exp (/1 (T, V)%) s .., EXD (/1 pg—1(T, V)dT—T) ,0,...)  (7.17)
and

i t dr t dr
0.t) = ding(0.....0Lewp ( [ st T ) oo (a7 )
1 1

(7.18)
according to the asymptotics of the entries. Then (7.9) rewrites as an integral equation

V(t,v) = e, + P_(t, V)/ @71(7_7 v)R(T,v)V (T, I/)dT_T

to

— o (tv) /t T oL ) R(r )V (7, y>d77. (7.19)

By construction we obtain ||®_(¢,v)®(r,v) || < C_ uniformly on 1 < 7 < ¢ and
@ (t,v)®(,v) || < Cy uniformly on ¢t < 7 < co. Thus, this equation can be solved
uniquely in L>°([1, 00)) by the contraction mapping principle as

o) [ o mRE VT

— . (t,v) /too (1, v)R(T, )V (T, I/)d%

<+ [ IREIZIVE) (720

to

is contractive for t, sufficiently large. Thus, solutions to (7.19) are uniformly bounded.
To show that they tend to e, for ¢ — oo uniformly with respect to v € T one uses the
stronger form (7.11)=(7.14) of the dichotomy condition. Indeed, writing (7.19) for
t>1T as

V(t,0) = ex+ D_(t, 1) /: O (r, ) R(r, 1)V (7. y)dT—T LUt ) (7.21)
with
U(t,v) = b_(1,0) /T & (r, ) R(m, )V (1, e
_ 3, (4 ) /too O (r, V) R(r, )V (1, y)g (7.22)
we obtain

Nl < (€ + ) [ IREDITIVE - (7.23
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uniformly in ¢ > T and v € T. Hence, we can choose T large enough such that
|U(t,v)|| < e. But then the dichotomy condition implies ®_(¢,) — 0 uniformly in v
and thus

IV (¢t v) —exll < 2 (7.24)

holds true uniformly in v € T and t > T sufficiently large. As ¢ was arbitrary, the
statement is proven. O]

Remark 7.2. We will use a special form of the previous theorem, where the diagonal
matrices D are constant and independent of v,

D = diag(u1, . -, fa)- (7.25)

In this case the dichotomy condition (7.11) is trivially satisfied as the appearing inte-
grals are all logarithmic functions in t which can’t approach both infinities. Hence,
(7.12) is sufficient to conclude the existence of solutions

Vi(t,v) = (ex + o(1))t" (7.26)

for all k and if in addition it is known that p; # p; for i # j this yields a fundamental
system of solutions. If the diagonal entries coincide, one has to make further assump-
tions on lower order terms to get precise asymptotic properties, in particular (7.12)
has to be replaced by adding logarithmic terms.

Levinson’s theorem yields a corresponding statement for the fundamental solution-
valued solution to (7.9). This follows immediately from the following variant of Liouville
theorem. We assume for simplicity that D is constant and that the entries are distinct.
Then we take the solutions Vj, constructed above as fundamental system. Their Wron-
skian satisfies

Wiiv, () = det (Vit, v)] - -+ [Va(t,v)) = tratretti, (7.27)
If we denote by Ey(t,1,v) the matrix valued solution to
t0,Ev(t,1,v) = (D + R(t,v))Ev(t, 1,v), t>1, (7.28)
combined with &, (1,1,v) =1, it follows that
Ev(t,1,v) = (Vi(t,)] - [Va(t,v)) (Vi(1, )] - [Va(1,)) (7.29)

and the norm of the inverse matrix can be estimated by Cramer’s rule combined with
Hadamard'’s inequality as

[(VA( o)l VaL,w) 7 < d( s [V (1,0) ) (7.30)
and thus
1€ (.1, v)|| < Cmes (7.31)

uniformly in v.
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Remark 7.3. We can use scaling properties of Fuchs type equations. If V(t,v) solves
(7.9), then V(t,v) = V(\t,v) solves the re-scaled equation

to,V(t,v) = (D(\t,v) + R(\t,v))V (¢, v). (7.32)

[ mroenn S = [Cireon G < [Ty .39

and similarly for the integrals in (7.11). Hence, the conditions of Levinson’s theorem
are uniform in \ and thus are the constructed solutions. Therefore, any estimate of the
fundamental solution given in Remark 7.2 is also uniform and therefore of the form

1€ (At A )| = (1€ (¢, 1, )| < Ot (7.34)

If A\ > 1 then

uniformlyin A\ > 1and v € T.

7.2.2 Hartman-Wintner type theorems

Now we discuss improvements of Theorem 7.5 based on a diagonalization
procedure. They allow to handle remainders satisfying

/ ieye (7.35)
1

for some constant 1 < o < oo. They are constructive and give precise asymptotics
similar to the above theorem. We formulate it in more general form with diagonal
matrix D(t,v) with entries satisfying the stronger form of the dichotomy condition

Ru(t.r) — wtr) < Co or R(u(tr) — w(tr) > Cp (7.36)
uniformint > toand v € T. It implies (7.11).
Theorem 7.6. Assume (7.36) in combination with (7.35). Let further
F(t,v) = diag R(t,v) (7.37)

denote the diagonal part of R(t,v). Then we find a matrix-valued function N(t,v)
satisfying

/Oo NG < (7.38)
uniformly in v € T such that the é!ifferenﬁol expression
(td, — D(t,v) — R(t,v))(1+ N(t,v))
— (I+ N(t,v))(t0, — D(t,v) — F(t,v)) = B(t,v) (7.39)
satisfies

/ I1B(t, V)Hmax{a/w% < . (7.40)
1

Furthermore, N(t,v) — 0 as t — oo such that the matrix I + N(t,v) is invertible for
t > to. Hence, V = (I+ N(t,v))"'V solves the transformed problem

to,V = (D(t,v) + F(t,v) + Ri(t,v))V (7.41)
with Ry(t,v) = (I+ N(t,v)) ' B(t,v) also satisfying (7.40).
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Proof. This follows [18] Section 1.5 and is a version of the diagonalization scheme
we applied earlier on. We set D, (t,v) = D(t,v) + F(t,v), F(t,v) = diag R(t,v) and

denote R(t,v) := R(t,v) — F(t,v). We construct N(¢,v) as solution to
tO,N(t,v) = D(t,v)N(t,v) — N(t,v)D(t,v) + R(t,v), lim N(t,v) =0, (7.42)
such that equation (7.39) becomes
B(t,v) = N(t,v)F(t,v) — R(t,v)N(t,v). (7.43)

In a first step we estimate N (¢,v). Considering individual matrix entries (7.42) reads
as

t@tnjj(t, V) = O, (744)
tomy; (t,v) = (ui(t,v) — pi(t, v))ni(t, v) 4+ rij(t, v) (7.45)

such that the diagonal entries are given by n;;(t,v) = 0. For the off-diagonal entries
we formulate integral representations and use the auxiliary function

5t = [ o) o) % (7.46)
Then the off-diagonal entries are given by Duhamel integrals
n;;(t,v) = — % (tv) /OO e_‘s"j(s’”)rij(s, I/)% (7.47)
t
for those i, j where R(p; — p;) > C > 0 and
ng(t,v) = ¥t /j e %M, (s, V)% (7.48)

for those with R (p; — ;) < C_ < 0. It follows in particular that n;;(t, v) — 0 as ¢t — oo
and with £C4 > § > 0 the estimates

& d
gy (8,0)] < / Iy (152, )| L, (7.49)

S

the +-sign depending on the case of the Dichotomy condition. Therefore, the L?-
property of r;; implies by Minkowski inequality

o0 ae\ Ve o o0 dt\ V7 ds
(/1 |ni; (t, 1/)|"7) < /1 s (/ |r,~j(tsi1,l/)|"?) < (7.50)
1

and thus . "
/ ING)I7S < oo (7.51)
1

uniformly in v € T. Similarly, by Hélder’s inequality and with 0o’ = 0 + ¢'.

o d
sup |n;(t,v)| < / s_é\n-j(tsil, 1/)|—S
t 1 S

%) 1/0’ IS 1/o
< (/ sad@) (/ |rij(tsi1,y)\"§> (7.52)
1 S 1 S
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uniformly in v € Y. Hence, the matrix NV belongs to L"([1, 00),dt/t) forall o <r < o0
uniformly in v. If ¢ > 2 then equation (7.43) implies that B(t, ) product of two L°-
functions and thus in L7/2. If o € [1,2), then ¢/ > o and thus B(t,¢) is product of an
L?-function with an L7 -function and thus in L'. O

We distinguish two cases. If o € (1,2] the transformation reduces the system to
Levinson form and Theorem 7.5 applies. If o is larger, than one application of the
transform gives a new remainder satisfying (7.35) with o replaced by /2.

In the first case one conclusion of Theorem 7.6 is the existence of solutions

Vilt, ) = (e + o(1))t"* exp (/Ot (s, m%) k=14 (7.53)

uniformly in the parameter, provided D = diag(us, ..., 1q) with distinct entries and
R e L°([1,00),dt/t).
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