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Resumo

Nesta tese estudamos as propriedades assintóticas para a solução do problema
de Cauchy para a equação de Klein-Gordon com potencial não efetivo dependente
do tempo. O principal objetivo foi definir uma energia adequada relacionada ao
problema de Cauchy e derivar estimativas para tal energia. Estimativas de Strichartz
e resultados de scatering e scatering modificados também foram estabelecidos. A
teoria Cm e a condição de estabilização foram aplicados para tratar o caso em que
o coeficiente da massa oscila muito rápido. Além disso, consideramos um mod-
elo de onda semi-linear scale-invariante com massa e dissipação dependentes do
tempo, nesta etapa usamos as estimativas lineares de tal modelo para provar ex-
istência global (no tempo) de solução de energia para dados iniciais suficientemente
pequenos e demonstramos um resultado de blow-up para uma escolha adequada
dos coeficientes.
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Abstract

In this thesis we study the asymptotic properties for the solution of the Cauchy
problem for the Klein-Gordon equation with non-effective time-dependent potential.
The main goal was define a suitable energy related to the Cauchy problem and derive
decay estimates for such energy. Strichartz’ estimates and results of scattering and
modified scattering was established. The Cm theory and the stabilization condition
was applied to treat the case where the coefficient of the potential term has very fast
oscillations. Moreover, we consider a semi-linear wave model scale-invariant time-
dependent with mass and dissipation, in this step we used linear estimates related
with the semi-linear model to prove global existence (in time) of energy solutions for
small data and we show a blow-up result for a suitable choice of the coefficients.
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Versão em Português

Motivação

Equações hiperbólicas são usadas na física para descrever processos evolu-
cionários com a propriedade de que a informação se propaga com a velocidade
finita. Esses processos podem ser encontrados em diversas áreas, como por exem-
plo na Teoria de Eletromagnetismo e Eletrodinâmica. Um dos modelos padrões é o
da equação da onda livre

utt − c2∆u = 0,

que descreve uma corda vibrante para n = 1, membrana para n = 2, ou sólidos
elásticos para n = 3. A constante c denota a velocidade de propagação e ∆ =∑n

i=1 ∂
2
i o Laplaciano com respeito a variável espacial.

Outro modelo de interesse é a equação de Klein-Gordon

utt − c2∆u+
(mc2

h

)2

u = 0, (0.1)

onde h é relacionado com a constante de Planck e m é a massa constante de uma
partícula. Esse modelo foi introduzido por Gordon (1926) e Klein (1927) derivando
uma equação relativista para uma partícula carregada em um campo eletromag-
nético. Essa equação também é usada para descrever fenômenos de onda dispersiva
em geral, veja [17].

Nas seções seguintes vamos discutir resultados conhecidos para esses dois
modelos e também para modelos mais gerais.

Modelos clássicos de onda com e sem massa

Começaremos relembrando alguns resultados para o modelo de onda livre.
Considere o seguinte problema de Cauchy para a equação da onda livre:

utt −∆u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (0.2)

com (t, x) ∈ R+ × Rn. O problema de Cauchy (0.2) é Hs bem posto, i.e., se
u0 ∈ Hs e u1 ∈ Hs−1, então existe para todo positivo T uma solução única u ∈
C([0, T ], Hs(Rn)) ∩ C1([0, T ], Hs−1(Rn)) que depende continuamente dos dados ini-
ciais (u0, u1).

Se u ∈ C([0, T ], H1(Rn)) ∩ C1([0, T ], L2(Rn)), então podemos definir a energia
clássica relacionada ao problema

EW (u)(t) =
1

2

∫
Rn

(
|ut(t, x)|2 + |∇xu(t, x)|2

)
dx, (0.3)
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e podemos provar que E ′W (u)(t) = 0 para todo t ≥ 0, em outras palavras, temos
conservação de energia, i.e., EW (u)(t) = EW (u)(0) para todo t ≥ 0.

Estimativas de Strichartz foram provadas em um primeiro momento por W. von
Wahl com dado inicial (u0, u1) ∈ C∞0 (Rn). No artigo [55] ele provou, sem usar
operadores integrais de Fourier, que

‖(ut(t, .),∇xu(t, x))‖Lq ≤ C(1 + t)−
n−1
2 ( 1

p
− 1
q )‖(u1,∇xu0)‖Lp,r , (0.4)

para n ≥ 2 com p e q duais, i.e., 1
p

+ 1
q

= 1, onde 1 < p ≤ 2 e regularidade
r > n

(
1
p
− 1

q

)
. Para esclarecer as notações usadas nesta tese veja o guia de notações

no Capítulo 7. Técnicas modernas como operadores integrais de Fourier e o método
da fase estacionária foram usados por Strichartz [52] e [53], Littman [39], Brenner
[7] e Pecher [43] para provar a estimativa (0.4).

Outro modelo importante é o modelo clássico de Klein-Gordon introduzido em
1926,

utt −∆u+m2u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (0.5)

com (t, x) ∈ R+ ×Rn e m > 0.
O problema de Cauchy (0.5) é Hs bem posto, i.e., se u0 ∈ Hs e u1 ∈ Hs−1,

então existe para todo T positivo uma única solução

u ∈ C([0, T ], Hs(Rn)) ∩ C1([0, T ], Hs−1(Rn))

que depende continuamente dos dados iniciais (u0, u1).
Nesse problema a massa nos força a incluir na energia total, além das energias

elástica e cinética, um terceiro componente que é a energia potencial. Podemos
definir a energia total como:

EKG(u)(t) =
1

2

∫
Rn

(
|ut(t, x)|2 + |∇u(t, x)|2 +m2|u(t, x)|2

)
dx. (0.6)

Também é possível provar que E ′KG(u)(t) = 0 para todo t ≥ 0, em outras palavras,
temos também a propriedade de conservação de energia.

Em comparação com a equação da onda livre, a massa melhora o decaimento
nas estimativas de Strichartz. W. von Wahl obteve esse resultado depois de introduzir
a mundança de variável v = v(t, x, xn+1) por

v(t, x, xn+1) := exp (−imxn+1)u(t, x),

onde x ∈ Rn, xn+1 ∈ R e t ∈ R+. Essa mudança de variável pode ser encontrada
em [55]. Facilmente vemos que v é solução para a equação de onda livre (0.2) com
os dados iniciais

v0(x, xn+1) := exp (−imxn+1)u0(x), v1(x, xn+1) := exp (−imxn+1)u1(x).

Percebemos que o novo dado inicial (v0, v1) não pertence a C∞0 (Rn). Contudo, a
mudança de variável acima serve como motivação para conjecturar quais estimativas
são esperadas. É possível provar que se o dado inicial (u0, u1) ∈ C∞0 (Rn), então as
seguintes estimativas de Strichartz para o modelo clássico de Klein-Gordon

‖(ut(t, .),∇xu(t, x), u(t, .))‖Lq ≤ C(1 + t)−
n
2 ( 1

p
− 1
q )‖(u0, u1,∇xu0)‖Lp,r , (0.7)
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são válidas para n ≥ 2 com p e q duais, p ∈ (1, 2] e regularidade r = n
(

1
p
− 1

q

)
.

A abordagem usando operadores integrais de Fourier também foram aplicadas
por Pecher [43] e Hörmander [30] para o modelo de Klein-Gordon clássico para
obter as estimativas (0.7).

Para a equação de Klein-Gordon não linear relacionada com a equação clás-
sica de Klein-Gordon

utt −∆u+m2u = f(u, ut,∇xu,∇2
xu), u(0, x) = u0(x), ut(0, x) = u1(x), (0.8)

Klainerman [34] e Shatah [50] provaram existencia global de soluções para o prob-
lema de Cauchy (0.8) com dados iniciais pequenos e condições adequadas para
f .

Modelos de onda com potencial dependente do tempo

Uma pergunta natural que aparece é: o que acontece quando o termo massa
é dependente do tempo? O que podemos dizer sobre a definição da energia e quais
estimativas podemos derivar? Nesta seção vamos descrever resultados conhecidos
para o problema de Cauchy para a equação de Klein-Gordon com potencial depen-
dente do tempo.

Considere o seguinte problema de Cauchy para a equação de Klein-Gordon:

utt −∆u+m(t)2u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (0.9)

onde (t, x) ∈ R+ ×Rn.

O objetivo é definir uma energia adequada para modelos com potencial de-
pendente do tempo e estimativas para tal energia. Um modelo importante que nos
ajuda a definir esta energia é o modelo scale-invariante que foi estudado em [4] e
[5].

Modelos Scale-invariant

Definir uma energia adequada não é um trabalho trivial como podemos ver no
seguinte modelo que foi abordado em [5]. Vamos considerar o seguinte problema
de Cauchy para a equação de Klein-Gordon

utt −∆u+
µ2

(1 + t)2
u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (0.10)

com (t, x) ∈ R+ × Rn e constante real µ 6= 0 desenvolvendo um papel decisivo.
Como u∗ = u∗(t∗, x∗) := u(t, x) com 1 + t = λ(1 + t∗) e x = λx∗, λ > 0 arbitrário,
satisfaz também o problema de Cauchy, a condição scale-invariant é verificada.

Uma vez satisfeita a condição scale-invariant podemos usar a teoria de funções
especiais e introduzir a energia E(µ)(u) = E(µ)(u)(t) da seguinte forma

E(µ)(u)(t) :=
1

2

(
‖ut(t, ·)‖2

L2 + ‖∇xu(t, ·)‖2
L2 + pµ(t)2‖u(t, ·)‖2

L2

)
, (0.11)
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onde

pµ(t) =


(1 + t)−

1
2 , µ2 > 1

4
,

(1 + t)−
1
2

(
1 + ln(1 + t)

)−1
, µ2 = 1

4
,

(1 + t)−
1
2
− 1

2

√
1−4µ2 , µ2 ∈

(
0, 1

4

)
.

(0.12)

Então temos a conservação de energia generalizada

pµ(t)2E(µ)(u)(0) . E(µ)(u)(t) . E(µ)(u)(0). (0.13)

Observação 0.1. A estimativa (0.13) exclui o blow-up da energia E(µ)(u)(t) quando
t → ∞. E ainda temos a estimativa por baixo para o decaimento dessa energia.
Vemos que a energia potencial pode ser estimada da seguinte maneira:

‖u(t, ·)‖2
L2 . pµ(t)−2E(µ)(u)(0).

Se µ → +0, então pµ(t)−2 tende para (1 + t)2, um comportamento assintótico que é
conhecido para a energia potencial do problema de Cauchy para a equação da onda
livre. Se µ→∞, então pµ(t)−2 = 1 + t, então a energia potencial tem um crescimento
menor para t→∞.

A solução para o problema de Cauchy (0.10) com dados iniciais (u0, u1) ∈
S(Rn) satisfaz as estimativas de Strichartz (veja [5])

‖(ut(t, ·),∇x u(t, ·))‖Lq . (1 + t)−
n−1
2 ( 1

p
− 1
q ) (‖u0‖Lp,r+1 + ‖u1‖Lp,r) , (0.14)

‖pµ(t)u(t, ·)‖Lq . dµ(t) (‖u0‖Lp,r + ‖u1‖Lp,r−1) (0.15)

com

dµ(t) :=

max
{

(1 + t)−
n−1
2 ( 1

p
− 1
q )−

1
2 , (1 + t)−n(

1
p
− 1
q )
}
, µ2 ≥ 1

4
,

max
{

(1 + t)−
n−1
2 ( 1

p
− 1
q )−

1
2
− 1

2

√
1−4µ2 , (1 + t)−n(

1
p
− 1
q )
}
, µ2 < 1

4
,

(0.16)

onde r = n
(

1
p
− 1

q

)
, 1
p

+ 1
q

= 1 com 1 < p ≤ 2. Este resultado implica que as energias
cinética e elástica ‖∇xu(t, ·)‖Lq e ‖ut(t, ·)‖Lq medidas na norma Lq decrescem com o
decaimento do tipo onda n−1

2

(
1
p
− 1

q

)
como em (0.4).

O modelo anterior nos inspira a considerar dois casos diferentes para o po-
tencial dependente do tempo. Considere o seguinte problema de Cauchy para a
equação de Klein-Gordon

utt −∆u+m(t)2u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (0.17)

com (t, x) ∈ R+ ×Rn.

Definição 0.1. Dizemos que o termo potencial m(t)2u em (0.17) é efetivo se o coefi-
ciente dependente do tempo satisfaz

tm(t)→∞

quando t tende para∞.
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Definição 0.2. Dizemos que o termo potencial m(t)2u em (0.17) é não efetivo se o
coeficiente dependente do tempo satisfaz

lim sup
t→∞

(1 + t)

∫ ∞
t

m(s)2ds <
1

4
,

e se as derivadas de m(t)2 satisfazem as seguintes estimativas:∣∣∣ dk
dtk

m(t)2
∣∣∣ . (1 + t)−(k+2)γ

para algum 0 < γ ≤ 1, k = 1, 2 no caso γ = 1 e k = 1, 2, · · · ,m caso contrário.

Observação 0.2. A nomenclatura anterior é motivada pelo decaimento em relação
ao tempo das estimativas Lp−Lq. Se o decaimento é relacionado com o da equação
da onda livre, então dizemos que a massa é não efetiva. Se o decaimento é rela-
cionado com o da equação de Klein-Gordon, então dizemos que a massa é efetiva.

Equação da onda com potencial efetivo

A tese de doutorado [4] foi direcionada ao estudo do caso efetivo, isto é, a
autora estudou coeficientes decrescentes m = m(t) que que satisfazem entre ou-
tras propriedades limt→∞ tm(t) = ∞. Neste caso os modelos (0.17) são chamados
modelos com potencial efetivo. Em [4] foi considerado o potential efetivo com a
seguinte estrutura m(t) = λ(t)ν(t) ∈ CM(R+), M ≥ 2, com função principal λ = λ(t)
e uma pequena perturbação da massa dada por uma função oscilante ν = ν(t). Se
definirmos a energia de Klein-Gordon

E(KG) =
1

2

∫
Rn

(
|ut(t, x)|2 + |∇u(t, x)|2 +m(t)|u(t, x)|2

)
dx, (0.18)

então ocorre a conservação de energia generalizada, isto é,

λ(t)E(KG)(u)(0) . E(KG)(u)(t) . E(KG)(u)(0). (0.19)

Se m(t) = λ(t)ν(t) ∈ C∞(R+), com hipóteses adequadas para λ e ν, podemos
provar para todo t ≥ 0 a seguinte estimativa de Strichartz:

‖(ut(t, ·),∇x u(t, ·), λ(t)u(t, ·))‖Lq . (1 + t)−
n
2 ( 1

p
− 1
q ) (‖u0‖Lp,r+1 + ‖u1‖Lp,r) ,

com r = n
(

1
p
− 1

q

)
, 1
p

+ 1
q

= 1 com 1 < p ≤ 2. Este tipo de decaimento é conhecido
como decaimento do tipo Klein-Gordon n

2

(
1
p
− 1

q

)
no índice conjugado.

Decaimento do tipo onda

Considere o problema de Cauchy

utt −∆u+m(t)2u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (0.20)

onde (t, x) ∈ R+ × Rn. Seja m = m(t) ∈ C∞(R+) satisfazendo as seguintes pro-
priedades:

(B1) m(t) ∈ L1(R+),

(B2) |dktm(t)| . Ck(1 + t)−k, k = 0, 1, 2, · · · ,
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para todo t, onde Ck são constantes positivas. Então [4] mostrou o seguinte resul-
tado:

Teorema 0.1. Seja m = m(t) ∈ C∞(R+) satisfazendo (B1) e (B2). Então para todo
tempo t o decaimento Lp − Lq

‖ (ut(t, ·),∇xu(t, ·)) ‖Lq . (1 + t)−
n−1
2 ( 1

p
− 1
q ) (‖u0‖Lp,r+1 + ‖u1‖Lp,r)

acontece para r = n
(

1
p
− 1

q

)
, com 1 < p ≤ 2 e 1

p
+ 1

q
= 1.

Resultado Scattering

A teoria scattering compara o comportamento da solução do problema para
a onda livre com a solução do problema perturbado num tempo suficientemente
grande. O principal objetivo é construir um operador que mapeia dados iniciais
do problema de Cauchy para a onda livre em dados iniciais para o problema de
Cauchy perturbado. Tal operador é denominado operador de onde de Moeller.

Vamos considerar que u satisfaz o problema de Cauchy para a equação de
Klein-Gordon (0.9) e que v satisfaz o problema de Cauchy para a equação de onda
livre (0.2).
Assuma as seguintes condições

m ∈ L1(R+), m(t)(1 + t) ≤ C for t ∈ [0,∞). (0.21)

Então o seguinte resultado pode ser encontrado em [4], Teorema 3.26:

Teorema 0.2. Suponha que o coeficiente m = m(t) satisfaz (0.21). Existe um op-
erador scattering W+ = W+(D) : L2(Rn) × L2(Rn) → L2(Rn) × L2(Rn) tal que
os dados iniciais para os problemas de Cauchy (0.9) e (0.2) são relacionados por
(|D|v0, v1)T = W+(D)(〈D〉u0, u1)T . Então as soluções para os problemas (0.9) e (0.2)
satisfazem a equivalência assintótica∥∥∥(|D|v(t, ·), vt(t, ·))−

(
〈D〉 N

1+t
u(t, ·), ut(t, ·)

)∥∥∥
L2×L2

→ 0 (0.22)

quando t tende a infinito.

Algumas informações sobre a tese

O que continua aberto na tese [4] é explicar as propriedades qualitativas para
a solução do problema de Cauchy para a equação de Klein-Gordon com potencial
dependente do tempo que não são scattering a equação de onda livre e que são
não efetivos de acordo com a Definição 0.2. Exemplo típicos são potenciais decres-
cente satisfazendo m /∈ L1(R+) e limt→∞ tm(t) = 0. Essa tese se concentra nesse
tópico, i.e., o objetivo é definir uma energia adequada e derivar estimativas para tal
energia para problemas de Cauchy para equação de Klein-Gordon com potenciais
dependentes do tempo não efetivos.

Para alcançar esse objetivo vamos aplicar uma mudança de variável no prob-
lema de Cauchy para a equação de Klein-Gordon e transformá-lo em um problema
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de Cauchy com dissipação dependente do tempo e usar resultados conhecidos para
o esse caso, veja [59]. Na próxima seção vamos descrever alguns resultados para
o problema de Cauchy para a equação da onda com dissipação dependente do
tempo.

Equação da onda com dissipação dependente do tempo

Um outro problema de interesse é o problema de Cauchy para a equação da
onda com dissipação dependente do tempo

utt −∆u+ b(t)ut = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (0.23)

onde (t, x) ∈ R+ ×Rn. Se b(t) = µ(1 + t)−1 com µ > 0, isto é, estamos interessados
no caso modelo scale-invariant, podemos encontrar em [58] as seguintes estimativas
Lp − Lq:

‖(ut(t, ·),∇xu(t, ·))‖Lq . (1 + t)max{−n−1
2 ( 1

p
− 1
q )−

µ
2
,−n( 1

p
− 1
q )−1}(‖u0‖Lp,r+1 + ‖u1‖Lp,r

)
,

onde r = n
(

1
p
− 1

q

)
, 1
p

+ 1
q

= 1, com 1 < p ≤ 2.

Então percebemos que o parâmetro µ influência no decaimento. Esse caso separa
o caso efetivo do caso não efetivo, aqui dizemos que a dissipação é efetiva se as
estimativas Lp − Lq para a energia tem o decaimento no tempo relacionado com a
equação de dissipação com coeficiente constante e dizemos que a dissipação é não
efetiva se as estimativas Lp − Lq tem um decaimento no tempo relacionado com a
da equação da onda livre. Wirth provou estimativas Lp − Lq para ambos os casos
em [59] e [60], respectivamente. O caso importante para nós é o caso não efetivo,
i.e., se o coeficiente b = b(t) decai mais rapidamente que o termo do caso crítico
b(t) = µ(1 + t)−1. Temos a seguinte estimativa Lp − Lq para o caso não efetivo:

‖(ut(t, ·),∇xu(t, ·))‖Lq .
1

λ(t)
(1 + t)−

n−1
2 ( 1

p
− 1
q )
(
‖u0‖Lp,r+1 + ‖u1‖Lp,r

)
,

onde r = n
(

1
p
− 1

q

)
, 1
p

+ 1
q

= 1, com 1 < p ≤ 2. Aqui

λ(t) = exp
(1

2

∫ t

0

b(τ)dτ
)
.

Além disso, se b ∈ L1, então Wirth provou um resultado scattering, que as soluções
se comportam assintoticamente como as soluções para equação de onda livre.

Se considerarmos v como a solução da onda livre (0.2), então Wirth provou o
seguinte resultado scattering modificado.

Theorem 0.1. Para qualquer dado inicial (u1, u2) ∈ H1(Rn) × L2(Rn) existe um o-
perador linear, limitado W+(D) : L2(Rn) × L2(Rn) → L2(Rn) × L2(Rn) tal que para
o dado inicial de Cauchy (u0, u1) ∈ H1(Rn) × L2(Rn) de (0.23) e um dado inicial
associado (v0, v2) = W+(u0, u1) para (0.2) as soluções correspondentes u = u(t, x) e
v = v(t, x) satisfazem

‖λ(t)(ut(t, ·),∇xu(t, ·))− (vt(t, ·),∇xv(t, ·))‖L2 → 0 (0.24)

quando t→∞.
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Objetivo desta tese

Nesta tese estamos interessados em resultados sobre o comportamento a longo
prazo para soluções do problema de Cauchy para a equação de Klein-Gordon com
potencial não efetivo dependente do tempo

utt −∆u+m(t)2u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (0.25)

onde (t, x) ∈ R+×Rn. Mais precisamente, focamos em resultados sobre conservação
de energia generalizada, scattering e scattering modificado e estimativas Lp − Lq.

Também estamos interessados em estabelecer resultados para o seguinte prob-
lema semi-linear de Cauchy scale-invariante com massa e dissipação

utt −∆u+
µ1

1 + t
ut +

µ2
2

(1 + t)2
u = |u|p, u(0, x) = u0(x), ut(0, x) = u1(x), (0.26)

onde (t, x) ∈ R+ ×Rn. O objetivo é entender a interação entre µ1 e µ2 para provar
existencia global no tempo de soluções de energia para dados iniciais pequenos em
um espaço adequado e para valores apropriados de p > 1. Resultado de blow-up
também será provado para uma escolha especial de µ1 e µ2.

Conteúdo desta tese

O conteúdo desta tese é apresentado como se segue: No Capítulo 2 estudamos
o problema de Klein-Gordon com potencial dependente do tempo permitindo “os-
cilações muito lentas" (de acordo com a classificação de [45, 46]) focando em re-
sultados sobre conservação de energia generalizada e resultados scattering. No
Capítulo 3 nós estabelecemos estimativas de decaimento Lp − Lq para o problema
de Cauchy para a equação de Klein-Gordon com massa não efetiva dependente do
tempo. Iniciamos o Capítulo 4 provando a otimalidade das estimativas obtidas no
Capítulo 2 e derivamos estimativas de Strichartz para o problema de Cauchy com
massa e dissipação não efetivas dependentes do tempo. No Capítulo 5 focamos
na aplicação de propriedades Cm e condição de estabilização para considerar “os-
cilações muito rápidas" (de acordo com a classificação de [45, 46]) no coeficiente
do termo da massa. Completamos esta tese considerando um problema semi-linear
de Cauchy, scale-invariant com massa e dissipação dependentes do tempo. No
Capítulo 6 usamos a teoria de funções especiais para provar estimativas lineares e
consequentemente estabelecer existência global no tempo para tal problema semi-
linear. Um resultado de blow-up completa nossas considerações.

Resultados selecionados

Resultados para modelos lineares: Vamos completar esta introdução apresen-
tando os resultados desta tese. Por questões de simplicidade vamos assumir que o
coeficiente da massa m = m(t) ∈ Cm(R+) e satisfaz

|m(t)| . 1

(1 + t)γ
, |m(k)(t)| . m(t)

(1 + t)γk

para todo k ≤ m e 0 < γ ≤ 1.
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Resultado 0.1. Se (1+ t)m(t)2 ∈ L1, então para qualquer dado inicial (u0, u1) ∈ H1×
L2, existe um operador linear limitado W+(D) : L2(Rn)×L2(Rn)→ L2(Rn)×L2(Rn)
tal que

lim
t→∞

∥∥∥(|D|v(t, ·), vt(t, ·))−
(
〈D〉 N

1+t
u(t, ·), ut(t, ·)

)∥∥∥
L2×L2

= 0. (0.27)

Onde u = u(t, x) é a solução do problema de Cauchy para a equação de Klein-
Gordon e v = v(t, x) é a solução do problema de Cauchy para a equação de onda
livre.

Para potenciais não efetivos e não scattering ((1 + t)m(t)2 /∈ L1) temos a
seguinte afirmação:

Resultado 0.2. Suponha γ = 1 (oscilações muito lentas) e que

m(t)2 =
µ2

(1 + t)2g(t)
,

onde 0 < µ < 1
4

e g ∈ C∞(R+) é uma função positiva, crescente com g(0) = 1 e

|g(k)(t)| . g(t)

(1 + t)k
para todo k ∈ N.

Então existe uma função positiva ψ = ψ(t) ∈ C∞(R+) tal que

lim sup
t→∞

2(1 + t)
ψ′(t)

ψ(t)
< 1,

∣∣∣ψ(k)(t)

ψ(t)

∣∣∣ . 1

(1 + t)k

e ∫ ∞
0

(1 + τ)
∣∣ψ′′(t)
ψ(t)

+m(τ)2
∣∣dτ . 1

e nós temos a estimativa Lp−Lq para as energias cinética, elástica e potencial como
se segue:

‖(ut(t, ·),∇xu(t, ·), p(t)u(t, ·))‖Lq . (1 + t)−
n−1
2 ( 1

p
− 1
q )
(
‖u0‖Lp,r+1 + ‖u1‖Lp,r

)
para p ∈ (1, 2], p e q duais, p(t) = (1 + t)−1ψ(t) e regularidade r = n

(
1
p
− 1

q

)
.

Resultado 0.3. Suponha 0 < γ < 1 (oscilações muito rápidas) e

m(t)2 =
µ2

(1 + t)2g(t)
+ δ(t),

onde µ2

(1+t)2g(t)
é a função principal como no Resultado 1.2 e δ é uma função periódica

limitada (função de perturbação) tal que a condição de estabilidade∣∣∣ ∫ ∞
t

δ(s)ds
∣∣∣ ≤ ν(1 + t)α−2,

com α ∈ [0, 1), ν ≤ µ2 < 2−α
12

e γ = α + 1−α
m+1

é satisfeita. Então temos a seguinte
estimativa para a energia da solução:

‖ (ut(t, ·),∇xu(t, ·), p(t)u(t, ·)) ‖L2 . ‖u0‖H1 + ‖u1‖L2 ,

onde p(t) = η(t)
1+t

e η são definidos em (5.5).
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Vamos considerar o seguinte problema de Cauchy para a equação de Klein-
Gordon com dissipação

utt −∆u+ b(t)ut +m(t)u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (0.28)

onde (t, x) ∈ R+ × Rn, b = b(t) é o coeficiente da dissipação e m = m(t) é o
coeficiente do termo da massa satisfazendo as seguintes hipóteses:

Resultado 0.4. Suponha que b,m ∈ C`(R+) e que para todo k ≤ ` acontece∣∣∣∣ dkdtk b(t)
∣∣∣∣ ≤ Ck

(
1

1 + t

)k+1

e
∣∣∣∣ dkdtkm(t)

∣∣∣∣ ≤ Ck

(
1

1 + t

)k+2

e

lim
t→∞

(1 + t)b(t) = b0 and lim
t→∞

(1 + t)2m(t) = m0 (0.29)

existem e que∫ ∞
1

|tb(t)− b0|σ

t
dt <∞ and

∫ ∞
0

|t2m(t)−m0|σ

t
dt <∞,

seja verdadeiro com o expoente σ satisfazendo

(A1) σ = 1 ou (A2) σ ∈ (1, 2].

Se
σ = 1 e b0(b0 − 2) ≤ 4m0 (0.30)

ou
σ ∈ (1, 2] e b0(b0 − 2) ≤ 4m0 < (b0 − 1)2, (0.31)

então a estimativa Lp − Lq∥∥((1 + t)−1u(t, ·), ut(t, ·),∇xu(t, ·)
)∥∥

Lq
.

1

λ(t)
(1 + t)−

n−1
2

(
1
p
− 1
q

)(
‖u0‖Lp,r+1 + ‖u1‖Lp,r

)
acontece para p ∈ (1, 2], p e q duais com regularidade r = n

(
1
p
− 1

q

)
, onde

λ(t) = exp
(1

2

∫ t

0

b(τ)dτ
)
.

Resultados para modelos semi-lineares: Considere o problema semi-linear de
Cauchy com massa e dissipação scale-invariant

utt −∆u+
µ1

1 + t
ut +

µ2
2

(1 + t)2
u = |u|p, u(0, x) = u0(x), ut(0, x) = u1(x), (0.32)

com (t, x) ∈ [0,∞)×Rn, p > 1 e µ1 > 0, µ2 constantes reais. Defina

∆ = (µ1 − 1)2 − 4µ2
2

e o espaço de funções
Dm = (H1 ∩ Lm)× (L2 ∩ Lm),

com m ∈ [1, 2) e norma ‖(u, v)‖2
Dm = ‖u‖2

Lm + ‖u‖2
H1 + ‖v‖2

Lm + ‖v‖2
H1 .
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Resultado 0.5. Seja n ≤ 4, ∆ ≤ 0 e suponha que µ1 > 2 e
p ≥ 2 se n = 1, 2,

2 ≤ p ≤ 3 se n = 3,
p = 2 = pGN(4) se n = 4.

(0.33)

Existe uma constante positiva ε0 > 0 tal que para todo (u0, u1) ∈ D1 com

‖(u0, u1)‖D1 ≤ ε0

existe uma única solução de energia para (0.32) em C([0,∞), H1) ∩ C1([0,∞), L2).
Além do mais, existe uma constante C > 0 tal que a sulução satisfaz as estimativas
de decaimento

‖(ut(t, ·),∇xu(t, ·))‖L2 ≤ C(1 + t)−
µ1
2 (1 + ln(1 + t))γ‖(u0, u1)‖D1 ,

‖u(t, ·)‖L2 ≤ C(1 + t)−
µ1
2 q̃∆(t)‖(u0, u1)‖D1 ,

onde γ = 1 se ∆ = 0, γ = 0 se ∆ < 0 e

q̃0(t) =

{
1 + ln(1 + t) para n > 1,

(ln(1 + t))
1
2 (1 + ln(1 + t)) para n = 1,

e

q̃∆(t) =

{
1 para n > 1,

(ln(1 + t))
1
2 para n = 1,

para ∆ < 0.

Resultado 0.6. (Resultado Blow-up) Suponha que u ∈ C2 ([0, T )×Rn) seja a solução
para o problema de Cauchy (0.32) com ∆ = 1 e dado inicial (u0, u1) ∈ C2

0(Rn) ×
C1

0(Rn) tais que u0, u1 > 0. Se
p ∈ (1, pµ1(n)],

então T <∞, onde

pµ1(n) = max
{
pFuj

(
n− 1 +

µ1

2

)
; p0(n+ µ1)

}
. (0.34)

Aqui pFuj(n) e p0(n) denotam os expoentes de Fujita e Strauss, respectivamente (veja
Capítulo 6).
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1 Introduction

1.1 Motivation

Hyperbolic equations are used in physics to describe evolutionary processes
with the property that information propagate with a finite speed. These processes can
be found in several areas for example in the Theory of Electromagnetic Waves and
Electrodynamics. One of the standard models is the free wave equation

utt − c2∆u = 0,

which describes a vibrating string for n = 1, membrane for n = 2, or elastic solid for
n = 3. Here c denotes the speed of propagation and ∆ =

∑n
i=1 ∂

2
i the Laplacian with

respect to the spatial variables.
Another model of interest is the Klein-Gordon equation

utt − c2∆u+
(mc2

h

)2

u = 0, (1.1)

where h is related to the Planck constant and m is a constant mass of the particle.
This model was introduced by Gordon (1926) and Klein (1927) deriving a relativistic
equation for a charged particle in an electromagnetic field. This equation is also used
to describe dispersive wave phenomena in general, see [17].

We will discuss known properties of these two, and, of more general models, in
the following sections.

1.2 Some classical wave models with and without mass

Let us at the beginning recall some results on free wave models. Consider the
following Cauchy problem for the free wave equation:

utt −∆u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (1.2)

with (t, x) ∈ R+×Rn. The Cauchy problem (1.2) is Hs well-posed, i.e., if u0 ∈ Hs and
u1 ∈ Hs−1, then there exists for all positive T a unique solution u ∈ C([0, T ], Hs(Rn))∩
C1([0, T ], Hs−1(Rn)) that depends continuously on the data (u0, u1).

If u ∈ C([0, T ], H1(Rn)) ∩ C1([0, T ], L2(Rn)), then we can define the classical
energy

EW (u)(t) =
1

2

∫
Rn

(
|ut(t, x)|2 + |∇xu(t, x)|2

)
dx, (1.3)

and we can prove that E ′W (u)(t) = 0 for all t ≥ 0, in other words, we have conserva-
tion of the energy, i.e., EW (u)(t) = EW (u)(0) for all t ≥ 0.
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Strichartz estimates were proved in a first moment by W. von Wahl with data
(u0, u1) ∈ C∞0 . In the paper [55] he proved, without using Fourier integral operators,
that

‖(ut(t, .),∇xu(t, x))‖Lq ≤ C(1 + t)−
n−1
2 ( 1

p
− 1
q )‖(u1,∇xu0)‖Lp,r , (1.4)

for n ≥ 2 with p and q from the conjugate line, i.e., 1
p

+ 1
q

= 1, with 1 < p ≤ 2

and regularity r > n
(

1
p
− 1

q

)
. To clarify the notations used in this thesis see the

notation-guide in Chapter 7. Modern techniques like Fourier integral operators and
the method of stationary phase were used by Strichartz [52] and [53], Littman [39],
Brenner [7] and Pecher [43] to prove the estimate (1.4).

Another important classical wave model was introduced by Klein/Gordon in
1926,

utt −∆u+m2u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (1.5)

with (t, x) ∈ R+ ×Rn and m > 0. This problem is the so-called Cauchy problem to
the Klein-Gordon equation.

The Cauchy problem (1.5) is Hs well-posed, i.e., if u0 ∈ Hs and u1 ∈ Hs−1, then
there exists for all positive T a unique solution

u ∈ C([0, T ], Hs(Rn)) ∩ C1([0, T ], Hs−1(Rn))

that depends continuously on the data (u0, u1).
In this problem the mass term forces us to include into the total energy besides

the elastic and the kinetic energy a third component, which is the potential energy.
We can define the total energy

EKG(u)(t) =
1

2

∫
Rn

(
|ut(t, x)|2 + |∇u(t, x)|2 +m2|u(t, x)|2

)
dx. (1.6)

Here we can also prove that E ′KG(u)(t) = 0 for all t ≥ 0, in other words, we have the
property of conservation of the energy, too.

In comparison to the free wave equation the mass term has an improving char-
acter on the decay rate in Strichartz’ estimates. W. von Wahl obtained this improve-
ment after introducing v = v(t, x, xn+1) by

v(t, x, xn+1) := exp (−imxn+1)u(t, x),

where x ∈ Rn, xn+1 ∈ R and t ∈ R+. This change of variables can be found in [55].
Easily we see that v is the solution to the free wave equation (1.2) with non-standard
Cauchy data

v0(x, xn+1) := exp (−imxn+1)u0(x), v1(x, xn+1) := exp (−imxn+1)u1(x).

Hence, the new data (v0, v1) do not belong to C∞0 (Rn). However, the above change
of variable is a motivation to guess which kind of estimates do we expect. It’s possible
to prove that if the Cauchy data (u0, u1) ∈ C∞0 (Rn), then the Strichartz estimates for
the classical Klein-Gordon model

‖(ut(t, .),∇xu(t, x), u(t, .))‖Lq ≤ C(1 + t)−
n
2 ( 1

p
− 1
q )‖(u0, u1,∇xu0)‖Lp,r , (1.7)
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are valid for n ≥ 2 with p and q from the conjugate line, p ∈ (1, 2] and regularity
r = n

(
1
p
− 1

q

)
.

The approach using Fourier integral operators was also applied by Pecher [43]
and Hörmander [30] to the classical Klein-Gordon model to obtain the estimate (1.7).

For the non-linear Klein-Gordon equation related with the classical linear Klein-
Gordon equation

utt −∆u+m2u = f(u, ut,∇xu,∇2
xu), u(0, x) = u0(x), ut(0, x) = u1(x), (1.8)

Klainerman [34] and Shatah [50] proved the global existence of solutions to the
Cauchy problem (1.8) with small data and suitable conditions for f .

1.3 Wave models with time-dependent potential

The natural question that appears is: what happens when the mass term is time-
dependent? What can we say about the definition and estimates for the energy? In
this section we will write known results for the Klein-Gordon Cauchy problem with
time-dependent potential.

Consider the following Cauchy problem for the Klein-Gordon equation

utt −∆u+m(t)2u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (1.9)

where (t, x) ∈ R+ ×Rn.
We are looking for a suitable energy for models with time-dependent potential

and estimates for a suitable energy. An important model that helps us to define such
an energy is the scale-invariant model. It was studied in [4] in 2011 and [5] in 2012.

1.3.1 Scale-invariant models

To define a suitable energy is not a trivial thing as the following model from [5]
shows: Let us consider the following Cauchy problem for Klein-Gordon equation

utt −∆u+
µ2

(1 + t)2
u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (1.10)

with (t, x) ∈ R+ × Rn and a real constant µ 6= 0 playing a decisive role. Since
u∗ = u∗(t∗, x∗) := u(t, x) with 1 + t = λ(1 + t∗) and x = λx∗, λ > 0 arbitrarily, solves
also the Cauchy problem, a scale-invariant condition is verified.

Once satisfied the scale-invariant condition we can apply the theory of special
function and introduce the energy E(µ)(u) = E(µ)(u)(t) in the form

E(µ)(u)(t) :=
1

2

(
‖ut(t, ·)‖2

L2 + ‖∇xu(t, ·)‖2
L2 + pµ(t)2‖u(t, ·)‖2

L2

)
, (1.11)

where

pµ(t) =


(1 + t)−

1
2 , µ2 > 1

4
,

(1 + t)−
1
2

(
1 + ln(1 + t)

)−1
, µ2 = 1

4
,

(1 + t)−
1
2
− 1

2

√
1−4µ2 , µ2 ∈

(
0, 1

4

)
.

(1.12)
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Then the generalized energy conservation

pµ(t)2E(µ)(u)(0) . E(µ)(u)(t) . E(µ)(u)(0) (1.13)

holds.

Remark 1.1. The estimate (1.13) excludes a blow-up behavior of the energy E(µ)(u)(t)
for t → ∞. Moreover, it yields a lower bound of the decay behavior for this energy.
We see that the potential energy can be estimated in the following way:

‖u(t, ·)‖2
L2 . pµ(t)−2E(µ)(u)(0).

If µ → +0, then pµ(t)−2 tends to (1 + t)2, an asymptotic profile which is known for
the potential energy of solutions to the Cauchy problem for the free wave equation. If
µ→∞, then pµ(t)−2 = 1 + t, so the potential energy has a smaller growth for t→∞.

The solutions to the Cauchy problem (1.10) with Cauchy data (u0, u1) ∈ S(Rn)
satisfy the Strichartz estimates (see [5])

‖(ut(t, ·),∇x u(t, ·))‖Lq . (1 + t)−
n−1
2 ( 1

p
− 1
q ) (‖u0‖Lp,r+1 + ‖u1‖Lp,r) , (1.14)

‖pµ(t)u(t, ·)‖Lq . dµ(t) (‖u0‖Lp,r + ‖u1‖Lp,r−1) (1.15)

with

dµ(t) :=

max
{

(1 + t)−
n−1
2 ( 1

p
− 1
q )−

1
2 , (1 + t)−n(

1
p
− 1
q )
}
, µ2 ≥ 1

4
,

max
{

(1 + t)−
n−1
2 ( 1

p
− 1
q )−

1
2
− 1

2

√
1−4µ2 , (1 + t)−n(

1
p
− 1
q )
}
, µ2 < 1

4
,

(1.16)

where r = n
(

1
p
− 1

q

)
, 1
p

+ 1
q

= 1 with 1 < p ≤ 2. This result implies that the elastic and
kinetic energies ‖∇xu(t, ·)‖Lq and ‖ut(t, ·)‖Lq measured in the Lq norm decrease with
the wave type decay rate n−1

2

(
1
p
− 1

q

)
as in (1.4).

The previous models inspire us to consider two different cases for the time-
dependent potential. Consider the following Cauchy problem for the Klein-Gordon
equation

utt −∆u+m(t)2u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (1.17)

where (t, x) ∈ R+ ×Rn.

Definition 1.1. We say that the potential term m(t)2u in (1.17) is effective if the time-
dependent coefficient satisfies

tm(t)→∞
as t tends to∞.

Definition 1.2. We say that the potential term m(t)2u in (1.17) is non-effective if the
time-dependent coefficient satisfies

lim sup
t→∞

(1 + t)

∫ ∞
t

m(s)2ds <
1

4
,

and if the derivatives of m(t)2 satisfy the following estimates:∣∣∣ dk
dtk

m(t)2
∣∣∣ . (1 + t)−(k+2)γ

for some 0 < γ ≤ 1, k = 1, 2 in the case γ = 1 and k = 1, 2, · · · ,m otherwise.
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Remark 1.2. The above classification is inspired by the time decay behavior of the
Lp−Lq estimates. If the decays are related with the decays of the free wave equation,
then we call the mass non-effective. If the decays are related with the decays of the
classical Klein-Gordon equation, then we call the mass effective.

1.3.2 Wave models with effective potential

The PhD thesis [4] are devoted to study the effective case. The author studies
decreasing coefficientsm = m(t) which satisfy among other things limt→∞ tm(t) =∞.
In this case models (1.17) are called models with effective potential . In [4] the case
was considered, where m(t) = λ(t)ν(t) ∈ CM(R+), M ≥ 2, with the shape function
λ = λ(t) and a small perturbation of the mass given by the oscillating function ν =
ν(t). If we define the Klein-Gordon energy

E(KG) =
1

2

∫
Rn

(
|ut(t, x)|2 + |∇u(t, x)|2 +m(t)|u(t, x)|2

)
dx, (1.18)

then the generalized energy conservation holds, that is,

λ(t)E(KG)(u)(0) . E(KG)(u)(t) . E(KG)(u)(0). (1.19)

If m(t) = λ(t)ν(t) ∈ C∞(R+), under suitable hypothesis for λ and ν, we can prove
for all t ≥ 0 the following Strichartz estimates:

‖(ut(t, ·),∇x u(t, ·), λ(t)u(t, ·))‖Lq . (1 + t)−
n
2 ( 1

p
− 1
q ) (‖u0‖Lp,r+1 + ‖u1‖Lp,r) ,

where r = n
(

1
p
− 1

q

)
, 1
p

+ 1
q

= 1 with 1 < p ≤ 2. This type of decay estimate is known
as Klein-Gordon type decay estimate with the Klein-Gordon decay rate n

2

(
1
p
− 1

q

)
on

the conjugate line.

1.3.3 Wave type decay estimates

We consider the Klein-Gordon Cauchy problem

utt −∆u+m(t)2u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (1.20)

where (t, x) ∈ R+ ×Rn. Let m = m(t) ∈ C∞(R+) satisfying the following properties:

(B1) m(t) ∈ L1(R+),

(B2) |dktm(t)| . Ck(1 + t)−k, k = 0, 1, 2, · · · ,

for all t, where Ck are positive constants. Then [4] shows the following result:

Theorem 1.1. Let m = m(t) ∈ C∞(R+) satisfy (B1) and (B2). Then for all times t
the Lp − Lq decay estimate

‖ (ut(t, ·),∇xu(t, ·)) ‖Lq . (1 + t)−
n−1
2 ( 1

p
− 1
q ) (‖u0‖Lp,r+1 + ‖u1‖Lp,r)

holds for r = n
(

1
p
− 1

q

)
, with 1 < p ≤ 2 and 1

p
+ 1

q
= 1.
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1.3.4 Scattering result

The scattering theory compares the behavior of the solution of the free wave
problem to the solution of the perturbed problem in distant time. The main goal is
construct an operator that maps initial data of Cauchy problem to initial data of an
perturbed Cauchy problem. This operator is denoted as Moeller wave operator.

O principal objetivo é construir um operador que mapeia dados iniciais do
problema de Cauchy para a onda livre em dados iniciais para o problema de Cauchy
perturbado. Tal operador é denominado operador de onde de Moeller.

Let us consider that u solves the Cauchy problem for the Klein-Gordon equation
(1.9) and that v solves the Cauchy problem for free the wave equation (1.2).
Let us assume the conditions

m ∈ L1(R+), m(t)(1 + t) ≤ C for t ∈ [0,∞). (1.21)

Then the following result can be found in [4], Theorem 3.26:

Theorem 1.2. Let the coefficient m = m(t) satisfy (1.21). There exists a scattering
operator W+ = W+(D) : L2(Rn)× L2(Rn)→ L2(Rn)× L2(Rn) such that the Cauchy
data to the problems (1.9) and (1.2) are related by (|D|v0, v1)T = W+(D)(〈D〉u0, u1)T .
Then for the solutions of the problems (1.9) and (1.2) the asymptotic equivalence∥∥∥(|D|v(t, ·), vt(t, ·))−

(
〈D〉 N

1+t
u(t, ·), ut(t, ·)

)∥∥∥
L2×L2

→ 0 (1.22)

holds as t tends to infinity.

1.4 Some more information about the thesis

What remains open in the thesis [4] is to explain qualitative properties of so-
lutions to the Klein-Gordon Cauchy problem with a time-dependent potential which
does not allow on the one hand scattering to free waves and in the other hand
effective mass. Typical examples are decreasing m(t) satisfying m /∈ L1(R+) and
limt→∞ tm(t) = 0. The present thesis concerns with this topic, i.e., the goal is to
define a suitable energy and derive estimates for this energy for the Klein-Gordon
Cauchy problem with non-effective time-dependent potential.

To achieve this goal we will apply a change of variable in the Klein-Gordon
time-dependent Cauchy problem and transform it into a damped time-dependent
Cauchy problem and use known results for this case, see [59]. In the next section
we will collect some results on the Cauchy problem for the wave equation with time-
dependent dissipation.

1.4.1 Some more explanations about the background

A further problem of interest is the Cauchy problem for the wave equation with
time-dependent dissipation

utt −∆u+ b(t)ut = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (1.23)
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where (t, x) ∈ R+ × Rn. If b(t) = µ(1 + t)−1 with µ > 0, that is, we are interested in
the scale-invariant case, we can find in [58] the following Lp − Lq estimates:

‖(ut(t, ·),∇xu(t, ·))‖Lq . (1 + t)max{−n−1
2 ( 1

p
− 1
q )−

µ
2
,−n( 1

p
− 1
q )−1}(‖u0‖Lp,r+1 + ‖u1‖Lp,r

)
,

where r = n
(

1
p
− 1

q

)
, 1
p

+ 1
q

= 1, with 1 < p ≤ 2.

Thus, it appears that the parameter µ influences the decay rate. This case separates
the effective case from the non-effective case, here we say that the dissipation is
effective if the time decays of the Lp−Lq estimates for the energy are related with the
decays of the wave equation with constant coefficients and we say that the dissipation
is effective if the time decays of the Lp − Lq estimates for the energy are related with
decays of the free wave equation. Wirth proved Lp − Lq estimates for both cases in
[59] and [60], respectively. The important case for us is the non-effective case, i.e.,
if the coefficient b = b(t) decays faster than the critical term b(t) = µ(1 + t)−1. This
implies the following Lp − Lq decay estimate:

‖(ut(t, ·),∇xu(t, ·))‖Lq .
1

λ(t)
(1 + t)−

n−1
2 ( 1

p
− 1
q )
(
‖u0‖Lp,r+1 + ‖u1‖Lp,r

)
,

where r = n
(

1
p
− 1

q

)
, 1
p

+ 1
q

= 1, with 1 < p ≤ 2. Here

λ(t) = exp
(1

2

∫ t

0

b(τ)dτ
)
.

Moreover, if b ∈ L1, then Wirth proved a scattering result, that the solutions behave
asymptotically like the solutions of the free wave equation.

If we consider v as a solution of the free wave equation (1.2), then Wirth proved
the following modified scattering result.

Theorem 1.3. For any initial data (u1, u2) ∈ H1(Rn) × L2(Rn) there exists a linear,
bounded operator W+(D) : L2(Rn)×L2(Rn)→ L2(Rn)×L2(Rn) such that for Cauchy
data (u0, u1) ∈ H1(Rn)× L2(Rn) of (1.23) and associated data (v0, v2) = W+(u0, u1)
to (1.2) the corresponding solutions u = u(t, x) and v = v(t, x) satisfy

‖λ(t)(ut(t, ·),∇xu(t, ·))− (vt(t, ·),∇xv(t, ·))‖L2 → 0 (1.24)

as t→∞.

1.5 Objectives of this thesis

In this thesis we are interested in statements about the long-time behaviour of
the solutions to Klein-Gordon problems with time-dependent non-effective potential

utt −∆u+m(t)2u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (1.25)

where (t, x) ∈ R+×Rn. More precisely, we focus on results about generalized energy
conservation, scattering and modified scattering states and Lp − Lq estimates.

We are also interested to establish results for the following semi-linear scale-
invariant Cauchy problem with mass and dissipation

utt −∆u+
µ1

1 + t
ut +

µ2
2

(1 + t)2
u = |u|p, u(0, x) = u0(x), ut(0, x) = u1(x), (1.26)
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where (t, x) ∈ R+×Rn. The goal is to understand the interplay between µ1 and µ2 to
prove the global existence in time of small data energy solutions in a suitable function
space and for appropriate p > 1. We will also prove blow-up results for a special
choice of µ1 and µ2.

1.5.1 Content of this thesis

The content is as follows: In Chapter 2 we study a Klein-Gordon problem with
time-dependent potential allowing “very slow oscillations" (according with the defini-
tions in [45] and [46]) with focus on results about generalized energy conservation
and scattering results. In Chapter 3 we will derive Lp − Lq decay estimates for the
Klein-Gordon Cauchy problem with non-effective time-dependent mass. In Chapter
4 we start proving the sharpness of the energy estimate obtained in Chapter 2 and we
derive Strichartz estimates for the Cauchy problem with non-effective time-dependent
damping and mass. In Chapter 5 we focus to apply Cm properties and stabilization
conditions to consider “very fast oscillations" (according with the definitions in [45]
and [46]) in the coefficient of the mass term. We complete this thesis by considering
a semi-linear scale-invariant time-dependent Cauchy problem with mass and dissi-
pation. In Chapter 6 we use the special function theory to prove linear estimates and
consequently establish global existence in time for this semi-linear problem. Blow-up
results complete our considerations.

1.5.2 Selected Results

Results for linear models: We will complete this introduction with selected results of
this thesis. For simplicity we will assume that the mass coefficient m = m(t) ∈ Cm(R+)
and satisfies

|m(t)| . 1

(1 + t)γ
, |m(k)(t)| . m(t)

(1 + t)γk

for all k ≤ m and 0 < γ ≤ 1.

Result 1.1. If (1 + t)m(t)2 ∈ L1, then for any initial data (u0, u1) ∈ H1 × L2, there
exists a linear, bounded operator W+(D) : L2(Rn)×L2(Rn)→ L2(Rn)×L2(Rn) such
that

lim
t→∞

∥∥∥(|D|v(t, ·), vt(t, ·))−
(
〈D〉 N

1+t
u(t, ·), ut(t, ·)

)∥∥∥
L2×L2

= 0. (1.27)

Here u = u(t, x) is the solution to the Klein-Gordon Cauchy problem and v = v(t, x)
is the solution to the free wave equation.

For non-effective and non-scattering ((1 + t)m(t)2 /∈ L1) potential we have the
following statement:

Result 1.2. Assume γ = 1 (very slow oscillations) and that

m(t)2 =
µ2

(1 + t)2g(t)
,

where 0 < µ < 1
4

and g ∈ C∞(R+) is a positive, increasing function with g(0) = 1 and

|g(k)(t)| . g(t)

(1 + t)k
for all k ∈ N.
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Then there exists a positive function ψ = ψ(t) ∈ C∞(R+) such that

lim sup
t→∞

2(1 + t)
ψ′(t)

ψ(t)
< 1,

∣∣∣ψ(k)(t)

ψ(t)

∣∣∣ . 1

(1 + t)k

and ∫ ∞
0

(1 + τ)
∣∣ψ′′(t)
ψ(t)

+m(τ)2
∣∣dτ . 1

and we have the Lp − Lq estimates for the kinetic, elastic and potential energy as
follows:

‖(ut(t, ·),∇xu(t, ·), p(t)u(t, ·))‖Lq . (1 + t)−
n−1
2 ( 1

p
− 1
q )
(
‖u0‖Lp,r+1 + ‖u1‖Lp,r

)
for p ∈ (1, 2], p and q on the conjugate line, p(t) = (1 + t)−1ψ(t), and with regularity
r = n

(
1
p
− 1

q

)
.

Result 1.3. Assume 0 < γ < 1 (very fast oscillations) and

m(t)2 =
µ2

(1 + t)2g(t)
+ δ(t),

where µ2

(1+t)2g(t)
is the shape function as in Result 1.2 and δ is a bounded oscillating

function (perturbation function) such that the stabilization condition∣∣∣ ∫ ∞
t

δ(s)ds
∣∣∣ ≤ ν(1 + t)α−2,

with α ∈ [0, 1), ν ≤ µ2 < 2−α
12

and γ = α+ 1−α
m+1

holds true. Then we have the following
energy estimate for the solution:

‖ (ut(t, ·),∇xu(t, ·), p(t)u(t, ·)) ‖L2 . ‖u0‖H1 + ‖u1‖L2 ,

where p(t) = η(t)
1+t

and η is defined in (5.5).

Let us consider the following Cauchy problem for damped Klein-Gordon equa-
tions

utt −∆u+ b(t)ut +m(t)u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (1.28)

where (t, x) ∈ R+×Rn, b = b(t) is the coefficient in the dissipative term and m = m(t)
is the coefficient in the mass term under the following assumptions:

Result 1.4. Suppose that b,m ∈ C`(R+) and that for all k ≤ ` it holds∣∣∣∣ dkdtk b(t)
∣∣∣∣ ≤ Ck

(
1

1 + t

)k+1

and
∣∣∣∣ dkdtkm(t)

∣∣∣∣ ≤ Ck

(
1

1 + t

)k+2

and

lim
t→∞

(1 + t)b(t) = b0 and lim
t→∞

(1 + t)2m(t) = m0 (1.29)
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exist and that∫ ∞
1

|tb(t)− b0|σ

t
dt <∞ and

∫ ∞
0

|t2m(t)−m0|σ

t
dt <∞,

holds true with an exponent σ satisfying

(A1) σ = 1 or (A2) σ ∈ (1, 2].

If
σ = 1 and b0(b0 − 2) ≤ 4m0 (1.30)

or
σ ∈ (1, 2] and b0(b0 − 2) ≤ 4m0 < (b0 − 1)2, (1.31)

then the Lp − Lq estimates∥∥((1 + t)−1u(t, ·), ut(t, ·),∇xu(t, ·)
)∥∥

Lq
.

1

λ(t)
(1 + t)−

n−1
2

(
1
p
− 1
q

)(
‖u0‖Lp,r+1 + ‖u1‖Lp,r

)
hold true for p ∈ (1, 2], p and q from the conjugate line and with regularity r = n

(
1
p
− 1
q

)
,

where

λ(t) = exp
(1

2

∫ t

0

b(τ)dτ
)
.

Results for semi-linear models: Consider the semi-linear Cauchy problem with
scale-invariant mass and dissipation

utt −∆u+
µ1

1 + t
ut +

µ2
2

(1 + t)2
u = |u|p, u(0, x) = u0(x), ut(0, x) = u1(x), (1.32)

with (t, x) ∈ [0,∞)×Rn, p > 1 and µ1 > 0, µ2 real constants. Define

∆ = (µ1 − 1)2 − 4µ2
2

and the function space

Dm = (H1 ∩ Lm)× (L2 ∩ Lm),

with m ∈ [1, 2) and the norm ‖(u, v)‖2
Dm = ‖u‖2

Lm + ‖u‖2
H1 + ‖v‖2

Lm + ‖v‖2
H1 .

Result 1.5. Let n ≤ 4, ∆ ≤ 0 and suppose that µ1 > 2 and
p ≥ 2 if n = 1, 2,

2 ≤ p ≤ 3 if n = 3,
p = 2 = pGN(4) if n = 4.

(1.33)

There exists a constant ε0 > 0 such that for all (u0, u1) ∈ D1 with

‖(u0, u1)‖D1 ≤ ε0

there exists a unique energy solution to (1.32) in C([0,∞), H1) ∩ C1([0,∞), L2). More-
over, there exists a constant C > 0 such that the solution satisfies the decay estimates

‖(ut(t, ·),∇xu(t, ·))‖L2 ≤ C(1 + t)−
µ1
2 (1 + ln(1 + t))γ‖(u0, u1)‖D1 ,

‖u(t, ·)‖L2 ≤ C(1 + t)−
µ1
2 q̃∆(t)‖(u0, u1)‖D1 ,
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where γ = 1 if ∆ = 0, γ = 0 if ∆ < 0 and

q̃0(t) =

{
1 + ln(1 + t) for n > 1,

(ln(1 + t))
1
2 (1 + ln(1 + t)) for n = 1,

and

q̃∆(t) =

{
1 for n > 1,

(ln(1 + t))
1
2 for n = 1,

for ∆ < 0.

Result 1.6. (Blow-up result) Assume that u ∈ C2 ([0, T )×Rn) is a solution to (1.32)
with ∆ = 1 and initial data (u0, u1) ∈ C2

0(Rn) × C1
0(Rn) such that u0, u1 ≥ 0 and

(u0, u1) 6= (0, 0). If
p ∈ (1, pµ1(n)],

then T <∞, where

pµ1(n) = max
{
pFuj

(
n− 1 +

µ1

2

)
; p0(n+ µ1)

}
. (1.34)

Here pFuj(n) and p0(n) denote the Fujita, Strauss exponent, respectively (see Chapter
6).
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2 Generalized energy conservation

2.1 Motivation

Let us consider the following Cauchy problem for Klein-Gordon models

utt −∆u+m(t)2u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (2.1)

where m(t)2u is a time-dependent potential. Here we consider that m(t)2u is a non-
effective potential, this means, limt→∞ tm(t) = 0 and m /∈ L1(R+) among other things
(see Definition 1.2).
Since we are interested in energy estimates we are looking for a suitable energy
depending on the solution u to (2.1) such that upper and lower bounds of the energy
exist for all times t. To define such an energy we can exploit our good knowledge in
this matter for the scale-invariant case (1.10).

In order to get some feeling for the behavior of solutions to (2.1) we can trans-
form the time-dependent potential to a time-dependent damping and a new poten-
tial. If we introduce the change of variables given by u(t, x) = ψ(t)v(t, x), then the
Cauchy problem (2.1) takes the form

vtt −4v + 2
ψ′(t)

ψ(t)
vt +

(ψ′′(t)
ψ(t)

+m(t)2
)
v = 0, v(0, x) =

u0(x)

ψ(0)
, vt(0, x) = v1(x) (2.2)

with v1(x) =
u1(x)−ψ

′(0)
ψ(0)

u0(x)

ψ(0)
. Therefore, if we take ψ such that ψ′′(t) + m(t)2ψ(t) = 0,

then we can apply directly results of [58]. The main difficulty is that, in general, it is
not easy to obtain an explicit representation of ψ in terms of m(t)2. Fortunately, [13]
gives us sufficient conditions in order to exclude contributions to the energy coming
from the time-dependent potential. A sufficient condition for that is to find a function
ψ such that ∫ ∞

0

(1 + τ)
∣∣∣ψ′′(τ)

ψ(τ)
+m(τ)2

∣∣∣dτ . 1. (2.3)

For the damping term that appears, we use some ideas of [59] about asymptotic
properties of solutions to wave equations with time-dependent non-effective dissipa-
tion.

We will give one example for ψ′′(t)+m(t)2ψ(t) = 0. Here we consider the scale-
invariant model of Klein-Gordon type and the goal was to find a function ψ such that
the Cauchy problem becomes a scale-invariant model for the wave equation with
dissipation. This example inspired us to define a suitable energy for our case.

Example 2.1. Consider the Cauchy problem

utt −∆u+
µ2

(1 + t)2
u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (2.4)
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and consider the change of variable u(t, x) = ψ(t)v(t, x), where

ψ(t) = exp
(
σ

∫ t

0

(1 + τ)m(τ)2dτ
)

= (1 + t)σµ
2

.

If we consider µ ∈
(
0, 1

4

)
and 2σ±µ

2 = 1 ±
√

1− 4µ2, then the Cauchy problem (2.4)
reduces to

vtt −∆v +
2σ±µ

2

1 + t
vt = 0, v(0, x) = v0(x), vt(0, x) = u1(x)− σu0(x).

If we choose σ−, then we can apply Wirth’s results [59]. Then the suitable ψ in this
case is

ψ(t) = (1 + t)
1−
√

1−4µ2

2 .

Remark 2.1. The function p(t) = (1 + t)−1ψ(t), where ψ(t) is from the Example 2.1
coincides with the function pµ(t) in the scale-invariant case (1.10).

2.2 Both sided energy estimates

We can not expect conservation of the energy in our case, but we are able
to prove lower and upper bounds for the energy for all times t. Then we state the
property of generalized energy conservation.
Let us define the generalized energy conservation property.

Definition 2.1. If we define the energy

E(u)(t) :=
1

2

(
‖ut(t, ·)‖2

L2 + ‖∇xu(t, ·)‖2
L2 + η(t)2‖u(t, ·)‖2

L2

)
,

where the function η = η(t) depends on the potential term m = m(t), we say that a so-
lution u to the Klein-Gordon model (2.1) satisfies the generalized energy conservation
property if the estimates

φ(t)2E(u)(0) . E(u)(t) . E(u)(0)

hold for all times t ≥ 0, where φ = φ(t) is a positive non-increasing function depending
on the function η.

Remark 2.2. The simplest case is when φ(t) ≡ c. In this case we have E(u)(0) ≈
E(u)(t), for all t ≥ 0.

First we will suppose that there exists a function ψ = ψ(t) such that (2.3) holds.
Under this assumption we shall formulate and prove our main theorem. Later we will
find suitable potentials for which we can find ψ explicitly.

2.2.1 The main theorem

Let us consider the Cauchy problem of Klein-Gordon type (2.1) under the fol-
lowing assumptions:
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Hypothesis 2.1. Let m(t) ∈ C(R+) satisfy

|m(t)| . 1

1 + t
. (2.5)

Hypothesis 2.2. There exists a positive increasing function ψ ∈ C2(R+) with ψ(0) = 1
such that

lim sup
t→∞

2(1 + t)
ψ′(t)

ψ(t)
< 1,

∣∣∣ψ′′(t)
ψ(t)

∣∣∣ . 1

(1 + t)2
. (2.6)

Besides (2.6) we assume the following relation between m(t) and ψ(t):∫ ∞
0

(1 + τ)
∣∣∣ψ′′(τ)

ψ(τ)
+m(τ)2

∣∣∣dτ . 1. (2.7)

Moreover, we define the energy

E(u)(t) =
1

2

(
‖ut(t, ·)‖2

L2 +‖∇u(t, ·)‖2
L2 +p(t)2‖u(t, ·)‖2

L2

)
, where p(t) = (1+t)−1ψ(t).

(2.8)

Theorem 2.1. Under Hypotheses 2.1 and 2.2 the solution of the Cauchy problem
(2.1) satisfies the energy estimate

E(u)(t) . E(u)(0). (2.9)

Here we, additionally, assume that the data (u0, u1) belong to the energy space H1 ×
L2.

Proof. The proof is divided into several steps. We perform the partial Fourier transfor-
mation of (2.1) with respect to x. If we denote by û(t, ξ) the partial Fourier transform
Fx→ξ(u)(t, ξ) we obtain

ûtt + |ξ|2û+m(t)2û = 0, û(0, ξ) = û0(ξ), ût(0, ξ) = û1(ξ). (2.10)

We divide the extended phase space [0,∞) × Rn into the pseudo-differential zone
Zpd(N) and into the hyperbolic zone Zhyp(N) which are defined by

Zpd(N) = {(t, ξ) ∈ [0,∞)×Rn : (1 + t)|ξ| ≤ N},
Zhyp(N) = {(t, ξ) ∈ [0,∞)×Rn : (1 + t)|ξ| ≥ N}.

The separating curve is given by

θ|ξ| : (0, N ]→ [0,∞), (1 + θ|ξ|)|ξ| = N.

We put also θ0 = ∞, and θ|ξ| = 0 for any |ξ| ≥ N . The pair (t, ξ) from the extended
phase space belongs to Zpd(N) (resp. to Zhyp(N)) if and only if t ≤ θ|ξ| (resp. t ≥ θ|ξ|).
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|ξ|

t

0

Zhyp

Zpd

θ|ξ|

N

Fig. 2.1: Sketch of the zones.

We define the micro-energy

U(t, ξ) =
(
h(t, ξ)û, ût −

ψ′(t)

ψ(t)
û
)T
, (2.11)

where
h(t, ξ) =

1

1 + t
φpd(t, ξ) + i|ξ|φhyp(t, ξ).

Here φpd(t, ξ) is a characteristic function related to the pseudo-differential zone and
φhyp(t, ξ) is a characteristic function related to the hyperbolic zone. We introduce

φhyp(t, ξ) = χ
(

(1+t)|ξ|
N

)
with χ ∈ C∞(Rn), χ(t) = 1 for t ≤ 1

2
, χ(t) = 0 for t ≥ 2 and

χ′(t) ≤ 0 together with φpd(t, ξ) + φhyp(ξ) = 1. The definition of this micro-energy is
related with the definition of the micro-energy from the paper [59].

Considerations in the pseudo-differential zone

In the pseudo-differential zone Zpd(N) the micro-energy (2.11) reduces to

U =
( û

1 + t
, ût −

ψ′(t)

ψ(t)
û
)T
, U0(ξ) =

(
û0(ξ), û1(ξ)− ψ′(0)

ψ(0)
û0(ξ)

)T
, and U = ψ(t)Ũ .

So we have

∂tŨ(t, ξ) = A(t, ξ)Ũ :=

(
− 1

1+t
1

1+t

−(1 + t)
(
ψ′′

ψ
+m(t)2 + |ξ|2

)
−2ψ

′(t)
ψ(t)

)
Ũ . (2.12)

We want to prove that the fundamental solution E = E(t, s, ξ) to (2.12), that is, the
solution to

∂tE = A(t, ξ)E , E(s, s, ξ) = I,

satisfies the estimate ‖E(t, 0, ξ)‖ . ψ(t)−2 for all t ∈ [0, θ|ξ|]. If we put E = (Eij)i,j=1,2,
then we can write for j = 1, 2 the following system of coupled integral equations of
Volterra type:

E1j(t, 0, ξ) = (1 + t)−1
(
δ1j +

∫ t

0

E2j(τ, 0, ξ)dτ
)
, (2.13)
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E2j(t, 0, ξ) = ψ(t)−2
(
δ2j −

∫ t

0

(1 + τ)ψ(τ)2
(ψ′′
ψ

(τ) +m(τ)2 + |ξ|2
)
E1j(τ, 0, ξ)dτ

)
.

(2.14)

By replacing (2.14) into (2.13) and after integration by parts we get

E1j(t, 0, ξ) = (1 + t)−1
(
δ1j + δ2j

∫ t

0

ψ(τ)−2dτ
)
− (1 + t)−1

×
∫ t

0

(1 + τ)ψ(τ)2
(ψ′′
ψ

(τ) +m(τ)2 + |ξ|2
)
E1j(τ, 0, ξ)

∫ t

τ

ψ(s)−2dsdτ. (2.15)

By using (2.6) (see Proposition 7 of [59]) we have∫ t

0

ψ(s)−2ds ≈ t

ψ(t)2
, (2.16)

and t
ψ(t)2

is increasing for large t. Introducing

hj(t, ξ) := ‖E1j(t, 0, ξ)‖ψ(t)2

and by using ψ(t)2 ≤ 1 + t (see (2.6)) for large t we conclude from (2.15) and (2.16)
that

hj(t, ξ) ≤ C + C

∫ t

0

(1 + τ)
(∣∣∣ψ′′(τ)

ψ(τ)
+m(τ)2

∣∣∣+ |ξ|2
)
hj(τ, ξ)dτ.

Applying Gronwall’s type inequality we conclude

hj(t, ξ) ≤ C exp
(
C

∫ t

0

(1 + τ)
(∣∣∣ψ′′(τ)

ψ(τ)
+m(τ)2

∣∣∣+ |ξ|2
)
dτ
)
.

In Zpd(N) we have (1 + t)|ξ| ≤ N . So, from the last estimate we get

hj(t, ξ) ≤ C exp
(
C

∫ t

0

(1 + τ)
(∣∣∣ψ′′(τ)

ψ(τ)
+m(τ)2

∣∣∣)dτ).
Finally, by using (2.7) we get ‖E1j(t, 0, ξ)‖ . ψ(t)−2. From the boundedness of
‖E1j(t, 0, ξ)‖ψ(t)2, using again (2.7), we can estimate ‖E2j(t, 0, ξ)‖ . ψ(t)−2. There-
fore, we proved ‖E(t, 0, ξ)‖ . ψ(t)−2 for all t ∈ [0, θ|ξ|]. This gives

‖U(t, ξ)‖ ≤ Cψ(t)−1‖U0(ξ)‖ for all t ∈ (0, θ|ξ|]. (2.17)

Considerations in the hyperbolic zone

In the hyperbolic zone Zhyp(N) the micro-energy (2.11) reduces to

U =
(
i|ξ|û, ût −

ψ′(t)

ψ(t)
û
)T
, U0(ξ) =

(
i|ξ|û(θ|ξ|, ξ), ût(θ|ξ|, ξ)−

ψ′(θ|ξ|)

ψ(θ|ξ|)
û(θ|ξ|, ξ)

)T
,

and U = ψ(t)Ũ , so that

∂tŨ =

(
0 1
1 0

)
i|ξ|Ũ +

(
0 0

0 −2ψ
′(t)
ψ(t)

)
Ũ +

(
0 0

−ψ′′

ψ
(t)−m(t)2 0

)
(i|ξ|)−1Ũ (2.18)
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for t ≥ θ|ξ| with initial datum Ũ(θ|ξ|, ξ) = ψ(θ|ξ|)
−1U0(ξ). Let P be the diagonalizer of

the principal part (with respect to powers of |ξ|) of (2.18) given by

P =
1√
2

(
1 1
−1 1

)
, P−1 =

1√
2

(
1 −1
1 1

)
.

If we put V (t, ξ) := P−1Ũ(t, ξ), then we get

∂tV =

(
−1 0
0 1

)
i|ξ|V +B0(t, ξ)V +B1(t)(i|ξ|)−1V, (2.19)

where

B0(t) := −ψ
′(t)

ψ(t)

(
1 −1
−1 1

)
, B1(t) := −1

2

(
ψ′′

ψ
(t) +m(t)2

)(
−1 −1
1 1

)
.

Now we define the second diagonalizer that depends on the anti-diagonal entries of
B0(t):

K(t, ξ) :=

(
1 q(t)

2i|ξ|

− q(t)
2i|ξ| 1

)
, q(t) =

ψ′(t)

ψ(t)
. (2.20)

Thanks to (2.6) we have
|q(t)|
|ξ|
≤ C

(1 + t)|ξ|
≤ C

N

for t ≥ θ|ξ|, hence, |detK| ≥ 1 − C2/(4N2). Therefore, K(t, ξ) and K−1(t, ξ) are
bounded for a sufficiently large N . We replace V (t, ξ) =: K(t, ξ)W (t, ξ). We get

∂tW =

(
−1 0
0 1

)
i|ξ|W − ψ′(t)

ψ(t)

(
1 0
0 1

)
W + J(t, ξ)W, (2.21)

where J(t, ξ) = K−1(t, ξ)R(t, ξ) with D0(t, ξ) = diag(−i|ξ|, i|ξ|), H(t, ξ) = K(t, ξ) − I
and

R = D0K +B0K − ∂tK −KD0 −KdiagB0 + (i|ξ|)−1B1K

= B0 +D0H −HD0 − diagB0 −HdiagB0 − ∂tH +B0H + (i|ξ|)−1B1K.

By construction the sum of the first four terms of R(t, ξ) vanishes. Thanks to condition
(2.6) and Hypothesis 2.1 the matrix R(t, ξ), and therefore also J(t, ξ), satisfies the
following estimate in Zhyp(N):

‖J(t, ξ)‖ ≤ C

|ξ|(1 + t)2
. (2.22)

After substituting W (t, ξ) =:
ψ(θ|ξ|)

ψ(t)
D(t, ξ)Z(t, ξ), where

D(t, ξ) = diag
(

exp(−i|ξ|(t− θ|ξ|)), exp(i|ξ|(t− θ|ξ|))
)
,

we obtain the following Cauchy problem in Zhyp(N):{
∂tZ = J̃(t, ξ)Z, t ≥ θ|ξ|,

Z(θ|ξ|, ξ) = K−1(θ|ξ|, ξ)P
−1 Ũ(θ|ξ|, ξ),

(2.23)
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where the matrix J̃(t, ξ) = D−1(t, ξ)J(t, ξ)D(t, ξ) satisfies again (2.22). For any s, t ≥
θ|ξ| we have ∫ t

s

‖J̃(τ, ξ)‖ dτ ≤ C

∫ ∞
θ|ξ|

1

|ξ|(1 + τ)2
dτ ≤ C ′

|ξ|(1 + θ|ξ|)
=
C ′

N
,

hence, ‖Z(t, ξ)‖ ≤ C‖Z(θ|ξ|, ξ)‖ and, by using Liouville’s formula we may conclude,
‖Z(t, ξ)‖ ≥ C ′‖Z(θ|ξ|, ξ)‖. Indeed, let E = E(t, s, ξ) be the fundamental solution of
(2.23), then Z(t, ξ) = E(t, θ|ξ|, ξ)Z(θ|ξ|, ξ). By Liouville’s formula, detE(t, θ|ξ|, ξ) =

exp(
∫ t
θ|ξ|

tr J̃(s, ξ)ds) ≈ 1. Therefore,

‖Z(θ|ξ|, ξ)‖ = ‖E−1(t, θ|ξ|, ξ)Z(t, ξ)‖ ≤ C‖Z(t, ξ)‖.

Summarizing we have proved in Zhyp(N) the both sided estimate

C1

ψ(θ|ξ|)
2

ψ(t)2
‖Ũ(θ|ξ|, ξ)‖2 ≤ ‖Ũ(t, ξ)‖2 ≤ C2

ψ(θ|ξ|)
2

ψ(t)2
‖Ũ(θ|ξ|, ξ)‖2. (2.24)

Verification

We conclude the proof of (2.9) under the use of (2.8). We claim that

|ξ|2|û(t, ξ)|2 + |ût(t, ξ)|2 . (1 + |ξ|2)|û0(ξ)|2 + |û1(ξ)|2 (2.25)

and

p(t)2|û(t, ξ)|2 . |û0(ξ)|2 +
|û1(ξ)|2

1 + |ξ|2
(2.26)

uniformly with respect to ξ ∈ Rn. By integrating these inequalities with respect to ξ
and by Plancherel’s Theorem we have our desired estimate (2.9).

Let us first prove (2.25). By using Cauchy-Schwarz inequality, the first estimate
in (2.6) and the considerations in the pseudo-differential zone we conclude for all
t ≤ θ|ξ| the estimates

‖U(t, ξ)‖2 ≥ 1

(1 + t)2
|û(t, ξ)|2 + |ût(t, ξ)|2 +

∣∣∣∣ψ′(t)ψ(t)

∣∣∣∣2 |û(t, ξ)|2 − 2|ût(t, ξ)|
∣∣∣∣ψ′(t)ψ(t)

û(t, ξ)

∣∣∣∣
≥ 1

(1 + t)2
|û(t, ξ)|2 +

1

2
|ût(t, ξ)|2 −

∣∣∣∣ψ′(t)ψ(t)

∣∣∣∣2 |û(t, ξ)|2

≥ 3

4(1 + t)2
|û(t, ξ)|2 +

1

2
|ût(t, ξ)|2

≥ 3

4N2
|ξ|2|û(t, ξ)|2 +

1

2
|ût(t, ξ)|2.

Therefore, by using (2.17) we have for all t ≤ θ|ξ| the estimate

|ξ|2|û(t, ξ)|2 + |ût(t, ξ)|2 . ‖U(t, ξ)‖2 .
1

ψ(t)2
‖U0(ξ)‖2. (2.27)

For t ≥ θ|ξ| we have to glue the estimate (2.24) with (2.17). By using again Cauchy-
Schwarz inequality and the first estimate in (2.6) we have(

1− 1

4N2

)
|ξ|2|û(t, ξ)|2 +

1

2
|ût(t, ξ)|2 . ‖U(t, ξ)‖2 for all t ≥ θ|ξ|.
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By using (2.24) we get ‖U(t, ξ)‖2 . ‖U0(ξ)‖2. Moreover, since θ|ξ| = 0 for any |ξ| ≥ N,
then

‖U0(ξ)‖2 . (1 + |ξ|2)|û0(ξ)|2 + |û1(ξ)|2 for all |ξ| ≥ N.

By applying (2.17) we conclude

‖U0(ξ)‖2 .
1

ψ(θ|ξ|)

(
|û0(ξ)|2 + |û1(ξ)|2

)
for all |ξ| ≤ N.

Therefore, (2.25) follows by taking N sufficiently large and by using that ψ is increas-
ing.

Now let us prove (2.26). For t ≤ θ|ξ| we have from (2.17) the estimate

|û(t, ξ)|2 . (1 + t)2

ψ(t)2
‖U0(ξ)‖2.

In order to estimate |û(t, ξ)|2 it will be convenient to split the considerations for the
hyperbolic zone into the cases |ξ| ≤ N and |ξ| ≥ N . Indeed, by definition, θ|ξ| = 0 for
all |ξ| ≥ N , and from (2.24) we have

|û(t, ξ)|2 . ‖U(t, ξ)‖2

|ξ|2
=
ψ(t)2‖Ũ(t, ξ)‖2

|ξ|2
.
‖Ũ(0, ξ)‖2

|ξ|2
. |û0(ξ)|2 +

|û1(ξ)|2

|ξ|2
.

Since t
ψ(t)2

is increasing for large t the same is true for t
ψ(t)

and (2.26) holds. On the
other hand, for |ξ| ≤ N , from (2.24) and (2.17) we have

|û(t, ξ)|2 . ‖U(t, ξ)‖2

|ξ|2
.
ψ(θ|ξ|)

2‖Ũ(θ|ξ|, ξ)‖2

|ξ|2
=
‖U0(ξ)‖2

|ξ|2

. |û(θ|ξ|, ξ)|2 +
1

|ξ|2
∣∣∣ût(θ|ξ|, ξ)− ψ′

ψ
(θ|ξ|)û(θ|ξ|, ξ)

∣∣∣2
.

by (2.17)

(1 + θ|ξ|)
2

ψ(θ|ξ|)2
‖U0(ξ)‖2 +

(1 + θ|ξ|)
2

|ξ|2(1 + θ|ξ|)2ψ(θ|ξ|)2
‖U0(ξ)‖2

.
|ξ|(1+θ|ξ|)=N

(1 + θ|ξ|)
2

ψ(θ|ξ|)2
‖U0(ξ)‖2.

Consequently, (2.26) follows again by using that t
ψ(t)

is increasing. This completes the
proof of Theorem 2.1.

Now, the purpose is to get estimates from below for solutions to our Klein-
Gordon models. If we rewrite the proof that we did in the pseudo-differential zone,
under the same hypothesis of Theorem 2.1 we can prove the following corollary.

Corollary 2.1. Under the Hypothesis 2.1 and 2.2 the following estimate holds:

‖E(t, s, ξ)‖ . ψ(s)2

ψ(t)2
, for all t, s ≤ θ|ξ|,

where Ũ(t, ξ) = E(t, s, ξ)Ũ(s, ξ), and U = ψ(t)Ũ .
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The Corollary 2.1 and the proof of Theorem 2.1 give us the following estimates
from below.

Corollary 2.2. Let u be a solution of the Cauchy problem (2.1). Under the Hypothesis
2.1 and 2.2 the inequality

1

ψ(t)2
E(u)(0) . E(u)(t)

is satisfied for all times t ≥ 0.

Proof. The proof is divided into two steps.

Considerations in the pseudo-differential zone:

In the pseudo-differential zone the micro-energy (2.11) reduces to

U =
( û

1 + t
, ût −

ψ′(t)

ψ(t)
û
)T
, U0(ξ) =

(
û0(ξ), û1(ξ)− ψ′(0)

ψ(0)
û0(ξ)

)T
, and U = ψ(t)Ũ .

Using Ũ(t, ξ) = E(t, s, ξ)Ũ(s, ξ) for all t, s ≤ θ|ξ| it follows for s = 0 that

‖Ũ(0, ξ)‖ = ‖E(0, t, ξ)Ũ(t, ξ)‖ . ψ(t)2‖Ũ(t, ξ)‖.

Then

‖U(0, ξ)‖2 . ψ(t)2‖U(t, ξ)‖2 for all t ≤ θ|ξ|. (2.28)

If we use (2.27) with t = 0 we get

1

2
|ξ|2|û0(ξ)|2 +

1

2
|û1(ξ)|2 . ‖U(0, ξ)‖2. (2.29)

From the definition of U(t, ξ) it follows that

1

2
|û0(ξ)|2 . ‖U(0, ξ)‖2.

Then
1

2
|û0(ξ)|2 +

1

2
|ξ|2|û0(ξ)|2 +

1

2
|û1(ξ)|2 . ‖U(0, ξ)‖2

. ψ(t)2‖U(t, ξ)‖2 for all t ≤ θ|ξ|.

Considerations in the hyperbolic zone:

In the hyperbolic zone the micro-energy (2.11) reduces to

U =
(
i|ξ|û, ût −

ψ′(t)

ψ(t)
û
)T
, U0(ξ) =

(
i|ξ|û(θ|ξ|, ξ), ût(θ|ξ|, ξ)−

ψ′(θ|ξ|)

ψ(θ|ξ|)
û(θ|ξ|, ξ)

)T
,

and U = ψ(t)Ũ . It follows from (2.24) that for all t ≥ θ|ξ| we have

‖U(t, ξ)‖2 ≈ ‖U(θ|ξ|, ξ)‖2.

Using the considerations in the pseudo-differential zone we conclude that

1

2
|û0(ξ)|2 +

1

2
|ξ|2|û0(ξ)|2 +

1

2
|û1(ξ)|2 . ψ(θ|ξ|)

2‖U(θ|ξ|, ξ)‖2 . ψ(t)2‖U(t, ξ)‖2.
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Conclusion

We proved that

1

2
|û0(ξ)|2 +

1

2
|ξ|2|û0(ξ)|2 +

1

2
|û1(ξ)|2 . ψ(t)2‖U(t, ξ)‖2

for all (t, ξ) ∈ R+ ×Rn. Then, using Plancherel’s formula we get that

1

ψ(t)2
E(u)(0) . ‖U(t, ξ)‖2 . E(u)(t).

Therefore we conclude that if u is a solution of the Cauchy problem (2.1), then
u satisfies the generalized energy conservation property, i.e., we have the following
theorem.

Theorem 2.2. Under Hypotheses 2.1 and 2.2 the solution of the Cauchy problem
(2.1) satisfies the generalized energy conservation property

1

ψ(t)2
E(u)(0) . E(u)(t) . E(u)(0). (2.30)

Here we, additionally, assume that the data (u0, u1) belong to the energy space H1 ×
L2.

Remark 2.3. Applying Theorem 2.1 gives the following estimate for the potential
energy:

‖u(t, ·)‖2
L2 . (1 + t)2ψ(t)−2E(u)(0).

Remark 2.4. After differentiation of the Klein-Gordon energy EKG(u)(t) with respect
to t we get

E ′KG(u)(t) = m(t)m′(t)

∫
Rn

|u(t, x)|2dx.

If m(t) is a positive decreasing function, then EKG(u)(t) ≤ EKG(u)(0). In particular

‖ut(t, ·)‖2
L2 + ‖∇xu(t, ·)‖2

L2 . E(u)(0).

What remains to prove in this case is the desired estimate to ‖u(t, ·)‖2
L2 in Theorem

2.1. However, one needs to be more careful if m has some oscillations.

2.2.2 Explicit representation of ψ

At first we pose a question:
To which models can we find an explicit representation for ψ such that condition (2.7)
is satisfied?

If we consider the Cauchy problem (2.1) with a coefficient m = m(t) having the
special structure

m(t) =
µ

(1 + t)g(t)
with a positive constant µ, (2.31)

and a suitable function g = g(t), then we are able to answer that question under
some conditions for g(t) as follows:
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Hypothesis 2.3. Let g ∈ C1(R+) be a positive, increasing function with g(0) = 1
satisfying

g′(t) .
g(t)

1 + t
. (2.32)

Remark 2.5. From (2.32) functions m which are given by (2.31) satisfy |m′(t)| . m(t)
1+t

.

The following remark shows how to define ψ, at least for coefficients (2.31),
such that Hypothesis 2.2 holds.

Remark 2.6. Consider m(t) as in (2.31). If (1 + t)m(t)2 ∈ L1, then we take ψ(t) ≡ 1.
If (1 + t)m(t)2 /∈ L1, then we suppose that 1

(1+t)g(t)4
∈ L1. If we consider

ψ(t) = exp

(
σ

∫ t

0

µ2

(1 + τ)g(τ)2
dτ

)
,

then
ψ
′′
(t)

ψ(t)
=

σ2µ4

(1 + t)2g(t)4
− σµ2

(1 + t)2g(t)2
− 2σµ2g′(t)

(1 + t)g(t)3
.

Therefore, if we choose σ = 1 we have

ψ
′′
(t)

ψ(t)
+m(t)2 =

µ4

(1 + t)2g(t)4
− 2µ2g′(t)

(1 + t)g(t)3
.

Then (1 + t)
(
ψ
′′

(t)
ψ(t)

+m(t)2
)
∈ L1, and we can apply Theorem 2.1.

Taking into consideration the previous remark let us suppose the following con-
dition:

Hypothesis 2.4. There exists an integer N ≥ 0 such that∫ ∞
0

1

(1 + τ)g(τ)2(N+1)
dτ . 1. (2.33)

Remark 2.7. From (2.33) we get limt→∞ g(t) =∞. This implies tm(t)→ 0 as t→∞.
So, under Hypothesis 2.4 we really consider a class of non-effectives masses m(t)2u
in (2.1).

For coefficients (2.31) we can explicitly give the function ψ in Hypotheses 2.2.
Under Hypothesis 2.4 it turns out that in the case (1+t)m(t)2 ∈ L1 we can take ψ ≡ 1.
Otherwise, we choose

ψ(t) = exp
( N∑
k=1

γkµ
2k

∫ t

0

1

(1 + τ)g(τ)2k
dτ
)
, γk =

k−1∑
`=1

γ`γk−`, γ1 = 1. (2.34)

Remark 2.8. The sequence {γk}k in (2.34) is well-known as Segner’s recurrence for-
mula given by Segner in 1758. It gives the solution to Euler’s polygon division problem.
The solution is described by the Catalan numbers which are given by the explicit for-
mula [35]

γk =
(2k − 2)!

k!(k − 1)!
. (2.35)
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By using (2.35) one can explicitly compute the radius of convergence R of the power
series

∑∞
k=1 γkµ

2k by

R = lim
k→∞

∣∣∣ γk
γk+1

∣∣∣ = lim
k→∞

k2

2k(2k − 1)
=

1

4
,

and the series converges uniformly for µ2 < 1
4
.

In the definition of the function ψ given by (2.34) we can take N as the smallest
integer satisfying Hypothesis 2.4.

Theorem 2.3. Under Hypotheses 2.3 and 2.4 the solution of the Cauchy problem
(2.1) with m(t) given by (2.31) satisfies the generalized energy conservation property

1

ψ(t)2
E(u)(0) . E(u)(t) . E(u)(0), (2.36)

where the energy E(u)(t) is defined by (2.8), with ψ(t) given by (2.34). The data
(u0, u1) are from the energy space H1 × L2.

Proof. The desired statement will be a consequence of Theorem 2.2. It is clear that
Hypothesis 2.3 implies that m(t) from (2.31) satisfies Hypothesis 2.1. Moreover, in
the case (1 + t)m(t)2 ∈ L1 it follows from Hypothesis 2.4 that Hypothesis 2.2 holds by
taking ψ ≡ 1. Otherwise, we have limt→∞ g(t) = ∞, which implies the first condition
of (2.6). It remains to prove that the function ψ which is given by (2.34) satisfies (2.7)
and the second condition in (2.6). Indeed, by using the Cauchy product, i.e.,( n∑

k=0

ak

)
·
( n∑
k=0

bk

)
=

2n∑
k=0

k∑
i=0

aibk−i −
n−1∑
k=0

(
ak

2n−k∑
i=n+1

bi + bk

2n−k∑
i=n+1

ai

)
with a0 = b0 = 0 it follows by using the definition of the constants γk that

ψ′′(t)

ψ(t)
= −

N∑
k=1

γkµ
2k

(1 + t)2g(t)2k
−

N∑
k=1

2kγkµ
2kg′(t)

(1 + t)g(t)2k+1
+
( N∑
k=1

γkµ
2k

(1 + t)g(t)2k

)2

= − µ2

(1 + t)2g(t)2
−

N∑
k=1

2kγkµ
2kg′(t)

(1 + t)g(t)2k+1
+

2N∑
k=N+1

γkµ
2k

(1 + t)2g(t)2k

−
N−1∑
k=1

( γkµ
2k

(1 + t)g(t)2k

2N−k∑
i=N+1

γiµ
2i

(1 + t)g(t)2i
+

γkµ
2k

(1 + t)g(t)2k

2N−k∑
i=N+1

γiµ
2i

(1 + t)g(t)2i

)
.

Hence,

ψ′′(t)

ψ(t)
−m(t)2 = −

N∑
k=1

2kγkµ
2kg′(t)

(1 + t)g(t)2k+1
+

2N∑
k=N+1

γkµ
2k

(1 + t)2g(t)2k

−
N−1∑
k=1

( γkµ
2k

(1 + t)g(t)2k

2N−k∑
i=N+1

γiµ
2i

(1 + t)g(t)2i
+

γkµ
2k

(1 + t)g(t)2k

2N−k∑
i=N+1

γiµ
2i

(1 + t)g(t)2i

)
.

Therefore, by using Hypotheses 2.3 and 2.4 we get the second condition of (2.6) and
(2.7), respectively.
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If we can not find any N satisfying Hypothesis 2.4, then we replace N by infinity
in (2.34). In addition, in the case of g∞ = limt→∞ g(t) <∞ we introduce the following
condition:

Hypothesis 2.5. With γk from (2.34) we assume

∞∑
k=1

γk
µ2k

g2k
∞
<

1

2
for all µ2 <

g2
∞
4
. (2.37)

Remark 2.9. For given t0 > 0 and µ2 < g(t0)2

4
the series

∞∑
k=1

γkµ
2k

g(t)2k
(2.38)

converges uniformly for all t ≥ t0. Indeed, by using that 1 ≤ g(t) and by taking into
account the benefit that g(t) is an increasing function, then for all t ≥ t0 we have

∞∑
k=1

γkµ
2k

g(t)2k
≤

∞∑
k=1

γkµ
2k

g(t0)2k
.

By using that
∑∞

k=1
γkµ

2k

g(t0)2k
converges for µ2 < g(t0)2

4
we can apply the Weierstrass

M-test to conclude the uniformly convergence of the series in (2.38) for all t ≥ t0.
Moreover, the power series

∑∞
k=1

2kγkµ
2k−1

g(t0)2k
has the same radius of convergence µ2 <

g(t0)2

4
, because it is the derivative on µ of the series

∑∞
k=1

γkµ
2k

g(t0)2k
. This implies, together

with (2.32), that for µ2 < g(t0)2

4
, the series

∑∞
k=1

2kγkµ
2kg′(t)

g(t)2k+1 converges uniformly for all
t ≥ t0.

Remark 2.9 allows us to choose a function ψt0 ∈ C2[t0,∞) with a large t0 if
necessary, which is defined by

ψt0(t) = exp
( ∞∑
k=1

γkµ
2k

∫ t

t0

1

(1 + τ)g(τ)2k
dτ
)
. (2.39)

Theorem 2.4. Under Hypotheses 2.3 and 2.5 the solution of the Cauchy problem
(2.1) satisfies the generalized energy conservation property

1

ψ(t)2
E(u)(0) . E(u)(t) . E(u)(0), (2.40)

where the energy E(u)(t) is defined by (2.8) with ψ(t) = ψt0(t) from (2.39). The data
(u0, u1) are from the energy space H1 × L2.

Proof. We can follow with a slightly modification the proof to Theorem 2.1. We split
the pseudo-differential zone for t ≤ t0 and and for t ≥ t0 with a large t0. For t ≤ t0
we are in a compact subset of this zone. Therefore, we only have to take into account
the definition of ψt0 for large t. From Remark 2.9 the function ψt0 which is given by
(2.39) is well-defined. The first condition of (2.6) is immediately satisfied if g(t) goes
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to infinity as t goes to infinity and, otherwise, it follows from (2.37). By using the
Cauchy product we obtain

ψ′′(t)

ψ(t)
+m(t)2 = −

∞∑
k=1

2kγkµ
2kg′(t)

(1 + t)g(t)2k+1
.

Therefore, (1 + t)
(ψ′′(t)
ψ(t)

+ m(t)2
)
∈ L1, and Hypothesis 2.2 is satisfied. By using

Hypothesis 2.3 we get the second condition of (2.6) and the conclusion of Theorem
2.4 follows again from Theorem 2.2.

2.2.3 Examples

We conclude this section with examples.

Example 2.2. If g(t) in (2.31) is given by g(t)2 = ln(e+t) · · · ln[m](e[m] +t) with e[k+1] =

ee
[k] and ln[k+1](t) = ln(ln[k](t)) , then we have (2.33) for N = 1, i.e., the conclusion of

Theorem 2.3 holds with ψ(t) given by (2.34). We have that ψ(t) ≈ (ln[m](e[m] + t))µ
2.

Example 2.3. Let g(t)2 = (ln(e+ t))γ for some 0 < γ < 1. In order to have (2.33) one
should take N such that (N + 1)γ > 1. Then the conclusion of Theorem 2.3 holds with
ψ(t) given by (2.34).

Example 2.4. Let us consider the Cauchy problem (2.1) with m(t) = µ
1+t

and µ 6= 0,
i.e., we consider the scale-invariant case from [5]. Here g(t) ≡ 1, hence, there does
not exist any positive integer N such that (2.33) holds. In order to apply Theorem 2.4
one has to verify Hypothesis 2.5. Let us take the function ψ from Theorem 2.4 as

ψ(t) = exp
( ∞∑
k=1

∫ t

0

γkµ
2k

(1 + τ)
dτ
)

= (1 + t)σ

with σ =
∑∞

k=1 γkµ
2k. By using the infinite Cauchy product and from the definition of

γk we get

σ2 =
( ∞∑
k=1

γkµ
2k
)2

=
∞∑
n=2

γnµ
2n = σ − µ2.

Therefore, σ± =
1±
√

1−4µ2

2
and ψ′′(τ)

ψ(τ)
+ m(τ)2 = 0. If we take σ− =

1−
√

1−4µ2

2
, then

2σ− < 1 and (2.37) holds. In this way we derived the decay estimate which is proposed
by (1.12) and (1.13) for µ2 ∈

(
0, 1

4

)
.

Remark 2.10. This example shows us that our choice for the function ψ which is
proposed in (2.34) and (2.39) is quite optimal. It shows that our choice works in a
good way for the well-known scale invariant case.

Example 2.5. If g(t)2 = ln(ln(ee+ t)), then we can take for t ≥ t0, t0 � 1, the function

ψ(t) = exp
( ∞∑
k=1

∫ t

t0

γkµ
2k

(1 + τ)g(τ)2k
dτ
)

which is well defined for µ2 < g(t0)2

4
. It is clear that the condition (2.37) holds and the

statement of Theorem 2.4 is applicable.
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2.3 New scattering results

In this section we are interested in scattering results between the solutions of the
Klein-Gordon time-dependent equation

utt −∆u+m(t)2u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (2.41)

and the free wave equation

vtt −∆v = 0, v(0, x) = v0(x), vt(0, x) = v1(x). (2.42)

We are interested in a scattering result under the assumption

(1 + t)m(t)2 ∈ L1. (2.43)

This hypothesis is weaker than the hypothesis that was assumed in the thesis [4], in
other words, (1.21) implies (2.43) but not conversely.
Before stating the result we define for any ε > 0 the following closed subset of L2×L2:

Fε :=
{
U0 ∈ L2 × L2 : Û0(ξ) = 0 for any |ξ| ≤ ε

}
.

We remark that L = ∪ε>0Fε is a dense subset of L2 × L2.

Theorem 2.5. We assume the Hypothesis 2.1 and (1 + t)m(t)2 ∈ L1. Then, for
any initial data (u0, u1) ∈ H1 × L2, there exists a linear, bounded operator W+(D) :
L2(Rn)× L2(Rn)→ L2(Rn)× L2(Rn) such that

lim
t→∞

∥∥∥(|D|v(t, ·), vt(t, ·))−
(
〈D〉 N

1+t
u(t, ·), ut(t, ·)

)∥∥∥
L2×L2

= 0. (2.44)

Here u = u(t, x) is the solution to the Cauchy problem (2.41) and v = v(t, x) is
the solution to the Cauchy problem (2.42), where the initial data are related by
(|D|v0, v1) = W+(D)(〈D〉Nu0, u1). Moreover, on the dense subset L we can state
the decay rate as∥∥∥(|D|v(t, ·), vt(t, ·))−

(
〈D〉 N

1+t
u(t, ·), ut(t, ·)

)∥∥∥
L
.
∥∥(〈D〉Nu0, u1)

∥∥
L

∫ ∞
t

(1 + τ)m2(τ)dτ

(2.45)
as t goes to infinity.

Proof. With a slightly modification we can follow the proof of Theorem 3.26 of [4].
Let us define the micro-energy U by

U =
(
h̃(t, ξ)û, Dtû

)T
, h̃(t, ξ) =

(
|ξ|2 +

N2

(1 + t)2

)1/2

.

Considerations in the pseudo-differential zone

Here we consider the first order system

DtU(t, ξ) = A(t, ξ)U :=

 Dth̃(t,ξ)

h̃(t,ξ)
h̃(t, ξ)

m(t)2+|ξ|2

h̃(t,ξ)
0

U. (2.46)
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We can get an integral representation by using the fundamental solution E = E(t, s, ξ)
to (2.46), i.e., the solution to

DtE = A(t, ξ)E , E(s, s, ξ) = I.

If we put E = (Eij)i,j=1,2, then we can write for j = 1, 2 the following system of Volterra
integral equations:

E1j(t, s, ξ) = h̃(t, ξ)
( δ1j

h̃(s, ξ)
+

∫ t

s

iE2j(τ, s, ξ)dτ
)
, (2.47)

E2j(t, s, ξ) = δ2j + i

∫ t

s

m(τ)2 + |ξ|2

h(τ, ξ)
E1j(τ, s, ξ)dτ. (2.48)

Under the hypothesis (1 + t)m(t)2 ∈ L1 we derive by using Gronwall’s inequality the
estimate ‖E(t, s, ξ)‖ ≤ C. Indeed, by replacing (2.48) into (2.47) and after integration
by parts we get

E1j(t, s, ξ) = h̃(t, ξ)
( δ1j

h̃(s, ξ)
+ i

∫ t

s

(
δ2j + i

∫ τ

s

m(σ)2 + |ξ|2

h(σ, ξ)
E1j(σ, s, ξ)dσ

)
dτ
)

=
integration by parts

h̃(t, ξ)
( δ1j

h̃(s, ξ)
+ i

∫ t

s

δ2jdτ−
∫ t

s

m(τ)2 + |ξ|2

h̃(τ, ξ)
E1j(τ, s, ξ)(t− τ)dτ

)
.

Then, after defining w1j(t, s, ξ) :=
E1j(t,s,ξ)

(1+t)h̃(t,ξ)
and using that (1 + t)h̃(t, ξ) ≈ 1 whenever

(t, ξ) ∈ Zpd we get

‖w1j(t, s, ξ)‖ .
1

(1 + t)h̃(s, ξ)
+
t− s
1 + t

+

∫ t

s

(m(τ)2 + |ξ|2)‖w1j(τ, s, ξ)‖(1 + τ)
t− τ
1 + t

dτ

. 1 +

∫ t

s

(m(τ)2 + |ξ|2)‖w1j(τ, s, ξ)‖(1 + τ)dτ.

Applying Gronwall’s inequality we conclude

‖w1j(t, s, ξ)‖ . exp
(
C

∫ t

s

(1 + τ)(m2(τ) + |ξ|2)dτ
)
.

Since (1 + t)|ξ| ≤ N and (1 + t)m(t)2 ∈ L1(R+) it follows ‖w1j(t, s, ξ)‖ . 1. Therefore,
‖E1j(t, s, ξ)‖ ≤ C. This estimate together with (2.48) gives us that ‖E2j(t, s, ξ)‖ is also
bounded in Zpd(N).

Considerations in the hyperbolic zone

Here we define the wave type micro-energy

UW = (|ξ|û, Dtû)T .

This allows to derive from (2.10) the system

DtUW =

(
0 1
1 0

)
|ξ|UW +

(
0 0

m(t)2 0

)
(|ξ|)−1UW . (2.49)
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As in the proof of Theorem 2.1 let P be the constant diagonalizer of the principal part
of (2.49). Defining U1 = P−1UW , then we get the system (Dt −D − B1(t, ξ))U1 = 0,
where

D =

(
−|ξ| 0

0 |ξ|

)
, B1(t, ξ) =

m(t)2

2|ξ|

(
−1 −1
1 1

)
.

Let Q1 = Q1(t, s, ξ) be the solution of (Dt − E−1
1 B1E1)Q1 = 0, Q1(s, s, ξ) = I, where

E1(t, s, ξ) =

(
e−i(t−s)|ξ| 0

0 ei(t−s)|ξ|

)
.

Then we can estimate
‖B1(t, ξ)‖ ≤ C(1 + t)m(t)2,

hence, after using (1 + t)m(t)2 ∈ L1 brings ‖Q1(t, s, ξ)‖ ≤ C1 and by Liouville’s
formula, ‖Q1(t, s, ξ)‖ ≥ C2. Now, let us introduce

H(t, ξ) :=

(
h̃(t,ξ)
|ξ| 0

0 1

)
.

It is clear that in the hyperbolic zone we have h̃(t,ξ)
|ξ| ≈ C. Then the inverse matrix H−1

exists and ‖H(t, ξ)‖, ‖H−1(t, ξ)‖ ≈ C for all t ≥ θ|ξ|.
Since U(t, ξ) = H(t, ξ)UW (t, ξ) = (h̃(t, ξ)û, Dtû)T we can write U(t, ξ) = E(t, 0, ξ)U(0, ξ),
where

E(t, 0, ξ) =

{
E(t, 0, ξ), 0 ≤ t ≤ θ|ξ|,
H(t, ξ)PE1(t, θ|ξ|, ξ)Q1(t, θ|ξ|, ξ)P

−1H(θ|ξ|, ξ)
−1E(θ|ξ|, 0, ξ), t ≥ θ|ξ|.

We have proved that ‖E(t, 0, ξ)‖ ≤ C for all t, ξ.

Scattering operator and properties

If m ≡ 0, then the fundamental solution of the system (2.49) can be written as
PE1(t, s, ξ)P−1. Then, if v solves the free wave equation (2.42), by putting V (t, ξ) =
(|ξ|v̂, Dtv̂)T , we can write V (t, ξ) = Ẽ(t, s, ξ)V (s, ξ), where

Ẽ(t, s, ξ) = PE1(t, s, ξ)P−1.

Our aim is to prove that the limit

W+(ξ) := s-lim
t→∞

Ẽ(t, 0, ξ)−1E(t, 0, ξ) (2.50)

exists as strong limit in L2(Rn) × L2(Rn). After proving this property we are able to
relate the Cauchy data by

V (0, ξ) = W+(ξ)U(0, ξ) for all ξ.

First we prove the existence of (2.50) for |ξ| ≥ ε. Indeed, for t ≥ θ|ξ| we have

Ẽ−1(t, 0, ξ)E(t, 0, ξ) = PẼ1(t, θ|ξ|, ξ)Q1(t, θ|ξ|, ξ)P
−1H−1(θ|ξ|, ξ)E(θ|ξ|, 0, ξ)
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with
Ẽ1(t, θ|ξ|, ξ) = E1(0, t, ξ)P−1H(t, ξ)PE1(t, θ|ξ|, ξ).

By using the explicit representation of Ẽ1(t, θ|ξ|, ξ) we can prove for all |ξ| ≥ ε that
limt→∞ Ẽ1(t, θ|ξ|, ξ) = E1(0, θ|ξ|, ξ), and the existence of the limit is proved ifQ1(t, θ|ξ|, ξ)
converges for t→∞ in L∞. For t, s ≥ θ|ξ| we introduce

C1(t, s, ξ) := E1(s, t, ξ)B1(t, ξ)E1(t, s, ξ).

Then the matrix Q1(t, θ|ξ|, ξ) is given by

Q1(t, θ|ξ|, ξ) = I +
∞∑
k=1

ik
∫ t

θ|ξ|

C1(t1, θ|ξ|, ξ)

∫ t1

θ|ξ|

C1(t2, θ|ξ|, ξ) · · ·
∫ tk−1

θ|ξ|

C1(tk, θ|ξ|, ξ)dtk · · · dt1.

For t, s ≥ θ|ξ| we obtain the estimates

‖Q1(t, θ|ξ|, ξ)−Q1(s, θ|ξ|, ξ)‖L∞

≤
∞∑
k=1

∫ t

s

‖C1(t1, θ|ξ|, ξ)‖
1

(k − 1)!

(∫ t1

θ|ξ|

‖C1(t2, θ|ξ|, ξ)‖dt2
)k−1

dt1

≤
∫ t

s

‖B1(t1, ξ)‖
∞∑
k=0

1

k!

(∫ t1

θ|ξ|

‖B1(t2, ξ)‖dt2
)k
dt1

=

∫ t

s

‖B1(t1, ξ)‖ exp
(∫ t1

θ|ξ|

‖B1(t2, ξ)‖dt2
)
dt1

.
∫ t

s

‖B1(t1, ξ‖dt1
)
.
∫ t

s

(1 + t1)m(t1)2dt1.

For the last inequality we used the representation of B1 = B1(t, ξ) and the definition
of the hyperbolic zone. Since (1 + t)m(t)2 ∈ L1 it is clear that Q1(∞, θ|ξ|, ξ) exists
uniformly for |ξ| ≥ ε, because {Q1(tk, θ|ξ|, ξ)}k is a Cauchy sequence uniformly for
|ξ| ≥ ε in L∞ for any sequence {tk}k tending to infinity.
Then, we already proved the existence of the limit (2.50) on the dense subset L of
L2 × L2. By using

‖Q1(∞, θ|ξ|, ξ)−Q1(t, θ|ξ|, ξ)‖L∞ .
∫ ∞
t

(1 + τ)m2(τ)dτ,

where Q1(∞, θ|ξ|, ξ) = limt→∞Q1(t, θ|ξ|, ξ), we conclude (2.45).
According to the estimates proved in Zpd(N) and Zhyp(N), E(t, 0, ξ) is uniformly
bounded and the same is true for Ẽ−1(t, 0, ξ)E(t, 0, ξ). Therefore, applying the Banach-
Steinhaus Theorem 7.3 we conclude that the operator W+(ξ) is well-defined for all
ξ ∈ Rn.
Finally, we study the difference

‖λ(t)U(t, ·)− V (t, ·)‖L2 = ‖λ(t)E(t, 0, ·)U(0, ·)− ˜̃E0(t, 0, ·)V (0, ·)‖L2

=

∥∥∥∥(λ(t)
˜̃E0(t, 0, ·)−1E(t, 0, ·)−W+(·)

)
U(0, ·)

∥∥∥∥
L2

,
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under our assumption (u0, u1) ∈ H1×L2 and by definition of W+(ξ) we may conclude
that

‖λ(t)U(t, ·)− V (t, ·)‖L2 → 0

as t tends to infinity. The proof is completed.

Remark 2.11. From a scattering result to free waves for solutions to the damped wave
equation (see [58])

wtt −4w + b(t)wt = 0, w(0, x) = w0(x), wt(0, x) = w1(x), (2.51)

one can understand that (1 + t)m(t)2 ∈ L1 is a reasonable condition to be assumed in
Theorem 2.5. Indeed, let us assume that b(t) = µ

(1+t)g(t)
, where g(t) satisfies Hypothesis

2.3. After performing the change of variables

w(t, x) = exp
(
− 1

2

∫ t

0

b(s)ds
)
u(t, x)

we get
utt −4u+m(t)u = 0, u(0, x) = u0(x), ut(0, x) = u1(x)

with

m(t) = −1

4

(
b(t)2 + 2b′(t)

)
=

1

2

( µ

(1 + t)2g(t)
+

µg′(t)

(1 + t)g(t)2
− µ2

2(1 + t)2g(t)2

)
.

Therefore, if g(t) goes to infinity for t to infinity the condition (1+t)m(t)2 ∈ L1 is a nec-
essary and sufficient condition to have b ∈ L1 which guarantees scattering behavior
of solutions to (2.51) to free waves (see [58]).

Remark 2.12. Due to the energy conservation for the free wave equation we conclude
from Theorem 2.5 that

E(u)(t) =
1

2

(
‖ut(t, ·)‖2

L2 + ‖〈D〉 N
1+t
u(t, ·)‖2

L2

)
→ Ew(v)(0) as t→∞,

with Ew(v)(0) = ‖∇v0‖2
L2 + ‖v1‖2

L2.

Remark 2.13. If (1 + t)m(t)2 ∈ L1, then (2.7) holds for ψ ≡ 1. Consequently, p(t) =
(1 + t)−1 in (2.8). This already hints to a scattering behavior to free waves. This
conjecture is now proved in form of Theorem 2.5.

Remark 2.14. The Strichartz’ estimates from Theorem 1.1 remain true for our model
(2.41). This means, we can assume weaker hypothesis over m = m(t), Hypothesis
2.43, and get the same Lp − Lq estimates for the model (2.41). More precisely, let
m = m(t) ∈ C∞(R+) satisfy the following properties:

(B1) (1 + t)m(t)2 ∈ L1(R+),

(B2) |dktm(t)| . Ck(1 + t)−k, k = 0, 1, 2, · · · ,

for all t, where Ck are positives constants.
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Theorem 2.6. Let m = m(t) ∈ C∞(R+) satisfy (B1) and (B2). Then for all times t
the Lp − Lq decay estimate

‖ (ut(t, ·),∇xu(t, ·)) ‖Lq . (1 + t)−
n−1
2 ( 1

p
− 1
q ) (‖u0‖Lp,r+1 + ‖u1‖Lp,r) ,

is valid for r = n
(

1
p
− 1

q

)
, with 1 < p ≤ 1, 1

p
+ 1

q
= 1 and u = u(t, x) is the solution to

the Cauchy problem (2.41).

Example 2.6. If g(t) in (2.31) is given by g(t) = ln(e + t) · · · ln[m](e[m] + t), then
(1 + t)m(t)2 ∈ L1 and the conclusions of Theorems 2.5 and 2.6 hold.

Example 2.7. Let us choose m(t) = µ
(1+t)(ln(e+t))γ/2

in (2.31) for γ > 1. Then (1 +

t)m(t)2 ∈ L1 and the conclusions of Theorems 2.5 and 2.6 hold.



55

3 Strichartz estimates

In this chapter we apply a diagonalization procedure to Klein-Gordon problems
(2.1) with sufficiently smooth time-dependent coefficient m = m(t) aiming to find a
representation for the solution by Fourier multipliers and then derive Lp − Lq decay
estimates on the conjugate line. This procedure is well-known as WKB-analysis and
was introduced by K. Yagdjian in [62], M. Reissig and K. Yagdjian in [45].

3.1 Representation of the solution

Let us consider the following Cauchy problem for Klein-Gordon models

utt −∆u+m(t)2u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (3.1)

where u = u(t, x) and (t, x) ∈ [0,∞)×Rn.
We perform the partial Fourier transformation of (3.1) with respect to x. If we

denote by û = û(t, ξ) the partial Fourier transform Fx→ξ(u)(t, ξ) we obtain

ûtt + |ξ|2û+m(t)2û = 0, û(0, ξ) = û0(ξ), ût(0, ξ) = û1(ξ). (3.2)

To derive a representation of solutions we apply a diagonalization procedure to a
first-order system corresponding to equation (3.1) in the hyperbolic zone.

Here we follow some ideas of Wirth [59] and Yagdjian [62]. We will consider a
system with a coefficient matrix composed of a diagonal main part and a remainder
part. The goal of this diagonalization is to keep the diagonal part in every step of the
diagonalization. However, after every step we achieve a better normwise estimate for
the remaining part in some scale of symbol classes.

We consider the Cauchy problem for the Klein-Gordon equation (3.1) under the
following assumptions:

Hypothesis 3.1. Let m(t) ∈ C`(R+) satisfy

|m(t)| . 1

1 + t
, |m(k)(t)| . m(t)

(1 + t)k
for all k ≤ `. (3.3)

Hypothesis 3.2. There exists a positive increasing function ψ = ψ(t) ∈ C∞(R+), such
that

lim sup
t→∞

2(1 + t)
ψ′(t)

ψ(t)
< 1,

∣∣∣∣ψ(k)(t)

ψ(t)

∣∣∣∣ . 1

(1 + t)k
for all k ∈ N. (3.4)

And we assume the following relation between m(t) and ψ(t):∫ ∞
0

(1 + τ)
∣∣∣ψ′′(τ)

ψ(τ)
+m(τ)2

∣∣∣dτ . 1. (3.5)
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In order to derive Lp−Lq estimates for the solution and its derivatives we divide
the extended phase space [0,∞)× Rn into three zones:

Zpd(N) = {(t, ξ) ∈ [0,∞)×Rn : (1 + t)|ξ| ≤ N},
Zs
hyp(N) = {(t, ξ) ∈ [0,∞)×Rn : |ξ| ≤ N ≤ (1 + t)|ξ|},

Z`
hyp(N) = {(t, ξ) ∈ [0,∞)×Rn : |ξ| ≥ N},

where N is a positive constant.

|ξ|

t

0

Z`
hyp

Zs
hyp

Zpd

θ|ξ|

N

Fig. 3.1: Sketch of the zones.

Remark 3.1. In the zone Z`
hyp(N) we consider only large frequencies and in the zones

Zpd(N) and Zs
hyp(N) we consider only small frequencies. We have that the hyperbolic

zone from the previous chapter is Zhyp(N) = Zs
hyp(N) ∪ Z`

hyp(N). Furthermore, the
separating curve between zones Zpd(N) and Zs

hyp(N) is given by

θ|ξ| : (0, N ]→ [0,∞), (1 + θ|ξ|)|ξ| = N.

We put also θ0 =∞, and θ|ξ| = 0 for any |ξ| ≥ N .

Remark 3.2. For the estimates of the potential energy we need to deal with the factor
|ξ|−1. For this reason we shall divide the phase space into three zones because we shall
proceed in a different way in the hyperbolic zone for small and large frequencies.

In order to separate the extended phase space into three parts we introduce the
function χ ∈ C∞(R+) such that χ(t) = 1 for t ≤ 1

2
, χ(t) = 0 for t ≥ 2 and χ′(t) ≤ 0.

We can define the characteristic functions ϕpd, ϕ`hyp and ϕshyp of the zones
Zpd(N), Z`

hyp(N) and Zs
hyp(N), respectively, by

ϕpd(t, ξ) = χ
(
|ξ|N−1

)
χ
(
(1 + t)|ξ|N−1

)
,

ϕshyp(t, ξ) = χ
(
|ξ|N−1

) (
1− χ

(
(1 + t)|ξ|N−1

))
,

ϕ`hyp(ξ) = 1− χ
(
|ξ|N−1

)
such that ϕpd(t, ξ) + ϕ`hyp(ξ) + ϕshyp(t, ξ) = 1. Let us consider the same micro-energy
that we defined in the Chapter 2, that is,

U(t, ξ) =

(
h(t, ξ)û, ût −

ψ′(t)

ψ(t)
û

)T
, (3.6)

where
h(t, ξ) =

1

1 + t
ϕpd(t, ξ) + i|ξ|

(
ϕ`hyp(ξ) + ϕshyp(t, ξ)

)
.
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3.1.1 Considerations in the pseudo-differential zone

In the pseudo-differential zone Zpd(N) the micro-energy (3.6) reduces to

U =
( û

1 + t
, ût −

ψ′(t)

ψ(t)
û
)T
, U0(ξ) =

(
û0(ξ), û1(ξ)− ψ′(0)

ψ(0)
û0(ξ)

)T
, and U = ψ(t)Ũ .

So we have

∂tŨ(t, ξ) = A(t, ξ)Ũ :=

(
− 1

1+t
1

1+t

−(1 + t)
(
ψ′′

ψ
+m(t)2 + |ξ|2

)
−2ψ

′(t)
ψ(t)

)
Ũ . (3.7)

If we consider the fundamental solution E(t, s, ξ) of the system (3.7), i.e., Ũ(t, ξ) =

E(t, s, ξ)Ũ(s, ξ) and E(s, s, ξ) = I, then we proved in Corollary 2.1 that in the pseudo-
differential zone we have the following proposition:

Proposition 3.1. Assume the Hypothesis 3.1 and 3.2. Then the fundamental solution
E(t, 0, ξ) satisfies the estimate

‖E(t, 0, ξ)‖ . 1

ψ(t)2
,

for all (t, ξ) ∈ Zpd(N).

Consider H(t, s, ξ) such that U(t, ξ) = H(t, s, ξ)U(s, ξ) and H(s, s, ξ) = I, that
is, H(t, s, ξ) = ψ(t)

ψ(s)
E(t, s, ξ). Then it follows from the Proposition 3.1 that

‖H(t, 0, ξ)‖ . 1

ψ(t)
for all t ≤ θ|ξ|. (3.8)

The properties of the matrix A = A(t, ξ) imply the following symbol-like estimate.

Lemma 3.1. Assume the Hypothesis 3.1 and 3.2. Then for |ξ| ≤ N the symbol-like
estimates ∥∥Dα

ξ

(
ψ2(θ|ξ|)E(θ|ξ|, 0, ξ)

)∥∥ ≤ Cα|ξ|−|α|

are valid for all |α| ≤ `+ 1.

Proof. Observe that the matrix A(t, ξ) has the same properties of the matrix of the
Lemma 3.10 of [58], what is sufficient to show the lemma.

From Lemma 3.1 it follows that∥∥Dα
ξ

(
ψ(θ|ξ|)H(θ|ξ|, 0, ξ)

)∥∥ ≤ Cα|ξ|−|α|, (3.9)

for all |α| ≤ `+ 1.
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3.1.2 Considerations in the hyperbolic zone: Zs
hyp(N) ∪ Z`

hyp(N)

First of all let us introduce the symbol class S`1,`2N {m1,m2} in the hyperbolic zone.

Definition 3.1. The time-dependent amplitude function a = a(t, ξ) belongs to the
symbol class S`1,`2N {m1,m2} with restricted smoothness `1, `2 if it satisfies the symbol-
like estimates ∣∣Dk

tD
α
ξ a(t, ξ)

∣∣ ≤ CK,α|ξ|m1−|α|
(

1

1 + t

)m2+k

(3.10)

for all (t, ξ) ∈ Zhyp(N), all non-negative integers k ≤ `1 and all multi-indices α ∈ Nn

with |α| ≤ `2.

We will denote by SN{m1,m2} the symbol class when `1 = `2 = ∞, that is,
SN{m1,m2} = S∞,∞N {m1,m2}.

The rules of the symbolic calculus are collected in the following proposition.

Proposition 3.2. (1) S`1,`2N {m1,m2} is a vector space, for all non-negative integers `1

and `2.

(2) S
`
′
1,`
′
2

N {m1 − k,m2 + `} ⊂ S`1,`2N {m1,m2}, for all ` ≥ k ≥ 0, `
′

1 ≥ `1 and `′2 ≥ `2.

(3) S`1,`2N {m1,m2} · S
`
′
1,`
′
2

N {m′1,m
′

2} ⊂ S
˜̀
1,˜̀2
N {m1 + m

′

1,m2 + m
′

2}, for all non-negative
integers `j and `′j with ˜̀j = min{`j, `

′
j} for j = 1, 2.

(4) Dk
tD

α
ξ S

`1,`2
N {m1,m2} ⊂ S

`1−k,`2−|α|
N {m1− |α|,m2 + k}, for all non-negative integers

`1 and `2 with k ≤ `1 and |α| ≤ `2.
(5) S`1,`2N {−1, 2} ⊂ L∞ξ L

1
t (Zhyp), for all non-negative integers `1 and `2.

In the hyperbolic zone Zhyp(N) = Zs
hyp(N) ∪ Z`

hyp(N) the micro-energy (3.6)
reduces to

U =
(
i|ξ|û, ût −

ψ′(t)

ψ(t)
û
)T
, U0(ξ) =

(
i|ξ|û(θ|ξ|, ξ), ût(θ|ξ|, ξ)−

ψ′(θ|ξ|)

ψ(θ|ξ|)
û(θ|ξ|, ξ)

)T
,

and U = ψ(t)Ũ , so that

∂tŨ =

(
0 1
1 0

)
i|ξ|Ũ +

(
0 0

0 −2ψ
′(t)
ψ(t)

)
Ũ +

(
0 0

−ψ′′

ψ
(t)−m(t)2 0

)
(i|ξ|)−1Ũ (3.11)

for t ≥ θ|ξ| with initial datum Ũ(θ|ξ|, ξ) = ψ(θ|ξ|)
−1U0(ξ).

Let M be the diagonalizer of the principal part (with respect to powers of |ξ|)
of (3.11) given by

M =
1√
2

(
1 1
−1 1

)
, M−1 =

1√
2

(
1 −1
1 1

)
.

If we put V (t, ξ) := M−1Ũ(t, ξ), then we get

DtV =

(
−1 0
0 1

)
|ξ|V − (B(t) + C(t, ξ))V, (3.12)
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where

B(t) = −iψ
′(t)

ψ(t)

(
1 −1
−1 1

)
, C(t, ξ) = − 1

2|ξ|

(
ψ′′

ψ
(t) +m(t)2

)(
−1 −1
1 1

)
.

Note that B ∈ SN{0, 1} and C(t, ξ) ∈ S`,∞N {−1, 2} ⊂ S`,∞N {0, 1}.
Now we want to carry out further steps of the diagonalization procedure. The

aim is to transform the previous system such that the new matrix has diagonal struc-
ture and the new remainder belongs to a special hyperbolic symbol class.

We construct recursively the diagonalizer Nk(t, ξ) of order k. The construction
of the diagonalizer matrix was developed by Yagdjian [62]. Let

Nk(t, ξ) =
k∑
j=0

N (j)(t, ξ), Fk(t, ξ) =
k∑
j=0

F (j)(t, ξ),

where N (0) = I, B(0) = B + C and F (0) = diagB(0) = F0(t, ξ). Following Yagdjian
[62] and Wirth [58] the construction goes along the next scheme. We define

F (j) := diagB(j), (3.13)

N (j+1) :=

 0
−B(j)

12

2|ξ|
B

(j)
21

2|ξ| 0

 , (3.14)

B(j+1) :=
(
Dt −D +B + C

)
Nj+1 −Nj+1

(
Dt −D + Fj

)
. (3.15)

Proposition 3.3. Assume the Hypothesis 3.1 and 3.2. Then N (j) ∈ S`−j+1,∞
N {−j, j}

and B(j+1) ∈ S`−j−1,∞
N {−j−1, j+2} for all j ≥ 0. Moreover, the matrix Nk is invertible

in Zhyp(N) for all k ∈ N.

Proof. We will prove the statements by induction on j.
1) The Hypothesis 3.1 and 3.2 imply that

F (0)(t, ξ) = F0 ∈ S`,∞N {0, 1}, N (1)(t, ξ) ∈ S`,∞N {−1, 1}.

So we have,

B(1) = (Dt −D +B + C)N1 −N1 (Dt −D + F0)

= (Dt −D +B + C)
(
N (0) +N (1)

)
−
(
N (0) +N (1)

)
(Dt −D + F0)

= DtN
(1) +

(
B(0) + [N (1), D]− F0

)
−N (1)F0 + (B + C)N (1).

Now B(0) + [N (1), D]− F0 = 0 imply that

B(1) = DtN
(1) −N (1)F0 + (B + C)N (1).

Taking into consideration the rules of the symbolic calculus we have

if N (1) ∈ S`,∞N {−1, 1}, then DtN
(1) ∈ S`−1,∞

N {−1, 2},
if F0 ∈ S`,∞N {0, 1}, N

(1) ∈ S`,∞N {−1, 1}, then N (1)F0 ∈ S`,∞N {−1, 2},
if B + C ∈ S`,∞N {0, 1}, N

(1) ∈ S`,∞N {−1, 1}, then (B + C)N (1) ∈ S`,∞N {−1, 2},
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summarizing B(1) ∈ S`−1,∞
N {−1, 2}.

2) For j ≥ 2 we suppose that B(m) ∈ S`−m,∞N {−m,m+1} for all 1 ≤ m ≤ j. Then,
by definition of N (m+1) we have from |ξ|−1 ∈ SN{−1, 0}, that N (m+1) ∈ S`−m,∞N {−m−
1,m+ 1} and F (m) ∈ S`−m,∞N {−m,m+ 1} for all 1 ≤ m ≤ j.

3) For B(j+1) we have

B(j+1) = (Dt −D +B + C)Nj+1 −Nj+1 (Dt −D + Fj)

= (Dt −D +B + C)

j+1∑
v=0

N (v) −
j+1∑
v=0

N (v)
(
Dt −D +

j∑
v=0

F (v)
)

= (Dt −D +B + C)

j+1∑
v=0

N (v) −
j+1∑
v=0

N (v)
(
Dt −D +

j−1∑
v=0

F (v)
)
−

j+1∑
v=0

N (v)F (j)

= B(j) + (Dt −D +B + C)N (j+1) −N (j+1)
(
Dt −D +

j−1∑
v=0

F (v)
)

−
j+1∑
v=1

N (v)F (j) − F (j)

= B(j) +
[
N (j+1), D

]
− F (j) +DtN

(j+1) −N (j+1)

j−1∑
v=0

F (v)

+(B + C)N (j+1) −
j+1∑
v=1

N (v)F (j).

We have that
B(j) +

[
N (j+1), D

]
− F (j) = 0

therefore,

B(j+1) = DtN
(j+1) −N (j+1)

j−1∑
v=0

F (v) + (B + C)N (j+1) −
j+1∑
v=1

N (v)F (j).

Then B(j+1) ∈ S`−j−1,∞
N {−j − 1, j + 2}.

Now we are able to prove that Nk is invertible on Zhyp(N). This follows from
Nk − I ∈ S`−k+1,∞

N {−1, 1} and by the choice of a sufficiently large zone constant N .
In fact,

‖Nk − I‖ .
1

|ξ|(1 + t)
.

1

|ξ|(1 + θ|ξ|)
=

1

N

∴ ‖Nk − I‖ → 0, N →∞.

The proof is complete.

If we denote Rk(t, ξ) = −Nk(t, ξ)
−1B(k)(t, ξ), the previous results give us the

following lemma:

Lemma 3.2. Assume the Hypothesis 3.1 and 3.2. For each 1 ≤ k ≤ ` there exists a
zone constant N and matrix-valued symbols such that
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1. Nk(t, ξ) ∈ S`−k+1,∞
N {0, 0} is invertible for (t, ξ) ∈ Zhyp(N) with Nk(t, ξ)

−1 ∈
S`−k+1,∞
N {0, 0};

2. Fk−1(t, ξ) ∈ S`−k+1,∞
N {0, 1} is diagonal with Fk−1(t, ξ)− F (0) ∈ S`−k+1,∞

N {−1, 2};

3. Rk(t, ξ) ∈ S`−k,∞N {−k, k + 1}.

Moreover, the identity(
Dt−D(ξ)+B(t)+C(t, ξ)

)
Nk(t, ξ) = Nk(t, ξ)

(
Dt−D(ξ)+Fk−1(t, ξ)−Rk(t, ξ)

)
(3.16)

holds for all (t, ξ) ∈ Zhyp(N).

The next proposition shows us that the multiplication by e±it|ξ| is not a well-
defined operation on the symbol classes S`1,`2N {m1,m2}.

In order to simplify the calculations the following remark is important.

Remark 3.3. Let g be a sufficiently smooth function such that g = g(|ξ|) satisfies∣∣D|α||ξ| g(|ξ|)
∣∣ . |ξ|−|α|

for all ξ ∈ Rn. Then we have for all multi-indices α the estimates

|Dα
ξ g(|ξ|)| . |ξ|−α.

Indeed, applying Faà de Bruno’s formula for a multivariate version we get that

|Dα
ξ g(|ξ|)| =

∣∣∣∣∣∣
|α|∑
j=1

∑
β1+···+βj=α

Cβ1,··· ,βjg
(j)(|ξ|)

j∏
i=1

Dβi
ξ |ξ|

∣∣∣∣∣∣
≤

|α|∑
j=1

∑
β1+···+βj=α

|Cβ1,··· ,βj ||g(j)(|ξ|)|

∣∣∣∣∣
j∏
i=1

Dβi
ξ |ξ|

∣∣∣∣∣
≤

|α|∑
j=1

∑
β1+···+βj=α

|Cβ1,··· ,βj ||ξ|−j|ξ|−(|β1|+···+|βj |)+j

≤ Cα|ξ|−|α|.

Proposition 3.4. We have that

1. exp (±iθ|ξ||ξ|)S`1,`2N {m1,m2} ⊂ S`1,`2N {m1,m2},

2. exp (±it|ξ|)S`1,`2N {m1,m2} ⊂ S`1,`2N {m1 + η,m2 − η} with η = `1 + `2.

Proof. In fact, let a(t, ξ) ∈ S`1,`2N {m1,m2}.
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First let us prove 1. If a(t, ξ) ∈ S`1,`2N {m1,m2}, then

∣∣Dk
tD

α
ξ

(
exp (±iθ|ξ||ξ|)a(t, ξ)

)∣∣ =

∣∣∣∣∣ ∑
α1+α2=α

Cα1,α2D
α1
ξ

(
e±iθ|ξ||ξ|

)
Dk
tD

α2
ξ a(t, ξ)

∣∣∣∣∣
≤

∑
α1+α2=α

Cα1,α2

C ′α1

∣∣∣∣∣∣e±iθ|ξ||ξ|
|α1|∑
j=1

∑
`1+···`j=|α1|

j∏
i=1

∂`i|ξ|
(
θ|ξ||ξ|

)∣∣∣∣∣∣
 ∣∣Dk

tD
α2
ξ a(t, ξ)

∣∣
≤

∑
α1+α2=α

Cα1,α2

C ′α1

|α|∑
j=1

∑
`1+···`j=|α1|

j∏
i=1

|ξ|−`i
∣∣Dk

tD
α2
ξ a(t, ξ)

∣∣
≤

∑
α1+α2=α

C̃k,α1,α2|ξ|m1−(|α1|+|α2|)
(

1

1 + t

)m2+k

= Ck,α|ξ|m1−|α|
(

1

1 + t

)m2+k

.

To prove 2 let a(t, ξ) ∈ S`1,`2N {m1,m2}. Then∣∣∣Dk
tD

α
ξ (exp (±it|ξ|)a(t, ξ))

∣∣∣
=
∣∣∣ ∑
k1+k2=k

∑
α1+α2=α

Ck1,k2,α1,α2D
k1
t D

α1
ξ e
±it|ξ|Dk2

t D
α2

|ξ|a(t, ξ)
∣∣∣

≤
∑

k1+k2=k

∑
α1+α2=α

C ′t|α1|
∣∣Dk1

t e
±it|ξ|∣∣ ∣∣∣Dk2

t D
α2

|ξ|a(t, ξ)
∣∣∣

≤
∑

k1+k2=k

∑
α1+α2=α

C ′
(

1

1 + t

)m2+k2−|α1|

|ξ|m1−|α2|+k1

≤ Ck,α|ξ|m1+η−|α|
(

1

1 + t

)m2−η+k

.

3.1.3 Fundamental solution of the diagonalized system

We are interested to find a representation for the fundamental solution of the
diagonalized system{

(Dt −D(ξ) + Fk−1(t, ξ)−Rk(t, ξ)) Ek(t, s, ξ) = 0,
Ek(s, s, ξ) = I.

(3.17)

To find such a representation we are going to consider the fundamental solution E0 =
E0(t, s, ξ) of the free wave system, i.e., the fundamental solution to Dt −D(ξ). Then
we study the influence of diagB and, finally, we check the influence of Fk−1 − F (0),
diagC and Rk on the construction of the fundamental solution.
Step 1: We have the fundamental solution E0(t, s, ξ) for

(Dt −D(ξ)) E0(t, s, ξ) = 0, E0(s, s, ξ) = I,
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as

E0(t, s, ξ) = exp (i(t− s)D(ξ)) =

(
ei(t−s)|ξ| 0

0 e−i(t−s)|ξ|

)
. (3.18)

Step 2: To analyze the influence of diagB let us define Ẽ0 = Ẽ0(t, s, ξ) =
ψ(s)
ψ(t)
E0(t, s, ξ). Then

DtẼ0(t, s, ξ) = Dt

(
ψ(s)

ψ(t)

)
E0(t, s, ξ) +

ψ(s)

ψ(t)
DtE0(t, s, ξ)

=

(
i
ψ(s)ψ′(t)

ψ(t)2
I +

ψ(s)

ψ(t)
D(ξ)

)
E0(t, s, ξ)

=

(
i
ψ′(t)

ψ(t)
I +D(ξ)

)
ψ(s)

ψ(t)
E0(t, s, ξ)

=

(
i
ψ′(t)

ψ(t)
I +D(ξ)

)
Ẽ0(t, s, ξ)

= (D(ξ)− diag B(t)) Ẽ0(t, s, ξ).

Therefore Ẽ0(t, s, ξ) satisfies

DtẼ0(t, s, ξ) =
(
D(ξ)− diag B

)
Ẽ0(t, s, ξ). (3.19)

Step 3: Now we will study the influence of Fk−1 − F (0), diag C and Rk. Therefore,
we define

Φk(t, s, ξ) = Ẽ0(s, t, ξ)
(
−Fk−1(t, ξ) +Rk(t, ξ) + F (0)(t, ξ)− diag C

)
Ẽ0(t, s, ξ).

But Fk−1(t, ξ), F (0)(t, ξ), and diag C are diagonal. Hence,

Φk(t, s, ξ) = −(Fk−1 − F (0)(t, ξ)) + E0(s, t, ξ)Rk(t, ξ)E0(t, s, ξ)− diag C. (3.20)

Let us consider the following system:{
DtQk(t, s, ξ) = Φk(t, s, ξ)Qk(t, s, ξ),
Qk(s, s, ξ) = I.

(3.21)

The fundamental solution Ek = Ek(t, s, ξ) of the diagonalized system can be repre-
sented as

Ek(t, s, ξ) = Ẽ0(t, s, ξ)Qk(t, s, ξ) =
ψ(s)

ψ(t)
E0(t, s, ξ)Qk(t, s, ξ). (3.22)

In fact,

DtEk = (DtẼ0)Qk + Ẽ0 (DtQk)
= (D − diag B) Ẽ0Qk + Ẽ0 (ΦkQk)
= (D − diag B) Ẽ0Qk +

(
−Fk−1 +Rk + F (0) − diag C

)
Ẽ0Qk

=
(
D − diag B − diag C − Fk−1 +Rk + F (0)

)
Ek

=
(
D − F (0) − Fk−1 +Rk + F (0)

)
Ek

= (D − Fk−1 +Rk) Ek.

We have that Rk(t, ξ) ∈ S`−k,∞N {−k, k+1}, and if `−k ≥ 0 we can prove the following
lemma:
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Lemma 3.3. The matrix-valued function Φk(t, s, ξ) belongs to the symbol class

Φk(t, s, ξ) ∈ S0,k−1
N {−1, 2} (3.23)

for all s ≥ θ|ξ|.

Proof. Let us consider the case where s = θ|ξ|, the case s > θ|ξ| is analogous. The
representation of Φk(t, s, ξ) in (3.20) implies that

Φk(t, θ|ξ|, ξ) = −(Fk−1(t, ξ)− F (0)(t, ξ)) + E0(θ|ξ|, t, ξ)Rk(t, ξ)E0(t, θ|ξ|, ξ)− diag C.

We have that diag C ∈ S`,∞N {−1, 2} ⊂ S0,k−1
N {−1, 2} and the Lemma 3.2 implies that

Fk−1(t, ξ)− F (0)(t, ξ) ∈ S`−k+1,∞
N {−1, 2} ⊂ S0,k−1

N {−1, 2}. The only remainder term is

Φ̃k(t, θ|ξ|, ξ) = E0(θ|ξ|, t, ξ)Rk(t, ξ)E0(t, θ|ξ|, ξ) =

(
ak11 ak12e

2i(θ|ξ|−t)|ξ|

ak21e
2i(t−θ|ξ|)|ξ| ak22

)
,

where by Lemma 3.2 the entries akij ∈ S
`−k,∞
N {−k, k + 1} ⊂ S0,k−1

N {−1, 2}. Applying
Proposition 3.4 we deduce that Φ̃k(t, θ|ξ|, ξ) ∈ S0,k−1

N {−k+η, k+1−η} = S0,k−1
N {−1, 2},

where η = k − 1.

Remark 3.4. Moreover, we may conclude that Φk(t, s, ξ) ∈ S`1,`2N {−1, 2} if η = `1 +
`2 < k − 1.

Taking account of S0,k−1
N {−1, 2} ⊂ L∞ξ L

1
t (Zhyp) it is allowed to apply the Peano-

Baker formula (7.2) and to conclude that the fundamental solution of the system
(3.21) is given by

Qk(t, s, ξ) = I +
∞∑
`=1

i`
∫ t

s

Φk(t1, s, ξ)

∫ t1

s

Φk(t2, s, ξ) · · ·
∫ t`−1

s

Φk(t`, s, ξ)dt` · · · dt1.

(3.24)
This series representation for solutions to (3.21) and Proposition 7.2 imply that

‖Qk(t, s, ξ)‖ . 1.

In fact, first of all look that Fk−1 − F0 ∈ S`−k,∞N {−1, 2}, Rk(t, ξ) ∈ S`−k,∞N {−1, 2},
diag C ∈ S`−k,∞N {−1, 2} and ‖E0(t, s, ξ)‖ = 1. Then

‖Φk(t, s, ξ)‖ ≤ ‖Fk−1 − F0‖+ ‖Rk(t, ξ)‖+ ‖diag C‖ . 1

(1 + t)2|ξ|
.
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Then,∥∥∥Qk(t, s, ξ)∥∥∥ =
∥∥∥I +

∞∑
`=1

i`
∫ t

s

Φk(t1, s, ξ)

∫ t1

s

Φk(t2, s, ξ) · · ·
∫ t`−1

s

Φk(t`, s, ξ)dt` · · · dt1
∥∥∥

≤ 1 +
∞∑
`=1

∫ t

s

‖Φk(t1, s, ξ)‖
∫ t1

s

‖Φk(t2, s, ξ)‖ · · ·
∫ t`−1

s

‖Φk(t`, s, ξ)‖dt` · · · dt1

. 1 +
∞∑
`=1

∫ t

s

1

|ξ|(1 + t)2

∫ t1

s

1

|ξ|(1 + t1)2
· · ·
∫ t`−1

s

1

|ξ|(1 + t`)2
dt` · · · dt1

≤ 1 +
∞∑
`=1

1

`!

(∫ t

s

dτ

|ξ|(1 + τ)2

)`
= exp

(∫ t

s

dτ

|ξ|(1 + τ)2

)
≤ exp

(∫ ∞
θ|ξ|

dτ

|ξ|(1 + τ)2

)
= exp

(
1

N

)
. 1.

This leads to the following estimate for the fundamental solution of the diagonalized
system in the hyperbolic zone:

‖Ek(t, s, ξ)‖ .
ψ(s)

ψ(t)
.

The goal is now to estimate the ξ-derivatives of Qk(t, s, ξ).

Lemma 3.4. Assume that a(t, s, ξ) ∈ S0,k−1
N {−1, 2}. Then

b(t, s, ξ) = 1 +
∞∑
j=1

∫ t

s

a(t1, s, ξ)

∫ t1

s

a(t2, s, ξ) · · ·
∫ tj−1

s

a(tj, s, ξ)dtj · · · dt1 (3.25)

defines a symbol from S0,k−1
N {0, 0} uniformly in s ≥ θ|ξ|.

Proof. First of all let us analyze the α derivatives with respect to ξ in the representation
(3.25) for b(t, s, ξ). We have that

Dα
ξ b(t, s, ξ) =

∞∑
`=1

Dα
ξ

(∫ t

s

a(t1, s, ξ)

∫ t1

s

a(t2, s, ξ) · · ·
∫ t`−1

s

a(t`, s, ξ)dt` · · · dt1
)
.

Let us consider the terms of the form∫ t

s

Dα1
ξ a(t1, s, ξ)

∫ t1

s

Dα2
ξ a(t2, s, ξ) · · ·

∫ t`−1

s

D
αj
ξ a(t`, s, ξ)dt` · · · dt1

with
j∑
i=1

αi = α.

If s > θ|ξ|, then the Lemma 3.3 implies that the norm of these term can be estimated
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by

C ′α,k,N

∫ t

s

|ξ|−1−|α1|
(

1

1 + t1

)2 ∫ t2

s

|ξ|−1−|α2|
(

1

1 + t2

)2

× · · · ×
∫ t`−1

s

|ξ|−1−|αj |
(

1

1 + tj

)2

dt` · · · dt1

≤ Cα,k,N |ξ|−|α|.

If s = θ|ξ|, then we also have to care for derivatives of the lower integral bound
θ|ξ|. Then there arise terms as

Dα−β
ξ

(
a(θ|ξ|, θ|ξ|, ξ)D

β
ξ θ|ξ|

)
.

For |β| = 1 we can estimate as follows:∥∥∥Dα−β
ξ

(
a(θ|ξ|, θ|ξ|, ξ)∂|ξ|θ|ξ|

)∥∥∥ =
∥∥∥ ∑
|α1|+|α2|=|α|−1

Cα1,α2D
α1
ξ a(θ|ξ|, θ|ξ|, ξ)D

α2+β
ξ θ|ξ|

∥∥∥
≤ C̃α

∑
|α1|+|α2|=|α|−1

|ξ|−1−|α1|
(

1

1 + θ|ξ|

)2

|ξ|−2−|α2|

≤ Cα,N |ξ|−|α|.

We use that the terms Dα1
ξ a(θ|ξ|, θ|ξ|, ξ) can be estimate in the following way:

‖Dα1
ξ a(θ|ξ|, θ|ξ|, ξ)‖ . |ξ|−1−|α|

(
1

1 + θ|ξ|

)2

.

Indeed, following the Remark 3.4 we know that if `1 + `2 ≤ k − 1, then Φk(t, s, ξ) ∈
S`1,`2N . If we denote by a(θ|ξ|, θ|ξ|, ξ) = G(θ|ξ|, ξ) and apply the generalized version of
Faa di Bruno’s formula, see Lemma 7.6, we obtain for the case |α| = n

Dα
ξG(θ|ξ|, ξ) =

∑
0

∑
1

· · ·
∑
n

C(n, ki, qij)
∂κG

∂θ|ξ|∂
α2
ξ

(θ|ξ|, ξ)
∏

i=1,|αi|=i

(
Dαi
ξ θ|ξ|

)qi1 (Dαi
ξ ξ
)qi2 ,

where the respective sums are taken over all non-negative integer solution of the
Diophantine equations as follows:∑

0

→ k1 + 2k2 + · · ·+ nkn = n∑
1

→ q11 + q12 + · · ·+ q1r = k1

...∑
n

→ qn1 + qn2 + · · ·+ qnr = kn,

and

p1 =
n∑
i=1

qij, |α2| =
n∑
i=1

qi2

|κ| = k1 + k2 + · · ·+ kn = p1 + |α2|.
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By virtue of ∂ξkξL = δkl we may conclude that qi2 = 0, for all i ≥ 2 and |α2| = q12. This
yields the estimate

‖Dα
ξG(θ|ξ|, ξ)‖ .

∑
0

∑
1

· · ·
∑
n

|ξ|−1−|α2|
(

1

1 + θ|ξ|

)2+p1 n∏
i=1

|ξ|−(|αi|+1)qi1

=
∑

0

∑
1

· · ·
∑
n

|ξ|−1−q12
(

1

1 + θ|ξ|

)2+p1

|ξ|−p1−n−q12

. |ξ|−1−n
(

1

1 + θ|ξ|

)2

.

Therefore |Dα
ξ b(t, s, ξ)| can be estimate by Cα,N |ξ|−|α|. This complete the proof.

After all these discussions we arrive at the following representation of the fun-
damental solution to system (3.17).

Theorem 3.1. Assume that the Hypothesis 3.1 and 3.2 are satisfied. Then the funda-
mental solution Ek(t, s, ξ) of the diagonalized system (3.17) can be represented in the
hyperbolic zone as

Ek(t, s, ξ) =
ψ(s)

ψ(t)
E0(t, s, ξ)Qk(t, s, ξ) for all t, s ≥ θ|ξ| (3.26)

with a symbol Qk(t, s, ξ) subjected to the symbol like estimates∥∥Dα
ξQk(t, s, ξ)

∥∥ ≤ Cα|ξ|−|α| for all t, s ≥ θ|ξ| (3.27)

and for all multi-indices |α| ≤ k − 1.

Remark 3.5. One use of this representation is to derive later Lp − Lq estimates for
the Cauchy problem for Klein-Gordon models (3.1). To derive these estimates we will
apply the Marcinkiewicz’s multiplier Theorem 7.1. One basic assumption to apply this
theorem is that an amplitude b = b(ξ) ∈ Cm(Rn − {0}) is subjected to the symbol-like
estimates

|Dα
ξ b(ξ)| . |ξ|−|α| for all |ξ| ≤ m,

where m =
⌈
n
2

⌉
+ 1.

The previous remark shows us how many steps of diagonalization are necessary,
at least, for applying the Marcinkiewicz’s theorem. In other words, if k is the number
of steps of diagonalization, then k−1 ≥

⌈
n
2

⌉
+ 1. Here the regularity of the mass m(t)

should be at the least equal to 2(k − 1).

Transforming back to the original problem:

After constructing the fundamental solution Ek(t, s, ξ) we want to transform back
to the original problem and get in the hyperbolic zone the representation that we are
looking for. We know that,

Nk(t, ξ)
−1
(
Dt −D(ξ) +B + C

)
Nk(t, ξ) =

(
Dt −D(ξ) + Fk−1(t, ξ)−Rk(t, ξ)

)
.
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If Ek(t, s, ξ) is the fundamental solution to
(
Dt −D(ξ) + Fk−1(t, ξ)−Rk(t, ξ)

)
, then(

Dt −D(ξ) +B + C
)
Nk(t, ξ)Ek(t, s, ξ) = 0.

In this way we have that E (0)(t, s, ξ)Nk(s, ξ) and Nk(t, ξ)Ek(t, s, ξ) satisfy the same
initial value problem, where E (0)(t, s, ξ) is the fundamental solution to Dt − D(ξ) +
B + C. Therefore,

E (0)(t, s, ξ)Nk(s, ξ) = Nk(t, ξ)Ek(t, s, ξ), E (0)(t, s, ξ) = Nk(t, ξ)Ek(t, s, ξ)Nk(s, ξ)
−1,

respectively. Moreover, E (0)(t, s, ξ) and M−1E(t, s, ξ)M satisfy the same initial value
problem. So, the representation of the fundamental solution in the hyperbolic zone is

E(t, s, ξ) = MNk(t, ξ)Ek(t, s, ξ)Nk(s, ξ)
−1M−1

=
ψ(s)

ψ(t)
MNk(t, ξ)E0(t, s, ξ)Qk(t, s, ξ)Nk(s, ξ)

−1M−1,

with uniformly bounded coefficient matrices Nk, N
−1
k ∈ S

`−k+1,∞
N {0, 0}.

The above representation will be used for large frequencies. We will consider a
different representation for small frequencies, because in this case we shall use the
"gluing procedure". For small frequencies we should remember that for 0 ≤ s ≤ θ|ξ| ≤
t we have

E(t, s, ξ) = E(t, θ|ξ|, ξ)E(θ|ξ|, s, ξ).

Taking this into account for E(t, θ|ξ|, ξ) we get

E(t, s, ξ) =
1

ψ(t)
MNk(t, ξ)E0(t, θ|ξ|, ξ)Qk(t, θ|ξ|, ξ)Nk(θ|ξ|, ξ)

−1M−1ψ(θ|ξ|)E(θ|ξ|, s, ξ)

for 0 ≤ s ≤ θ|ξ| ≤ t.

If U(t, ξ) = H(t, s, ξ)U(s, ξ) and H(s, s, ξ) = I, then H(t, s, ξ) =
ψ(t)

ψ(s)
E(t, s, ξ).

Summarizing we arrive at

H(t, s, ξ) = MNk(t, ξ)E0(t, s, ξ)Qk(t, s, ξ)Nk(s, ξ)
−1M−1, t, s ≥ θ|ξ|, (3.28)

and

H(t, s, ξ) = MNk(t, ξ)E0(t, θ|ξ|, ξ)Qk(t, θ|ξ|, ξ)Nk(θ|ξ|, ξ)
−1M−1H(θ|ξ|, s, ξ) (3.29)

for 0 ≤ s ≤ θ|ξ| ≤ t.

3.2 Lp − Lq decay estimates on the conjugate line

In Chapter 2 we proved results about generalized energy conservation. In this
way we find out L2−L2 estimates for energy solutions to Cauchy problems for Klein-
Gordon models. In this section we will use the representations for the solution, we
have discussed in the previous section, to extend our L2 − L2 estimates to Lp − Lq

decay estimates on the conjugate line for solutions to Cauchy problems for non-
effective Klein-Gordon models.

Basically the Lp − Lq decay estimates are given by the decay estimates of the
fundamental solution operator E0(t, s,D) of the free wave equation. This result is
well-known and we will present it in the next theorem and give a proof.
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Theorem 3.2. The fundamental solution operator of the free wave equation satisfies

‖E0(t, 0, D)‖Lp,r→Lq ≤ Cp,q(1 + t)−
n−1
2 ( 1

p
− 1
q ) (3.30)

for p ∈ (1, 2], p and q on the conjugate line and with regularity r = n
(

1
p
− 1

q

)
.

Proof. Let us divide the extended phase space into three zones:

Z1 = {(t, ξ) ∈ [0,∞)×Rn : (1 + t)|ξ| ≤ N},
Z2 = {(t, ξ) ∈ [0,∞)×Rn : |ξ| ≤ N ≤ (1 + t)|ξ|},
Z3 = {(t, ξ) ∈ [0,∞)×Rn : |ξ| ≥ N}.

If we consider the function χ ∈ C∞(R+) such that χ(s) = 1 for s ≤ 1
2
, χ(s) = 0 for

s ≥ 2 and χ′(s) ≤ 0. Then the functions χ1 = χ1(t, ξ), χ2 = χ2(t, ξ) and χ3 = χ3(ξ)
are defined by

χ1(t, ξ) = χ(|ξ|N−1)χ((t+ 1)|ξ|N−1)

χ2(t, ξ) = χ(|ξ|N−1)
(
1− χ((t+ 1)|ξ|N−1)

)
χ3(ξ) = 1− χ(|ξ|N−1),

such that χ1 + χ2 + χ3 = 1. These functions are the characteristic functions for the
zones Z1, Z2 and Z3, respectively.
The diagonal matrix E0(t, 0, ξ) has entries e±it|ξ|. Therefore, we shall investigate the
Fourier multipliers

F−1(e±it|ξ|F (v)) for v ∈ S.

Considerations in Z1

In Z1 we have that ‖E0(t, 0, ξ)χ1(t, ξ)‖ . 1. How q ≥ 2 if we suppost that v =
v(x) ∈ Lp(Rn) follows the estimate∥∥F−1 (E0(t, 0, ξ)χ1(t, ξ)v̂(ξ)) (t, ·)

∥∥
Lq
≤ ‖E0(t, 0, ·)χ1(t, ·)v̂‖Lp
≤ ‖E0(t, 0, ·)‖L∞‖χ1(t, ·)‖

L
pq
q−p
‖v̂‖Lq

. (1 + t)−n(
1
p
− 1
q )‖v‖Lp ,

which is a better decay estimate in comparison with the statement of the theorem.

Considerations in Z3

In this zone we will consider large frequencies |ξ| ≥ N. We have to analyze

‖F−1(χ3(ξ)e±it|ξ|v̂(ξ))(t, ·)‖Lq

with 2 ≤ q <∞ and v ∈ S.

Take φ = φ(s) ∈ C∞0 (R+) with suppφ ⊂
[

1
2
, 2
]

such that
∞∑

j=−∞

φ(2−js) = 1.

Let us define a dyadic decomposition {φj}j∈Z by φj(ξ) = φ (2−j|ξ|N−1) .
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Since χ3(ξ)φj(ξ) = 0 for j < 0 we have

χ3(ξ) ≤
∞∑
j=0

φj(ξ).

This enables us to investigate every sum stated in the right-hand side for j ∈ N
separately. The goal here is apply the Riesz-Thorin interpolation Theorem 7.2.

For every j ∈ N let us examine the oscillatory integral

F−1(φj(ξ)|ξ|−re±it|ξ|).

L1 − L∞ estimates: Let us substitute ξ = 2jNη. Therefore,∥∥F−1
(
φj(ξ)|ξ|−re±it|ξ|

)
(t, ·)

∥∥
L∞

= 2j(n−r)
∥∥∥F−1

(
φ(|η|)e±i2jtN |η||η|−r

)
(t, ·)

∥∥∥
L∞

≤ K2j(n−r)
(
1 + 2jNt

)−n−1
2
∑
|α|≤M

‖Dαφ(|η|)|η|−r‖L∞

≤ C2j(n−r)
(
1 + 2jNt

)−n−1
2 sup

1
2
≤|η|≤2

|η|−r

≤ C̃2j(n−r) (1 + t)−
n−1
2 .

Here we use Lemma 7.1 in the first inequality with a suitably positive constant M .
Moreover, we have that (1 + t) . (1 + 2jNt) for j > 0 and N sufficiently large.

Therefore (1) in Lemma 7.2 implies that∥∥F−1
(
φj(ξ)|ξ|−re±it|ξ|v̂(ξ)

)
(t, ·)

∥∥
L∞
. 2j(n−r) (1 + t)−

n−1
2 ‖v‖L1 .

L2 − L2 estimates: We have that

‖φj(ξ)|ξ|−re±it|ξ|‖L∞ . sup
1
2
≤|η|≤2

φ(|η|)
(
2jN |η|

)−r
. 2−jr.

The application of (2) in Lemma 7.2 yields the estimate∥∥F−1
(
φj(ξ)|ξ|−re±it|ξ|v̂(ξ)

)
(t, ·)

∥∥
L2 . 2−jr‖v‖L2 .

Lp − Lq estimates: Applying Riesz-Thorin’s Theorem 7.2 we have∥∥F−1
(
φj(ξ)|ξ|−re±it|ξ|v̂(ξ)

)
(t, ·)

∥∥
Lq
. 2j(n(

1
p
− 1
q )−r) (1 + t)−

n−1
2 ( 1

p
− 1
q ) ‖v‖Lp

for 1 < p ≤ 2 and p, q from the conjugate line.
The hypothesis for the regularity r allows us to estimate the right-hand side

uniformly for all j ≥ 0. Thus, due the Lemma 7.3 we conclude∥∥F−1
(
χ3(ξ)|ξ|−re±it|ξ|v̂(ξ)

)
(t, ·)

∥∥
Lq
. (1 + t)−

n−1
2 ( 1

p
− 1
q ) ‖v‖Lp .
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Considerations in Z2

In this zone we consider small frequencies |ξ| ≤ N and (1 + t)|ξ| ≥ N . We have
to analyze

‖F−1(χ2(t, ξ)e±it|ξ|v̂(ξ))(t, ·)‖Lq

with 2 ≤ q <∞ and v ∈ S.
We introduce a dyadic decomposition {φj}j∈Z in this part of the extended phase

space by defining φj(t, ξ) = φ(2−j(1 + t)|ξ|N−1), j ∈ Z, where φ = φ(s) ∈ C∞0 (R+)

with suppφ ⊂
[

1
2
, 2
]

such that
∞∑

j=−∞

φ(2−js) = 1, t > 0. Then the product χ2(t, ξ)φj(t, ξ)

vanishes for all j < 0. This implies

χ2(t, ξ) ≤
∞∑
j=0

φj(t, ξ),

so we have to investigate the Fourier multipliers for every j ≥ 0 separately.
For every j ∈ N let us examine the oscillatory integrals

F−1(φj(t, ξ)|ξ|−re±it|ξ|).

L1 − L∞ estimates: Let us substitute (1 + t)ξ = 2jNη. Therefore,∥∥F−1
(
φj(t, ξ)|ξ|−re±it|ξ|

)
(t, ·)

∥∥
L∞

. 2j(n−r)(1 + t)−n+r
∥∥∥F−1

(
φ(|η|)e±i2j

t
t+1

N |η||η|−r
)

(t, ·)
∥∥∥
L∞

. 2j(n−r)(1 + t)−n+r(1 + 2jN)−
n−1
2

∑
|α|≤M

‖Dαφ(|η|)|η|−r‖L∞

. 2j(
n+1
2
−r)(1 + t)−n+r sup

1
2
<|ξ|≤2

|η|−r

. 2j(
n+1
2
−r)(1 + t)−n+r,

where M is a positive constant and t ≥ 1. For t ≤ 1 it suffices to observe that the set
{(t, ξ); t ≤ 1 and |ξ| ≤ N} is compact. Summarizing,∥∥F−1

(
φj(t, ξ)|ξ|−re±it|ξ|v̂(ξ)

)
(t, ·)

∥∥
L∞
. 2j(

n+1
2
−r)(t+ 1)−n+r‖v‖L1 .

L2 − L2 estimates: We have that

‖φj(t, ξ)|ξ|−re±it|ξ|‖L∞ . 2−jr(1 + t)r.

Therefore, it follows from (2) in Lemma 7.2 that∥∥F−1
(
φj(t, ξ)|ξ|−re±it|ξ|v̂(ξ)

)
(t, ·)

∥∥
L2 . 2−jr(1 + t)r‖v‖L2 .

Lp − Lq estimates: Applying Riesz-Thorin’s Theorem 7.2 gives∥∥F−1
(
φj(t, ξ)|ξ|−re±it|ξ|v̂(ξ)

)
(t, ·)

∥∥
Lq
. 2j(

n+1
2 ( 1

p
− 1
q )−r) (1 + t)−n(

1
p
− 1
q )+r ‖v‖Lp .
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If we take r = n+1
2

(
1
p
− 1

q

)
, then we can estimate the right-hand side uniformly for all

j ≥ 0. Thus, due the Lemma 7.3 we conclude

∥∥F−1
(
χ2(t, ξ)|ξ|−re±it|ξ|v̂(ξ)

)
(t, ·)

∥∥
Lq
. (1 + t)−

n−1
2 ( 1

p
− 1
q ) ‖v‖Lp .

All this considerations imply that the corresponding operators possess the mapping
property

e±it|D| : Ḃr
p,2 → Lq

with the regularity r = n
(

1
p
− 1

q

)
. Finally, the embedding relation Lp,r ⊂ Ḃr

p,2 ∩ Lp for
r > 0 and p ∈ (1,∞) yields the desired result.

Remark 3.6. The decay in the previous theorem comes from the hyperbolic zone. The
regularity comes from the large frequencies in the hyperbolic zone.

Using Theorem 3.2 we can deduce Lp−Lq estimates for the fundamental solu-
tion operator of the Cauchy problem for Klein-Gordon equations (3.1).

Theorem 3.3. Assume that the Hypothesis 3.1 and 3.2 are satisfied. Then the funda-
mental solution operator of the Cauchy problem for Klein-Gordon equation satisfies

‖H(t, 0, D)ϕpd(t,D)‖Lp,r→Lq ≤ Cp,q
1

ψ(t)
(1 + t)−n(

1
p
− 1
q ),∥∥(H(t, 0, D)ϕ`hyp(D),H(t, 0, D)ϕshyp(t,D)

)∥∥
Lp,r→Lq ≤ Cp,q(1 + t)−

n−1
2 ( 1

p
− 1
q )

for p ∈ (1, 2], p and q on the conjugate line and with regularity r = n
(

1
p
− 1

q

)
.

Proof. The proof is divided into two steps.

Considerations in the pseudo-differential zone

In the pseudo-differential zone we have the estimate

‖H(t, 0, ξ)ϕpd(t, ξ)‖ .
1

ψ(t)
.

If v = v(x) ∈ Lp(Rn), then∥∥F−1 (H(t, 0, ξ)ϕpd(t, ξ)v̂(ξ)) (t, ·)
∥∥
Lq
≤ ‖H(t, 0, ·)ϕpd(t, ·)v̂‖Lp
≤ ‖H(t, 0, ·)‖L∞‖ϕpd(t, ·)‖

L
pq
q−p
‖v̂‖Lq

.
1

ψ(t)
(1 + t)−n(

1
p
− 1
q )‖v‖Lp ,

which is a better decay estimate in comparison to the statement of the theorem.
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Considerations in the hyperbolic zone

For large frequencies we have from (3.28) that

H(t, 0, D)ϕ`hyp(D) = MNk(t,D)︸ ︷︷ ︸
Lq→Lq

E0(t, 0, D)︸ ︷︷ ︸
Lp,r→Lq

Qk(t, 0, D)︸ ︷︷ ︸
Lp,r→Lp,r

Nk(0, D)−1M−1︸ ︷︷ ︸
Lp,r→Lp,r

ϕ`hyp(D).

Indeed, the mapping properties of all operators appearing in this representation can
be explained as follows:

• We know thatMNk(t, ξ) ∈ S`−k+1,∞
N {0, 0}, thenMNk(t, ξ) ∈ Ṡ0

`−k+1,Marcinkiewicz’s
Theorem 7.1 implies that MNk(t, ξ) ∈M q

q uniformly in t. Here it is essential that
`− k + 1 ≥

⌈
n
2

⌉
+ 1.

• Theorem 3.2 implies E0(t, 0, D) : Lp,r → Lq with a decay rate (1 + t)−
n−1
2 ( 1

p
− 1
q ).

• Theorem 3.1 implies that Qk(t, 0, ξ) ∈ Ṡ0
k−1. Then Marcinkiewicz’s Theorem 7.1

implies that Qk(t, 0, ξ) ∈Mp,r
p,r uniformly in t. It is essential that, k− 1 ≥

⌈
n
2

⌉
+ 1.

Let us take ` = 2(k − 1) and k − 1 ≥
⌈
n
2

⌉
+ 1. Then we can apply the Marcinkiewicz’s

Theorem 7.1. Therefore, if v = v(x) ∈ Lp,r(Rn), then

‖F−1
(
H(t, 0, ξ)ϕ`hyp(ξ)v̂(ξ)

)
(t, ·)‖Lq . (1 + t)−

n−1
2 ( 1

p
− 1
q ) ‖v‖Lp,r .

For small frequencies we have from (3.29)

H(t, 0, D)ϕshyp(t,D) = MNk(t,D)︸ ︷︷ ︸
Lq→Lq

E0(t, θ|D|, D)︸ ︷︷ ︸
Lp,r→Lq

Qk(t, θ|D|, D)︸ ︷︷ ︸
Lp,r→Lp,r

Nk(θ|D|, D)−1M−1︸ ︷︷ ︸
Lp,r→Lp,r

×H(θ|D|, 0, D)︸ ︷︷ ︸
Lp,r→Lp,r

ϕshyp(t,D).

In fact, the mapping properties of all operators appearing in this representation can
be explained as follows:

• We know thatMNk(t, ξ) ∈ S`−k+1,∞
N {0, 0}, thenMNk(t, ξ) ∈ Ṡ0

`−k+1,Marcinkiewicz’s
Theorem 7.1 implies that MNk(t, ξ) ∈M q

q uniformly in t.

• Follows from part 1 of Proposition 3.4 that E0(0, θ|ξ|, ξ) ∈ Ṡ0
∞. In fact, we

have that the entries of the matrix E0(0, θ|ξ|, ξ) are e±iθ|ξ||ξ|. How the constant
function 1 ∈ SN{0, 0} then e±iθ|ξ||ξ| · 1 ∈ SN{0, 0}. Therefore Theorem 3.2
and the propagator property E0(t, θ|ξ|, ξ) = E0(t, 0, ξ)E0(0, θ|ξ|, ξ) implies that

E0(t, θ|D|, D) : Lp,r → Lq with decay rate (1 + t)−
n−1
2 ( 1

p
− 1
q ).

• Theorem 3.1 implies that Qk(t, θ|ξ|, ξ) ∈ Ṡ0
k−1. Then Marcinkiewicz’s Theorem

7.1 implies that Qk(t, θ|ξ|, ξ) ∈ Mp,r
p,r uniformly in t. It is essential that k − 1 ≥⌈

n
2

⌉
+ 1.

• We have that H(θ|ξ|, 0, ξ) = 1
ψ(θ|ξ|)

ψ(θ|ξ|)H(θ|ξ|, 0, ξ). Lemma 3.1 guarantee that

ψ(θ|ξ|)H(θ|ξ|, 0, ξ) ∈ Ṡ0
`+1 and Hypothesis 3.2 ensure 1

ψ(θ|ξ|)
∈ Ṡ0

∞. Therefore,
H(θ|ξ|, 0, ξ) ∈Mp,r

p,r .
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If v = v(x) ∈ Lp,r(Rn), then

‖F−1
(
H(t, 0, ξ)ϕshyp(t, ξ)v̂(ξ)

)
(t, ·)‖Lq . (1 + t)−

n−1
2 ( 1

p
− 1
q ) ‖v‖Lp,r

for small frequencies. This completes the proof.

The following lemma is important to derive Strichartz estimates for the potential
energy in the hyperbolic zone for small frequencies.

Lemma 3.5. Assume Hypothesis 3.2. Then
p(t)

p(θ|ξ|)
∈ Ṡ0

∞, where p(t) = (1 + t)−1ψ(t),

t ≥ θ|ξ|, and t is sufficiently large.

Proof. We know that p(t) is decreasing for large t, i.e.,
p(t)

p(θ|ξ|)
. 1.

Applying Faà de Bruno’s formula (Lemma 7.4) we get

dn|ξ|

(
p(t)

p(θ|ξ|)

)
=
∑ n!

m1!1!m1m2!2!m2 · · ·mn!n!mn
p(t)

(
1

p

)(m1+m2+···+mn)

(θ|ξ|)
n∏
j=1

(
dj|ξ|θ|ξ|

)mj
,

(3.31)
where the sum is taken over all n−tuples of non-negative integers (m1,m2, · · · ,mn)
satisfying

1m1 + 2m2 + · · ·+ nmn = n.

We have that
∣∣dj|ξ|θ|ξ|∣∣ . |ξ|−1−j for every j = 1, 2, · · · , n. The Hypothesis 3.2 together

with p(t)
p(θ|ξ|)

≤ 1 implies that

p(t)
(1

p

)(n)

(θ|ξ|) . |ξ|n for all n ≥ 0.

Indeed, first of all we have

p(n)(t) =
n∑
i=0

ci
ψ(i)(t)

(1 + t)n+1−i .

Then Hypothesis 3.2 implies∣∣∣p(n)(t)

p(t)

∣∣∣ =
∣∣∣ n∑
i=0

ci
ψ(i)(t)

ψ(t)

1

(1 + t)n−i

∣∣∣ . n∑
i=0

|ci|
1

(1 + t)n
≈ 1

(1 + t)n
. (3.32)

Applying the Faà de Bruno Formula (Lemma 7.4) for the function 1
p(t)

we arrive in

(1

p

)(n)

(t) =
1

p(t)

∑ n!

m1!1!m1m2!2!m2 · · ·mn!n!mn
1

p(t)m1+···+mn

n∏
j=1

(
p(j)(t)

)mj
where the sum is taken over all n−tuples of non-negative integers (m1,m2, · · · ,mn)
satisfying

1m1 + 2m2 + · · ·+ nmn = n.
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Therefore we conclude from (3.32)∣∣∣ (1

p

)(n)

(t)
∣∣∣ . 1

p(t)

∑ n!

m1!1!m1m2!2!m2 · · ·mn!n!mn
1

(1 + t)1m1+2m2+···+nmn

.
1

p(t)

1

(1 + t)n
.

Summarizing, ∣∣∣ (1

p

)(n)

(θ|ξ|)
∣∣∣ . 1

p(θ|ξ|)

1

(1 + θ|ξ|)n

⇒ p(t)

(
1

p

)(n)

(θ|ξ|) .
p(t)

p(θ|ξ|)

1

(1 + θ|ξ|)n
. |ξ|n.

Therefore (3.31) imply ∣∣∣∣dn|ξ|( p(t)

p(θ|ξ|)

)∣∣∣∣ . |ξ|−n,
what we wanted to prove.

After these considerations we can formulate the following corollary.

Corollary 3.1. Assume Hypotheses 3.1 and 3.2. If the Cauchy data u0, u1 ∈ S(Rn),
then we have the Lp − Lq estimates for the the kinetic, elastic and potential energy as
follows:

‖(ut(t, ·),∇xu(t, ·), p(t)u(t, ·))‖Lq . (1 + t)−
n−1
2 ( 1

p
− 1
q ) (‖u0‖Lp,r+1 + ‖u1‖Lp,r)

for p ∈ (1, 2], p and q on the conjugate line, p(t) = (1 + t)−1ψ(t), and with regularity
r = n

(
1
p
− 1

q

)
.

Proof. The proof is divided into two steps.
Step 1: First let us prove estimates for the derivatives of the solution.

Considerations in the pseudo-differential zone

In the pseudo-differential zone we have the following relation:(
1 0

−(1 + t)ψ
′(t)
ψ(t)

1

)(
û(t,ξ)
1+t

ût(t, ξ)

)
ϕpd(t, ξ) = H(t, 0, ξ)ϕpd(t, ξ)

(
1 0

−ψ′(0) 1

)(
û0

û1

)
.

If we denote by Hij, i, j = 1, 2, the entries of the matrix H = H(t, 0, ξ), we have

û(t, ξ)

1 + t
ϕpd(t, ξ) =

2∑
j=1

H1j(t, 0, ξ)ϕpd(t, ξ)δjû0(ξ) +H12(t, 0, ξ)ϕpd(t, ξ)δjû1(ξ),

ût(t, ξ)ϕpd(t, ξ) =
2∑
j=1

(
H1j(t, 0, ξ)ϕpd(t, ξ)ηj(t) +H2j(t, 0, ξ)ϕpd(t, ξ)δj

)
û0(ξ)

+
2∑
j=1

H1j(t, 0, ξ)ϕpd(t, ξ)δ̃j(t)û1(ξ),
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where

δj :=

{
1, j = 1

−ψ′(0), j = 2
, δ̃j(t) :=

{
(1 + t)ψ

′

ψ
(t), j = 1

1, j = 2
,

and

ηj(t) :=

{
(1 + t)ψ

′

ψ
(t), j = 1

−(1 + t)ψ
′

ψ
(t), j = 2

.

The Hypothesis 3.2 implies that (1 + t)ψ
′(t)
ψ(t)

is bounded. Therefore the Theorem 3.3
implies∥∥F−1 (|ξ|û(t, ξ)ϕpd(t, ξ)) (t, ·)

∥∥
Lq
.

1

ψ(t)
(1 + t)−n(

1
p
− 1
q ) (‖u0‖Lp + ‖u1‖Lp) ,∥∥F−1 (ût(t, ξ)ϕpd(t, ξ)) (t, ·)

∥∥
Lq
.

1

ψ(t)
(1 + t)−n(

1
p
− 1
q ) (‖u0‖Lp + ‖u1‖Lp) .

In this part of the extended phase space we do not need to assume higher regularity
for the data. Moreover, the decay behavior is better than those from the theorem.

Considerations in the hyperbolic zone

In the hyperbolic zone we divide our considerations for large and small frequen-
cies. For large frequencies it holds

U(t, ξ) = H(t, θ|ξ|, ξ)U(θ|ξ|, ξ) = H(t, 0, ξ)U(0, ξ).

Therefore,(
i 0

− 1
|ξ|

ψ′(t)
ψ(t)

1

)(
|ξ|û(t, ξ)
ût(t, ξ)

)
ϕ`hyp(ξ) = H(t, 0, ξ)ϕ`hyp(ξ)

( i|ξ|
〈ξ〉 0

−ψ′(0)

〈ξ〉 1

)(
〈ξ〉û0

û1

)
.

Then,

|ξ|û(t, ξ)ϕ`hyp(ξ) =
|ξ|
〈ξ〉
H11(t, 0, ξ)ϕ`hyp(ξ)〈ξ〉û0(ξ)− iψ′(0)H12(t, 0, ξ)ϕ`hyp(ξ)û0(ξ)

−iH12(t, 0, ξ)ϕ`hyp(ξ)û1(ξ),

ût(t, ξ)ϕ
`
hyp(ξ) =

2∑
i=1

Hi1(t, 0, ξ)ϕ`hyp(ξ)ζj(t, ξ)〈ξ〉û0(ξ)

−
2∑
i=1

Hi2(t, 0, ξ)ϕ`hyp(ξ)ζ̃j(t, ξ)û0(ξ)

+
2∑
i=1

Hi2(t, 0, ξ)ϕ`hyp(ξ)ε(t, ξ)û1(ξ),

where

ζi(t, ξ) :=

{
− 1
〈ξ〉

ψ′(t)
ψ(t)

, i = 1

i |ξ|〈ξ〉 , i = 2
, ζ̃i(t, ξ) :=

{
i
|ξ|

ψ′(t)
ψ(t)

, i = 1

ψ′(0), i = 2
,
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and

εi(t) :=

{
i
|ξ|

ψ′(t)
ψ(t)

, i = 1

1, i = 2
.

Note that 1
|ξ|

ψ′(t)
ψ(t)

, 1
〈ξ〉

ψ′(t)
ψ(t)

, |ξ|〈ξ〉 ∈ SN{0, 0}. Then we can apply the Marcinkiewicz’s the-
orem for these multipliers. Applying Theorem 3.3 the following estimates can be
concluded:∥∥F−1

(
|ξ|û(t, ξ)ϕ`hyp(ξ)

)
(t, ·)

∥∥
Lq
. (1 + t)−

n−1
2 ( 1

p
− 1
q ) (‖u0‖Lp,r+1 + ‖u1‖Lp,r) ,∥∥F−1

(
ût(t, ξ)ϕ

`
hyp(ξ)

)
(t, ·)

∥∥
Lq
. (1 + t)−

n−1
2 ( 1

p
− 1
q ) (‖u0‖Lp,r+1 + ‖u1‖Lp,r) .

For small frequencies we have(
i 0

− 1
|ξ|

ψ′(t)
ψ(t)

1

)(
|ξ|û(t, ξ)
ût(t, ξ)

)
ϕshyp(t, ξ)

= H(t, θ|ξ|, ξ)ϕ
s
hyp(t, ξ)

(
i|ξ|û(θ|ξ|)

−ψ′(θ|ξ|)

ψ(θ|ξ|)
û(θ|ξ|) + ût(θ|ξ|)

)
= H(t, θ|ξ|, ξ)ϕ

s
hyp(t, ξ)H(θ|ξ|, 0, ξ)U(0, ξ)

= H(t, 0, ξ)ϕshyp(t, ξ)

(
i|ξ| 0
−ψ′(0) 1

)(
û0

û1

)
.

Therefore,

|ξ|û(t, ξ)ϕshyp(t, ξ) =
|ξ|
〈ξ〉
H11(t, 0, ξ)ϕshyp(t, ξ)〈ξ〉û0(ξ)− iψ′(0)H12(t, 0, ξ)ϕshyp(t, ξ)û0(ξ)

−iH12(t, 0, ξ)ϕshyp(t, ξ)û1(ξ),

ût(t, ξ)ϕ
s
hyp(t, ξ) =

2∑
i=1

|ξ|
〈ξ〉
Hi1(t, 0, ξ)ϕshyp(t, ξ)ζj(t, ξ)〈ξ〉û0(ξ)

−
2∑
i=1

Hi2(t, 0, ξ)ϕshyp(t, ξ)ζ̃j(t, ξ)û0(ξ)

+
2∑
i=1

Hi2(t, 0, ξ)ϕshyp(t, ξ)ε(t, ξ)û1(ξ),

where

ζi(t, ξ) :=

{
i 1
|ξ|

ψ′(t)
ψ(t)

, i = 1

i, i = 2
, ζ̃i(t, ξ) :=

{
iψ′(0)
|ξ|

ψ′(t)
ψ(t)

, i = 1

−ψ′(0), i = 2
,

and

εi(t) :=

{
i
|ξ|

ψ′(t)
ψ(t)

, i = 1

1, i = 2
.

Analogous as above we may conclude∥∥F−1
(
|ξ|û(t, ξ)ϕshyp(t, ξ)

)
(t, ·)

∥∥
Lq
. (1 + t)−

n−1
2 ( 1

p
− 1
q ) (‖u0‖Lp,r+1 + ‖u1‖Lp,r) ,∥∥F−1

(
ût(t, ξ)ϕ

s
hyp(t, ξ)

)
(t, ·)

∥∥
Lq
. (1 + t)−

n−1
2 ( 1

p
− 1
q ) (‖u0‖Lp,r+1 + ‖u1‖Lp,r) .

Step 2: Now let us devote to estimates for the potential energy.
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Considerations in the pseudo-differential zone

In the pseudo-differential zone we have(
1 0

−(1 + t)ψ
′(t)
ψ(t)

1

)(
û(t,ξ)
1+t

ût(t, ξ)

)
ϕpd(t, ξ) = H(t, 0, ξ)ϕpd(t, ξ)

(
1 0

−ψ′(0) 1

)(
û0

û1

)
.

This leads to the representation

û(t, ξ)

1 + t
ϕpd(t, ·) =

(
H11(t, 0, ξ)ϕpd(t, ξ)− ψ′(0)H12(t, 0, ξ)ϕpd(t, ξ)

)
û0(ξ)

+H12(t, 0, ξ)ϕpd(t, ·)û1(ξ).

The application of Theorem 3.3 implies∥∥∥F−1
( û(t, ξ)

1 + t
ϕpd(t, ξ)

)
(t, ·)

∥∥∥
Lq
.

1

ψ(t)
(1 + t)−n(

1
p
− 1
q ) (‖u0‖Lp + ‖u1‖Lp) ,

⇒
∥∥F−1 (p(t)û(t, ξ)ϕpd(t, ξ)) (t, ·)

∥∥
Lq
. (1 + t)−n(

1
p
− 1
q ) (‖u0‖Lp + ‖u1‖p) .

In this part of the extended phase space we have a better decay estimate than the
expected one from the theorem.

Considerations in the hyperbolic zone

In the hyperbolic zone we have for large frequencies(
û(t, ξ)
ût(t, ξ)

)
ϕ`hyp(ξ) =

(
1
i|ξ| 0

1
i|ξ|

ψ′(t)
ψ(t)

1

)
H(t, 0, ξ)ϕ`hyp(ξ)

( i|ξ|
〈ξ〉 0

−ψ′(0)

〈ξ〉 1

)(
〈ξ〉û0

û1

)
.

Hence, it follows

û(t, ξ)ϕ`hyp(ξ) =

(
H11(t, 0, ξ)ϕ`hyp(ξ)−

ψ′(0)

|ξ|
H12(t, 0, ξ)ϕ`hyp(ξ)

)
û0(ξ)

+
1

i|ξ|
H12(t, 0, ξ)ϕ`hyp(ξ)û1(ξ).

For large frequencies we have that |ξ|−1 is bounded, so |ξ|−1 ∈ SN{0, 0}. We can
conclude from Theorem 3.3 that∥∥F−1

(
û(t, ξ)ϕ`hyp(ξ)

)
(t, ·)

∥∥
Lq
. (1 + t)−

n−1
2 ( 1

p
− 1
q ) (‖u0‖Lp,r+1 + ‖u1‖Lp,r) ,

which is a better decay estimate in comparison with that one from the theorem. In
the hyperbolic zone we have for small frequencies(
p(t)û(t, ξ)
ût(t, ξ)

)
ϕshyp(t, ξ) =

(
p(t)
i|ξ| 0

1
i|ξ|

ψ′(t)
ψ(t)

1

)
H(t, 0, ξ)ϕshyp(t, ξ)

(
i|ξ| 0
−ψ′(0) 1

)(
û0

û1

)
.

Hence, we get the representation

p(t)û(t, ξ)ϕshyp(t, ξ) = p(t)H11(t, 0, ξ)ϕshyp(t, ξ)û0(ξ)

−p(t)ψ
′(0)

|ξ|
H12(t, 0, ξ)ϕshyp(t, ξ)û0(ξ) +

p(t)

i|ξ|
H12(t, 0, ξ)ϕshyp(t, ξ)û1(ξ).
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As before the Fourier multiplier related to the first term is estimated by p(t)(1 +

t)−
n−1
2 ( 1

p
− 1
q )‖u0‖Lp,r+1. Due to the decreasing behavior of p we get a better estimate

as we wanted to have in all extended phase space.
We need to deal with the terms p(t)

i|ξ|H12(t, 0, ξ)ϕshyp(t, ξ)F (v). The representation
of the solution for small frequencies (3.29) gives

p(t)

|D|
H(t, 0, D)ϕshyp(t,D) =

p(t)

Np(θ|D|)︸ ︷︷ ︸
Lq→Lq

MNk(t,D)︸ ︷︷ ︸
Lq→Lq

E0(t, θ|D|, D)︸ ︷︷ ︸
Lp,r→Lq

×Qk(t, θ|D|, D)︸ ︷︷ ︸
Lp,r→Lp,r

Nk(θ|D|, D)−1M−1︸ ︷︷ ︸
Lp,r→Lp,r

ψ(θ|D|)H(θ|D|, 0, D)︸ ︷︷ ︸
Lp,r→Lp,r

ϕshyp(t,D).

Here we use (3.9) together with Lemma 3.5. Summarizing∥∥F−1
(
p(t)û(t, ξ)ϕshyp(t, ξ)

)
(t, ·)

∥∥
Lq
. (1 + t)−

n−1
2 ( 1

p
− 1
q ) (‖u0‖Lp,r+1 + ‖u1‖Lp,r) .

We obtained all desired Lp−Lq decay estimates on the conjugate line. This completes
the proof.

Remark 3.7. The decay behavior for the potential energy comes from the small fre-
quencies in the hyperbolic zone. The regularity of the data comes from the hyperbolic
zone.

Remark 3.8. The Lp − Lq decay estimates for the kinetic and elastic energy from
Corollary 3.1 coincide with the corresponding estimates from Theorem 2.6.

3.2.1 Examples

We conclude this section with examples. In Chapter 2 we explained the function
ψ for models with masses having the following structure:

m(t) =
µ

(1 + t)g(t)
(3.33)

with a positive constant µ and with a function g satisfying Hypotheses 2.3 and 2.4.
If we assume estimates for further derivatives of g, i.e.,

|g(k)(t)| . g(t)

(1 + t)k
, for all k ∈ N, (3.34)

then we can find explicitly ψ = ψ(t). The mass term m given by (3.33) satisfies
Hypothesis 3.1.

Example 3.1. If g(t) in (3.33) is given by g(t)2 = ln(e+t) · · · ln[m](e[m] +t) with e[k+1] =

ee
[k] and ln[k+1](t) = ln(ln[k](t)) , then we have (2.33) for N = 1, i.e., the conclusion of

Corollary 3.1 holds with ψ(t) given by (2.34). We have that ψ(t) ∼ (ln[m](e[m] + t))µ
2.

Observe that ψ satisfies Hypothesis 3.2.

Example 3.2. Let g(t)2 = (ln(e+ t))γ for some 0 < γ < 1. In order to have (2.33) one
should take N such that (N +1)γ > 1. Then the conclusion of Corollary 3.1 holds with
ψ(t) given by (2.34).
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If Hypothesis 2.3 is not satisfied, then we can find functions ψ if Hypothesis 2.4
is satisfied for models with coefficient (3.33). In the following example we have that
situation.

Example 3.3. Let us consider the Cauchy problem (3.1) with m(t) = µ
1+t

and µ 6= 0,
i.e., we consider the scale-invariant case from [5]. Let us take the function ψ as

ψ(t) = exp
( ∞∑
k=1

∫ t

0

γkµ
2k

(1 + τ)
dτ
)

= (1 + t)σ

with σ =
∑∞

k=1 γkµ
2k. By using the infinite Cauchy product and from the definition of

γk we get

σ2 =
( ∞∑
k=1

γkµ
2k
)2

=
∞∑
n=2

γnµ
2n = σ − µ2.

If we take σ− =
1−
√

1−4µ2

2
, then the Corollary 3.1 holds.

The last example shows us that if we have the scale-invariant case, for µ2 ∈(
0, 1

4

)
, we derived the same Lp − Lq estimates on the conjugate line for the kinetic

and elastic energy, which is proposed by (1.14) and (1.15). Although, for the potential
energy we have the same estimates only for p = q = 2.

Example 3.4. If g(t)2 = ln(ln(ee+ t)), then we can take for t ≥ t0, t0 � 1, the function

ψ(t) = exp
( ∞∑
k=1

∫ t

t0

γkµ
2k

(1 + τ)g(τ)2k
dτ
)

which is well-defined for µ2 < g(t0)2

4
. It is clear that the condition (2.37) holds, i.e.,

Hypothesis 3.1 is satisfied and the statement of Corollary 3.1 is applicable.
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4 Wave models with mass and
dissipation

The main goal of this chapter is to prove the sharpness of the energy estimates
obtained in Chapter 2 and to derive Strichartz estimates for solutions to the Cauchy
problem for damped Klein-Gordon equations. For the first reason we will prove
in Section 4.1 a modified scattering result to solutions for the Cauchy problems for
wave equations with scattering time-dependent mass term and non-effective time-
dependent dissipation. Later we will investigate in Section 4.2 damped Klein-Gordon
equations with variable in time mass and dissipation analyzing the interplay between
both coefficients and asymptotic properties of solution as time tends to infinity. In
former papers authors introduced precise classifications of effective or non-effective
mass, see [5, 6, 19], or dissipation, see [57, 59, 60], terms. There exists a “grey zone”
around the scale-invariant models where difficulties appear in a systematic study. If
models are scale-invariant, then theory of special functions allows to derive precise
results. But already “small perturbations” make the treatment difficult. The goal of
Section 4.2 is to study models from this “grey zone”.

4.1 Scattering producing time-dependent mass versus
non-effective time-dependent dissipation

Let us consider the following Cauchy problem for wave equations with time-
dependent mass and dissipation

utt −∆u+ b(t)ut +m(t)u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (4.1)

where (t, x) ∈ R+×Rn, b = b(t) ≥ 0 the dissipative term and m = m(t) ≥ 0 the mass
term under the following assumptions:

Hypothesis 4.1. Suppose that b(t) and m(t) satisfy∣∣∣∣ dkdtk b(t)
∣∣∣∣ ≤ Ck

(
1

1 + t

)k+1

and m(t) ≤ C

(
1

1 + t

)2

,

for k = 0, 1.

Hypothesis 4.2. Suppose that b(t) and m(t) satisfy

lim sup
t→∞

tb(t) < 1 and (1 + t)m(t) ∈ L1.

Remark 4.1. The Hypothesis 4.1 and 4.2 coincide with the hypothesis from Section
2.2. To be more precise, if we consider the Cauchy problem (2.1) and choose a func-
tion ψ like in Hypothesis 2.2 performing the change of variable u(t, x) = ψ(t)v(t, x),
then we have the same model of the Cauchy problem (4.1) under the above hypothe-
sis.



82 4 Wave models with mass and dissipation

4.1.1 Representation of the solution

Applying the partial Fourier transformation in (4.1) we obtain

ûtt + |ξ|2û+ b(t)ût +m(t)û = 0, û(0, ξ) = û0(ξ), ût(0, ξ) = û1(ξ). (4.2)

We divide the extended phase space [0,∞) × Rn into the pseudo-differential zone
Zpd(N) and into the hyperbolic zone Zhyp(N) which are defined by

Zpd(N) = {(t, ξ) ∈ [0,∞)×Rn : (1 + t)|ξ| ≤ N},
Zhyp(N) = {(t, ξ) ∈ [0,∞)×Rn : (1 + t)|ξ| ≥ N},

with N determined later on. The separating curve is given by

θ|ξ| : (0, N ]→ [0,∞), (1 + θ|ξ|)|ξ| = N.

We put also θ0 = ∞, and θ|ξ| = 0 for any |ξ| ≥ N . The pair (t, ξ) from the extended
phase space belongs to Zpd(N) (resp. to Zhyp(N)) if and only if t ≤ θ|ξ| (resp. t ≥ θ|ξ|).
We define the micro-energy

U(t, ξ) =
(
h(t, ξ)û, Dtû

)T
, (4.3)

where
h(t, ξ) =

1

1 + t
φpd(t, ξ) + |ξ|φhyp(t, ξ).

Here φpd(t, ξ) is a characteristic function related to the pseudo-differential zone and
φhyp(t, ξ) is a characteristic function related to the hyperbolic zone. We introduce the
function φhyp(t, ξ) = χ

( (1+t)|ξ|
N

)
with χ ∈ C∞(Rn), χ(t) = 1 for t ≤ 1

2
, χ(t) = 0 for t ≥ 2

and χ′(t) ≤ 0 together with φpd(t, ξ) + φhyp(t, ξ) = 1.

Considerations in the pseudo-differential zone

In the pseudo-differential zone Zpd(N) the micro-energy (4.3) reduces to

U =
( û

1 + t
,Dtû

)T
.

So we have

∂tU(t, ξ) = A(t, ξ)U :=

(
i

1+t
1

1+t

(1 + t) (m(t) + |ξ|2) ib(t)

)
U. (4.4)

We will prove estimates for the fundamental solution E = E(t, s, ξ) to (4.4), that is, the
solution to

∂tE = A(t, ξ)E , E(s, s, ξ) = I.

Let us define the function

λ(t) = exp

(
1

2

∫ t

0

b(τ)dτ

)
. (4.5)

that describes the influence of the dissipative term.
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Lemma 4.1. Assume Hypothesis 4.1 and Hypothesis 4.2. Then the fundamental solu-
tion E(t, 0, ξ) to (4.4) satisfies the estimate

‖E(t, 0, ξ)‖ . 1

λ(t)2
(4.6)

uniformly in t and for all (t, ξ) ∈ Zpd(N).

Proof. If we put E = (Eij)i,j=1,2, then we can write for j = 1, 2 the following system of
coupled integral equations of Volterra type:

E1j(t, 0, ξ) = (1 + t)−1
(
δ1j + i

∫ t

0

E2j(τ, 0, ξ)dτ
)
, (4.7)

E2j(t, 0, ξ) = λ−2(t)
(
δ2j − i

∫ t

0

(1 + τ)λ(τ)2
(
m(τ) + |ξ|2

)
E1j(τ, 0, ξ)dτ

)
. (4.8)

After replacing (4.8) into (4.7) and integration by parts we get

E1j(t, 0, ξ) = (1 + t)−1
(
δ1j + iδ2j

∫ t

0

λ(τ)−2dτ
)

+ (1 + t)−1

×
∫ t

0

(1 + τ)λ(τ)2
(
m(τ) + |ξ|2

)
E1j(τ, 0, ξ)

∫ t

τ

λ(s)−2dsdτ. (4.9)

By using Hypothesis 4.2 (see Proposition 7 of [59]) we have∫ t

0

λ(s)−2ds ≈ t

λ(t)2
, (4.10)

and t
λ(t)2

is increasing for large t. Introducing

hj(t, ξ) := ‖E1j(t, 0, ξ)‖λ(t)2

and by using λ(t)2 ≤ 1 + t (see Hypothesis 4.2) for large t we conclude from (4.9)
and (4.10) that

hj(t, ξ) ≤ C + C

∫ t

0

(1 + τ)
(
m(τ) + |ξ|2

)
hj(τ, ξ)dτ.

Applying Gronwall’s type inequality we conclude

hj(t, ξ) ≤ C exp
(
C

∫ t

0

(1 + τ)
(
m(τ) + |ξ|2

)
dτ
)
.

In Zpd(N) we have (1 + t)|ξ| ≤ C. So, from the last inequality we get

hj(t, ξ) ≤ C exp
(
C

∫ t

0

(1 + τ)m(τ)dτ
)
.

Finally, by using Hypothesis 4.2 we get ‖E1j(t, 0, ξ)‖ . λ(t)−2. From the boundedness
of ‖E1j(t, 0, ξ)‖λ(t)2, using again Hypothesis 4.2, we can estimate ‖E2j(t, 0, ξ)‖ .
λ(t)−2. Therefore, we proved ‖E(t, 0, ξ)‖ . λ(t)−2 for all t ∈ [0, θ|ξ|].
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Considerations in the hyperbolic zone

In the hyperbolic zone we will carry out two steps of diagonalization aiming to
derive decay estimates for the energy and then to derive a modified scattering result.
The ansatz is the same as in the paper [61].

In the hyperbolic zone the micro-energy (4.3) becomes

U(t, ξ) = (|ξ|û, Dtû)T ,

then

DtU =

[(
0 |ξ|
|ξ| 0

)
+

(
0 0

m(t)
|ξ| ib(t)

)]
U(t, ξ). (4.11)

The goal is to transform the principal part in a diagonal matrix such that the remain-
der has a suitable normwise estimate. Take the matrices

M =
1√
2

(
1 −1
1 1

)
and M−1 =

1√
2

(
1 1
−1 1

)
.

Then

M−1

(
0 |ξ|

|ξ|+ m(t)
|ξ| ib(t)

)
M = D(ξ) + A(t) +B(t, ξ),

where

D(ξ) =

(
|ξ| 0
0 −|ξ|

)
, A(t) = i

b(t)

2

(
1 1
1 1

)
and B(t, ξ) =

m(t)

2|ξ|

(
1 −1
1 −1

)
.

In the second step we want to transform the second matrix on the right side without
changing the structure of the first and the third one. For this we set

N (1)(t, ξ) =
i

2

(
0 b(t)

2|ξ|

− b(t)
2|ξ| 0

)
,

B(1)(t, ξ) = DtN
(1)(t, ξ)− ib(t)

2

(
0 1
1 0

)
N (1)(t, ξ)− m(t)

2|ξ|

(
1 −1
1 −1

)
.

Then we have by construction(
|ξ| 0
0 −|ξ|

)
N (1)(t, ξ)−N (1)(t, ξ)

(
|ξ| 0
0 −|ξ|

)
= i

b(t)

2

(
0 1
1 0

)
, (4.12)

such that with N1(t, ξ) = I −N (1)(t, ξ) the following operator identity holds:(
Dt −

(
|ξ| 0
0 −|ξ|

)
− ib(t)

2

(
1 1
1 1

)
− m(t)

2|ξ|

(
1 −1
1 −1

))
N1(t, ξ)

= Dt +N1(t, ξ)

(
|ξ| 0
0 −|ξ|

)
− ib(t)

2
N1(t, ξ)−B(1)(t, ξ).
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Choosing a sufficiently large constant, we have that

detN1(t, ξ) = 1− b2(t)

16|ξ|2
≥ 1− b2(t)

16(1 + t)2|ξ|2
≥ 1− 1

16N2
> 0.

Then N1(t, ξ) is uniformly bounded away from zero on Zhyp(N). Therefore N1(t, ξ)−1

exist and N1(t, ξ), N1(t, ξ)−1 are both uniformly bounded on Zhyp(N).
Setting R1(t, ξ) = N1(t, ξ)−1B(1)(t, ξ) we obtain

N1(t, ξ)−1

(
Dt −

(
|ξ| 0
0 −|ξ|

)
− ib(t)

2

(
1 1
1 1

)
− m(t)

2|ξ|

(
1 −1
1 −1

))
N1(t, ξ)

= Dt −
(
|ξ| 0
0 −|ξ|

)
− ib(t)

2
N1(t, ξ)−R1(t, ξ)

with the remainder term R1(t, ξ) subjected to the pointwise estimate

‖R1(t, ξ)‖ . 1

|ξ|(1 + t)2
. (4.13)

After this considerations we are able to derive the main result of this section.

Lemma 4.2. Assume Hypothesis 4.1. Then the fundamental solution of (4.11) can be
represented by

E(t, s, ξ) =
λ(s)

λ(t)
M−1N1(t, ξ)−1E0(t, s, ξ)Q1(t, s, ξ)N1(s, ξ)M (4.14)

for t ≥ s and (s, ξ) ∈ Zhyp(N), where

1. the function λ(t) = exp
(

1
2

∫ t
0
b(τ)dτ

)
describes the main influence of the coeffi-

cient b = b(t) in the dissipation;

2. the matrices N1(t, ξ), N1(t, ξ)−1 are uniformly bounded on Zhyp(N) tending on
{ξ : |ξ| ≥ ε} uniformly to the identity matrix I for all ε > 0;

3. the matrix E0(t, s, ξ) is given by

E0(t, s, ξ) =

(
ei(t−s)|ξ| 0

0 e−i(t−s)|ξ|

)
(4.15)

and is the fundamental solution of the free wave equation;

4. Q1(t, s, ξ) is uniformly bounded on Zhyp(N) tending uniformly on {ξ : |ξ| ≥ ε} to
the invertible matrix Q1(∞, s, ξ) for all ε > 0.

Proof. The construction of the representation of solution will be done in two steps.
Step 1: If

Ẽ0(t, s, ξ) =
λ(s)

λ(t)
E0(t, s, ξ), (4.16)

then

DtẼ0(t, s, ξ) =

(
i
b(t)

2
I +

(
|ξ| 0
0 −|ξ|

))
Ẽ0(t, s, ξ), Ẽ0(s, s, ξ) = I. (4.17)
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Step 2: If we define

Φ(t, s, ξ) := E0(s, t, ξ)R1(t, ξ)E0(t, s, ξ) (4.18)

and consider the Cauchy problem

DtQ1(t, s, ξ) = Φ(t, s, ξ)Q1(t, s, ξ) Q1(s, s, ξ) = I, (4.19)

then the fundamental solution of the transformed operator

Dt −
(
|ξ| 0
0 −|ξ|

)
− ib(t)

2
I +R1(t, ξ)

can be represented by Ẽ0(t, s, ξ)Q1(t, s, ξ). After transforming back to the starting
problem it follows (4.14).

Using that E0(t, s, ξ) is unitary we see that Φ(t, s, ξ) satisfies the same estimates
as R1(t, ξ). This allows us to estimate in a second step the solution Q1(t, s, ξ) directly
from the representation by Peano-Backer formula (7.2)

Q1(t, s, ξ) = I +
∞∑
i=1

∫ t

s

Φ(t1, s, ξ)

∫ t1

s

Φ(t2, s, ξ) · · ·
∫ tk−1

s

Φ(tk, s, ξ)dtk · · · dt1. (4.20)

Therefore,

‖Q1(t, s, ξ)− I‖ ≤
∫ t

s

‖R1(τ, ξ)‖dτ exp

(∫ t

s

‖R1(τ, ξ)‖dτ
)

≤ C

|ξ|

∫ t

s

dτ

(1 + τ)2
exp

(
C

|ξ|

∫ t

s

dτ

(1 + τ)2

)
≤ C

N
exp

(C
N

)
uniformly for t ≥ s and (s, ξ) ∈ Zhyp(N). A large N implies that Q1 is uniformly
invertible on Zhyp(N).

If |ξ| ≥ ε, then

‖N1(t, ξ)− I‖ = ‖N (1)(t, ξ)‖ . 1

|ξ|(1 + t)
≤ 1

ε(1 + t)
→ 0, (4.21)

when t→∞. Analogously we can show that N1(t, ξ)−1 converges to I on {ξ : |ξ| ≥ ε}
for all ε > 0. Finally, assuming |ξ| ≥ ε and using the representation (4.20) for
Q1(t, s, ξ) we get

‖Q1(∞, s, ξ)−Q1(t, s, ξ)‖ .
∫ ∞
t

‖R1(τ, ξ)‖dτ exp

(∫ t

s

‖R1(τ, ξ)‖dτ
)

≤ C

ε(1 + t)
→ 0,

when t → ∞. Thus Q1(t, s, ξ) converges uniformly on {ξ : |ξ| ≥ ε} to Q1(∞, s, ξ) for
all ε > 0. The lemma is proved.
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4.1.2 Modified scattering result

First let us find an energy estimate for the solutions to Cauchy problem (4.1).
This result is a directly consequence of the Lemma 4.1, Lemma 4.2 and the definition
of the micro-energy (4.3). The next theorem is a particular case of the paper [13].

Theorem 4.1. Let u be the solution to (4.1) for data (u0, u1) ∈ H1 × L2. Assume
Hypothesis 4.1 and Hypothesis 4.2. Then the estimate

‖(ut(t, ·),∇xu(t, ·))‖L2 .
1

λ(t)

(
‖u0‖H1 + ‖u1‖L2

)
(4.22)

holds true, where λ = λ(t) is defined by (4.5).

In this section we are interested in modified scattering results between the solu-
tions of

utt −∆u+ b(t)ut +m(t)u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (4.23)

and

vtt −∆v = 0, v(0, x) = v0(x), vt(0, x) = v1(x), (4.24)

where we assume Hypothesis 4.1 and Hypothesis 4.2 for the coefficients b and m.
The goal is construct an operator that maps initial data of Cauchy problem

(4.23) to initial data of Cauchy problem (4.24) such that after multiplication by λ(t)
the asymptotic behavior of the energy of solution to (4.23) coincides with the asymp-
totic behaviour of the energy of solutions to the related Cauchy problem (4.24) for
large times. The operator relating (u0, u1) to (v0, v1) is denoted as Moeller wave
operator which was mentioned in Lax-Phillips approach [36].

Theorem 4.2. Assume Hypothesis 4.1 and Hypothesis 4.2 . Then there exists a
bounded operator

W+ : (u0, u1) ∈ H1(Rn)× L2(Rn)→ (v0, v1) ∈ H1(Rn)× L2(Rn)

such that for Cauchy data (u0, u1) of (4.23) and associated data (v0, v1) = W+(u0, u1)
to (4.24) the corresponding solutions u = u(t, x) and v = v(t, x) satisfy

‖λ(t)(ut(t, ·),∇xu(t, ·))− (vt(t, ·),∇xv(t, ·))‖L2 → 0

as t→∞.

Proof. Let us define for any ε > 0 the following closed subset of L2 × L2 :

Fε :=
{
U0 ∈ L2 × L2 : Û0(ξ) = 0 for any |ξ| ≤ ε

}
.

We remember that L = ∪ε>0Fε is a dense subset of L2 × L2. If we introduce E0 =
E0(t, s, ξ) as in (4.15) and if v solves the free wave equation (4.24), after defining

V (t, ξ) = (|ξ|v̂, Dtv̂)T we can write V (t, ξ) =
˜̃E0(t, s, ξ)V (s, ξ), where

˜̃E0(t, s, ξ) = M−1E0(t, s, ξ)M.
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The proof is based on an explicit representation of the modified wave operator
W+. Our goal is to prove that the limit

W+(ξ) = lim
t→∞

λ(t)
˜̃E0(t, 0, ξ)−1E(t, 0, ξ) (4.25)

exists uniformly in |ξ| > ε for all ε > 0. After proving this property we are able to
relate the Cauchy data by

W+(ξ)U(0, ξ) = V (0, ξ).

From Lemma 4.2 we know that the limit

Q1(∞, θ|ξ|, ξ) = lim
t→∞
Q1(t, θ|ξ|, ξ)

exists uniformly when |ξ| ≥ ε for any ε > 0. Hence, if we consider ˜̃E0(t, 0, ξ)−1E(t, 0, ξ)
on L we obtain in hyperbolic zone

lim
t→∞

λ(t)
˜̃E0(t, 0, ξ)−1E(t, 0, ξ)

= lim
t→∞

λ(t)
˜̃E0(t, 0, ξ)−1E(t, θ|ξ|, ξ)E(θ|ξ|, 0, ξ)

= lim
t→∞

λ(θ|ξ|)
˜̃E0(t, 0, ξ)−1M−1N1(t, ξ)−1E0(t, θ|ξ|, ξ)Q1(t, θ|ξ|, ξ)N1(θ|ξ|, ξ)ME(θ|ξ|, 0, ξ)

= lim
t→∞

λ(θ|ξ|)M
−1E0(0, t, ξ)N1(t, ξ)−1E0(t, θ|ξ|, ξ)Q1(t, θ|ξ|, ξ)N1(θ|ξ|, ξ)ME(θ|ξ|, 0, ξ)

= λ(θ|ξ|)M
−1E0(0, θ|ξ|, ξ)Q1(∞, θ|ξ|, ξ)N1(θ|ξ|, ξ)ME(θ|ξ|, 0, ξ),

using the fact that

E0(0, t, ξ)N1(t, ξ)E0(t, θ|ξ|, ξ) = E0(0, θ|ξ|, ξ) + E0(0, t, ξ)(N1(t, ξ)− I)E0(t, θ|ξ|, ξ)

and N1(t, ξ)→ I uniformly for |ξ| ≥ ε. In the pseudo-differential zone the boundness
of the fundamental solution of the free wave equation and the estimative in Lemma
4.1 guarantee that the limit 4.25 goes to zero.

According to the estimates for the energy from Theorem 4.1 we conclude that

λ(t)
˜̃E0(t, 0, ξ)−1E(t, 0, ξ)

is uniformly bounded on L. Therefore applying Banach-Steinhaus Theorem 7.3 we
conclude that

W+(D) = s-lim
t→∞

λ(t)
˜̃E0(t, 0, D)−1E(t, 0, D)

exists as strong limit in L2(Rn)× L2(Rn).
Finally, we study the difference

‖λ(t)U(t, ·)− V (t, ·)‖L2 = ‖λ(t)E(t, 0, ·)U(0, ·)− ˜̃E0(t, 0, ·)V (0, ·)‖L2

=

∥∥∥∥(λ(t)
˜̃E0(t, 0, ·)−1E(t, 0, ·)−W+(·)

)
U(0, ·)

∥∥∥∥
L2

,

under our assumption (u0, u1) ∈ H1×L2 and by definition of W+(ξ) we may conclude
that

‖λ(t)U(t, ·)− V (t, ·)‖L2 → 0

as t tends to infinity. The proof is completed.
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Remark 4.2. The statement from Theorem 4.2 gives us the sharpness of the energy
estimates derived in Chapter 2. In fact, suppose that w = w(t, x) satisfies the Cauchy
problem (2.1) and that v = v(t, x) satisfies the Cauchy problem for the free wave
equation (4.24). Choose a function ψ as in Hypothesis 2.2 and perform the change
of variable w(t, x) = ψ(t)u(t, x). Then the Cauchy problem (2.1) takes the form of
the Cauchy problem (4.23) with λ(t) = ψ(t). The Hypotheses 2.1 and 2.2 allow us
to apply Theorem 4.2. Then there exists a bounded operator that maps initial data of
the Cauchy problem (4.23) to initial data of the Cauchy problem (4.24) such that the
corresponding solutions satisfy

‖ψ(t)(ut(t, ·),∇xu(t, ·))− (vt(t, ·),∇xv(t, ·))‖L2 → 0,

or, equivalently,∥∥∥∥(wt(t, ·)− ψ′(t)

ψ(t)
w(t, ·),∇xw(t, ·)

)
− (vt(t, ·),∇xv(t, ·))

∥∥∥∥
L2

→ 0.

Taking into consideration the energy conservation for the free wave equation it follows

0 < c0 ≤
∥∥∥∥(wt(t, ·)− ψ′(t)

ψ(t)
w(t, ·),∇xw(t, ·)

)∥∥∥∥2

L2

=

∥∥∥∥wt(t, ·)− ψ′(t)

ψ(t)
w(t, ·)

∥∥∥∥2

L2

+ ‖∇xw(t, ·)‖2
L2

≤ ‖wt(t, ·)‖2
L2 + 2‖wt(t, ·)‖L2

ψ′(t)

ψ(t)
‖w(t, ·)‖L2 +

(
ψ′(t)

ψ(t)

)2

‖w(t, ·)‖2
L2 + ‖∇xw(t, ·)‖2

L2

≤ 2 ‖wt(t, ·)‖2
L2 + 2p(t)2‖w(t, ·)‖2

L2 + 2 ‖∇xw(t, ·)‖2
L2

∼ E(w)(t),

where E(w)(t) is defined in (2.8).
This guarantees the sharpness of our energy estimate.

4.1.3 Examples

We will conclude this section with examples.

Example 4.1. Let µ, σ > 0 and s ∈ N with s ≥ 1. Then we consider

b(t) =
µ

(e[s] + t) log (e[s] + t) · · · log[s] (e[s] + t)
and m(t) =

σ

(1 + t)γ
,

with γ > 2. Then the hypotheses of Theorem 4.1 and Theorem 4.2 are satisfied and
we obtain

λ(t) =
(

log[s]
(
e[s] + t

))µ2
.

The decay estimate for the energy is

‖(ut(t, ·),∇xu(t, ·))‖L2 ≈
1

λ(t)
.
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Example 4.2. If we consider

b(t) =
2 + cos(α log(e+ t))

2(e+ t)
and m(t) =

log(e+ t)

(1 + t)γ

with γ > 3, then the hypotheses of Theorem 4.1 and Theorem 4.2 are satisfied and
we obtain

λ(t) = exp

(
1

2
log(e+ t) +

1

4α
sin (α log(e+ t))

)
.

The decay estimate for the energy is

‖(ut(t, ·),∇xu(t, ·))‖L2 ≈
1

λ(t)
.

4.2 Non-effective dissipation versus non-effective
potential

In this section we will prove Lp − Lq estimates for p ∈ (1, 2] on the conjugate
line and modified scattering results for Cauchy problems as in (4.1), but now we
will consider in the models non-effective time-dependent mass and dissipation. The
results of this section was published in the paper [41].

4.2.1 Representation of the solution

Let us consider the following Cauchy problem for damped Klein-Gordon equa-
tions

utt −∆u+ b(t)ut +m(t)u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (4.26)

where (t, x) ∈ R+×Rn, b = b(t) is the coefficient in the dissipative term and m = m(t)
is the coefficient in the mass term under the following assumptions:

Hypothesis 4.3. Suppose that b,m ∈ C`(R+) and that for all k ≤ ` it holds∣∣∣∣ dkdtk b(t)
∣∣∣∣ ≤ Ck

(
1

1 + t

)k+1

and
∣∣∣∣ dkdtkm(t)

∣∣∣∣ ≤ Ck

(
1

1 + t

)k+2

,

the number ` will be specified later on. Some statements need a higher regularity.

Hypothesis 4.4. Suppose that the following limits

lim
t→∞

(1 + t)b(t) = b0 and lim
t→∞

(1 + t)2m(t) = m0 (4.27)

exist and that∫ ∞
1

|tb(t)− b0|σ

t
dt <∞ and

∫ ∞
0

|t2m(t)−m0|σ

t
dt <∞,

holds true with exponent σ satisfying

(A1) σ = 1 or (A2) σ ∈ (1, 2].
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Results will depend on relations between the constants b0 and m0. It will not be
necessary to restrict considerations to b0 ≥ 0 and m0 ≥ 0, results will however depend
on the constraint 4m0 > b0(b0 − 2) or additional conditions imposed on initial data.

We further define the auxiliary function

λ(t) = exp

(
1

2

∫ t

0

b(τ)dτ

)
(4.28)

related to the dissipative term b(t)ut. It will play an important role in the resulting
estimates. Under part (A1) of Hypothesis 4.4 it follows that

λ(t) ≈ (1 + t)
b0
2 for t→∞. (4.29)

When assuming (A2) a further sub-polynomial correction term appears.

Zones and general strategy

Applying the partial Fourier transformation in (4.26) we obtain

ûtt + |ξ|2û+ b(t)ût +m(t)û = 0, û(0, ξ) = û0(ξ), ût(0, ξ) = û1(ξ). (4.30)

In order to derive Lp − Lq estimates for the solution and its derivatives we divide the
extended phase space [0,∞)× Rn into three zones:

Zpd(N) = {(t, ξ) ∈ [0,∞)×Rn : (1 + t)|ξ| ≤ N},
Zs
hyp(N) = {(t, ξ) ∈ [0,∞)×Rn : |ξ| ≤ N ≤ (1 + t)|ξ|},

Z`
hyp(N) = {(t, ξ) ∈ [0,∞)×Rn : |ξ| ≥ N},

where N is a positive constant that will be specified later on.

Remark 4.3. In the zone Z`
hyp(N) we consider only large frequencies and in the zones

Zpd(N) and Zs
hyp(N) we consider small frequencies. Furthermore, the separating curve

between both zones Zpd(N) and Zs
hyp(N) is given by

θ|ξ| : (0, N ]→ [0,∞), (1 + θ|ξ|)|ξ| = N.

We put also θ0 =∞, and θ|ξ| = 0 for any |ξ| ≥ N .

In order to divide the extended phase space into three parts we introduce the
function χ ∈ C∞(R+) such that χ(t) = 1 for t ≤ 1

2
, χ(t) = 0 for t ≥ 2 and χ′(t) ≤ 0.

We define the characteristic functions ϕpd, ϕshyp and ϕ`hyp related to the zones Zpd(N),
Zs
hyp(N) and Z`

hyp(N), respectively, by

ϕpd(t, ξ) = χ
(
|ξ|N−1

)
χ
(
(1 + t)|ξ|N−1

)
,

ϕshyp(t, ξ) = χ
(
|ξ|N−1

) (
1− χ

(
(1 + t)|ξ|N−1

))
,

ϕ`hyp(ξ) = 1− χ
(
|ξ|N−1

)
,

such that ϕpd(t, ξ) + ϕshyp(t, ξ) + ϕ`hyp(ξ) = 1. Let us consider the same micro-energy
that we defined in the Section 4.1, i.e.,

U(t, ξ) = (h(t, ξ)û, Dtû)T , (4.31)
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where
h(t, ξ) =

1

1 + t
ϕpd(t, ξ) + |ξ|

(
ϕshyp(t, ξ) + ϕ`hyp(ξ)

)
.

In the hyperbolic zone we apply a diagonalization procedure to a first-order
system corresponding to equation (4.30) in order to derive a representation for the
fundamental solution. We follow some ideas of Wirth [59] and Yagdjian [62]. We will
consider a system with a coefficient matrix composed of a diagonal main part and a
remainder part. The goal of this diagonalization is to keep the diagonal part in every
step of the diagonalization and to improve the remainder terms. The strategy is the
same one as in Chapter 3.

To derive the asymptotic behavior of the fundamental solution to (4.30) in the
pseudo-differential zone we will perform, for L1 condition (A1), one step of diagonal-
ization and apply the Levinson Theorem 7.5 and, for Lσ condition (A2), we will apply
the Hartman–Wintner Theorem 7.6. For the Lσ condition we need one more step of
diagonalization (see proof of Theorem 7.6).

Considerations in the pseudo-differential zone

In the pseudo-differential zone the micro-energy (4.31) becomes

U(t, ξ) =

(
1

1 + t
û, Dtû

)
.

Therefore we shall consider the system

DtU(t, ξ) = Ã(t, ξ)U(t, ξ) :=

(
i

1+t
1

1+t

(1 + t)
(
|ξ|2 +m(t)

)
ib(t)

)
U(t, ξ). (4.32)

Let us consider the fundamental solution E(t, s, ξ) of the system (4.32). The strategy is
to apply Levinson’s Theorem 7.5 obtaining the asymptotic behavior of the solution in
the pseudo-differential zone. For this reason we shall apply steps of diagonalization
on the matrix Ã = Ã(t, ξ).
Note that the Hypothesis 4.4 proposes us to rewrite (4.32) in the following way:

(1 + t)∂tU(t, ξ) =

(
−1 i
im0 −b0

)
U(t, ξ)

+

(
0 0

i(1 + t)2|ξ|2 + i
(
(1 + t)2m(t)−m0

)
−(1 + t)b(t) + b0

)
U(t, ξ).

Let us denote by R = R(t, ξ) the matrices

A =

(
−1 i
im0 −b0

)
, R =

(
0 0

i(1 + t)2|ξ|2 + i
(
(1 + t)2m(t)−m0

)
−(1 + t)b(t) + b0

)
.

Therefore, we study the system

(1 + t)∂tU(t, ξ) =
(
A+R(t, ξ)

)
U(t, ξ). (4.33)

By Hypothesis 4.4 in the form (A1) and the definition of the zone we know that

sup
|ξ|<N

∫ θ|ξ|

1

‖R(t, ξ)‖dt

t
<∞ (4.34)
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and R(t, ξ) is a remainder term in the sense of Theorem 7.5. Furthermore, as trA =
−1− b0 and detA = b0 +m0 the eigenvalues of A are given as

µ± = −b0 + 1

2
±
√

(b0 − 1)2

4
−m0. (4.35)

In particular we see that
4m0 6= (b0 − 1)2 (4.36)

implies that the eigenvalues are distinct.

Theorem 4.3. Assume Hypothesis 4.4 with σ = 1 together with (4.36). Then the
matrix-valued fundamental solution of the system (4.33) satisfies

‖E(t, s, ξ)‖ .
(

1 + t

1 + s

)Reµ+

(4.37)

uniformly in 0 ≤ s ≤ t and (t, ξ) ∈ Zpd(N).

Proof. This follows from Theorem 7.5 applied to (4.33) with R(t, ξ) extended by zero
outside Zpd(N). Let P be the diagonalizer of A given by

P =

(
1 1

im0+1+µ+
i+b0+µ+

im0+1+µ−
i+b0+µ−

)
and P−1 =

1

detP

(
im0+1+µ−
i+b0+µ−

−1

− im0+1+µ+
i+b0+µ+

1

)
, (4.38)

with detP = im0+1+µ−
i+b0+µ−

− im0+1+µ+
i+b0+µ+

. Then, if we define U (0) = P−1U we will get

(1 + t)∂tU
(0)(t, ξ) =

[(
µ+ 0
0 µ−

)
+ P−1R(t, ξ)P

]
U (0)(t, ξ). (4.39)

We have that

P−1R(t, ξ)P =
i(1 + t)2|ξ|2

detP

(
−1 −1
1 1

)
+

(1 + t)b(t)− b0

detP

(
c+ c−
−c+ −c−

)
+

i ((1 + t)2m(t)−m0)

detP

(
−1 −1
1 1

)
,

with c± = im0+1+µ±
i+b0+µ±

. Note that c± is an imaginary number. In fact,

c± =
µ2
± + (b0 + 1)µ± + (m0 + b0)

1 + (b0 + µ±)2
− i1 + (1−m0)µ± −m0b0

1 + (b0 + µ±)2

= −i1 + (1−m0)µ± −m0b0

1 + (b0 + µ±)2
.

From µ+ 6= µ− and Hypothesis 4.4 together with the zone definition implies that
P−1R(t, ξ)P ∈ L1

(
[0,∞), dt

t

)
uniformly in ν = |ξ|. Then from Levinson’s Theorem 7.5

we can conclude that there exist two linearly independent solutions to (4.33) of the
form

U±(t, ξ) = (e± + o(1))(1 + t)µ± for t→∞ (4.40)
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within Zpd(N) and uniformly in ξ, where e± are the two normalized eigenvectors
corresponding to µ±, i.e.,

e± =

(
1,
im0 + 1 + µ±
i+ b0 + µ±

)
. (4.41)

Constructing the fundamental solution as in Remark 7.2, we see that

E(t, 0, ξ) =
(
U−(t, ξ)|U+(t, ξ)

)(
U−(0, ξ)|U+(0, ξ)

)−1
, (4.42)

and, hence, we obtain
‖E(t, 0, ξ)‖ . (1 + t)Reµ+ (4.43)

for any (t, ξ) ∈ Zpd(N). Using the scaling from Remark 7.3 (taking into account the
shift in time) we obtain (4.37) uniformly in 0 ≤ s ≤ t ≤ θ|ξ|.

In order to treat the form (A2) of Hypothesis 2 by the Hartmann–Wintner Theo-
rem 7.6, we need to ensure that Reµ+ 6= Reµ−. This happens if both are real and
distinct. The latter is equivalent to

4m0 < (b0 − 1)2. (4.44)

Theorem 4.4. Assume Hypothesis 4.4 with σ ∈ (1, 2] together with (4.44). Let further
σ′ be the conjugate line to σ. Then the fundamental solution of the system (4.33)
satisfies

‖E(t, s, ξ)‖ .
(

1 + t

1 + s

)µ+
exp

(
C

(
ln

1 + t

1 + s

) 1
σ′
)

(4.45)

uniformly in 0 ≤ s ≤ t and (t, ξ) ∈ Zpd(N).

Proof. As in the previous case we extend R(t, ξ) by zero outside Zpd(N) and denote
by e± normalised eigenvectors of A corresponding to µ±. Forming the unitary matrix
P = (e+|e−) with these eigenvectors as columns and defining R̃(t, ξ) = P−1R(t, ξ)P

given by (4.38) allows to rewrite (4.33) in the new unknown vector Ũ(t, ξ) = PU(t, ξ)
as

(1 + t)∂tŨ(t, ξ) =
(

diag(µ+, µ−) + R̃(t, ξ)
)
Ũ(t, ξ) (4.46)

We apply Theorem 7.6 to this system. As µ± are real and distinct, they clearly satisfy
(7.36). Furthermore, the matrix R̃(t, ξ) contains combinations of (1 + t)b(t) − b0 and
(1 + t)2m(t) − m0 controlled by (A2) and terms of the form (1 + t)2|ξ|2 which are
uniformly bounded and integrable with respect to dt/t by the definition of the zone.
Hence, Hypothesis 4.4 in the form (A2) implies (7.35) with σ ∈ (1, 2]. Therefore,
Theorem 7.6 applies and gives a matrix N(t, ξ) ∈ Lσ(R+, dt/t) transforming (4.33)
for t ≥ t0 into Levinson form

(1 + t)∂tV (t, ξ) =
(

diag(µ+ + r̃++, µ− + r̃−−) + R̃1(t, ξ)
)
V (t, ξ) (4.47)

in the new unknown vector V (t, ξ) = (I+N(t, ξ))−1Ũ(t, ξ) and with the new remainder
R̃1 ∈ L1([t0,∞), dt/t). By r̃++(t, ξ) and r̃−−(t, ξ) we denote the diagonal entries of
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R̃(t, ξ). The new diagonal part satisfies the dichotomy condition (7.11), the additional
diagonal entries satisfy by Hölder’s inequality∫ t

s

|r̃++(τ, ξ)| dτ

1 + τ
≤ C

(
ln

1 + t

1 + s

) 1
σ′

(4.48)

with σ′ the dual index and are thus small compared to∫ t

s

(µ+ − µ−)
dτ

1 + τ
= (µ+ − µ−)

(
ln

1 + t

1 + s

)
. (4.49)

Hence, Levinson’s Theorem 7.5 yields a fundamental system of solutions together
with the estimate

‖E(t, t0, ξ)‖ ≤ (1 + t)µ+ exp
(
C (ln(1 + t))

1
σ′
)
, t ≥ t0, (4.50)

for the matrix-valued fundamental solution to the transformed system. The scaling
argument from Remark 7.3 extends this estimate to variable starting times t0 ≤ s ≤
t ≤ θ|ξ| as

‖E(t, s, ξ)‖ .
(

1 + t

1 + s

)µ+
exp

(
C

(
ln

1 + t

1 + s

) 1
σ′
)
. (4.51)

Transforming back to the original system combined with compactness of the remain-
ing bit of Zpd(N) where the transform was not defined yields the desired statement.
The theorem is proved.

Remark 4.4. If 2 Reµ+ < −b0, i.e., if

b0(b0 − 2) < 4m0, (4.52)

then Theorems 4.3 and 4.4 imply

‖E(t, s, ξ)‖ . λ(s)

λ(t)
, (4.53)

for all 0 ≤ s ≤ t and (t, ξ) ∈ Zpd(N). In the first case this is obvious, while in the
second case we observe that for all ε > 0 there exists a constant cε such that

exp

(
C

(
ln

1 + t

1 + s

) 1
σ′
)
≤ cε

(
1 + t

1 + s

)ε
. (4.54)

Therefore(
1 + t

1 + s

)µ+
exp

(
C

(
ln

1 + t

1 + s

) 1
σ′
)
.

(
1 + t

1 + s

)µ++ε

.

(
1 + t

1 + s

)− b0
2
−ε

.
λ(s)

λ(t)
(4.55)

uniformly in 0 ≤ s ≤ t.
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In order to combine the estimates from the pseudo-differential zone with the
treatment in the hyperbolic zone, we need one further estimate. It is conditional in
the sense that it is entirely based on the final estimate from the pseudo-differential
zone and not on the precise assumptions used to prove it. It is also the first statement
using Hypothesis 4.3.

Lemma 4.3. Assume Hypothesis 4.3 and Hypothesis 4.4 in combination with (4.52).
Then for |ξ| ≤ N the symbol-like estimates∥∥Dα

ξ E(θ|ξ|, 0, ξ)
∥∥ ≤ Cα

1

λ(θ|ξ|)
|ξ|−|α| (4.56)

are valid for all |α| ≤ `.

Proof. Observe that the properties of the matrix Ã(t, ξ) allow to apply Lemma 3.10 of
[58]. This lemma gives the desired statement.

Remark 4.5. The result of Lemma 3.1 can be reformulated in the following form. The
symbol λ(θ|ξ|)E(θ|ξ|, 0, ξ) is an element of the homogeneous symbol class

Ṡ0
` = {m ∈ C∞(Rn \ {0}) : |Dα

ξm(ξ)| ≤ Cα|ξ|−|α| for all |α| ≤ `} (4.57)

of order zero and restricted smoothness `.

Considerations in the hyperbolic zone

First of all, let us introduce symbol classes S`1,`2N {m1,m2} in the hyperbolic zone.

Definition 4.1. The time-dependent amplitude function a = a(t, ξ) belongs to the
symbol class S`1,`2N {m1,m2} with restricted smoothness `1, `2 if it satisfies the symbol-
like estimates ∣∣Dk

tD
α
ξ a(t, ξ)

∣∣ ≤ Ck,α|ξ|m1−|α|
(

1

1 + t

)m2+k

(4.58)

for all (t, ξ) ∈ Zhyp(N), all non-negative integers k ≤ `1 and all multi-indices α ∈ Nn

with |α| ≤ `2.

If `1 = `2 =∞, then we introduce the notation SN{m1,m2}.

Remark 4.6. This symbol class coincides with the symbol class from Definition 3.1.
So, Proposition 3.2 gives us the rules of the symbolic calculus in this set of symbol
classes.

In the hyperbolic zone the micro-energy (4.31) becomes

U(t, ξ) = (|ξ|û, Dtû) .

Then we consider the system

DtU = A(t, ξ)U :=

(
0 |ξ|

|ξ|+ m(t)
|ξ| ib(t)

)
U. (4.59)
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We denote by E = E(t, s, ξ) the fundamental solution of (4.59), i.e., the solution to

DtE(t, s, ξ) = A(t, ξ)E(t, s, ξ), E(s, s, ξ) = I. (4.60)

The goal is to transform the “principal part” to a diagonal structure such that the
remainder allows a suitable normwise estimate. We shall apply several steps of diag-
onalization to system (4.60). In the first step let us choose the matrix

M =
1√
2

(
1 −1
1 1

)
, M−1 =

1√
2

(
1 1
−1 1

)
.

Then we obtain

M−1A(t, ξ)M = D(ξ) +B(t) + C(t, ξ)

with D = D(ξ) =

(
|ξ| 0
0 −|ξ|

)
, B = B(t) = ib(t)

2

(
1 1
1 1

)
and C = C(t, ξ) =

m(t)
2|ξ|

(
1 −1
1 −1

)
. Note that B ∈ S`,∞N {0, 1} and C ∈ S`,∞N {−1, 2}.

Now we carry out further steps of the diagonalization procedure. Like in Chapter
3 the aim is to transform the previous system to a diagonalized system with a remain-
der belonging in some sense to a better “symbol class”. We construct recursively the
diagonalizer Nk = Nk(t, ξ) of order k. Let

Nk(t, ξ) =
k∑
j=0

N (j)(t, ξ), Fk(t, ξ) =
k∑
j=0

F (j)(t, ξ),

where N (0)(t, ξ) = I, B(0)(t, ξ) = B(t) + C(t, ξ) and F (0)(t, ξ) = diagB(0)(t, ξ) =
F0(t, ξ). Following the construction of Chapter 3 we define

F (j) := diagB(j), (4.61)

N (j+1) :=

 0
−B(j)

12

2|ξ|
B

(j)
21

2|ξ| 0

 , (4.62)

B(j+1) := (Dt −D −B − C)Nj+1 −Nj+1 (Dt −D − Fj) . (4.63)

Analogous to Proposition 3.3 the following result can be proved.

Proposition 4.1. Assume the Hypothesis 4.3 with derivatives up to order `. Then
N (j) ∈ S`−j+1,∞

N {−j, j} and B(j) ∈ S`−j,∞N {−j, j + 1} for all j = 1, 2, · · · , `. Moreover,
for any k we find a zone constant N such that Nk is invertible in Zhyp(N).

If we denote Rk(t, ξ) := −Nk(t, ξ)
−1B(k)(t, ξ) the previous results yield the fol-

lowing statement:

Lemma 4.4. Assume the Hypothesis 4.3. For each 1 ≤ k ≤ ` there exists a zone
constant N and matrix-valued symbols such that

1. Nk(t, ξ) ∈ S`−k+1,∞
N {0, 0} is invertible for (t, ξ) ∈ Zhyp(N)

with Nk(t, ξ)
−1 ∈ S`−k+1,∞

N {0, 0};
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2. Fk−1(t, ξ) ∈ S`−k+1,∞
N {0, 1} is diagonal with Fk−1(t, ξ)− F (0) ∈ S`−k+1,∞

N {−1, 2};

3. Rk(t, ξ) ∈ S`−k,∞N {−k, k + 1}.

Moreover, the identity(
Dt−D(ξ)−B(t)−C(t, ξ)

)
Nk(t, ξ) = Nk(t, ξ)

(
Dt−D(ξ)−Fk−1(t, ξ)−Rk(t, ξ)

)
(4.64)

holds for all (t, ξ) ∈ Zhyp(N).

We are now in a position to derive the main result of this subsection.

Proposition 4.2. Assume Hypothesis 4.3. Then the fundamental solution Ek(t, s, ξ) of
the diagonalized operator Dt−D−Fk−1−Rk with remainder Rk can be represented
as

Ek(t, s, ξ) =
λ(s)

λ(t)
E0(t, s, ξ)Qk(t, s, ξ), (4.65)

for t ≥ s and (s, ξ) ∈ Zhyp(N), where

1. the function λ(t) = exp
(

1
2

∫ t
0
b(τ)dτ

)
describes the main influence of the dissipa-

tion b(t)ut;

2. the matrices Nk(t, ξ), Nk(t, ξ)
−1 ∈ S`−k+1,∞

N {0, 0} tending on {ξ : |ξ| ≥ ε} uni-
formly to the identity matrix I;

3. the matrix E0(t, s, ξ) given by

E0(t, s, ξ) =

(
ei(t−s)|ξ| 0

0 e−i(t−s)|ξ|

)
(4.66)

is the fundamental solution of the free wave equation;

4. the function Qk(t, s, ξ) is the fundamental solution to the operator

Dt − Φk(t, s, ξ), (4.67)

where Φk(t, s, ξ) = Fk−1(t, ξ)− F (0)(t, ξ) + E0(s, t, ξ)Rk(t, ξ)E0(s, t, ξ) + diagC;

5. the matrix Qk(t, s, ξ) satisfies for all multi-indices |α| ≤ min{k − 1, `− k − 1} the
symbol-like estimates∥∥Dα

ξQk(t, s, ξ)
∥∥ ≤ Cα|ξ|−|α| for all t, s ≥ θ|ξ| (4.68)

uniformly in θ|ξ| ≤ s ≤ t.

Proof. In fact,

DtEk =
(
D + Fk−1 +Rk + diag(B) + diag(C)− F (0)

)
Ek

=
(
D + Fk−1 +Rk

)
Ek.
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From the Proposition 4.1 we have that Nk − I ∈ S`−k+1,∞
N {−1, 1}. Therefore, |ξ| ≥ ε

implies

‖N1(t, ξ)− I‖ . 1

|ξ|(1 + t)
≤ C

ε(1 + t)
→ 0 when t→∞.

Using that E0(t, s, ξ) is unitary and Lemma 3.3 we see that Φk(t, s, ξ) ∈ S0,k−1
N {−1, 2}

for all s ≥ θ|ξ|. Taking account of S0,k−1
N {−1, 2} ⊂ L∞ξ L

1
t (Zhyp) it is allowed to apply

the Peano-Baker formula (7.2) and to conclude that the fundamental solution to the
operator (4.67) is given by

Qk(t, s, ξ) = I +
∞∑
`=1

i`
∫ t

s

Φk(t1, s, ξ)

∫ t1

s

Φk(t2, s, ξ) · · ·
∫ t`−1

s

Φk(t`, s, ξ)dt` · · · dt1.

(4.69)
Therefore, Lemma 3.4 implies the estimate (4.68).

The next result is important for deriving a modified scattering result for the
Cauchy problem (4.26).

Lemma 4.5. Assume Hypothesis 4.3. Then Qk(t, s, ξ) is invertible on Z`
hyp(N) ∪

Zs
hyp(N) tending uniformly to the invertible matrix Qk(∞, s, ξ) for {ξ : |ξ| ≥ ε}.

Proof. It follows from (4.69) that

Qk(t, s, ξ) = I +
∞∑
`=1

i`
∫ t

s

Φk(t1, s, ξ)

∫ t1

s

Φk(t2, s, ξ) · · ·
∫ t`−1

s

Φk(t`, s, ξ)dt` · · · dt1,

(4.70)
where Φk(t, s, ξ) ∈ S0,k−1

N {−1, 2}. Therefore, the desired result follows by the Cauchy
criterion applied to the series (4.70) or by the estimate

‖Qk(∞, s, ξ)−Qk(t, s, ξ)‖ ≤
∫ ∞
t

‖Φk(τ, s, ξ)‖dτ exp

(∫ t

s

‖Φk(τ, s, ξ)‖dτ
)

.
1

|ξ|

∫ ∞
t

1

(1 + τ)2
dτ ≤ C

ε(1 + t)
.

The invertibility of Qk(t, s, ξ) follows from

‖Qk(t, s, ξ)− I‖ ≤
∫ t

s

‖Rk(τ, ξ)‖dτ exp

(∫ t

s

‖Rk(τ, ξ)‖dτ
)

≤ C

|ξ|

∫ t

s

dτ

(1 + τ)2
exp

(
C

|ξ|

∫ t

s

dτ

(1 + τ)2

)
≤ C

N
exp

(C
N

)
uniformly for t ≥ s and (s, ξ) ∈ Z`

hyp(N) ∪ Zs
hyp(N). A large N implies that Qk is

uniformly invertible on Z`
hyp(N) ∪ Zs

hyp(N). This completes the proof.

Transforming back to the original problem:

After constructing the fundamental solution Ek(t, s, ξ) we transform back to the
original problem and get in the hyperbolic zone the representation of fundamental
solution

E(t, s, ξ) =
λ(s)

λ(t)
M−1Nk(t, ξ)E0(t, s, ξ)Qk(t, s, ξ)Nk(s, ξ)

−1M (4.71)
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µ+µ−

0 ≤ 4m0 < b0(b0 − 2)

µ+µ−

b0(b0 − 2) ≤ 4m0 < (b0 − 1)2

µ−

µ+

(b0 − 1)2 < 4m0

µ±

4m0 = (b0 − 1)2

Fig. 4.1: Collecting the estimates

with uniformly bounded matrices Nk, N
−1
k ∈ S

`−k−1,∞
N {0, 0}.

The representation is true in the hyperbolic zone for large frequencies. For small
frequencies we will use the following: For 0 ≤ s ≤ θ|ξ| ≤ t it holds

E(t, s, ξ) =
1

λ(t)
M−1Nk(t, ξ)E0(t, θ|ξ|, ξ)Qk(t, θ|ξ|, ξ)Nk(θ|ξ|, ξ)

−1Mλ(θ|ξ|)E(θ|ξ|, s, ξ).

(4.72)

4.2.2 L2 − L2 decay estimates

The representation of fundamental solutions obtained so far allows us to con-
clude estimates for the solution and their derivatives. This section is devoted to derive
energy estimates.

The influence of high frequencies is described by a WKB-representation of solu-
tions giving an overall decay estimate based on the function λ(t). In Figure 4.1 this
corresponds to the dashed line in the complex plane. The two dots correspond to the
exponents µ± arising from the Levinson’s Theorem. They are responsible for the small
frequency behaviour and the interplay of the relation of these dots and the dashed
line will be the major reason for the appearing different cases of final estimates.

The main estimates obtained so far can be seen in Tables 4.1 and 4.2. We shall
distinguish between the situation of condition (A1) in Hypothesis 4.4 and the situation
of condition (A2) in Hypothesis 4.4. In the latter case we can only treat mass terms
satisfying 4m0 < (b0 − 1)2.
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conditions on m0 and b0 behaviour in Zpd(N) behaviour in Zhyp(N)

(b0 − 1)2 < 4m0 (t/s)−(b0+1)/2 (t/s)−b0/2

4m0 = (b0 − 1)2 (t/s)−(b0+1)/2+ε (t/s)−b0/2

b0(b0 − 2) ≤ 4m0 < (b0 − 1)2 (t/s)µ+ , µ+ ≤ −b0/2 (t/s)−b0/2

0 ≤ 4m0 < b0(b0 − 2) (t/s)µ+ , µ+ > −b0/2 (t/s)−b0/2

Tab. 4.1: Estimates of fundamental solutions assuming (A1).

conditions on m0 and b0 behaviour in Zpd(N) behaviour in Zhyp(N)

b0(b0 − 2) < 4m0 < (b0 − 1)2 (t/s)µ+ , µ+ < −b0/2 (t/s)−b0/2

0 ≤ 4m0 < b0(b0 − 2) (t/s)µ+ , µ+ > −b0/2 (t/s)−b0/2

Tab. 4.2: Estimates of fundamental solutions assuming (A2).

Choice of parameters

The number of diagonalization steps needed in the hyperbolic zone determines
the zone constant N and thus the decomposition of the phase space. When proving
energy estimates it will be enough to apply one non-trivial step of diagonalization in
the hyperbolic zone and for this any choice of N sufficiently large will be good. When
proving Lp − Lq estimates several such steps are necessary and N has to be chosen
large enough.

The number ` of derivatives required in Hypothesis 4.3 depends on the number
of diagonalization steps to be used and the needed symbol properties of the matrix
function Qk(t, θ|ξ|, ξ). When proving energy estimates, ` = 1 is sufficient.

Theorem 4.5. Assume Hypothesis 4.3 with ` = 1, Hypothesis 4.4 with σ = 1 and
b0(b0 − 2) ≤ 4m0. Then the L2 − L2 estimate

‖E(t, s,D)‖L2→L2 .
λ(s)

λ(t)

holds true, where λ = λ(t) is defined by (4.5).

Proof. The proof is divided into two steps.

Considerations in the pseudo-differential zone:

Here Theorem 4.3 in combination with Remark 4.4 yields

‖E(t, s, ξ)‖ .
(

1 + t

1 + s

)Reµ+

.
λ(s)

λ(t)
(4.73)

uniformly with respect to 0 ≤ s ≤ t ≤ θ|ξ|. Therefore, if v = v(x) ∈ L2(Rn), then

‖E(t, s, ·)ϕpd(t, ·)v̂‖L2 . ‖E(t, s, ·)ϕpd(t, ·)‖L∞‖v̂‖L2 .
λ(s)

λ(t)
‖v̂‖L2 .

Applying the formula of Parseval-Plancharel we have∥∥F−1
(
E(t, s, ξ)ϕpd(t, ξ)v̂(ξ)

)
(t, ·)

∥∥
L2 .

λ(s)

λ(t)
‖v‖L2 .
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Considerations in the hyperbolic zone:

In the hyperbolic zone we will use the representation of the fundamental solu-
tion. Let us consider v = v(x) ∈ L2(Rn). We proved that Nk(t, ξ), Nk(t, ξ)

−1 and
Qk(t, s, ξ) are uniformly bounded for all t ≥ s and (s, ξ) ∈ Z`

hyp(N). Therefore by
(4.71) with k = 1 it follows for large frequencies

‖E(t, s, ·)ϕ`hypv̂‖L2

=
λ(s)

λ(t)

∥∥M−1N1(t, ·)E0(t, s, ·)Q1(t, s, ·)N1(s, ·)−1Mϕ`hyp(·)v̂
∥∥
L2 .

λ(s)

λ(t)
‖v̂‖L2 .

Applying the formula of Parseval-Plancharel brings∥∥F−1
(
E(t, s, ξ)ϕ`hyp(ξ)v̂(ξ)

)
(t, ·)

∥∥
L2 .

λ(s)

λ(t)
‖v‖L2 .

Remark 4.5 implies that λ(θ|ξ|)E(θ|ξ|, s, ξ) is also uniformly bounded for |ξ| ≤ N .
Therefore for small frequencies it follows from (4.72) that

‖E(t, s, ·)ϕshyp(t, ·)v̂‖L2

=
1

λ(t)
‖M−1N1(t, ·)E0(t, θ|·|, ·)Q1(t, θ|·|, ·)N1(θ|·|, ·)−1Mλ(θ|·|)E(θ|·|, s, ·)ϕshyp(t, ·)v̂‖L2

.
1

λ(t)
‖v̂‖L2 .

Applying the formula of Parseval-Plancharel brings∥∥F−1
(
E(t, s, ξ)ϕshyp(t, ξ)v̂(ξ)

)
(t, ·)

∥∥
L2 .

1

λ(t)
‖v‖L2 ,

which is a better decay in comparison with the statement of the theorem.

Corollary 4.1. Assume Hypothesis 4.3 with ` = 1, Hypothesis 4.4 with σ = 1 and
b0(b0 − 2) ≤ 4m0. Then the L2 − L2 estimate

‖(1 + t)−1u(t, ·)‖L2 + ‖∇u(t, ·)‖L2 + ‖ut(t, ·)‖L2 .
1

λ(t)

(
‖u0‖H1 + ‖u1‖L2

)
(4.74)

holds true for any solution u of (4.26) to initial data u0 ∈ H1(Rn) and u1 ∈ L2(Rn).

Proof. The proof is divided into two steps.

Considerations in the pseudo-differential zone:

The micro-energy in the pseudo-differential zone becomes

U(t, ξ) =
( 1

1 + t
û(t, ξ), ût(t, ξ)

)
.

From U(t, ξ) = E(t, 0, ξ)U(0, ξ) it follows

1

1 + t
û(t, ξ)ϕpd(t, ξ) = E11(t, 0, ξ)ϕpd(t, ξ)û0 + E12(t, 0, ξ)ϕpd(t, ξ)û1,

ût(t, ξ)ϕpd(t, ξ) = E21(t, 0, ξ)ϕpd(t, ξ)û0 + E22(t, 0, ξ)ϕpd(t, ξ)û1,



4.2 Non-effective dissipation versus non-effective potential 103

where Eij(t, 0, ξ), i, j = 1, 2, are the entries of the matrix E(t, 0, ξ). Therefore, Theorem
4.5 and the definition of the pseudo-differential zone imply∥∥F−1

(
(1 + t)−1û(t, ξ)ϕpd(t, ξ)

)
(t, ·)

∥∥
L2 .

1

λ(t)

(
‖u0‖L2 + ‖u1‖L2

)
,∥∥F−1

(
|ξ|û(t, ξ)ϕpd(t, ξ)

)
(t, ·)

∥∥
L2 .

1

λ(t)

(
‖u0‖L2 + ‖u1‖L2

)
,∥∥F−1

(
ût(t, ξ)ϕpd(t, ξ)

)
(t, ·)

∥∥
L2 .

1

λ(t)

(
‖u0‖L2 + ‖u1‖L2

)
.

Considerations in the hyperbolic zone:

The micro-energy in the hyperbolic zone becomes

U(t, ξ) =
(
|ξ|û(t, ξ), ût(t, ξ)

)
.

We have for large frequencies

(1 + t)−1û(t, ξ)ϕ`hyp(ξ) = (1 + t)−1E11(t, 0, ξ)ϕ`hyp(ξ)û0

+
(
(1 + t)|ξ|

)−1E12(t, 0, ξ)ϕ`hyp(ξ)û1,

|ξ|û(t, ξ)ϕ`hyp(ξ) = E11(t, 0, ξ)ϕ`hyp(ξ)|ξ|û0 + E12(t, 0, ξ)ϕ`hyp(ξ)û1,

ût(t, ξ)ϕ
`
hyp(ξ) = E21(t, 0, ξ)ϕ`hyp(ξ)|ξ|û0 + E22(t, 0, ξ)ϕ`hyp(ξ)û1.

Therefore, Theorem 4.5 yields with
(
(1 + t)|ξ|

)−1
. 1∥∥F−1

(
(1 + t)−1û(t, ξ)ϕ`hyp(ξ)

)
(t, ·)

∥∥
L2 .

1

λ(t)

(
‖u0‖L2 + ‖u1‖L2

)
,∥∥F−1

(
|ξ|û(t, ξ)ϕ`hyp(ξ)

)
(t, ·)

∥∥
L2 .

1

λ(t)

(
‖u0‖H1 + ‖u1‖L2

)
,∥∥F−1

(
ût(t, ξ)ϕ

`
hyp(ξ)

)
(t, ·)

∥∥
L2 .

1

λ(t)

(
‖u0‖H1 + ‖u1‖L2

)
.

For small frequencies the approach is analogous. We have that

(1 + t)−1û(t, ξ)ϕshyp(t, ξ) = (1 + t)−1E11(t, 0, ξ)ϕshyp(t, ξ)û0

+
(
(1 + t)|ξ|

)−1E12(t, 0, ξ)ϕshyp(t, ξ)û1,

|ξ|û(t, ξ)ϕshyp(t, ξ) = E11(t, 0, ξ)ϕshyp(t, ξ)|ξ|û0 + E12(t, 0, ξ)ϕshyp(t, ξ)û1,

ût(t, ξ)ϕ
s
hyp(t, ξ) = E21(t, 0, ξ)ϕshyp(t, ξ)|ξ|û0 + E22(t, 0, ξ)ϕshyp(t, ξ)û1.

Consequently, we may conclude∥∥F−1
(
(1 + t)−1û(t, ξ)ϕshyp(t, ξ)

)
(t, ·)

∥∥
L2 .

1

λ(t)

(
‖u0‖L2 + ‖u1‖L2

)
,∥∥F−1

(
|ξ|û(t, ξ)ϕshyp(t, ξ)

)
(t, ·)

∥∥
L2 .

1

λ(t)

(
‖u0‖H1 + ‖u1‖L2

)
,∥∥F−1

(
ût(t, ξ)ϕ

s
hyp(t, ξ)

)
(t, ·)

∥∥
L2 .

1

λ(t)

(
‖u0‖H1 + ‖u1‖L2

)
.

This completes the proof.
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If we assume Hypothesis 4.4 with σ > 1 we have to restrict the admissible values
of m0 further. The proof goes in analogy to the above one replacing Theorem 4.3 by
Theorem 4.4 for the treatment in the pseudo-differential zone.

Theorem 4.6. Assume Hypothesis 4.3 with ` = 1, Hypothesis 4.4 with σ ∈ (1, 2] and
b0(b0 − 2) ≤ 4m0 < (b0 − 1)2. Then the L2 − L2 estimate

‖E(t, s,D)‖L2→L2 .
λ(s)

λ(t)

holds true.

Then we may conclude the following energy estimate:

Corollary 4.2. Assume Hypothesis 4.3 with ` = 1, Hypothesis 4.4 with σ ∈ (1, 2] and
b0(b0 − 2) ≤ 4m0 < (b0 − 1)2. Then the L2 − L2 estimate

‖(1 + t)−1u(t, ·)‖L2 + ‖∇u(t, ·)‖L2 + ‖ut(t, ·)‖L2 .
1

λ(t)

(
‖u0‖H1 + ‖u1‖L2

)
(4.75)

holds true for any solution u of (4.26) to initial data u0 ∈ H1(Rn) and u1 ∈ L2(Rn).

Example 4.3. Let us consider for b0,m0 ∈ R

b(t) =
b0

1 + t
+
h1(t)

1 + t
, (4.76)

m(t) =
m0

(1 + t)2
+

h2(t)

(1 + t)2
(4.77)

with uniformly bounded hj(t), j = 1, 2, and uniformly bounded t∂thj(t) and with the
integrability condition ∫ ∞

0

|hj(t)|
dt

1 + t
<∞, j = 1, 2. (4.78)

Then Hypothesis 4.3 is satisfied with ` = 1 and Hypothesis 4.4 is satisfied with σ = 1.
If we further suppose that b0(b0 − 2) ≤ 4m0, then the energy estimate

‖
(
(1 + t)−1u(t, ·), ut(t, ·),∇xu(t, ·)

)
‖L2 . (1 + t)−

b0
2 (‖u0‖H1 + ‖u1‖L2) (4.79)

holds true. The decay is independent of m0 and related to the decay for non-effective
wave damped models treated in [59].

Example 4.4. We consider the same situation as in the previous example, but replace
(4.78) by ∫ ∞

0

|hj(t)|σ
dt

1 + t
<∞, j = 1, 2, (4.80)

then under the more restrictive condition b0(b0 − 2) ≤ 4m0 < (b0 − 1)2 on the numbers
m0 and b0 the same estimate (4.79) holds true. To be more specific, this allows to treat

b(t) =
b0

1 + t
+

b1

(e + t)(ln(e + t))γ
, (4.81)

m(t) =
m0

(1 + t)2
+

m1

(e + t)2(ln(e + t))γ
(4.82)

with arbitrary b1, m1 and γ ∈ (1/2, 1]. It satisfies (4.80) with σ ∈ (γ−1, 2].

Remark 4.7. The Examples 4.3 and 4.4 show us that small mass terms have no in-
fluence on the decay estimates for a suitable energy of solutions to Cauchy problem
(4.26).
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4.2.3 Modified scattering result

Now we discuss the sharpness of energy estimates again and formulate a more
precise statement. In fact, there is a relation between solutions to the Cauchy problem
with mass and dissipation

utt −∆u+ b(t)ut +m(t)u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (4.83)

under our hypotheses and solutions of the free wave equation

vtt −∆v = 0, v(0, x) = v0(x), vt(0, x) = v1(x), (4.84)

with appropriate related data. We follow some ideas of Wirth [61] and give (in
combination with the energy conservation for free waves) a very precise description
of sharpness of the above energy estimates.

Theorem 4.7. Assume Hypotheses 4.3 with ` = 1 and 4.4 with

σ = 1 and b0(b0 − 2) ≤ 4m0 (4.85)

or with
σ ∈ (1, 2] and b0(b0 − 2) ≤ 4m0 < (b0 − 1)2. (4.86)

Then there exists a bounded operator

W+ : H1(Rn)× L2(Rn)→ H1(Rn)× L2(Rn) (4.87)

such that for Cauchy data (u0, u1) ∈ H1(Rn)× L2(Rn) of (4.83) and associated data
(v0, v1) = W+(u0, u1) ∈ H1(Rn) × L2(Rn) to (4.84) the corresponding solutions u =
u(t, x) and v = v(t, x) satisfy∥∥λ(t)

(
ut(t, ·),∇xu(t, ·)

)
−
(
vt(t, ·),∇xv(t, ·)

)∥∥
L2 → 0,

as t→∞.

Proof. First let us define for any ε > 0 the following closed subset of L2 × L2:

Fε :=
{
U0 ∈ L2 × L2 : Û0(ξ) = 0 for any |ξ| ≤ ε

}
.

We remember that L = ∪ε>0Fε is a dense subset of L2 × L2. If we introduce E0 =
E0(t, s, ξ) as in (4.66) and if v solves the free wave equation (4.84), then after defining

V (t, ξ) = (|ξ|v̂, Dtv̂)T we can write V (t, ξ) =
˜̃E0(t, s, ξ)V (s, ξ), where

˜̃E0(t, s, ξ) = M−1E0(t, s, ξ)M.

The proof is based on an explicit representation of the modified Moeller wave opera-
tor W+. Our goal is to prove that the limit

W+(ξ) = lim
t→∞

λ(t)
˜̃E0(t, 0, ξ)−1E(t, 0, ξ) (4.88)

exists uniformly in |ξ| > ε for all ε > 0. After proving this property we are able to
relate the Cauchy data by

W+(ξ)U(0, ξ) = V (0, ξ).
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From Lemma 4.5 we know that the limit

Q1(∞, θ|ξ|, ξ) = lim
t→∞
Q1(t, θ|ξ|, ξ)

exists uniformly when |ξ| ≥ ε for any ε > 0. Hence, if we restrict ˜̃E0(t, 0, ξ)−1E(t, 0, ξ)
on L we obtain

lim
t→∞

λ(t)
˜̃E0(t, 0, ξ)−1E(t, 0, ξ)

= lim
t→∞

λ(t)
˜̃E0(t, 0, ξ)−1E(t, θ|ξ|, ξ)E(θ|ξ|, 0, ξ)

= lim
t→∞

λ(θ|ξ|)
˜̃E0(t, 0, ξ)−1M−1N1(t, ξ)E0(t, θ|ξ|, ξ)Q1(t, θ|ξ|, ξ)N1(θ|ξ|, ξ)

−1ME(θ|ξ|, 0, ξ)

= lim
t→∞

λ(θ|ξ|)M
−1E0(0, t, ξ)N1(t, ξ)E0(t, θ|ξ|, ξ)Q1(t, θ|ξ|, ξ)N1(θ|ξ|, ξ)

−1ME(θ|ξ|, 0, ξ)

= λ(θ|ξ|)M
−1E0(0, θ|ξ|, ξ)Q1(∞, θ|ξ|, ξ)N1(θ|ξ|, ξ)

−1ME(θ|ξ|, 0, ξ).

Here we used the fact that

E0(0, t, ξ)N1(t, ξ)E0(t, θ|ξ|, ξ) = E0(0, θ|ξ|, ξ) + E0(0, t, ξ)(N1(t, ξ)− I)E0(t, θ|ξ|, ξ)

and N1(t, ξ)→ I uniformly for |ξ| ≥ ε. In the pseudo-differential zone the boundness
of the fundamental solution of the free wave equation and the estimates in Theorem
4.3 and Theorem 4.4 guarantee that the limit (4.88) goes to zero.

According to the estimates for the energy from Theorem 4.5 and Theorem 4.6
we conclude that

λ(t)
˜̃E0(t, 0, ξ)−1E(t, 0, ξ)

is uniformly bounded on L. Therefore applying Banach-Steinhaus Theorem 7.3 we
conclude that

W+(D) = s-lim
t→∞

λ(t)
˜̃E0(t, 0, D)−1E(t, 0, D)

exists as strong limit in L2(Rn)× L2(Rn). Finally, we study the difference

‖λ(t)U(t, ·)− V (t, ·)‖L2 = ‖λ(t)E(t, 0, ·)U(0, ·)− ˜̃E0(t, 0, ·)V (0, ·)‖L2

=

∥∥∥∥(λ(t)
˜̃E0(t, 0, ·)−1E(t, 0, ·)−W+(·)

)
U(0, ·)

∥∥∥∥
L2

.

Under our assumption (u0, u1) ∈ H1×L2 and by definition of W+(ξ) we may conclude
that

‖λ(t)U(t, ·)− V (t, ·)‖L2 → 0

as t tends to infinity. The proof is completed.

Remark 4.8. The modified scattering result involves only the hyperbolic energy terms
∇u(t, ·) and ut(t, ·). If we are interested in results containing also the solution u(t, ·)
itself, we can not hope for the same kind of (non-weighted) result. Note for this, that
the estimate ‖v(t, ·)‖L2 ≤ t(‖v0‖L2 + ‖v1‖H−1) is in general sharp for solutions to the
Cauchy problem for the free wave equation, nevertheless there are no initial data with
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this precise rate. We only have ‖v(t, ·)‖L2 = o(t) as t → ∞ for each (fixed) solution.
Similarly one obtains for solutions to (4.83) to initial data from L2(Rn)×H−1(Rn)

lim
t→∞

λ(t)

1 + t
‖u(t, ·)‖L2 = 0. (4.89)

This rate is sharp for general data and can only by improved by further assumptions
on initial data. We omit the proof.

4.2.4 Lp − Lq decay estimates on the conjugate line

Finally, we want to give Strichartz estimates for solutions. These are Lp–Lq

estimates for conjugate dual indices. The estimate is again independent of m0, but
the range of admissible b0 depends on m0. For this statement we need to use the
representations of Subsection 4.2.1 with k > 1 and, therefore, we also need higher
regularity of the coefficient functions compared to the energy estimates given before.

Theorem 4.8. Assume Hypothesis 4.3 with ` = n+ 1, Hypothesis 4.4 with

σ = 1 and b0(b0 − 2) ≤ 4m0 (4.90)

or with
σ ∈ (1, 2] and b0(b0 − 2) ≤ 4m0 < (b0 − 1)2. (4.91)

Then the Lp − Lq estimate

‖E(t, 0, D)‖Lp→Lq ≤ Cp,q
1

λ(t)
(1 + t)−

n−1
2 ( 1

p
− 1
q )

holds true for p ∈ (1, 2], p and q from the conjugate line and with regularity r =
n
(

1
p
− 1

q

)
.

Proof. The proof is divided into two steps.

Considerations in the pseudo-differential zone

In the pseudo-differential zone we have the estimate

‖E(t, 0, ξ)ϕpd(t, ξ)‖ .
1

λ(t)
.

If v = v(x) ∈ Lp(Rn), then∥∥F−1 (E(t, 0, ξ)ϕpd(t, ξ)v̂(ξ)) (t, ·)
∥∥
Lq
≤ ‖E(t, 0, ·)ϕpd(t, ·)v̂‖Lp
≤ ‖E(t, 0, ·)‖L∞‖ϕpd(t, ·)‖

L
pq
q−p
‖v̂‖Lq

.
1

λ(t)
(1 + t)−n(

1
p
− 1
q )‖v‖Lp .

This is a better decay estimate than the desired one of the theorem.
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Considerations in the hyperbolic zone

Let us consider v = v(x) ∈ Lp(Rn). For large frequencies we use the represen-
tation of (4.71) to split the propagator into several parts and estimate each of them
separately. For this we choose k such that

` = 2(k − 1) and k − 1 ≥
⌈n

2

⌉
+ 1. (4.92)

Then,

E(t, 0, D)ϕ`hyp(D) =
1

λ(t)
M−1Nk(t,D)︸ ︷︷ ︸

Lq→Lq

E0(t, 0, D)︸ ︷︷ ︸
Lp,r→Lq

Qk(t, 0, D)︸ ︷︷ ︸
Lp,r→Lp,r

Nk(0, D)−1M︸ ︷︷ ︸
Lp,r→Lp,r

ϕ`hyp(D)

with the under braced mapping properties. Indeed,

• we know thatM−1Nk(t, ξ) ∈ S`−k+1,∞
N {0, 0}, thenMNk(t, ξ) ∈ Ṡ0

`−k+1,Marcinkiewicz’s
Theorem 7.1 implies that MNk(t, ξ) ∈ M q

q uniformly in t, here the condition
`− k + 1 ≥

⌈
n
2

⌉
+ 1 is essential;

• Theorem 3.2 implies E0(t, 0, D) : Lp,r → Lq with a decay rate (1 + t)−
n−1
2

(
1
p
− 1
q

)
;

• Proposition 4.2 implies that Qk(t, 0, D) ∈ Ṡ0
k−1, then Marcinkiewicz’s Theorem

7.1 brings Qk(t, 0, ξ) ∈Mp,r
p,r uniformly in t, here the condition k− 1 ≥

⌈
n
2

⌉
+ 1 is

essential;

• Finally, Nk(0, ξ) ∈ Ṡ0
k−1 by construction and ϕ`hyp ∈ Ṡ0.

Therefore, it follows that∥∥F−1
(
E(t, 0, ξ)ϕ`hyp(ξ)v̂(ξ))(t, ·)

)∥∥
Lq
.

1

λ(t)
(1 + t)−

n−1
2

(
1
p
− 1
q

)
‖v‖Lp,r .

For small frequencies we conclude from (4.72) the representation of fundamental
solution

E(t, 0, D)ϕshyp(t,D) =
1

λ(t)
M−1Nk(t,D)︸ ︷︷ ︸

Lq→Lq

E0(t, θ|D|, D)︸ ︷︷ ︸
Lp,r→Lq

Qk(t, θ|D|, D)︸ ︷︷ ︸
Lp,r→Lp,r

Nk(θ|D|, D)−1M︸ ︷︷ ︸
Lp,r→Lp,r

×λ(θ|D|)E(θ|D|, 0, D)︸ ︷︷ ︸
Lp,r→Lp,r

ϕshyp(t,D)

with the under braced mapping properties. In fact,

• we know thatM−1Nk(t, ξ) ∈ S`−k+1,∞
N {0, 0}, thenMNk(t, ξ) ∈ Ṡ0

`−k+1,Marcinkiewicz’s
Theorem 7.1 implies that MNk(t, ξ) ∈ M q

q uniformly in t, here the condition
`− k + 1 ≥

⌈
n
2

⌉
+ 1 is essential;

• Theorem 3.2 and the property E0(t, θ|ξ|, ξ) = E0(t, 0, ξ)E0(0, θ|ξ|, ξ) with E0(0, θ|ξ|, ξ) ∈
Ṡ0
∞ imply that E0(t, θ|D|, D) : Lp,r → Lq with decay rate (1 + t)−

n−1
2 ( 1

p
− 1
q );

• Proposition 4.2 implies that Qk(t, θ|ξ|, ξ) ∈ Ṡ0
k−1, then Marcinkiewicz’s Theorem

7.1 gives Qk(t, θ|ξ|, ξ) ∈ Mp,r
p,r uniformly in t, here the condition k − 1 ≥

⌈
n
2

⌉
+ 1

is essential;
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• By Lemma 4.4 and the properties of θ|ξ| we know that Nk(θ|ξ|, ξ) ∈ Ṡ0;

• Remark 4.5 implies λ(θ|ξ|)E(θ|ξ|, 0, ξ) ∈ Ṡ0
`+1.

Hence, it follows that∥∥F−1
(
E(t, 0, ξ)ϕshyp(t, ξ)v̂(ξ)

)
(t, ·)

)∥∥
Lq
.

1

λ(t)
(1 + t)−

n−1
2

(
1
p
− 1
q

)
‖v‖Lp,r ,

for small frequencies in the hyperbolic zone.

Taking account of Theorem 4.8 allows to conclude the following Strichartz’ esti-
mates for a suitable energy of solutions to damped Klein-Gordon models (4.26).

Corollary 4.3. Assume Hypothesis 4.3 with ` = n+ 1, Hypothesis 4.4 with

σ = 1 and b0(b0 − 2) ≤ 4m0 (4.93)

or with
σ ∈ (1, 2] and b0(b0 − 2) ≤ 4m0 < (b0 − 1)2. (4.94)

Then the Lp − Lq estimate∥∥((1 + t)−1u(t, ·), ut(t, ·),∇xu(t, ·)
)∥∥

Lq
.

1

λ(t)
(1 + t)−

n−1
2

(
1
p
− 1
q

)(
‖u0‖Lp,r+1 + ‖u1‖Lp,r

)
hold true for p ∈ (1, 2], p and q from the conjugate line and with regularity r = n

(
1
p
− 1
q

)
.

Proof. Analogous to the proof of Corollary 4.1.

We will conclude this chapter with significant concluding remarks.

Remark 4.9. The estimates of the solution u(t, ·) itself following from Theorems 4.5,
4.6 and 4.8 are not optimal in the present form. Indeed in Chapters 2 and 3 we
established better decay estimates for the solution itself in case where b ≡ 0 . This is
due to the attempted σ−dependent formulation of the results. Under Hypothesis 4.4
with σ = 1 it is possible to improve the estimate for the solution in the following way

‖u(t, ·)‖L2 . (1 + t)1+Reµ+
(
‖u0‖H1 + ‖u1‖L2

)
.

We will give the essential argument behind this improvement. The improvement is
based on (4.29). Within Zpd(N) the construction gave the estimate∣∣∣ 1

1 + t
û(t, ξ)

∣∣∣ . (1 + t)Reµ+
(
û0(t, ξ) + û1(t, ξ)

)
.

If we consider the hyperbolic zone Zhyp(N), we obtain in analogy

||ξ|û(t, ξ)| =

 (1 + t)−
b0
2 (|ξ|û0(t, ξ) + û1(t, ξ)) , |ξ| > N,(

1+t
1+θ|ξ|

)− b0
2

(1 + θ|ξ|)
Reµ+ (û0(t, ξ) + û1(t, ξ)) , |ξ| ≤ N,

and together with |ξ|(1 + θ|ξ|) = N , the positivity of δ = 1 + b0
2

+ Reµ+ > 0 and
the monotonicity of tδ the desired estimate follows. For σ > 1 the latter needs not to
be valid any more and improvements depend on the behavior of the quotient of the
right-hand side of (4.45) and λ(t).
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Remark 4.10. The restriction of Assumption (A2) to the range σ ∈ (1, 2] is due to
just one application of the Hartmann-Wintner transform of Theorem 7.6. Applying
finitely many such transformations in an iterative way allows to extend Hypothesis 4.4
to arbitrary σ > 1. The price to pay for this is a series of correction terms in (4.45)
instead of just one. The estimates of Theorems 4.6, 4.7 and 4.8 still depend on the
hyperbolic zone and (as long as the right-hand side of (4.45) with s = 0 is still majored
by λ(t)−1) are valid unchanged.

Our last remark will give some comments on the relation of the results in this
chapter to the known treatments:

Remark 4.11. For m(t) ≡ 0 we are in the non-effective damped wave equation case,
i.e., Wirth [59]. If m0 = 0 and b0 ∈ [0, 1) ∪ (1, 2), then we are in the setting of Wirth
[59] (or [57] for the particular case b(t) = b0(1 + t)−1) and the estimates of Theorem
4.8 reduce to results from these papers.
If b0 = 0, then we can treat arbitrary m0 and obtain from Theorem 4.8 with σ = 1,
uniform bounds on the energy as well as the standard wave type Lp − Lq decay
estimates. The scale-invariant case was considered in [5] with similar observations.
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5 Wave models with structural
properties of the time-dependent
potential

In this chapter we will apply Cm theory and a stabilization condition for Klein-
Gordon equations with non-effective time-dependent potential. The idea of Cm the-
ory together with the introduction of some stabilization was at first developed by
Hirosawa to investigate the asymptotic behavior for the total energy of wave equation
with time-dependent propagation speed in the paper [27], note that without stabiliza-
tion condition the oscillations on the coefficient of speed of propagation may have
a very deteriorating influence on the energy behavior (see [10, 46]). In 2009 Hiro-
sawa/Wirth extended the result to wave equations with speed of propagations having
non-trivial shape functions in [28]. In 2008 the Cm theory and stabilization condition
was applied to wave equations with non-effective time-dependent dissipation in [29].
In 2010 Böhme/Hirosawa used Cm theory to prove generalized energy conservation
for Klein-Gordon equations with effective time-dependent potential, see [6], where
a stabilization condition is not required. In the semi-linear theory the Cm theory
and stabilization condition was applied to wave models with smooth time-dependent
propagation speeds by Hirosawa/Inooka/Pham in [26] to prove globally (in time)
existence of solutions.

5.1 Idea of stabilization

Basically what we have done in Chapter 2 was to prove both-sided or general-
ized energy estimates for Klein-Gordon equations with non-effective time-dependent
mass term. The basic hypothesis for the derivative of the time-dependent coefficient
of potential term was ∣∣∣ d

dt
m(t)2

∣∣∣ . 1

(1 + t)3
.

This assumption is a sort of "very slow oscillations". We are interested in the behavior
of the energy as t → ∞ for the coefficients bearing "very fast oscillations", in the
classification of Reissig and Yagdjian [46] and [47]. Indeed, very fast oscillations are
allowed under Cm properties and stabilization condition. Roughly speaking we are
interested in the interplay between stabilization and behavior of the derivatives.

Under Cm properties and some stabilization condition the hypothesis for the
related symbol-like estimates are thought to be weaker than the ones from Chapter
2. The stabilization allows to use weaker assumptions on derivatives by shrinking
the hyperbolic zone, details are given in Section 5.4. We pay for this by using more
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steps of diagonalization requesting in that way more regularity of the time-dependent
coefficient of potential term. The number of steps for diagonalization will be the
number m that describes the regularity of the coefficient of potential term. Performing
m steps of diagonalization we guarantee that the remainder terms are uniformly
integrable over the hyperbolic zone. The basic ideas follow from the consideration
made in Chapter 2 and in the papers about Cm theory and stabilization condition
[27], [28] and [29].

5.2 Motivation

Consider the following Cauchy problem

utt −∆u+m(t)2u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (5.1)

with (t, x) ∈ [0,∞) × Rn, m(t)2 ∈ Cm(R) and m(t)2 > 0. Like in Chapter 2 we
want to have some feeling about the behavior of solutions to (5.1). For a general
mass term m(t)2 we may transform the time-dependent potential to a time-dependent
damping and a new potential. If we introduce the change of variables given by
u(t, x) = η(t)v(t, x), then the Cauchy problem (5.1) takes the form

vtt −4v + 2
η′(t)

η(t)
vt +

(η′′(t)
η(t)

+m(t)2
)
v = 0, v(0, x) =

u0(x)

η(0)
, vt(0, x) = v1(x) (5.2)

with v1(x) =
u1(x)− η

′(0)
η(0)

u0(x)

η(0)
. Therefore if we can take η such that

η′′(t) +m(t)2η(t) = 0, (5.3)

then we may apply the results of [29]. Indeed, we shall solve the previous ordinary
differential equation with time-dependent coefficient of the non-effective potential
term (see Definition 5.1). We will give more details in the next section.

5.3 Models with structural properties

First we will prove statements for a general non-effective mass term and later
we shall consider a special structure for the time-dependent coefficient m(t)2.

Definition 5.1. (Non-effective mass) Consider the Cauchy problem (5.1). We say
that m(t)2u is non-effective if the time-dependent coefficient m(t)2 satisfies:

lim sup
t→∞

(1 + t)

∫ ∞
t

m(s)2 ds <
1

4
(5.4)

and if the derivatives satisfy the following estimates:∣∣∣ dk
dtk

m(t)2
∣∣∣ . (1 + t)−(k+2)γ,

for some 0 < γ ≤ 1, k = 1, 2 in the case γ = 1 and k = 1, 2, · · · ,m otherwise.
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A solution of equation (5.3) can be represented formally by

η = η(t) = exp

(
∞∑
j=1

∫ t

0

∫ ∞
τ

qj(s)dsdτ

)
, (5.5)

where

qk = qk(t) =


m(t)2 if k = 1

k−1∑
j=1

(∫ ∞
t

qj(s)ds
)(∫ ∞

t

qk−j(s)ds
) if k = 2, 3, 4, · · · . (5.6)

Note that qk ≥ 0 for k = 1, 2, · · · . If the coefficient m(t)2 satisfies the non-effective
condition, then the series converges. Actually we have the following proposition:

Proposition 5.1. We define the sequence {ηN(t)}∞N=1 by

ηN(t) := exp
( N∑
j=1

∫ t

0

∫ ∞
τ

qj(s) ds dτ
)
. (5.7)

If m(t)2u is non-effective, then {ηN(t)}∞N=1 is a uniformly converging sequence on
[0,∞) and limN→∞ ηN(t) =: η(t) ∈ Cm+2([0,∞)). Moreover, we have

η′′(t)

η(t)
+m(t)2 = 0. (5.8)

Proof. By the definition of ηN(t) we can verify that η solves the equation (5.8) if
{ηN(t)}∞N=1 converges uniformly. Indeed,

η′′(t)

η(t)
+m(t)2 =

(
∞∑
j=1

∫ ∞
t

qj(s)ds

)2

−
∞∑
j=2

qj(t).

The Cauchy product formula

( ∞∑
n=0

an

)( ∞∑
m=0

bm

)
=
∞∑
j=0

cj, where cj =

j∑
k=0

akbj−k

implies that ( ∞∑
j=1

∫ ∞
t

qj(s)ds
)2

=
∞∑
j=2

qj(t).

Therefore,
η′′(t)

η(t)
+m(t)2 = 0.

We shall investigate the uniform convergence of {ηN(t)}N . Let us denote the
k-th Catalan number by γk = (2k)!

(k+1)!k!
. Then we have

γ0 = 1, γk+1 =
k∑
j=0

γjγk−j, (5.9)
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and

lim
k→∞

µ̃k+1γk
µ̃kγk−1

= 4µ̃ (5.10)

for any µ̃ > 0. It follows that the series
∑∞

k=0 µ̃
kγk−1 converges since µ̃ < 1/4. By (5.4)

there exists a constant µ̃ ∈ (0, 1/4) such that

0 <

∫ ∞
t

q1(s) ds =

∫ ∞
t

m(s)2 ds ≤ µ̃(1 + t)−1 = µ̃γ0(1 + t)−1 (5.11)

for t � 1. From now on we suppose that t is large enough, so (5.11) is valid.
Therefore, we have

q2(t) =
(∫ ∞

t

q1(s) ds
)2

≤ µ̃2γ2
0(1 + t)−2 = µ̃2γ1(1 + t)−2.

Here we assume that the following estimates are established:

qk(t) ≤ µ̃kγk−1(1 + t)−2 (5.12)

for k = 2, · · · , j. It follows that∫ ∞
t

qk(s) ds ≤ µ̃kγk−1(1 + t)−1. (5.13)

Then we have

qj+1(t) =

j∑
k=1

(∫ ∞
t

qk(s) ds
)(∫ ∞

t

qj−k+1(s) ds
)

≤
j∑

k=1

(
µ̃kγk−1(1 + t)−1

) (
µ̃j−k+1γj−k(1 + t)−1

)
= µ̃j+1

j∑
k=1

γk−1γj−k(1 + t)−2

=µ̃j+1γj(1 + t)−2.

Thus (5.12) and (5.13) are valid for any k ≥ 2. Consequently, the sequence {
∑N

j=1 qj(t)}∞N=1

converges uniformly in C0([0,∞)), and thus

lim
N→∞

N∑
j=1

∫ t

0

∫ ∞
τ

qj(s) dτ ds ∈ C2([0,∞)). (5.14)

This implies
η(t) ∈ C2([0,∞)). (5.15)

Recalling that the estimate (5.12) is valid, thus we have

qk(t) ≤ µ̃kγk−1(1 + t)−2β, (5.16)

for 0 < β ≤ 1. Let us assume that for ` = 1, · · · , j there exist positive constants Cl
such that the following estimates are established:∣∣∣q(`)

k (t)
∣∣∣ ≤ C`µ̃

kγk−1(1 + t)−(`+2)β. (5.17)
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Then, noting the equalities

q
(j+1)
k (t) =

k−1∑
r=1

j+1∑
h=0

(
j + 1

h

)(
dh

dth

∫ ∞
t

qr(s) ds

)(
dj−h+1

dtj−h+1

∫ ∞
t

qk−r(s) ds

)

=−
k−1∑
r=1

(∫ ∞
t

qr(s) ds

)
q

(j)
k−r(t)−

k−1∑
r=1

q(j)
r (t)

(∫ ∞
t

qk−r(s) ds

)

+
k−1∑
r=1

j∑
h=1

(
j + 1

h

)
q(h−1)
r (t)q

(j−h)
k−r (t),

the estimates (5.12) and (5.13), we have∣∣∣q(j+1)
k (t)

∣∣∣ ≤ k−1∑
r=1

(
µ̃rγr−1(1 + t)−1

) (
Cjµ̃

k−rγk−r−1(1 + t)−(j+2)β
)

+
k−1∑
r=1

(
Cjµ̃

rγr−1(1 + t)−(j+2)β
) (
µ̃k−rγk−r−1(1 + t)−1

)
+

k−1∑
r=1

j−1∑
h=1

(
j + 1

h

)(
Ch−1µ̃

rγr−1(1 + t)−(h+1)β
) (
Cj−hµ̃

k−rγk−r−1(1 + t)−(j−h+2)β
)

=2Cjµ̃
k

k−1∑
r=1

γr−1γk−r−1(1 + t)−1−(j+2)β +

j−1∑
h=1

(
j + 1

h

)
Ch−1Cj−hµ̃

k

×
k−1∑
r=1

γr−1γk−r−1(1 + t)−(j+3)β

=µ̃kγk−1

(
2Cj(1 + t)−1+β +

j−1∑
h=1

(
j + 1

h

)
Ch−1Cj−h

)
(1 + t)−(j+3)β

≤Cj+1µ̃
kγk−1(1 + t)−((j+1)+2)β,

where Cj+1 = 2Cj +
∑j−1

h=1

(
j+1
h

)
Ch−1Cj−h. Consequently, (5.17) is valid for any ` =

0, · · · ,m. Moreover, we may conclude by (5.5) that η(t) ∈ Cm+2([0,∞)).

Now we shall investigate the Cauchy problem

vtt −∆v + 2
η′(t)

η(t)
vt = 0

with the time-dependent coefficient 2η
′(t)
η(t)

in the dissipative term. This coefficient sat-
isfies the following estimates:

Lemma 5.1. Assume that m(t)2 satisfies the non-effective condition. Let us define
b1(t) by

b1(t) :=
η′(t)

η(t)
=
∞∑
j=1

∫ ∞
t

qj(s) ds. (5.18)

Then we have the following estimates∣∣∣b(k)
1 (t)

∣∣∣ . {(1 + t)−1, k = 0,

(1 + t)−(k+1)β, k = 1, · · · ,m.
(5.19)
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Proof. The inequalities (5.13) and (5.17) imply this lemma. In fact, for k = 0 we have

|b1(t)| =
η′(t)

η(t)
=
∞∑
j=1

∫ ∞
t

qj(s)ds

≤
∞∑
j=1

µ̃jγj−1(1 + t)−1 ≤ C(1 + t)−1

once that µ̃ < 1
4
. For k = 1, · · · ,m we have

|b(k)
1 (t)| =

∣∣∣ ∞∑
j=1

dk

dtk

∫ ∞
t

qj(t)
∣∣∣

=
∞∑
j=1

q
(k−1)
j (t) .

∞∑
j=1

µ̃jγj−1(1 + t)−(k+1)β ≤ C(1 + t)−(k+1)β.

So, the desired inequalities (5.19) are proved.

If the potential term is non-effective, then 2η
′(t)
η(t)

ut is a non-effective dissipation,
this means that

lim sup
t→∞

2(1 + t)
η′(t)

η(t)
< 1.

Indeed we have the following result:

Proposition 5.2. Assume that m(t)2u is a non-effective potential. Then

lim sup
t→∞

2(1 + t)
η′(t)

η(t)
< 1.

Proof. If we consider the k−th Catalan number γk, then recalling (5.13) there exists
a constant µ̃ < 1

4
such that

(1 + t)

∫ ∞
t

qk(s)ds ≤ µ̃kγk−1

for k = 1, 2, · · · . Therefore

2(1 + t)
η′(t)

η(t)
= 2(1 + t)

∞∑
j=1

∫ ∞
t

qj(s)ds ≤ 2
∞∑
j=1

µ̃jγj−1. (5.20)

Let us denote σ =
∑∞

j=1 µ̃
jγj−1. On the one hand the Cauchy product formula implies

that

σ2 =

(
∞∑
j=1

µ̃jγj−1

)2

=
∞∑
j=2

µ̃jγj−1 = σ − µ̃,

therefore

σ± =
1

2
± 1

2

√
1− 4µ̃.
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On the other hand µ̃ < 1
4
. Thus

σ ≤
∞∑
j=1

4−jγj−1 =
1

2
.

We can conclude that σ = σ− <
1
2
. From (5.20) follows that

lim sup
t→∞

2(1 + t)
η′(t)

η(t)
≤ 2σ < 1,

what we wanted to prove.

From now on we will consider a special structure of the coefficient m(t)2, namely,

m(t)2 =
µ2

(1 + t)2g(t)2
+ δ(t), µ2 6= 0, (5.21)

where µ2

(1+t)2g(t)2
is the shape function (see Chapter 2) and δ = δ(t) is a bounded

oscillating function with

|δ(t)| . (1 + t)−2. (5.22)

Remark 5.1. The goal is to deal withm(t)2 bearing very fast oscillations. The following
time-dependent potential term is a perturbation of the scale-invariant potential and it
is an example of a mass term m(t)2u that we want to deal within this chapter:

m(t)2 =
µ2 + µ2 sin(tσ)

(1 + t)2

with σ ∈ (0, 1). Note that this example shows us that the choice of µ2 in the non-
effective potential will be smaller than in the scale-invariant case [5]. Indeed, when
sin(tσ) = 1 we expect that µ2 < 1

8
.

We shall enforce hypothesis for δ such that the oscillations have no contributions
to the energy estimates. For our purposes let us take g and δ satisfying, for a non-
negative integer m, the following hypothesis:

Hypothesis 5.1. Let g = g(t) ∈ Cm([0,∞)) be a positive, non-decreasing function
with g(0) = 1 and ∣∣g(k)(t)

∣∣ ≤ ckg(t)(1 + t)−k,

where ck is a constant depending on k.

Hypothesis 5.2. For a real number β from the interval (1/(m+1), 1) and δ ∈ Cm([0,∞))
we suppose the following estimates:∣∣δ(k)(t)

∣∣ . (1 + t)−(k+2)β for k = 1, · · · ,m. (5.23)

Here the parameter β describes the asymptotic behavior of derivatives of m(t)2 for
large t.
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Hypothesis 5.3. (Stabilization condition) There exists a constant α ∈ [0, 1) such that
the perturbation function δ satisfies∣∣∣ ∫ ∞

t

δ(s)ds
∣∣∣ ≤ ν(1 + t)α−2 (5.24)

with ν ≤ µ2 and β = α + 1−α
m+1

.

Remark 5.2. The condition for the function g implies the following estimates for the
derivatives of the shape function:∣∣∣∣ dkdtk

(
µ2

(1 + t)2g(t)2

)∣∣∣∣ . (1 + t)−(k+2) . (1 + t)−(k+2)β for k = 1, · · · ,m. (5.25)

Therefore the derivatives of the shape function satisfy better estimates than the pertur-
bation function δ(t).

Remark 5.3. The exponent α − 2 inspires us to call Hypothesis 5.3 stabilization con-
dition because it is a more restrictive assumption for the potential term. Indeed, for
β > 2

3
the Hypothesis 5.2 implies that∣∣∣ ∫ ∞

t

(∫ ∞
s

δ′(τ)dτ
)
ds
∣∣∣ . ∫ ∞

t

(∫ ∞
s

(1 + τ)−3βdτ
)
ds ≈ (1 + t)2−3β,

which is, in general, a worse decay than (1 + t)α−2 because the condition β = α+ 1−α
m+1

implies α− 2 < 2− 3β, since β < 1. For β ≤ 2
3
, we have from (5.22)∣∣∣ ∫ ∞

t

δ(s)ds
∣∣∣ ≤ (1 + t)−1,

which is a worse decay than (1 + t)α−2 because of α− 2 = β + β−1
m
− 2 ≤ −4

3
.

Remark 5.4. We do not suppose a sign condition for δ(t) although we require m(t)2 >
0.

Remark 5.5. The mass term m(t)2u satisfies under Hypotheses 5.1 and 5.2 the as-
sumptions we asked so far if µ2 < 1

4
. Then from now on we will use for Klein-Gordon

models with potential m(t)2u all the results we have proved for Klein-Gordon models
with a general non-effective potential term M(t)u.

5.4 Representation of solutions

We perform the partial Fourier transformation with respect to x in (??) . If we
denote by û(t, ξ) the partial Fourier transform Fx→ξ(u)(t, ξ), then we obtain

ûtt + |ξ|2û+m(t)2û = 0, û(0, ξ) = û0(ξ), ût(0, ξ) = û1(ξ). (5.26)

We divide the extended phase space [0,∞) × Rn into three zones: the pseudo-
differential zone Zpd(N), the hyperbolic zone ZH,m(N) for m = 1, 2, · · · and the
intermediate zone ZI(N). The zones Zpd(N) and ZH,m(N) are defined by

Zpd(N) = {(t, ξ) ∈ [0,∞)×Rn : (1 + t)|ξ| ≤ N},
ZH,m(N) = {(t, ξ) ∈ [0,∞)×Rn : |ξ|(1 + t)α ≥ N} .
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Here we note that α = β − 1−β
m

< 1 since m ≥ 1 and β < 1. If we consider the
zone Zhyp(N) (hyperbolic zone as defined in Chapter 2) it follows that Zhyp(N) ⊃
ZH,m(N) for m ≥ 1. The gap between the zones Zhyp(N) and ZH,m(N) we define as
intermediate zone, i.e.,

ZI(N) = Zhyp(N) \ ZH,m(N)

= {(t, ξ) ∈ [0,∞)×Rn : (1 + t)α|ξ| ≤ N ≤ (1 + t)|ξ|} .

The separating curve between the pseudo-differential zone and the intermediate zone
is given by

θ
(1)
|ξ| : (0, N ]→ [0,∞), |ξ|

(
1 + θ

(1)
|ξ|
)

= N.

We put θ(1)
0 = ∞, and θ

(1)
|ξ| = 0 for any |ξ| ≥ N . The pair (t, ξ) from the extended

phase space belongs to Zpd(N) if and only if t ≤ θ
(1)
|ξ| . The separating curve between

the intermediate zone and the hyperbolic zone ZH,m(N) is given by

θ
(2)
|ξ| : (0, N ]→ [0,∞), |ξ|

(
1 + θ

(2)
|ξ|
)α

= N.

We put θ(2)
0 = ∞, and θ

(2)
|ξ| = 0 for any |ξ| ≥ N . The pair (t, ξ) from the extended

phase space belongs to ZH,m(N) if and only if t ≥ θ
(2)
|ξ| .

|ξ|

t

0

ZH,mZI

Zpd

θ
(1)
|ξ| θ

(2)
|ξ|

N

Fig. 5.1: Sketch of the zones.

We define the micro-energy

U(t, ξ) =
(
h(t, ξ)û, ût −

η′(t)

η(t)
û
)T
, (5.27)

where
h(t, ξ) =

1

1 + t
φ1(t, ξ) + i|ξ|φ2(t, ξ).

Here φ1(t, ξ) is a characteristic function related to the pseudo-differential zone and
φ2(t, ξ) is a characteristic function related to the hyperbolic Zhyp(N). We introduce
φ2(t, ξ) = χ

( (1+t)|ξ|
N

)
with χ ∈ C∞(Rn), χ(t) = 1 for t ≤ 1

2
, χ(t) = 0 for t ≥ 2 and

χ′(t) ≤ 0 together with φ1(t, ξ) + φ2(t, ξ) = 1.
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5.4.1 Considerations in the pseudo-differential zone

In the pseudo-differential zone we estimate solutions by brute force reformulat-
ing the system related to the Cauchy problem (??) as a system of integral equations.
The ansatz is similar as in the paper [19]. In the pseudo-differential zone Zpd(N) the
micro-energy (5.27) reduces to

U =
( û

1 + t
, ût −

η′(t)

η(t)
û
)T
, U0(ξ) =

(
û0(ξ), û1(ξ)− η′(0)

η(0)
û0(ξ)

)T
, and U = η(t)Ũ .

So we have

∂tŨ(t, ξ) = A(t, ξ)Ũ :=

(
− 1

1+t
1

1+t

−(1 + t)|ξ|2 −2η
′(t)
η(t)

)
Ũ . (5.28)

Let us consider the fundamental solution E = E(t, s, ξ) to (5.28), that is, the solution
to

∂tE = A(t, ξ)E , E(s, s, ξ) = I.

Lemma 5.2. Assume Hypotheses 5.1 and 5.2. The fundamental solution E(t, 0, ξ)
satisfies the estimate

‖E(t, 0, ξ)‖ . η(t)−2,

for all (t, ξ) ∈ Zpd(N).

Proof. If we put E = (Eij)i,j=1,2, then we can write for j = 1, 2, the following system
of coupled integral equations of Volterra type:

E1j(t, 0, ξ) = (1 + t)−1
(
δ1j +

∫ t

0

E2j(τ, 0, ξ)dτ
)
, (5.29)

E2j(t, 0, ξ) = η(t)−2
(
δ2j −

∫ t

0

(1 + τ)η(τ)2|ξ|2E1j(τ, 0, ξ)dτ
)
. (5.30)

By replacing (5.30) into (5.29) and after integration by parts we get

E1j(t, 0, ξ) = (1 + t)−1
(
δ1j + δ2j

∫ t

0

η(τ)−2dτ
)
− (1 + t)−1

×
∫ t

0

(1 + τ)η(τ)2|ξ|2E1j(τ, 0, ξ)

∫ t

τ

η(s)−2dsdτ. (5.31)

From Proposition 5.2 together with Proposition 7 of [59] we have∫ t

0

η(s)−2ds ≈ t

η(t)2
, (5.32)

and t
η(t)2

is increasing for large t. Introducing

hj(t, ξ) := ‖E1j(t, 0, ξ)‖η(t)2

and by using η(t)2 ≤ 1 + t (see Proposition 5.2) for large t we conclude from (5.31)
and (5.32) that

hj(t, ξ) ≤ C + C

∫ t

0

(1 + τ)|ξ|2hj(τ, ξ)dτ.
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Applying Gronwall’s type inequality we conclude

hj(t, ξ) ≤ C exp
(
C

∫ t

0

(1 + τ)|ξ|2dτ
)
.

In Zpd(N) we have (1 + t)|ξ| ≤ C. So, from the last estimate we get

hj(t, ξ) . 1.

Therefore we get ‖E1j(t, 0, ξ)‖ . η(t)−2. From the boundedness of ‖E1j(t, 0, ξ)‖η(t)2

we can estimate ‖E2j(t, 0, ξ)‖ . η(t)−2. Summarizing we proved ‖E(t, 0, ξ)‖ . η(t)−2

for all t ∈ [0, θ|ξ|].

This lemma implies

‖U(t, ξ)‖ ≤ Cη(t)−1‖U0(ξ)‖ for all t ∈ (0, θ|ξ|]. (5.33)

5.4.2 Considerations in the hyperbolic zone

In the hyperbolic zone ZH,m(N) we follow basically the approach of [45], in par-
ticular, the diagonalization procedure. However, to cope with the stronger oscillating
behaviour of b1(t) we need in our approach more diagonalization steps and we shall
restrict the considerations to a smaller hyperbolic zone in the phase space. The basic
ideas are taken from [28] and [29].

First of all let us introduce the symbol class S`N{m1,m2} in the zone ZH,m(N).

Definition 5.2. The time-dependent amplitude function a = a(t, ξ) belongs to the
symbol class S`N{m1,m2} with restricted smoothness ` if it satisfies the symbol-like
estimates ∣∣Dk

tD
α
ξ a(t, ξ)

∣∣ ≤ CK,α|ξ|m1−|α|
( 1

1 + t

)(m2+k)β

(5.34)

for all (t, ξ) ∈ ZH,m(N), all non-negative integers k ≤ ` and all multi-indices α ∈ Nn.

We will denote by SN{m1,m2} the symbol class when ` =∞, that is, SN{m1,m2} =
S∞N {m1,m2}.

The rules of the symbolic calculus are collected in the following proposition.

Proposition 5.3. (1) S`N{m1,m2} is a vector space for all non-negative integers `.
(2) S`

′

N{m1 − k,m2 + `} ⊂ S`1N {m1,m2} for all ` ≥ k ≥ 0, `
′ ≥ `1.

(3) S`N{m1,m2} · S`
′

N{m
′

1,m
′

2} ⊂ S
˜̀
N{m1 + m

′

1,m2 + m
′

2} for all non-negative integers
` and `′ with ˜̀= min{`, `′}.
(4) Dk

tD
α
ξ S

`
N{m1,m2} ⊂ S`−kN {m1 − |α|,m2 + k} for all non-negative integers ` with

k ≤ `.
(5) S`N{−1, 2} ⊂ L∞ξ L

1
t (ZH,m) for all non-negative integers `.

In the zone ZH,m(N) the micro-energy (5.27) reduces to

U =
(
i|ξ|û, ût −

η′(t)

η(t)
û
)T
, U0(ξ) =

(
i|ξ|û(θ

(2)
|ξ| , ξ), ût(θ

(2)
|ξ| , ξ)−

η′(θ
(2)
|ξ| )

η(θ
(2)
|ξ| )

û(θ
(2)
|ξ| , ξ)

)T
,
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and U = η(t)Ũ , so that

∂tŨ =

(
0 1
1 0

)
i|ξ|Ũ +

(
0 0

0 −2η
′(t)
η(t)

)
Ũ (5.35)

for t ≥ θ
(2)
|ξ| with initial datum Ũ(θ

(2)
|ξ| , ξ) = η(θ

(2)
|ξ| )
−1U0(ξ).

Let M be the diagonalizer of the principal part (with respect to powers of |ξ|) of
(5.35) given by

M =
1√
2

(
1 −1
1 1

)
, M−1 =

1√
2

(
1 1
−1 1

)
.

If we put V (0)(t, ξ) := M−1Ũ(t, ξ), then we get

DtV
(0) =

(
D0(t, ξ) +R0(t, ξ)

)
V (0) (5.36)

with

D0(t, ξ) =

(
−|ξ|+ iη

′(t)
η(t)

0

0 |ξ|+ iη
′(t)
η(t)

)
, R0(t, ξ) = i

η′(t)

η(t)

(
0 −1
−1 0

)
.

Note that R0 ∈ SmN {0, 1} and η′(t)
η(t)
∈ Cm+1([0,∞)). Now we apply an iterative diago-

nalization procedure.

Lemma 5.3. Let us assume the Hypotheses 5.1 and 5.2. There exists a zone con-
stant N > 0 such that for any k = 0, 1, · · · ,m there exist matrices with the following
properties:

• the matrices Nk = Nk(t, ξ) ∈ Sm−kN {0, 0} are invertible and N−1
k ∈ Sm−kN {0, 0}.

Furthermore, the matrices tend to the identity as t→∞ for all fixed ξ 6= 0;

• the matrices Rk = Rk(t, ξ) ∈ Sm−kN {−k, k + 1} are antidiagonal;

• the matrices Dk = Dk(t, ξ) ∈ Sm−kN {1, 0} are diagonal and

Dk(t, ξ) = diag(τ+
k (t, ξ), τ−k (t, ξ))

with |τ+
k (t, ξ)− τ−k (t, ξ)| ≥ Ck|ξ|;

all these matrices are defined in ZH,m such that the operator identity(
Dt −Dk −Rk

)
Nk = Nk

(
Dt −Dk+1 −Rk+1

)
(5.37)

is valid for k = 0, 1, · · · ,m− 1.

Proof. The proof goes by direct construction. Let us denote the difference of the
diagonal entries by

δk(t, ξ) = τ+
k (t, ξ)− τ−k (t, ξ).
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Assume that we have given a system DtV
(k) = (Dk(t, ξ) +Rk(t, ξ))V

(k) with Dk(t, ξ) =
diag(τ+

k (t, ξ), τ−k (t, ξ)) ∈ Sm−kN {1, 0} satisfying |δk(t, ξ)| = |τ+
k (t, ξ) − τ−k (t, ξ)| ≥ Ck|ξ|

and antiagonal remainder Rk(t, ξ) ∈ Sm−kN {−k, k + 1}. Set

Nk(t, ξ) = I +

(
0 − (Rk)12

δk
(Rk)21
δk

0

)
(5.38)

such that [Dk, Nk] +Rk = 0 and, therefore,

B(k+1) = (Dt −Dk −Rk)Nk −Nk (Dt −Dk) = DtNk − [Dk, Nk]−RkNk

= DtNk −Rk (Nk − I) ∈ Sm−k−1
N {−k − 1, k + 2}.

The matrix Nk is invertible if we choose the zone constant N sufficiently large. Indeed,
we have that Nk − I ∈ Sm−kN {−k − 1, k + 1}. Therefore

‖Nk − I‖ .
(
|ξ|(1 + t)β

)−k−1
.
(
|ξ|(1 + t)β−

1−β
m

)−k−1

. N−k−1 → 0

as N →∞. Thus by defining

Dk+1(t, ξ) = Dk(t, ξ)− diag
(
Nk(t, ξ)

−1B(k+1)(t, ξ)
)
,

Rk+1(t, ξ) = diag
(
Nk(t, ξ)

−1B(k+1)(t, ξ)
)
−Nk(t, ξ)

−1B(k+1)(t, ξ)

we obtain the operator equation(
Dt −Dk −Rk

)
Nk = Nk

(
Dt −Dk+1 −Rk+1

)
with Dk+1(t, ξ) ∈ Sm−k−1

N {1, 0}, Rk+1(t, ξ) ∈ Sm−k−1
N {−k − 1, k + 2}. The estimate for

B(k+1) implies that

|τ+
k+1(t, ξ)− τ−k+1(t, ξ)| ≥ |τ+

k (t, ξ)− τ−k (t, ξ)| − |ξ|C
N
.

If we choose N large enough, then the statement is proved with Ck+1 := Ck − C
N

.

Finally, we obtain for k = m that the remainder Rm(t, ξ) ∈ S0
N{−m,m + 1} is

uniformly integrable over the hyperbolic zone,∫ ∞
θ
(2)
|ξ|

|Rm(s, ξ)| ds . (1 + θ
(2)
|ξ| )

1−(m+1)β|ξ|−m =
(

(1 + θ
(2)
|ξ| )

β− 1−β
m |ξ|

)−m
≈ 1. (5.39)

Lemma 5.4. Assume the Hypotheses 5.1 and 5.2. Then the difference of the diagonal
entries of Dk is real for all k = 0, 1, · · · ,m− 1.

Proof. Let us proceed by induction over k following the diagonalization scheme. We
will show that the above statement and the following hypothesis

(Hk) Rk has the form Rk = i

(
0 βk
βk 0

)
with complex-valued βk(t, ξ)

are valid. For k = 0 the assertion (H0) is satisfied. Suppose that (Hk) is true. The

construction gives Nk(t, ξ) = I +

(
0 − (Rk)12

δk
(Rk)21
δk

0

)
with detNk = 1 − |βk|

2

δ2k
6= 0 after
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a suitable choice of the zone constant N . Following the diagonalization scheme of
[27, 28, 29] and set dk = |βk|2

δ2k
, then

N−1
k (Dk +Rk)Nk =

1

1− dk
(
diag(τ+

k − dkτ
+
k − δkdk, τ

−
k − dkτ

−
k + δkdk) + dkRk

)
and

N−1
k (DtNk) =

1

1− dk

[(
iβk
δk
∂t
βk
δk

0

0 iβk
δk
∂t
βk
δk

)
+

(
0 −∂t βkδk

∂t
βk
δk

0

)]
such that

Re

(
βk
δk
∂t
βk
δk

)
=

1

2

(
βk
δk
∂t
βk
δk

+
βk
δk
∂t
βk
δk

)
=

1

2
∂tdk = Re

(
βk
δk
∂t
βk
δk

)
implies

τ±k+1 = τ±k ∓
1

1− dk

(
dkδk + Im

(
βk
δk
∂t
βk
δk

))
− i ∂tdk

2(dk − 1)
.

Hence δk+1 is real again and Rk+1 satisfies (Hk+1) and, therefore, both statements
are true for all k = 0, 1, · · · ,m− 1.

Now we want to construct the fundamental solution E(t, s, ξ) for the system
Dt−D0−R0. For this purpose it is sufficient to construct the fundamental solution for
the diagonalized system Dt −Dm − Rm. At first we devote to the diagonal operator
Dt −Dm(t, ξ). Its fundamental solution is given by

exp
(
i

∫ t

s

Dm(θ, ξ)dθ
)

= diag
(
ei

∫ t
s τ

+
m(θ,ξ)dθ, ei

∫ t
s τ
−
m(θ,ξ)dθ

)
.

Since δm = τ+
m − τ−m is real, it follows that Im τ+

m = Im τ−m := τm and thus the matrix

exp
(∫ t

s

Im τm(θ, ξ)dθ
)

exp
(
i

∫ t

s

Dm(θ, ξ)dθ
)

is unitary. The integrability of the remainder term Rm(t, ξ) over the hyperbolic zone
implies as in Chapter 3 that the fundamental solution of Dt −Dm −Rm is given by

exp
(
i

∫ t

s

Dm(θ, ξ)dθ
)
Qm(t, s, ξ)

with a uniformly bounded and invertible matrix Qm(t, s, ξ) that can be represented as
Peano-Baker series

Qm(t, s, ξ) = I +
∞∑
k=1

∫ t

s

R̃m(t1, s, ξ) · · · R̃m(tk, s, ξ)dtk · · · dt1,

where

R̃m(t, s, ξ) = exp
(
− i
∫ t

s

Dm(θ, ξ)dθ
)
Rm(t, ξ) exp

(
i

∫ t

s

Dm(θ, ξ)dθ
)

is an auxiliary function. We obtain the following statement:
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Lemma 5.5. Assume Hypotheses 5.1 and 5.2. The fundamental solution E(t, s, ξ) is
representable in the following form:

E(t, s, ξ) = M−1
(m−1∏
k=0

Nk(t, ξ)
−1
)

exp
(
i

∫ t

s

Dm(θ, ξ)dθ
)
Qm(t, s, ξ)

(m−1∏
k=0

Nk(s, ξ)
)
M

for all (t, ξ), (s, ξ) ∈ ZH,m(N), where

• the matrices Nk = Nk(t, ξ) and N−1
k = Nk(t, ξ)

−1 are uniformly bounded and
invertible;

• the matrices Qm = Qm(t, s, ξ) and Q−1
m = Q−1

m (t, s, ξ) are uniformly bounded and
invertible.

Proof. The representation as Peano-Baker series implies the uniform estimate

‖Qm(t, s, ξ)‖ ≤ exp
(∫ t

s

‖R̃m(θ, s, ξ)‖
)

. exp

((
1 + θ

(2)
|ξ|

)1−(m+1)β

|ξ|−m
)
. 1.

Additionally, we know that Qm(t, s, ξ) satisfies

DtQm(t, s, ξ) = R̃m(t, s, ξ)Qm(t, s, ξ), Qm(s, s, ξ) = I.

Then after applying Liouville theorem and the invariance of the trace under multipli-
cation we get

detQm(t, s, ξ) = exp
(
i

∫ t

s

trR̃m(θ, s, ξ)dθ
)

= exp
(
i

∫ t

s

trRm(θ, ξ)dθ
)

= 1

and ‖Q−1
m (t, s, ξ)‖ . 1.

The asymptotic behavior of the fundamental solution E(t, s, ξ) is given by the
following corollary:

Corollary 5.1. Assume the Hypotheses 5.1 and 5.2. Then the fundamental solution
E(t, s, ξ) satisfies

‖E(t, s, ξ)‖ . η(s)

η(t)

uniformly in (t, ξ), (s, ξ) ∈ ZH,m(N).

Proof. The statement of Lemma 5.5 implies that

‖E(t, s, ξ)‖ . exp
(
−
∫ t

s

Im τm(θ, ξ)dθ
)

for t→∞

uniformly in (t, ξ), (s, ξ) ∈ ZH,m(N). We can use our representation of τm(t, ξ) to
deduce

Im τm(t, ξ) =
η′(t)

η(t)
+

m−1∑
j=1

∂tdj
2(dj − 1)

such that

exp
(
−
∫ t

s

Imτm(θ, ξ)dθ
)

= exp
(
−
∫ t

s

η′(θ)

η(θ)
dθ
)m−1∏
j=1

(
dj(t, ξ)− 1

dj(s, ξ)− 1

)− 1
2

.
η(s)

η(t)
.

This completes the proof.
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5.4.3 Considerations in the intermediate zone

In the intermediate zone of the extended phase space we will use for the first
time the special structure of m(t)2 given in (5.21). We relate the fundamental solution
E(t, s, ξ) to the fundamental solution Esf (t, s, ξ) to the corresponding Klein-Gordon
model with non-effective time-dependent potential and without any perturbation, i.e.,
with δ ≡ 0. We remark that in Chapter 2 we did estimates for the fundamental solution
Esf (t, s, ξ).

The key idea is to rewrite η′(t)
η(t)

as a sum of two functions µ(t) and σ(t), where
µ(t) is a shape function and σ(t) is a perturbation function (see [29]). Denote

Qj(t) =

∫ ∞
t

qj(s)ds, j = 1, 2, · · · , (5.40)

where qj is defined in (5.6) and γj = (2j)!
(j+1)!j!

are the Catalan numbers. We have that

η′(t)

η(t)
=
∞∑
j=1

Qj(t). (5.41)

Investigating Qj(t) for each j = 1, 2, · · · we arrive at the following proposition:

Lemma 5.6. If the stabilization condition of Hypothesis 5.3 is satisfied and µ2 < 2−α
12

,
then there exist a positive shape function µ = µ(t) and a perturbation function σ = σ(t)
such that

η′(t)

η(t)
= µ(t) + σ(t)

with

µ(t) . (1 + t)−1 and |σ(t)| . (1 + t)α−2 (5.42)

for t ≥ 0 large.

Proof. Let us construct the functions µ and σ step by step. For j = 1, we have

Q1(t) =

∫ ∞
t

m(s)2ds =

∫ ∞
t

µ2

(1 + s)2g(s)2
ds+

∫ ∞
t

δ(s)ds.

Denoting the shape function

µ1(t) :=

∫ ∞
t

µ2

(1 + s)2g(s)2
ds

and the perturbation

σ1(t) :=

∫ ∞
t

δ(s)ds

of Q1(t) after using properties of g and the stabilization condition we arrive at

µ1(t) ≤ 2γ1µ
2

(2− α)(1 + t)g(t)2
and |σ1(t)| ≤ µ2γ1(1 + t)α−2. (5.43)
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By definition q2 = Q1Q1. So, it follows

Q2(t) =

∫ ∞
t

(
µ1(s)2 + 2µ1(s)σ1(s) + σ1(s)2

)
ds.

Denoting the shape function

µ2(t) :=

∫ ∞
t

µ1(s)2ds

and the perturbation

σ2(t) :=

∫ ∞
t

(
2µ1(s)σ1(s) + σ1(s)2

)
ds

of Q2(t) we get

µ2(t) ≤ 4γ2µ
4

(2− α)2(1 + t)g(t)4
and |σ2(t)| ≤ 5

2− α
µ4γ2(1 + t)α−2.

Indeed, recalling α < 1 we obtain

|σ2(t)| ≤ µ4γ2

∫ ∞
t

(
4(1 + s)α−3 + (1 + s)2α−4

)
ds ≤ 5

2− α
µ4γ2(1 + t)α−2.

By the representation of q3 we have

q3(t) =
2∑

k=1

Qk(t)Qk−3(t) =
2∑

k=1

(µk(t) + σk(t))(µk−3(t) + σk−3(t)).

The shape function and the perturbation of Q3(t) will be defined by

µ3(t) :=
2∑

k=1

∫ ∞
t

µk(s)µ3−k(s)ds,

and by

σ3(t) :=
2∑

k=1

∫ ∞
t

(µk(s)σ3−k(s) + µ3−k(s)σk(s) + σk(s)σ3−k(s)) ds.

Therefore,

µ3(t) ≤ 6γ3µ
6

(2− α)3(1 + t)g(t)6
and |σ3(t)| ≤ 19

(2− α)2
µ6γ3(1 + t)α−2.

Indeed, the first inequality is trivial to conclude. The second one follows by

|σ3(t)| ≤ γ3µ
6

(
14

(2− α)3
(1 + t)α−2 +

5

(2− α)2
(1 + t)2α−3

)
≤ 19γ3µ

6

(2− α)2
(1 + t)α−2.

By the same way the shape functions µj(t) and the perturbations σj(t) will be defined
by

µj(t) :=

j−1∑
k=1

∫ ∞
t

µk(s)µj−k(s)ds,
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σj(t) :=

j−1∑
k=1

∫ ∞
t

(µk(s)σj−k(s) + µj−k(s)σk(s) + σk(s)σj−k(s)) ds.

Let us suppose that

µk(t) ≤
2kγkµ

2k

(2− α)k(1 + t)g(t)2k
and |σk(t)| ≤

3k − 2k

(2− α)k−1
µ2kγk(1 + t)α−2, (5.44)

for k = 1, 2, · · · , j. Then we my conclude for µj+1 and for σj+1 the estimates

µj+1(t) ≤
j∑

k=1

∫ ∞
t

2kγkµ
2k

(2− α)k(1 + s)g(s)2k

2j+1−kγj+1−kµ
2(j+1−k)

(2− α)j+1−k(1 + s)g(s)2(j+1−k)
ds

=
2j+1

(2− α)j+1

j∑
k=1

γkγj+1−kµ
2(j+1)

g(t)2(j+1)

∫ ∞
t

ds

(1 + s)2

=
2j+1

(2− α)j+1

γj+1µ
2(j+1)

(1 + t)g(t)2(j+1)
,

and

|σj+1(t)|

≤ µ2j+1γj+1

2k · 3j+1−k + 2j+1−k · 3k − 2 · 2j+1 +
(
3k − 2k

) (
3j+1−k − 2j+1−k)

(2− α)j−1
(1 + t)α−2

= µ2j+1γj+1
3j+1 − 2j+1

(2− α)j−1
(1 + t)α−2.

Consequently, (5.44) is valid for all j = 1, 2, 3, · · · . Therefore, we choose µ(t) and
σ(t) as follows:

µ(t) =
∞∑
j=1

µj(t) and σ(t) =
∞∑
j=1

σj(t). (5.45)

Both functions satisfy the desired estimates. Indeed,

µ(t) ≤
∞∑
j=1

2jγjµ
2j

(2− α)j
(1 + t)−1

and taking into consideration

lim
j→∞

2j+1γj+1µ
2j+1

(2− α)j+1

(2− α)j

2jγjµ2j
=

4µ2

2− α
<

1

3
< 1

it follows µ(t) . (1 + t)−1. Furthermore,

|σ(t)| ≤
∞∑
j=1

(3j − 2j)γjµ
2j

(2− α)j−1
(1 + t)α−2

and from

lim
j→∞

(3j+1 − 2j+1)γj+1µ
2(j+1)

(2− α)j
(2− α)j−1

(3j − 2j)γjµ2j
=

12µ2

(2− α)
< 1,

it follows immediately σ(t) . (1 + t)α−2. The proposition is proved.
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Remark 5.6. Let us denote η(t) = ηsf (t) when we have no perturbation in the mass
term, i.e., δ ≡ 0. We can conclude that η(t) ≈ ηsf (t). Indeed, the stabilization
condition ensures that

η(t) ≈ exp
(∫ t

0

η′(s)

η(s)
ds
)

= exp
(∫ t

0

(µ(s) + σ(s))ds
)
≈ exp

(∫ t

0

µ(s)ds
)
≈ ηsf (t).

The following proposition is important to estimate the fundamental solution in
the intermediate zone ZI(N).

Proposition 5.4. If ζ(t) ∈ C1(R) and ζ(t) is bounded, then there exists a constant
C > 0 such that ∫ t

0

| exp(ζ(s))− 1|ds ≤ C

∫ t

0

|ζ(s)|ds

for all t > 0.

Proof. From the continuity of ζ it follows∫ t

0

| exp(ζ(s))− 1|ds ≤
∫ t

0

∞∑
k=1

|ζ(s)|k

k!
ds

≤ 1

C0

∞∑
k=1

Ck
0

k!

∫ t

0

|ζ(s)|ds

≤ C

∫ t

0

|ζ(s)|ds,

where C = exp(C0)
C0

. The statement is proved.

Now we are able to describe the asymptotic behavior of the fundamental solu-
tion E(t, s, ξ). In the intermediate zone ZI(N) the micro-energy (5.27) reduces to

U =
(
i|ξ|û, ût −

η′(t)

η(t)
û
)T
, U0(ξ) =

(
i|ξ|û(θ

(1)
|ξ| , ξ), ût(θ

(1)
|ξ| , ξ)−

η′(θ
(1)
|ξ| )

η(θ
(1)
|ξ| )

û(θ
(1)
|ξ| , ξ)

)T
,

and U = η(t)Ũ , so that

DtŨ =

(
0 |ξ|
|ξ| 2i (µ(t) + σ(t))

)
Ũ = A(t, ξ)Ũ (5.46)

for θ(1)
|ξ| ≤ t ≤ θ

(2)
|ξ| . Let us consider the fundamental solution E = E(t, s, ξ) to (5.46),

i.e., the solution of

DtE(t, s, ξ) = A(t, ξ)E(t, s, ξ) and E(s, s, ξ) = I.

If δ ≡ 0, then
η′sf
ηsf

(t) = µ(t). Hence,

Asf (t, ξ) =

(
0 |ξ|
|ξ| 2iµ(t)

)
. (5.47)
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We denote by Esf = Esf (t, s, ξ) the fundamental solution to (Dt − Asf ) Ũ = 0, i.e., the
solution to

DtEsf (t, s, ξ) = Asf (t, ξ)Esf (t, s, ξ) and Esf (s, s, ξ) = I.

In ZI(N) we relate E(t, s, ξ) to Esf (t, s, ξ) and use the stabilization condition. For this
reason we solve

DtΛ(t, s, ξ) = (A(t, ξ)− Asf (t, ξ)) Λ(t, s, ξ) and Λ(s, s, ξ) = I

which gives

Λ(t, s, ξ) = diag
(

1, exp
(
−
∫ t

s

σ(τ)dτ
))
.

We make the ansatz E(t, s, ξ) = Λ(t, s, ξ)R(t, s, ξ). It follows that the matrix R(t, s, ξ)
satisfies

DtR(t, s, ξ) = Λ(s, t, ξ)Asf (t, ξ)Λ(t, s, ξ)R(t, s, ξ) and R(s, s, ξ) = I,

where the coefficient matrix Ãsf = Ãsf (t, s, ξ) has the form

Ãsf (t, s, ξ) := Λ(s, t, ξ)Asf (t, ξ)Λ(t, s, ξ)

=

 0 exp
(
−
∫ t
s
σ(τ)dτ

)
|ξ|

exp
(∫ t

s
σ(τ)dτ

)
|ξ| 2iµ(t)

 .

Note that ∣∣∣ ∫ ∞
0

σ(s)ds
∣∣∣ ≤ ∫ ∞

0

|σ(s)|ds . (1 + s)α−1

α− 1

∣∣∣∞
0
<∞,

so exp
(∫∞

0
σ(s)ds

)
= ω < ∞, where ω is a non-negative constant. Define ω̃(s) :=

ω exp
(
−
∫ s

0
σ(θ)dθ

)
, the stabilization condition implies 0 < c ≤ ω̃(s) ≤ C < ∞ with

suitable constants c and C.
Denote by Wsf = Wsf (t, s, ξ) the matrix

Wsf (t, s, ξ) =

(
0 ω̃(s)−1|ξ|

ω̃(s)|ξ| 2iµ(t)

)
.

The diagonalizer of the |ξ|−homogeneous part of Wsf is given by

M̃(s) =
1√
2

(
1 −1

ω̃(s) ω̃(s)

)
, M̃−1(s) =

1√
2

(
1 ω̃(s)−1

−1 ω̃(s)−1

)
.

So,

M̃(s)−1Wsf (t, s, ξ)M̃(s) =

(
|ξ| 0
0 −|ξ|

)
+ iµ(t)

(
1 1
1 1

)
.

This means
MM̃(s)−1Wsf (t, s, ξ)M̃(s)M−1 = Asf (t, ξ).

Then we can conclude that the solution Ẽsf (t, s, ξ) to the auxiliary problem

DtẼsf (t, s, ξ) = Wsf (t, s, ξ)Ẽsf (t, s, ξ), Ẽsf (s, s, ξ) = I,

satisfies Ẽsf (t, s, ξ) = M̃(s)M−1Esf (t, s, ξ)MM̃(s)−1.
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Corollary 5.2. Assume the Hypothesis 5.1 and 0 < µ2 < 2−α
12

. Then the fundamental
solutions Ẽsf (t, s, ξ) and Esf (t, s, ξ) satisfy

‖Ẽsf (t, s, ξ)‖, ‖Esf (t, s, ξ)‖ . 1

uniformly in (t, ξ), (s, ξ) ∈ ZI(N).

Proof. First note that when δ ≡ 0 we are in the same position as in Chapter 2. It
follows from Hypothesis 5.1 and the condition for µ2 that the mass is non-effective.
We will prove this result in a larger zone Zhyp(N) which is defined by:

Zhyp(N) = {(t, ξ) ∈ [0,∞)×Rn : (1 + t)|ξ| ≥ N}.

The separating curve is given by

θ|ξ| : (0, N ]→ [0,∞), (1 + θ|ξ|)|ξ| = N.

We put θ0 = ∞, and θ|ξ| = 0 for any |ξ| ≥ N . In the zone Zhyp(N) we define the
micro-energy

U =
(
i|ξ|û, ût −

η′(t)

η(t)
û
)T
,

and U = η(t)Ũ . When δ ≡ 0, then we can write η′(t)
η(t)

= µ(t), where µ(t) . (1+t)−1 and
|dtµ(t)| . (1 + t)−2 (remember that for very slow oscillations we only need regularity
C1). Then

∂tŨ =

(
0 1
1 0

)
i|ξ|Ũ +

(
0 0
0 −2µ(t)

)
Ũ (5.48)

for t ≥ θ|ξ|. Let P be the diagonalizer of the principal part (with respect to powers of
|ξ|) of (5.48). It is given by

P =
1√
2

(
1 1
−1 1

)
, P−1 =

1√
2

(
1 −1
1 1

)
.

If we put V (t, ξ) := P−1Ũ(t, ξ), then we get

∂tV =

(
−1 0
0 1

)
i|ξ|V +B0(t, ξ)V, (5.49)

where

B0(t) := −µ(t)

(
1 −1
−1 1

)
.

Now we define the second diagonalizer that depends on the anti-diagonal entries of
B0(t):

K(t, ξ) :=

(
1 q(t)

2i|ξ|

− q(t)
2i|ξ| 1

)
, q(t) = µ(t). (5.50)

Using lim supt→∞(1 + t)µ(t) < 1
2

it follows

|q(t)|
|ξ|
≤ C

(1 + t)|ξ|
≤ C

N
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for t ≥ θ|ξ|. Hence, |detK| ≥ 1 − C2/(4N2). Therefore, K(t, ξ) and K−1(t, ξ) are
uniformly bounded in Zhyp(N) for a sufficiently large N . We replace V (t, ξ) =:
K(t, ξ)W (t, ξ). We get

∂tW =

(
−1 0
0 1

)
i|ξ|W − µ(t)

(
1 0
0 1

)
W + J(t, ξ)W, (5.51)

where J(t, ξ) = K−1(t, ξ)R(t, ξ) with D0(t, ξ) = diag(−i|ξ|, i|ξ|), H(t, ξ) = K(t, ξ) − I
and

R = D0K +B0K − ∂tK −KD0 −KdiagB0

= B0 +D0H −HD0 − diagB0 −HdiagB0 − ∂tH +B0H.

By construction the sum of the first four terms of R(t, ξ) vanishes. Thanks to the non-
effectiveness of the dissipative term the matrix R(t, ξ), and therefore J(t, ξ), satisfies
the following estimate in Zhyp(N):

‖J(t, ξ)‖ ≤ C

|ξ|(1 + t)2
. (5.52)

After substituting W (t, ξ) =: η(s)
η(t)

D(t, ξ)Z(t, ξ), where

D(t, ξ) = diag
(

exp(−i|ξ|(t− s), exp(i|ξ|(t− s)
)
,

we obtain the following Cauchy problem in Zhyp(N):{
∂tZ = J̃(t, ξ)Z, t ≥ s,

Z(s, ξ) = K−1(s, ξ)P−1 Ũ(s, ξ),
(5.53)

where the matrix J̃(t, ξ) = D−1(t, ξ)J(t, ξ)D(t, ξ) satisfies (5.52), too. For any s, t ≥
θ|ξ| we have ∫ t

s

‖J̃(τ, ξ)‖ dτ ≤ C

∫ ∞
θ|ξ|

1

|ξ|(1 + τ)2
dτ ≤ C ′

|ξ|(1 + θ|ξ|)
=
C ′

N
.

Hence ‖Z(t, ξ)‖ ≤ C‖Z(s, ξ)‖, i.e.,

‖Esf (t, s, ξ)‖ . 1 (5.54)

for all s, t ≥ θ|ξ|.

Now we use the stabilization condition to find R(t, s, ξ) = Ẽsf (t, s, ξ)QR(t, s, ξ).
The coefficient matrix of the Cauchy problem

DtQR(t, s, ξ) = Ẽsf (s, t, ξ)
(
Ãsf (t, s, ξ)−Wsf (t, s, ξ)

)
Ẽsf (t, s, ξ)QR,

QR(s, s, ξ) = I,
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satisfies the estimate∫ t

s

∥∥∥Ẽsf (s, θ, ξ)(Ãsf (θ, s, ξ)−Wsf (θ, s, ξ)
)
Ẽsf (θ, s, ξ)

∥∥∥dθ
. |ξ|

∫ t

s

∣∣∣ exp
(∫ τ

s

σ(θ)dθ
)
− ω̃(s)

∣∣∣dτ . |ξ| ∫ t

s

∣∣∣ exp
(∫ τ

0

σ(θ)dθ
)
− ω

∣∣∣dτ
= |ξ|

∫ t

s

∣∣∣ω exp
(
−
∫ ∞
τ

σ(θ)dθ
)
− ω

∣∣∣dτ . |ξ| ∫ t

s

∣∣∣ exp
(
−
∫ ∞
τ

σ(θ)dθ
)
− 1
∣∣∣dτ

. |ξ|
∫ t

s

∣∣∣ ∫ ∞
τ

σ(θ)dθ
∣∣∣dτ . |ξ|∫ t

s

∫ ∞
τ

|σ(θ)|dθdτ

. |ξ|(1 + t)α . 1.

Now the standard construction of QR in terms of a Peano-Baker series gives
uniform bounds for this matrix and for its inverse within the intermediate zone ZI(N).
Thus we arrive at the following lemma.

Lemma 5.7. Assume the Hypotheses 5.1 to 5.3. Then the fundamental solution
E(t, s, ξ) can be represented in ZI(N) as

E(t, s, ξ) = Λ(t, s, ξ)Ẽsf (t, s, ξ)QR(t, s, ξ),

where Λ(t, s, ξ) and QR(t, s, ξ) are uniformly bounded in (t, ξ), (s, ξ) ∈ ZI(N).

Corollary 5.3. Assume the Hypotheses 5.1 to 5.3 and 0 < µ2 < 2−α
12

. Then the
fundamental solution E(t, s, ξ) satisfies

‖E(t, s, ξ)‖ . 1

uniformly in (t, ξ), (s, ξ) ∈ ZI(N).

Remark 5.7. We have a decay for the fundamental solution within the hyperbolic
zone. In the intermediate zone, we have that the fundamental solution is bounded.
This allows to conclude our results using our special micro-energy. In [19] we proved
that the micro-energy is bounded in ZI(N) ∪ ZH,m(N).

5.5 Energy estimates

Consider the following Cauchy problem

utt −∆u+m(t)2u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (5.55)

with (t, x) ∈ [0,∞)×Rn and

m(t)2 =
µ2

(1 + t)2g(t)2
+ δ(t), µ2 6= 0, (5.56)

where µ2

(1+t)2g(t)2
is the shape function and δ = δ(t) is a bounded oscillating function

with

|δ(t)| . (1 + t)−2. (5.57)
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If

η(t) = exp

(
∞∑
j=1

∫ t

0

∫ ∞
τ

qj(s)dsdτ

)
, (5.58)

where

qk(t) =


m(t)2 if k = 1

k−1∑
j=1

(∫ ∞
t

qj(s)ds
)(∫ ∞

t

qk−j(s)ds
) if k = 2, 3, 4, · · · , (5.59)

then we can conclude the following theorem:

Theorem 5.1. Let us consider the Cauchy problem (5.55) with (u0, u1) ∈ H1(Rn) ×
L2(Rn) and the mass term satisfying Hypotheses 5.1 to 5.3 and 0 < µ2 < 2−α

12
. Then

the solution u = u(t, x) to (5.55) satisfies the following energy estimate

‖ (ut(t, ·),∇xu(t, ·), p(t)u(t, ·)) ‖L2 . (‖u0‖H1 + ‖u1‖L2) (5.60)

with p(t) = η(t)
1+t

.

Proof. This theorem basically follows from Lemma 5.2, Corollary 5.1, Corollary 5.3
and the estimates made in the verification of the proof of Theorem 2.1.

Remark 5.8. We shall prove the sharpness of the choice of the function η. For this
we will compare the behavior of η with the behavior of the function ψ chosen in
Chapter 2. We already know from Remark 5.6 that the function η in (5.5) has the same
asymptotic behavior as ηsf and that ψ(t) ≈ exp

(∑∞
k=1 µ

2kγk
∫ t

0
dτ

(1+τ)g(τ)2k

)
, where γk

are the Catalan numbers. We will prove at least for µ < 1
12

that

ψ′(t)

ψ(t)
−
η′sf (t)

ηsf (t)
∈ L1(R). (5.61)

From (5.61) we can conclude

ψ(t) = exp

(∫ t

0

ψ′(s)

ψ(s)
ds

)
≈ exp

(∫ t

0

η′(s)

η(s)
ds

)
= η(t).

To prove (5.61) we pose further assumptions to the function g(t). Let us assume that
there exists an increasing function a(t) such that∫ ∞

t

2g′(t)

(1 + s)g(s)3
ds ≤ 1

(1 + t)a(t)g(t)2
, with

1

(1 + t)a(t)g(t)2
∈ L1(R). (5.62)

We have

ψ′(t)

ψ(t)
−
η′sf (t)

ηsf (t)
=
∞∑
k=1

( µ2kγk
(1 + t)g(t)2k

−
∫ ∞
t

qk(s)ds
)
. (5.63)

By induction we will prove that for all k = 1, 2, · · · the following statement is valid:∫ ∞
t

qk(s)ds =
µ2kγk

(1 + t)g(t)2k
− hk(t), (5.64)
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with non-negative functions hk(t) satisfying

hk(t) ≤
µ2kγk(3

k − 1)

2(1 + t)a(t)g(t)2
.

Indeed, for k = 1 using integration by parts we will arrive at

∫ ∞
t

q1(s)ds =

∫ ∞
t

µ2γ1

(1 + t)2g(s)2
ds =

µ2γ1

(1 + t)g(t)2
− h1(t),

where h1(t) = µ2γ1

∫∞
t

2g′(s)
(1+s)g(s)3

ds is a non-negative function once that g is positive
and non-decreasing. Let us suppose that (5.64) it is true for k = 1, 2, · · · , `− 1. Then
we have for k = `:

∫ ∞
t

q`(s)ds =

∫ ∞
t

`−1∑
j=1

(∫ ∞
s

qj(τ)dτ

)(∫ ∞
s

q`−j(τ)dτ

)
ds

=

∫ ∞
t

µ2`γ`
(1 + s)2g(s)2`

ds+
`−1∑
j=1

∫ ∞
t

hj(s)h`−j(s)ds

−
`−1∑
j=1

(∫ ∞
t

µ2jγj
(1 + s)g(s)2j

h`−j(s)ds+

∫ ∞
t

µ2(`−j)γ`−j
(1 + s)g(s)2(`−j)hj(s)ds

)
.

Performing integration by parts we arrive at

∫ ∞
t

µ2`γ`
(1 + s)2g(s)2`

ds =
µ2`γ`

(1 + t)g(t)2`
− µ2`γ`

∫ ∞
t

2`g′(s)

(1 + s)g(s)2`+1
ds.

If we take

h`(t) = µ2`γ`

∫ ∞
t

2`g′(s)

(1 + s)g(s)2`+1
ds−

`−1∑
j=1

∫ ∞
t

hj(s)h`−j(s)ds

+
`−1∑
j=1

(∫ ∞
t

µ2jγj
(1 + s)g(s)2j

h`−j(s)ds+

∫ ∞
t

µ2(`−j)γ`−j
(1 + s)g(s)2(`−j)hj(s)ds

)
,

then ∫ ∞
t

q`(s)ds =
µ2`γ`

(1 + t)g(t)2`
− h`(t).

From the previous equality we can conclude that h`(t) ≥ 0 once

∫ ∞
t

q`(s)ds ≤
µ2`γ`

(1 + t)g(t)2`
.
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Moreover, after using the induction hypothesis we arrive at

h`(t) ≤ µ2`γ`

∫ ∞
t

2`g′(s)

(1 + s)g(s)2`+1
ds+

`−1∑
j=1

∫ ∞
t

µ2jγj
(1 + s)g(s)2j

h`−j(s)ds

+
`−1∑
j=1

∫ ∞
t

µ2(`−j)γ`−j
(1 + s)g(s)2(`−j)hj(s)ds

≤ `µ2`γ`
(1 + t)a(t)g(t)2

+
µ2`

2(1 + t)a(t)g(t)2

`−1∑
j=1

γjγ`−j
(
3`−j + 3j − 2

)
≤ µ2`γ`

(2`− 1) + 2 · 3`−1 − 1

2(1 + t)a(t)g(t)3
≤

µ2`γ`
(
3` − 1

)
2(1 + t)a(t)g(t)2

.

Therefore (5.64) is true for all k = 1, 2, · · · , and (5.63) is reduced to

ψ′(t)

ψ(t)
−
η′sf (t)

ηsf (t)
=
∞∑
k=1

hk(t).

Once

lim
t→∞

µ2(k+1)γk+1(3k+1 − 1)

µ2kγk(3k − 1)
= 12µ2,

it follows that the series
∑∞

k=1 µ
2kγk(3

k− 1) convergence for µ2 < 1
12

. Finally, from the
estimates for hk we may conclude

ψ′(t)

ψ(t)
−
η′sf (t)

ηsf (t)
∈ L1(R),

for µ2 < 1
12

. This completes the proof.

5.6 Examples

Let us conclude this chapter with some examples:

Example 5.1. First we set g(t) ≡ 1. Then the hypothesis for g are fulfilled. If we
choose

δ(t) =
ν

(1 + t)2
sin(tσ), σ ∈ (0, 1),

then the hypothesis for the derivatives of the perturbation is satisfied taking β = 1− σ
3
.

Furthermore, ∣∣∣ ∫ ∞
t

ν

(1 + s)2
sin(sσ)ds

∣∣∣ ≤ ν

1 + t

∣∣∣ ∫ ∞
t

sin(sσ)

1 + s
ds
∣∣∣

=
1

σ

ν

1 + t

∣∣∣ ∫ ∞
tσ

sin(θ)

θ
σ−1
σ + θ

dθ
∣∣∣

≤ 1

σ

ν

1 + t

∣∣∣ ∫ ∞
tσ

sin(θ)

θ
dθ
∣∣∣

=
1

σ

ν

1 + t
|si(tσ)|.
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If γ < 1, then limt→∞ t
σγsi(tσ) = 0. For more details see [25]. Therefore, for t large

we have ∣∣∣ ∫ ∞
t

ν

(1 + s)2
sin(sσ)ds

∣∣∣ ≤ ν(1 + t)−σγ−1.

Take γ = 2
3
. Then the stabilization condition of Hypothesis 5.3 is satisfied after choos-

ing ν ≤ µ2, m = 1 and α = 1− 2σ
3

. Indeed,

β = α +
1− α

2
,

thus Theorem 5.1 is applicable. Note that the condition (5.62) is trivially satisfied.

Remark 5.9. In the previous examples it is allowed to choose g(t)2 like in Chapter
2, i.e., we can consider g(t)2 = ln(e + t) · · · ln[m](e[m] + t), g(t)2 = (ln(e+ t))γ for
0 < γ < 1 and g(t)2 = ln(ln(ee + t)). Naturally the decay estimate for the solution
itself will depend on the function g. Note that all the above choices for g satisfy the
condition (5.62). Indeed we shall take a(t) = ln(e+ t) · · · ln[m](e[m] + t), a(t) = ln(e+ t)
and a(t) = ln(ee + t) ln(ln(ee + t)), respectively.
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6 Semi-linear wave models with
scale-invariant time-dependent
mass and dissipation

In this chapter we will consider the following semi-linear Cauchy problem with
scale-invariant mass and dissipation:

utt −∆u+
µ1

1 + t
ut +

µ2
2

(1 + t)2
u = |u|p, u(0, x) = u0(x), ut(0, x) = u1(x), (6.1)

with (t, x) ∈ [0,∞) × Rn, p > 1 and µ1 > 0, µ2 are real constants. Our goal is to
understand the interplay between µ1 and µ2 to prove global existence in time of small
data energy solutions.

If µ1 and µ2 are zero, then we are in the situation of the semi-linear Cauchy
problem for the free wave equation. The critical exponent pcrit is the Strauss exponent
p0(n) which is the positive solution to

(n− 1)p2 − (n+ 1)p− 2 = 0.

Critical exponent means that for small initial data in a suitable functional space there
exist global in time energy solutions for some range of admissible p > pcrit and it
is possible to find suitable small data such that there exist no global in time energy
solutions if 1 < p ≤ pcrit. For p0(n) < p ≤ n−3

n−1
, n > 1, it was proved global existence

in time for small data energy solution, see [54, 32, 24, 22, 65] for n = 1 solutions for
the semi-linear Cauchy problem for the free wave equation blow-up for any p > 1,
see [24], hence we put p0(1) = ∞. If 1 < p ≤ p0(n) and n > 1, then the energy
solutions for the semi-linear Cauchy problem for the free wave equation blow-up for
a suitable choice of small initial data, see [64, 32, 31, 48, 24, 49].

For the classical semi-linear Klein-Gordon equation Lindblad-Sogge proved in
1996 global existence in time for small data energy solution for n ≤ 3 and p >
pFuj = 1 + 2

n
, see [38]. Note that the critical exponent pFuj is related with the heat

equation, see [21]. For 1 < p ≤ pFuj and n = 1, 2, 3 blow-up results are established,
see [30] for a one-dimensional counterexample due to B. Iordanov and [33] for the
higher-dimensional case. In the paper [33] Keel-Tao conjectured that for sufficiently
large dimensions the solution for the semi-linear Cauchy problem has a blow-up for
p = 1 + 2

n
+ ε with ε > 0, i.e., for sufficiently large dimensions we do not expect pFuj

as the critical exponent.
If µ2 = 0, then D’Abbicco has recently shown in [14] that if p > pFuj and

• if n = 1 and µ1 >
5
3
,

• if n = 2 and µ1 > 3,
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• if n ≥ 3 and µ1 > n+ 2,

then there exist global (in time) small data energy solutions. Note that the assump-
tions for µ1 imply that the damping term is not non-effective according to the clas-
sification of Wirth [60]. If the coefficient µ1 of the damping term is small, then it is
expected a shift in the Strauss critical exponent. Indeed, D’Abbicco-Lucente-Reissig
have proved in [16] that the critical exponent for µ1 = 2 is a shift of the Strauss
exponent p0(n) to p0(n+ 2).

We will show that the presence of the mass term, for suitable choices of µ1 and
µ2, allows us to prove for n ≤ 4 global (in time) solutions for p ≥ 2 even for a smaller
range of µ1 compared with those of the paper [14].

Let us define
∆ = (µ1 − 1)2 − 4µ2

2.

It is convenient to consider two cases: The case, where the mass term is predominant,
i.e., when ∆ < 1 and the case where the dissipative term is predominant, i.e., when
∆ ≥ 0. Note that in the overlapping case ∆ ∈ [0, 1) it is possible to choose which
term is going to be predominant. The case when the dissipative term is predominant
was studied by Palmieri in his Master thesis [42]. In this chapter we will prove global
existence in time of small data energy solutions in a suitable function space for ∆ ≤ 0,
i.e., when the mass term is predominant excluding the case ∆ ∈ (0, 1). We will also
prove blow-up behavior for solutions in the case ∆ = 1.

6.1 Motivation: Duhamel’s principle

Let us consider the family of linear parameter dependent Cauchy problem

vtt −∆v +
µ1

1 + t
vt +

µ2
2

(1 + t)2
v = 0, v(s, x) = v0(x), vt(s, x) = v1(x), (6.2)

and denote by E0(t, s, x), E1(t, s, x) the fundamental solution to the linear homo-
geneous Cauchy problem (6.2) with the initial data (v0, v1) = (δx, 0) and (v0, v1) =
(0, δx), respectively, where δx is the Dirac distribution in the x-variable.

The solution v(t, x) to the linear Cauchy problem (6.2) is given by

v(t, x) = E0(t, s, x) ∗(x) v0(x) + E1(t, s, x) ∗(x) v1(x). (6.3)

By Duhamel’s principle we get that

vnl(t, x) =

∫ t

0

E1(t, s, x) ∗(x) |v(s, x)|pds (6.4)

is the solution to the inhomogeneous problem

vnltt −∆vnl +
µ1

1 + t
vnlt +

µ2
2

(1 + t)2
vnl = |v(t, x)|p, vnl(s, x) = 0, vnlt (s, x) = 0. (6.5)

Hence, the solution to the Cauchy problem (6.1) can be written in the following form:

u(t, x) = E0(t, s, x) ∗(x) u0(x) + E1(t, s, x) ∗(x) u1(x) +

∫ t

0

E1(t, s, x) ∗(x) |u(s, x)|pds.

Therefore, in order to apply Duhamel’s principle we shall derive estimates for
the solutions to the family of linear parameter dependent Cauchy problems (6.2).
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6.2 Linear decay estimates

Performing the dissipative transformation v(t, x) = (1 + t)γw(t, x) the Cauchy
problem (6.2) becomes

wtt−∆w+
2γ + µ1

1 + t
wt+

γ(γ − 1) + γµ1 + µ2
2

(1 + t)2
w = 0, w(s, x) = w0(x), wt(s, x) = w1(x),

(6.6)
where w0(x) = (1 + s)−γv0(x) and w1(x) = (1 + s)−γv1(x) − γ(1 + s)−γ−1v0(x). If we
choose γ = −µ1

2
, then the Cauchy problem (6.6) takes the form

wtt −∆w +
µ

(1 + t)2
w = 0, w(s, x) = w0(x), wt(s, x) = w1(x), (6.7)

where µ = µ1
2
− µ21

4
+ µ2

2. Note that ∆ = 1− 4µ ≤ 0 if, and only if, µ ≥ 1
4
, i.e., we are

dealing with not non-effective masses.
Performing the partial Fourier transform with respect to x in the Cauchy problem

(6.7) and denoting by ŵ = ŵ(t, ξ) the partial Fourier transform Fx→ξ(u)(t, ξ) we obtain

ŵtt + |ξ|2ŵ +
µ

(1 + t)2
ŵ = 0. (6.8)

The scale-invariant property allows us to derive explicit representations of solutions in
terms of known special functions. In this case we will perform, like in [5], a change
of variables to reduce the ordinary differential equation (6.8) in a confluent hyperge-
ometric equation. If

τ = |ξ|(1 + t), ŵ(t, ξ) = τ ρṽ(τ),

then choosing 2ρ = 1 +
√

1− 4µ we have that ṽ = ṽ(τ) satisfies

τ ṽττ + 2ρṽτ + τ ṽ = 0. (6.9)

We can reduce the equation (6.9) to a confluent hypergeometric equation if we per-
form the change of variables

z = 2iτ, v(z) = eiτ ṽ(τ).

Then v = v(z) solves the following equation

zvzz + (2ρ− z)vz − ρv = 0. (6.10)

This describes a confluent hypergeometric equation with α = 2ρ and β = ρ. Its
fundamental solutions are called confluent hypergeometric functions and depend on
the parameter ρ. If µ > 1

4
, then we are in the situation where Re ρ = 1

2
and Im ρ 6= 0.

If µ = 1
4
, then ρ = 1

2
. For more details about confluent hypergeometric functions

see [3, 1]. In the next proposition we will list two important properties of confluent
hypergeometric functions.

Proposition 6.1. Let Φ̃ = Φ̃(α, β; z) be a confluent hypergeometric function, where α
and β are complex parameters. Then,

1. Φ̃ is an entire function;
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2. ∂zΦ̃(α, β; z) = α
β
Φ̃(α + 1, β + 1; z).

If ρ 6= 1
2
, then the fundamental solutions v1,Φ(z), v2,Φ(z) to (6.10) are given by

v1,Φ(z) = Φ(ρ, 2ρ; z),

v2,Φ(z) = z1−2ρΦ(1− ρ, 2ρ; z) = z1−2ρezΦ(1− ρ, 2− 2ρ;−z).

If ρ = 1
2
, then the fundamental solutions v1,Ψ(z), v2,Ψ(z) to (6.10) are given by

v1,Ψ(z) = Ψ(ρ, 2ρ; z),

v2,Ψ(z) = z1−2ρΨ(ρ, 2ρ;−z) = z1−2ρezΨ(1− ρ, 2− 2ρ;−z),

where Φ and Ψ denote the confluent hypergeometric functions. Note that in both
cases for the second solution we used Kummer’s transformation.

If we define

Θ0(α, β; z) =

{
Φ(α, β; z), β /∈ Z,
Ψ(α, β; z), β ∈ Z,

then we can write the two fundamental solutions of the general confluent hypergeo-
metric equation as

v1(z) = Θ0(ρ, 2ρ; z), (6.11)
v2(z) = z1−2ρezΘ0(1− ρ, 2− 2ρ;−z). (6.12)

Then we can state two fundamental solutions e1, e2 to the problem (6.8) as follows:

e1(t, ξ) = ((1 + t)|ξ|)ρ e−i(1+t)|ξ|Θ0(ρ, 2ρ; z),

e2(t, ξ) = ((1 + t)|ξ|)ρ z1−2ρei(1+t)|ξ|Θ0(1− ρ, 2− 2ρ;−z).

Denoting ∂te1 = e1,t, differentiation with respect to t gives

e1,t(t, ξ) = ((1 + t)|ξ|)ρ−1 |ξ|e−i(1+t)|ξ|Θ1(ρ, 2ρ; z),

e2,t(t, ξ) = ((1 + t)|ξ|)ρ−1 z1−2ρ|ξ|ei(1+t)|ξ|Θ1(1− ρ, 2− 2ρ;−z),

where

Θ1(α, β; z) =

{
z
2
Φ(α, β; z) + (β − α)Φ(α− 1, β; z), β /∈ Z,

z
2
Ψ(α, β; z)−Ψ(α− 1, β; z), β ∈ Z.

The solution of (6.8) can be represented by

ŵ(t, ξ) = c1(s, ξ)e1(t, ξ) + c2(s, ξ)e2(t, ξ)

with the fundamental solutions e1, e2 depending on t and ξ, and the coefficients c1,
c2 depending on ξ and the initial time s ≥ 0. The coefficients can be found after
imposing the initial conditions as follows:

c1(s, ξ) =
e2,t(s, ξ)ŵ(s, ξ)− e2(s, ξ)ŵt(s, ξ)

e2,t(s, ξ)e1(s, ξ)− e1,t(s, ξ)e2(s, ξ)
,

c2(s, ξ) =
e1(s, ξ)ŵt(s, ξ)− e1,t(s, ξ)ŵ(s, ξ)

e2,t(s, ξ)e1(s, ξ)− e1,t(s, ξ)e2(s, ξ)
.
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Let us write the solution of (6.8) as

ŵ(t, ξ) = H1,0(t, s, ξ)ŵ(s, ξ) +H2,0(t, s, ξ)ŵt(s, ξ), (6.13)

where

H1,0(t, s, ξ) =
e2,t(s, ξ)e1(t, ξ)− e1,t(s, ξ)e2(t, ξ)

e2,t(s, ξ)e1(s, ξ)− e1,t(s, ξ)e2(s, ξ)
,

H2,0(t, s, ξ) =
e1(s, ξ)e2(t, ξ)− e2(s, ξ)e1(t, ξ)

e2,t(s, ξ)e1(s, ξ)− e1,t(s, ξ)e2(s, ξ)
,

with t ≥ s ≥ 0. Therefore, the derivative of ŵ = ŵ(t, ξ) with respect to t is

ŵt(t, ξ) = H1,1(t, s, ξ)ŵ(s, ξ) +H2,1(t, s, ξ)ŵt(s, ξ), (6.14)

whereHk,1 = ∂tHk,0(t, s, ξ), k = 1, 2. These fundamental solutions satisfyHk,`(s, s, ξ) =
(δk,`+1), k = 1, 2, ` = 0, 1. Moreover, due to the formulas for the Wronskian of con-
fluent hypergeometric functions we can calculate the denominator of Hk,0 for k = 1, 2
by

e2,t(t, ξ)e1(t, ξ)− e1,t(t, ξ)e2(t, ξ) = Cρ(2i)
1−2ρ|ξ|,

where Cρ = (1 − 2ρ) for 2ρ 6= 1, Cρ = eiπρ for 2ρ = 1. The representations for
Hk,`(t, s, ξ) are given in the following lemma.

Lemma 6.1. Denote by z = z(t) = 2i(1 + t)|ξ| and z0 = z(s). Then we have for
k = 1, 2, ` = 0, 1, the representations

Hk,`(t, s, ξ) = Cρ(−2i|ξ|)1−k+` detGk,`(t, s, ξ), (6.15)

where Cρ = (1− 2ρ)−1 for 2ρ 6= 1, Cρ = e−iπρ for 2ρ = 1 and

Gk,`(t, s, ξ) =

(
zρ−`e−

z
2 Θ`(ρ, 2ρ; z) z−ρ+1−`e

z
2 Θ`(1− ρ, 2− 2ρ;−z)

zρ−2+k
0 e−

z0
2 Θ2−k(ρ, 2ρ; z0) z−ρ−1+k

0 e
z0
2 Θ2−k(1− ρ, 2− 2ρ;−z0)

)
.

To study the behavior of the solution and their derivatives, according to (6.15), it
is necessary to analyze the behavior of the function Θ0 for small and large arguments.

Proposition 6.2. Let α and β fixed parameters in C and k = 0, 1.

1. For β = 1 and small |z| it holds

Θk(α, β; z) ∼ sgn(Γ(α− k)) ln z,

where we suppose that z is a pure imaginary number and, therefore, ln z =
ln |z|+ iπ

2
sgn Im z and Γ(·) is the Gamma function.

2. For β /∈ Z and small arguments |z| we have

|Θk(α, β; z)| ≤ C.

3. For β = 1 and large arguments |z| we have

|Θk(α, β; z)| ≤ C|z|k−Reα.
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4. For β /∈ Z and large arguments |z| we have

|Θk(α, β; z)| ≤ Cα,β|z|max{k+Re(α−β),k−Reα}.

Proof. See [3].

In the next result we will see that additional regularity for the initial data brings
better estimates for the solution itself, but for the derivatives of the solution we have
no further improvement of the estimates. Let us define the function space

Dm =
(
H1 ∩ Lm

)
×
(
L2 ∩ Lm

)
,

with m ∈ [1, 2) and the norm ‖(u, v)‖2
Dm = ‖u‖2

Lm + ‖u‖2
H1 + ‖v‖2

Lm + ‖v‖2
L2 .

Theorem 6.1. Suppose that (v0, v1) ∈ Dm and ∆ ≤ 0. Then the solution v ∈
C ([0,∞), H1) ∩ C1 ([0,∞), L2) for the Cauchy problem

vtt −∆v +
µ1

1 + t
vt +

µ2
2

(1 + t)2
v = 0, v(s, x) = v0(x), vt(s, x) = v1(x),

satisfies the following estimates:

‖(vt(t, ·),∇xv(t, ·))‖L2 . (1 + t)−
µ1
2

(
1 + ln

( 1 + t

1 + s

))γ(
‖v0‖H1 + (1 + s)

1
2‖v1‖L2

)
,

‖v(t, ·)‖L2 . (1 + t)−
µ1
2 q∆(t, s)

(
‖v0‖H1∩Lm + (1 + s)‖v1‖L2∩Lm

)
,

for all t ≥ s ≥ 0, where γ = 1 if ∆ = 0, γ = 0 if ∆ < 0 and

q0(t, s) =

 1 + ln
(

1+t
1+s

)
for n > m

2−m ,(
ln
(

1+t
1+s

)) 2−m
2
(

1 + ln
(

1+t
1+s

))
for n = m

2−m ,

and

q∆(t, s) =

{
1 for n > m

2−m ,(
ln
(

1+t
1+s

)) 2−m
2m for n = m

2−m ,

for ∆ < 0.

Proof. The aim is to estimate the fundamental solutions Hk,`, k = 1, 2, ` = 0, 1, where
the representation is given by (6.15). In that way we can derive estimates for the
solution w of the Cauchy problem (6.8) and its derivatives. For this reason we shall
divide the extended phase space into three zones: For 0 ≤ s ≤ t, we introduce the
zones

Z1(N) = {(t, ξ) ∈ [0,∞)×Rn : (1 + t)|ξ| ≤ N} ,

Z2(N, s) =

{
(t, ξ) ∈ [0,∞)×Rn :

N

1 + t
≤ |ξ| ≤ N

1 + s

}
,

Z3(N, s) = {(t, ξ) ∈ [0,∞)×Rn : (1 + s)|ξ| ≥ N} .
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Furthermore, the separating curve between Z1(N), Z2(N, s) and Z1(N), Z3(N, s) is
given by

θ
(1)
|ξ| : (0, N ]→ [0,∞), (1 + θ

(1)
|ξ| )|ξ| = N.

We put also θ(1)
0 =∞, and θ(1)

|ξ| = 0 for any |ξ| ≥ N .
The separating curve between Z2(N, s) and Z3(N, s) is given by

(1 + s)θ
(2)
|ξ| = N for t ≥ θ

(1)
|ξ| .

|ξ|

t

0 N
1+s

Z3

Z2

Z1

θ
(1)
|ξ| θ

(2)
|ξ|

N

Fig. 6.1: Sketch of the zones.

In order to separate the extended phase space into three parts we introduce the
function χ ∈ C∞(R+) such that χ(t) = 1 for t ≤ 1

2
, χ(t) = 0 for t ≥ 2 and χ′(t) ≤ 0.

We can define the characteristic functions ϕ1, ϕ2 and ϕ3 of the zones Z1(N), Z2(N, s)
and Z3(N, s), respectively, by

ϕ1(t, s, ξ) = χ
(
(1 + s)|ξ|N−1

)
χ
(
(1 + t)|ξ|N−1

)
,

ϕ2(t, s, ξ) = χ
(
(1 + s)|ξ|N−1

) (
1− χ

(
(1 + t)|ξ|N−1

))
,

ϕ3(s, ξ) = 1− χ
(
(1 + s)|ξ|N−1

)
such that ϕ1 + ϕ2 + ϕ3 = 1, where ϕ1 = ϕ1(t, s, ξ), ϕ2 = ϕ2(t, s, ξ) and ϕ3 = ϕ3(s, ξ).
The proof is divided into three steps:

Considerations in Z1(N):

If (t, ξ) ∈ Z1(N), then |z0| and |z| are small. If ∆ < 0, then from Lemma 6.1
and Proposition 6.2 we obtain the estimates

‖Hk,`(t, s, ξ)ϕ1(t, s, ξ)‖ . (1 + t)
1
2
−`(1 + s)−

3
2

+k (6.16)

for all t ≥ s ≥ 0 and (t, ξ) ∈ Z1(N).
The following proposition is useful for the analysis of the case ∆ = 0.

Proposition 6.3. For all times s ≤ t ≤ θ
(1)
|ξ| we have∣∣∣ ln(−z) ln(z0)e

z−z0
2 − ln z ln(−z0)e−

z−z0
2

∣∣∣ . 1 + ln
( 1 + t

1 + s

)
,

where z = z(t) = 2i(1 + t)|ξ| and z0 = z(s).
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Proof. See [4].

If ∆ = 0, then from Lemma 6.1, Proposition 6.2, 6.3 it follows

‖Hk,`(t, s, ξ)ϕ1(t, s, ξ)‖ . (1 + t)
1
2
−`(1 + s)−

3
2

+k
(

1 + ln
( 1 + t

1 + s

))
. (6.17)

Case ∆ < 0: From the representations (6.13) and (6.14) we can estimate the
behavior of ŵ and ŵt. Therefore for the elastic energy we have,

|ξ||ŵ(t, ξ)ϕ1| . |ξ|
(
‖H1,0(t, s, ξ)ϕ1‖|ŵ(s, ξ)|+ ‖H2,0(t, s, ξ)ϕ1‖|ŵt(s, ξ)|

)
. |ξ|(1 + t)

1
2

(
(1 + s)−

1
2 |ŵ(s, ξ)|+ (1 + s)

1
2 |ŵt(s, ξ)|

)
. (1 + t)−

1
2

(
(1 + s)−

1
2 |ŵ(s, ξ)|+ (1 + s)

1
2 |ŵt(s, ξ)|

)
.

Therefore, applying Parseval’s equation we deduce the following L2 − L2 estimate:

‖F−1 (|ξ|ŵ(t, ξ)ϕ1) (t, ·)‖L2 . (1 + t)−
1
2

(
(1 + s)−

1
2‖w0‖L2 + (1 + s)

1
2‖w1‖L2

)
.

For the kinetic energy we have

|ŵt(t, ξ)ϕ1| . ‖H1,1(t, s, ξ)ϕ1‖|ŵ(s, ξ)|+ ‖H2,1(t, s, ξ)ϕ1‖|ŵt(s, ξ)|

. (1 + t)−
1
2

(
(1 + s)−

1
2 |ŵ(s, ξ)|+ (1 + s)

1
2 |ŵt(s, ξ)|

)
.

Therefore, applying Parseval’s equation we deduce the following L2 − L2 estimate:

‖F−1 (ŵt(t, ξ)ϕ1) (t, ·)‖L2 . (1 + t)−
1
2

(
(1 + s)−

1
2‖w0‖L2 + (1 + s)

1
2‖w1‖L2

)
.

For the potential energy we have

|ŵ(t, ξ)ϕ1| . ‖H1,0(t, s, ξ)ϕ
1
2
1 ‖|ŵ(s, ξ)ϕ

1
2
1 |+ ‖H2,0(t, s, ξ)ϕ

1
2
1 ‖|ŵt(s, ξ)ϕ

1
2
1 |

. (1 + t)
1
2

(
(1 + s)−

1
2 |ŵ(s, ξ)ϕ

1
2
1 |+ (1 + s)

1
2 |ŵt(s, ξ)ϕ

1
2
1 |
)
.

Let us denote by m′ the conjugate to m. Then using Lm regularity on the data, Hölder
and Hausdorff-Young inequalities we get∫

Rn
|ŵ(s, ξ)|2ϕ1(t, s, ξ)dξ ≤

(∫
Rn
ϕ1(t, s, ξ)

m
2−mdξ

) 2−m
m

‖ŵ(s, ξ)‖2
Lm′

≤
(∫

(1+t)|ξ|≤N
dξ

) 2−m
m

‖w0‖2
Lm

≤ (1 + t)−
n(2−m)

m ‖w0‖2
Lm .

Analogously, ∫
Rn
|ŵt(s, ξ)|2ϕ1(t, s, ξ)dξ ≤ (1 + t)−

n(2−m)
m ‖w1‖2

Lm .
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Applying Parseval’s equation we arrive at

‖F−1 (ŵ(t, ξ)ϕ1) (t, ·)‖L2 . (1 + t)
1
2
−n(2−m)

2m

(
(1 + s)−

1
2‖w0‖Lm + (1 + s)

1
2‖w1‖Lm

)
.

Case ∆ = 0: For the elastic energy we have,

|ξ||ŵ(t, ξ)ϕ1| . |ξ|
(
‖H1,0(t, s, ξ)ϕ1‖|ŵ(s, ξ)|+ ‖H2,0(t, s, ξ)ϕ1‖|ŵt(s, ξ)|

)
. |ξ|(1 + t)

1
2

(
1 + ln

( 1 + t

1 + s

))(
(1 + s)−

1
2 |ŵ(s, ξ)|+ (1 + s)

1
2 |ŵt(s, ξ)|

)
. (1 + t)−

1
2

(
1 + ln

( 1 + t

1 + s

))(
(1 + s)−

1
2 |ŵ(s, ξ)|+ (1 + s)

1
2 |ŵt(s, ξ)|

)
.

Therefore, applying Parseval’s equation we deduce the following L2 − L2 estimate:

‖F−1 (|ξ|ŵ(t, ξ)ϕ1) (t, ·)‖L2 . (1+t)−
1
2

(
1+ln

( 1 + t

1 + s

))(
(1+s)−

1
2‖w0‖L2+(1+s)

1
2‖w1‖L2

)
.

For the kinetic energy we have

|ŵt(t, ξ)ϕ1| . ‖H1,1(t, s, ξ)ϕ1‖|ŵ(s, ξ)|+ ‖H2,1(t, s, ξ)ϕ1‖|ŵt(s, ξ)|

. (1 + t)−
1
2

(
1 + ln

( 1 + t

1 + s

))(
(1 + s)−

1
2 |ŵ(s, ξ)|+ (1 + s)

1
2 |ŵt(s, ξ)|

)
.

Therefore, applying Parseval’s equation we deduce the following L2 − L2 estimate:

‖F−1 (ŵt(t, ξ)ϕ1) (t, ·)‖L2 . (1+t)−
1
2

(
1+ln

( 1 + t

1 + s

))(
(1 + s)−

1
2‖w0‖L2 + (1 + s)

1
2‖w1‖L2

)
.

For the potential energy we have

|ŵ(t, ξ)ϕ1| . ‖H1,0(t, s, ξ)ϕ
1
2
1 ‖|ŵ(s, ξ)ϕ

1
2
1 |+ ‖H2,0(t, s, ξ)ϕ

1
2
1 ‖|ŵt(s, ξ)ϕ

1
2
1 |

. (1 + t)
1
2

(
1 + ln

( 1 + t

1 + s

))(
(1 + s)−

1
2 |ŵ(s, ξ)ϕ

1
2
1 |+ (1 + s)

1
2 |ŵt(s, ξ)ϕ

1
2
1 |
)
.

Let us denote by m′ the conjugate to m. Then using Lm regularity of the data, Hölder
and Hausdorff-Young inequalities we get∫

Rn
|ŵ(s, ξ)|2ϕ1(t, s, ξ)dξ ≤

(∫
Rn
ϕ1(t, s, ξ)

m
2−mdξ

) 2−m
m

‖ŵ(s, ξ)‖2
Lm′

≤
(∫

(1+t)|ξ|≤N
dξ

) 2−m
m

‖w0‖2
Lm

≤ (1 + t)−
n(2−m)

m ‖w0‖2
Lm .

Analogously, ∫
Rn
|ŵt(s, ξ)|2ϕ1(t, s, ξ)dξ ≤ (1 + t)−

n(2−m)
m ‖w1‖2

Lm .

Applying Parseval’s equation we arrive at

‖F−1 (ŵ(t, ξ)ϕ1) (t, ·)‖L2 . (1 + t)
1
2
−n(2−m)

2m

(
1 + ln

( 1 + t

1 + s

))
×
(

(1 + s)−
1
2‖w0‖Lm + (1 + s)

1
2‖w1‖Lm

)
.
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Considerations in Z2(N, s):

If (s, ξ), (t, ξ) ∈ Z2(N, s), then |z0| is small and |z| is large. Suppose ∆ < 0. Then
from Lemma 6.1 and Proposition 6.2 we obtain the estimates

‖Hk,`(t, s, ξ)ϕ2(t, s, ξ)‖ . |ξ|−
1
2

+`(1 + s)−
3
2

+k (6.18)

for all (t, ξ) ∈ Z2(N, s).
If ∆ = 0, then

‖Hk,`(t, s, ξ)ϕ2(t, s, ξ)‖ . |ξ|−
1
2

+`(1 + s)−
3
2

+k
∣∣∣ ln(z0)e

z−z0
2 − ln(−z0)e−

z−z0
2

∣∣∣. (6.19)

Observe that

ln(z0)e
z−z0

2 − ln(−z0)e−
z−z0

2 =(
ln(2(1 + s)|ξ|) +

π

2
i
)
ei(t−s)|ξ| −

(
ln(2(1 + s)|ξ|)− π

2
i
)
e−i(t−s)|ξ| =(

2 ln(2(1 + s)|ξ|) sin((t− s)|ξ|) + π cos((t− s)|ξ|)
)
i.

Therefore,

| ln(z0)e
z−z0

2 − ln(−z0)e−
z−z0

2 | . 1 + | ln(2(1 + s)|ξ|) sin((t− s)|ξ|)|.

Since |ξ|(1 + s) ≤ N in Z2(N, s), then for |ξ| 6= 0 the second term in the last inequality
is bounded. While for small frequencies we have

lim
|ξ|→0

ln(2(1 + s)|ξ|) sin((t− s)|ξ|) = 0.

Thus we may conclude that

‖Hk,`(t, s, ξ)ϕ2(t, s, ξ)‖ . |ξ|−
1
2

+`(1 + s)−
3
2

+k. (6.20)

If (t, ξ) ∈ Z2(N, s), then θ
(1)
|ξ| ≥ s, i.e., it is necessary to apply the "gluing proce-

dure". Therefore, for the elastic energy we have

|ξ||ŵ(t, ξ)ϕ2| . |ξ|
(
‖H1,0(t, θ

(1)
|ξ| , ξ)ϕ2‖|ŵ(θ

(1)
|ξ| , ξ)|+ ‖H2,0(t, θ

(1)
|ξ| , ξ)ϕ2‖|ŵt(θ(1)

|ξ| , ξ)|
)

. |ξ|
1
2

(
(1 + s)−

1
2 |ŵ(θ

(1)
|ξ| , ξ)|+ (1 + s)

1
2 |ŵt(θ(1)

|ξ| , ξ)|
)
.

For the kinetic energy,

|ŵt(t, ξ)ϕ2| . ‖H1,1(t, θ
(1)
|ξ| , ξ)ϕ2‖|ŵ(θ

(1)
|ξ| , ξ)|+ ‖H2,1(t, θ

(1)
|ξ| , ξ)ϕ2‖|ŵt(θ(1)

|ξ| , ξ)|

. |ξ|
1
2

(
(1 + s)−

1
2 |ŵ(θ

(1)
|ξ| , ξ)|+ (1 + s)

1
2 |ŵt(θ(1)

|ξ| , ξ)|
)
.

Now we use the estimates derived in the zone Z1(N) to estimate |ξ| 12 (1+s)−
1
2 |ŵ(θ

(1)
|ξ| , ξ)|

and |ξ| 12 (1 + s)
1
2 |ŵt(θ(1)

|ξ| , ξ)|. We have the following

|ξ|
1
2 (1 + s)−

1
2 |ŵ(θ

(1)
|ξ| , ξ)|

. |ξ|
1
2 (1 + s)−

1
2

(
‖H1,0(θ

(1)
|ξ| , s, ξ)‖|ŵ(s, ξ)|+ ‖H2,0(θ

(1)
|ξ| , s, ξ)‖|ŵt(s, ξ)|

)
.

(
1 + ln

( 1 + t

1 + s

))γ(
(1 + s)−1|ŵ(s, ξ)|+ |ŵt(s, ξ)|

)
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and

|ξ|
1
2 (1 + s)

1
2 |ŵt(θ(1)

|ξ| , ξ)|

. |ξ|
1
2 (1 + s)

1
2

(
‖H1,1(θ

(1)
|ξ| , s, ξ)‖|ŵ(s, ξ)|+ ‖H2,1(θ

(1)
|ξ| , s, ξ)‖|ŵt(s, ξ)|

)
.

(
1 + ln

( 1 + t

1 + s

))γ(
|ξ||ŵ(s, ξ)|+ (1 + s)

1
2 |ŵt(s, ξ)|

)
.

Therefore, applying Parseval’s equation we deduce the following L2 − L2 estimates:

‖F−1 (|ξ|ŵ(t, ξ)ϕ2(t, s, ξ)) (t, ·)‖L2

.
(

1 + ln
( 1 + t

1 + s

))γ(
(1 + s)−1‖w0‖L2 + (1 + s)

1
2‖w1‖L2

)

‖F−1 (ŵt(t, ξ)ϕ2(t, s, ξ)) (t, ·)‖L2

.
(

1 + ln
( 1 + t

1 + s

))γ(
(1 + s)−1‖w0‖L2 + (1 + s)

1
2‖w1‖L2

)
.

For the potential energy we get

|ŵ(t, ξ)ϕ2| . ‖H1,0(t, θ
(1)
|ξ| , ξ)ϕ

1
2
2 ‖|ŵ(θ

(1)
|ξ| , ξ)ϕ

1
2
2 |+ ‖H2,0(t, θ

(1)
|ξ| , ξ)ϕ

1
2
2 ‖|ŵt(θ

(1)
|ξ| , ξ)ϕ

1
2
2 |

. |ŵ(θ
(1)
|ξ| , ξ)ϕ

1
2
2 |+ |ξ|−

1
2 (1 + s)

1
2 |ŵt(θ(1)

|ξ| , ξ)ϕ
1
2
2 |

. (1 + θ
(1)
|ξ| )

1
2

(
1 + ln

( 1 + t

1 + s

))γ
×

(
(1 + s)−

1
2 |ŵ(s, ξ)ϕ

1
2
2 |+ (1 + s)

1
2 |ŵt(s, ξ)ϕ

1
2
2 |
)
.

Using the Lm regularity of the data, Hölder and Hausdorff-Young inequalities we get
for n > m

2−m the estimates∫
Rn

(1 + θ
(1)
|ξ| )|ŵ(s, ξ)|2ϕ2(t, s, ξ)dξ ≤

(∫
Rn

(
(1 + θ

(1)
|ξ| )ϕ2(t, s, ξ)

) m
2−m

dξ
) 2−m

m ‖ŵ(s, ξ)‖2
Lm′

.
(∫ N

1+s

N
1+t

|ξ|−
m

2−mdξ
) 2−m

m ‖w0‖2
Lm

. (1 + s)
m−n(2−m)

m ‖w0‖2
Lm .

Analogously,∫
Rn

(1 + θ
(1)
|ξ| )|ŵt(s, ξ)|

2ϕ2(t, s, ξ)dξ . (1 + s)
m−n(2−m)

m ‖w1‖2
Lm .

Applying Parseval’s equation we arrive at

‖F−1 (ŵ(t, ξ)ϕ2) (t, ·)‖L2 .
(

1 + ln
( 1 + t

1 + s

))γ
(1 + s)

m−n(2−m)
2m

×
(

(1 + s)−
1
2‖w0‖Lm + (1 + s)

1
2‖w1‖Lm

)
.
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For n = m
2−m we have∫

Rn
(1 + θ

(1)
|ξ| )|ŵ(s, ξ)|2ϕ2(t, s, ξ)dξ ≤

(∫ (
(1 + θ

(1)
|ξ| )ϕ2(t, s, ξ)

) m
2−m

dξ
) 2−m

m ‖ŵ(s, ξ)‖2
Lm′

.
(∫ N

1+s

N
1+t

|ξ|−
m

2−mdξ
) 2−m

m ‖w0‖2
Lm

∼
(

ln
( 1 + t

1 + s

)) 2−m
m ‖w0‖2

Lm .

Analogously,∫
Rn

(1 + θ
(1)
|ξ| )|ŵt(s, ξ)|

2ϕ2(t, s, ξ)dξ .
(

ln
( 1 + t

1 + s

)) 2−m
m ‖w1‖2

Lm .

Therefore we can conclude for n = m
2−m the following estimate:

‖F−1 (ŵ(t, ξ)ϕ2) (t, ·)‖L2 .
(

ln
( 1 + t

1 + s

)) 2−m
2m
(

1 + ln
( 1 + t

1 + s

))γ
×

(
(1 + s)−

1
2‖w0‖Lm + (1 + s)

1
2‖w1‖Lm

)
.

Considerations in Z3(N, s):

If (s, ξ), (t, ξ) ∈ Z3(N, s), then |z| and |z0| are large and s ≥ θ
(1)
|ξ| . So, we do not

need any "gluing procedure". From Proposition 6.2 we see that the estimates for Hk,`

coincide for the cases ∆ = 0 and ∆ < 0. Therefore from Lemma 6.1 we obtain the
following estimate:

‖Hk,`(t, s, ξ)ϕ3(s, ξ)‖ . |ξ|1−k+`, (6.21)

for all t ≥ s ≥ 0, (t, ξ) ∈ Z3(N, s) and ∆ ≤ 0. Then for the elastic energy we have

|ξ||ŵ(t, ξ)ϕ3| . |ξ| (‖H1,0(t, s, ξ)ϕ3‖|ŵ(s, ξ)|+ ‖H2,0(t, s, ξ)ϕ3‖|ŵt(s, ξ)|)
. |ξ||ŵ(s, ξ)|+ |ŵt(s, ξ)|.

Applying Parseval’s equation we deduce the following estimate:

‖F−1 (|ξ|ŵ(t, ξ)ϕ3(s, ξ)) (t, ·)‖L2 . ‖w0‖H1 + ‖w1‖L2 .

For the kinetic energy,

|ŵt(t, ξ)ϕ3| . ‖H1,1(t, s, ξ)ϕ3‖|ŵ(s, ξ)|+ ‖H2,1(t, s, ξ)ϕ3‖|ŵt(s, ξ)|
. |ξ||ŵ(s, ξ)|+ |ŵt(s, ξ)|.

Applying Parseval’s equation we deduce the following estimate:

‖F−1 (ŵt(t, ξ)ϕ3(s, ξ)) (t, ·)‖L2 . ‖w0‖H1 + ‖w1‖L2 .

Finally, for the potential energy,

|ŵ(t, ξ)ϕ3| . (‖H1,0(t, s, ξ)ϕ3‖|ŵ(s, ξ)|+ ‖H2,0(t, s, ξ)ϕ3‖|ŵt(s, ξ)|)
. |ŵ(s, ξ)|+ |ξ|−1|ŵt(s, ξ)|
. |ŵ(s, ξ)|+ (1 + s)|ŵt(s, ξ)|.
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Applying Parseval’s equation we deduce the following L2 − L2 estimate:

‖F−1 (ŵ(t, ξ)ϕ3(s, ξ)) (t, ·)‖L2 . ‖w0‖L2 + (1 + s)‖w1‖L2 .

Using the relation v(t, x) = (1 + t)−
µ1
2 w(t, x) the proof is completed.

Remark 6.1. In the case where the potential term is non-effective, i.e., when 0 < µ <
1
4
, D’Abbicco has proved in the paper [14] that additional regularity L1 on the initial

data brings better estimates for the potential energy. This is a similar result obtained
in the last theorem for the not non-effective case.

In the previous theorem, the best decay behavior appears when m = 1. Actually
with additional regularity L1 on the data we have the following decay for the solution
and its derivatives:

Corollary 6.1. Suppose that (v0, v1) ∈ D1 and ∆ ≤ 0. Then the solution v ∈
C ([0,∞), H1) ∩ C1 ([0,∞), L2) for the Cauchy problem (6.2) satisfies

‖(vt(t, ·),∇xv(t, ·))‖L2 . (1 + t)−
µ1
2

(
1 + ln

( 1 + t

1 + s

))γ (
‖v0‖H1 + (1 + s)

1
2‖v1‖L2

)
,

‖v(t, ·)‖L2 . (1 + t)−
µ1
2 q∆(t, s)

(
‖v0‖H1∩L1 + (1 + s)‖v1‖L2∩L1

)
for all t ≥ s ≥ 0, where γ = 1 if ∆ = 0, γ = 0 if ∆ < 0 and

q0(t, s) =

 1 + ln
(

1+t
1+s

)
for n > 1,(

ln
(

1+t
1+s

) ) 1
2
(

1 + ln
(

1+t
1+s

))
for n = 1,

and

q∆(t, s) =

{
1 for n > 1,(

ln
(

1+t
1+s

)) 1
2 for n = 1,

for ∆ < 0.

Remark 6.2. Indeed, L1 regularity improves the estimate of the solution. If the initial
data (v0, v1) ∈ H1 × L2, then we can only prove

‖v(t, ·)‖L2 . (1 + t)−
µ1
2

+ 1
2 (1 + ln(1 + t))γ

(
‖v0‖H1 + (1 + s)‖v1‖L2

)
,

where γ = 1 if ∆ = 0 and γ = 0 if ∆ < 0. This is a worse estimate than the one derived
in the previous theorem. For the derivatives we can not use L1 regularity because the
integral

∫∞
N
ωnr

n−1dr is infinity, i.e., for large frequencies we have no benefit of the
additional L1 regularity.

6.3 Global existence in time and decay behavior

Here we follow the techniques for semi-linear problems contained in the papers
[14], [15] and in the PhD thesis [2].
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6.3.1 Application of Banach’s fixed-point theorem

The goal is to prove global existence (in time) of small data energy solution for
the Cauchy problem (6.1) and decay estimates for the solution and its derivatives.
For this purpose we introduce for t > 0 the family of spaces

X(t) =
{
u ∈ C([0, t], H1) ∩ C1([0, t], L2)

}
with the norm

‖u‖X(t) = sup
0≤τ≤t

[
(1 + τ)

µ1
2

(
q̃∆(τ)−1‖u(τ, ·)‖L2 + (1 + ln(1 + τ))−γ‖ (∇xu(τ, ·), ut(τ, ·)) ‖L2

)]
,

where γ = 1 if ∆ = 0, γ = 0 if ∆ < 0 and

q̃0(τ) =

 1 + ln(1 + τ) for n > 1,(
ln(1 + τ)

) 1
2
(1 + ln(1 + τ)) for n = 1,

and

q̃∆(τ) =

{
1 for n > 1,

(ln(1 + τ))
1
2 for n = 1,

for ∆ < 0.
We remark that the norm of the space X(t) is defined according to the linear

estimates. Therefore, if we show the existence of solutions for the semi-linear Cauchy
problem in X(t), then automatically this solution will have the same decay estimates
as the solutions in the linear case.

Let u ∈ X(t) and define the following operator

Nu(t, x) = E0(t, 0, x) ∗(x) u0(x) + E1(t, 0, x) ∗(x) u1(x) +

∫ t

0

E1(t, s, x) ∗(x) |u(s, x)|pds.

Our goal is reduced to prove the existence of a fixed point for the operator N . We
know that

(
X(t), ‖ · ‖X(t)

)
is a Banach space, so to use Banach’s fixed-point theorem

we shall prove the following two estimates:

‖Nu‖X(t) ≤ C‖(u0, u1)‖D1 + C‖u‖pX(t), (6.22)

‖Nu−Nv‖X(t) ≤ C‖u− v‖X(t)

(
‖u‖p−1

X(t) + ‖v‖p−1
X(t)

)
(6.23)

for u, v ∈ X(t), uniformly with respect to t ∈ [0,∞).

Theorem 6.2. Let n ≤ 4, ∆ ≤ 0 and suppose that µ1 > 2 and
p ≥ 2 if n = 1, 2,

2 ≤ p ≤ 3 = pGN(3) if n = 3,
p = 2 = pGN(4) if n = 4.

(6.24)

There exists ε0 > 0 such that for all (u0, u1) ∈ D1 with

‖(u0, u1)‖D1 ≤ ε0
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there exists a unique solution to (6.1) in C([0,∞), H1)∩C1([0,∞), L2). Moreover, there
exists a constant C > 0 such that the solution satisfies the decay estimates

‖(ut(t, ·),∇xu(t, ·))‖L2 ≤ C(1 + t)−
µ1
2 (1 + ln(1 + t))γ‖(u0, u1)‖D1 ,

‖u(t, ·)‖L2 ≤ C(1 + t)−
µ1
2 q̃∆(t)‖(u0, u1)‖D1 ,

for all t ≥ 0, where γ = 1 if ∆ = 0 and γ = 0 if ∆ < 0.

After these considerations we know that to show global existence in time for
small data solution is equivalent to show the inequalities (6.22) and (6.23). More
precisely, we put

‖u‖X0(t) = sup
0≤τ≤t

[
(1 + τ)

µ1
2

(
q̃∆(τ)−1‖u(τ, ·)‖L2 + (1 + ln(1 + τ))−γ‖∇xu(τ, ·)‖L2

)]
(6.25)

where γ = 1 if ∆ = 0, γ = 0 if ∆ < 0 and we prove two stronger inequalities than
(6.22) and (6.23), that are

‖Nu‖X(t) ≤ C‖(u0, u1)‖D1 + C‖u‖pX0(t), (6.26)

‖Nu−Nv‖X(t) ≤ C‖u− v‖X0(t)

(
‖u‖p−1

X0(t) + ‖v‖p−1
X0(t)

)
(6.27)

uniformly with respect to t ∈ [0,∞). The motivation to introduce the space X0(t)
comes from Gagliardo-Nirenberg inequality (see Lemma 7.7). These conditions will
follow from the next proposition in which the restriction on the power p and on the
dimension n will appear.

Proposition 6.4. Let us assume the condition (6.24) for p. Let (u0, u1) ∈ D1 and
u, v ∈ X(t). For j + ` = 0, 1 it holds

(1 + t)
µ1
2 (1 + ln(1 + t))−γ(j+`)q̃∆(t)`+j−1‖∇j

x∂
`
tNu‖X(t)

≤ C‖(u0, u1)‖D1 + C‖u‖pX0(t), (6.28)

(1 + t)
µ1
2 (1 + ln(1 + t))−γ(j+`)q̃∆(t)`+j−1‖∇j

x∂
`
t (Nu−Nv) ‖X(t)

≤ C‖u− v‖X0(t)

(
‖u‖p−1

X0(t) + ‖v‖p−1
X0(t)

)
, (6.29)

where γ = 1 if ∆ = 0 and γ = 0 if ∆ < 0.

Proof. We first prove (6.28). Basically we use the definition of the norm in X0(t), the
estimates for the linear Cauchy problem in Corollary 6.1 and Gagliardo-Nirenberg
inequality (see Remark 7.1). First we have that

‖∇j
x∂

`
tNu(t, ·)‖L2 ≤ C(1 + t)−

µ1
2 (1 + ln(1 + t))γ(j+`)q̃∆(t)1−`−j‖(u0, u1)‖D1

+

∫ t

0

∥∥∇j
x∂

`
t

(
E1(t, s, x) ∗(x) |u(s, x)|p

)∥∥
L2 ds

for j + ` = 0, 1. Then,

(1 + t)
µ1
2 (1 + ln(1 + t))−γ(j+`)q̃∆(t)`+j−1‖∇j

x∂
`
tNu(t, ·)‖L2 ≤ C‖(u0, u1)‖D1

+ C

∫ t

0

(1 + s)
2−(j+`)

2 ‖|u(s, ·)|p‖L2∩L1ds.
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We have that

‖|u(s, ·)|p‖L2∩L1 . ‖|u(s, ·)|p‖L1 + ‖|u(s, ·)|p‖L2 = ‖u(s, ·)‖pLp + ‖u(s, ·)‖pL2p .

Applying Gagliardo-Nirenberg inequality (see Remark 7.1) for q = p and q = 2p we
get

‖u(s, ·)‖pLp . ‖u(s, ·)‖p(1−θ(p))L2 ‖∇xu(s, ·)‖pθ(p)L2 , (6.30)

‖u(s, ·)‖pL2p . ‖u(s, ·)‖p(1−θ(2p))L2 ‖∇xu(s, ·)‖pθ(2p)L2 , (6.31)

where

θ(p) =
n

2

(p− 2)

p
, θ(2p) =

n

2

(p− 1)

p
.

We note that the requisite θ(p) ≥ 0 implies that p ≥ 2 and the requisite θ(2p) ≤ 1
implies that p ≤ pGN(n) = n

n−2
for n ≥ 3. Now we are able to estimate ‖|u(s, ·)|p‖L2∩L1

using (6.30), (6.31) and the definition of ‖ · ‖X0(t):

‖|u(s, ·)|p‖L2∩L1 . ‖u‖pX0(t)(1 + s)−
µ1
2
pq̃∆(s)p(1−θ(p))(1 + ln(1 + s))γpθ(2p) (6.32)

= ‖u‖pX0(t)(1 + s)−
µ1
2
pq̃∆(s)p(1−n

2 )+n(1 + ln(1 + s))γn
p−1
2 ,(6.33)

since θ(p) ≤ θ(2p). Therefore, if n > 1, then we have for all ε > 0

(1 + t)
µ1
2 (1 + ln(1 + t))−γ(j+`)‖∇j

x∂
`
tNu(t, ·)‖L2

≤ C‖(u0, u1)‖D1 + C‖u‖pX0(t)

∫ t

0

(1 + s)
2−(j+`)

2
−µ1

2
p(1 + ln(1 + s))γ(p+

n
2 )ds

≤ C‖(u0, u1)‖D1 + C‖u‖pX0(t)

∫ t

0

(1 + s)1−µ1
2
p+εds.

Our assumption implies that 4 < µ1p, then we can conclude

(1 + t)
µ1
2 (1 + ln(1 + t))−γ(j+`)‖∇j

x∂
`
tNu(t, ·)‖L2 ≤ C‖(u0, u1)‖D1 + C‖u‖pX0(t).

If n = 1, then for all ε > 0

(1 + t)
µ1
2 (1 + ln(1 + t))−γ(j+`)q̃∆(t)`+j−1‖∇j

x∂
`
tNu(t, ·)‖L2

≤ C‖(u0, u1)‖D1

+ C‖u‖pX0(t)

∫ t

0

(1 + s)
2−(j+`)

2
−µ1

2
p(ln(1 + s))

p+2
4 (1 + ln(1 + s))γ(p+

1
2)ds

≤ C‖(u0, u1)‖D1 + C‖u‖pX0(t)

∫ t

0

(1 + s)1−µ1
2
p+εds.

Therefore we conclude

(1 + t)
µ1
2 (1 + ln(1 + t))−γ(j+`)q̃∆(t)`+j−1‖∇j

x∂
`
tNu(t, ·)‖L2 ≤ C‖(u0, u1)‖D1 +C‖u‖pX0(t).

Now we prove (6.29). We remark that

‖Nu−Nv‖X(t) =
∥∥∥∫ t

0

E1(t, s, x) ∗(x) (|u(s, x)|p − |v(s, x)|p) ds
∥∥∥
X(t)

.
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Thanks to the linear estimates for the solutions to the family of parameter dependent
Cauchy problems we can estimate

(1 + t)
µ1
2 (1 + ln(1 + t))−γ(j+`)q̃∆(t)`+j−1

∥∥∇j
x∂

`
tE1(t, s, x) ∗(x) (|u(s, x)|p − |v(s, x)|p)

∥∥
L2

. (1 + s)
2−(j+`)

2 ‖|u(s, x)|p − |v(s, x)|p‖L2∩L1

for j + ` = 0, 1. Now

||u(s, x)|p − |v(s, x)|p| . |u(s, x)− v(s, x)|
(
|u(s, x)|p−1 − |v(s, x)|p−1

)
.

Applying Hölder’s inequality we can arrive at

‖|u(s, ·)|p − |v(s, ·)|p‖L1 . ‖u(s, ·)− v(s, ·)‖Lp
(
‖u(s, ·)‖p−1

Lp + ‖v(s, ·)‖p−1
Lp

)
,

‖|u(s, ·)|p − |v(s, ·)|p‖L2 . ‖u(s, ·)− v(s, ·)‖L2p

(
‖u(s, ·)‖p−1

L2p + ‖v(s, ·)‖p−1
L2p

)
.

Using Gagliardo-Nirenberg inequality we get

‖u(s, ·)− v(s, ·)‖Lp . ‖u(s, ·)− v(s, ·)‖1−θ(p)
L2 ‖∇x (u(s, ·)− v(s, ·)) ‖θ(p)L2

. (1 + s)−
µ1
2 q̃∆(s)1−n(p−2)

2p (ln(1 + s))γ
n(p−2)

2p ‖u(s, ·)− v(s, ·)‖X0(t),

‖u(s, ·)− v(s, ·)‖L2p . ‖u(s, ·)− v(s, ·)‖1−θ(2p)
L2 ‖∇x (u(s, ·)− v(s, ·)) ‖θ(2p)L2

. (1 + s)−
µ1
2 q̃∆(s)1−n(p−1)

2p (ln(1 + s))γ
n(p−1)

2p ‖u(s, ·)− v(s, ·)‖X0(t),

and

‖u(s, ·)‖Lp . ‖u(s, ·)‖1−θ(p)
L2 ‖∇xu(s, ·)‖θ(p)L2

. (1 + s)−
µ1
2 q̃∆(s)1−n(p−2)

2p (ln(1 + s))γ
n(p−2)

2p ‖u(s, ·)‖X0(t),

‖u(s, ·)‖L2p . ‖u(s, ·)‖1−θ(2p)
L2 ‖∇xu(s, ·)‖θ(2p)L2

. (1 + s)−
µ1
2 q̃∆(s)1−n(p−1)

2p (ln(1 + s))γ
n(p−1)

2p ‖u(s, ·)‖X0(t).

Therefore, after using 4 < µ1p we may conclude

(1 + t)
µ1
2 (1 + ln(1 + t))−γ(j+`)q̃∆(t)`+j−1‖∇j

x∂
`
t (Nu−Nv) ‖X(t)

. ‖u− v‖X0(t)

(
‖u‖p−1

X0(t) + ‖v‖p−1
X0(t)

)(∫ t

0

(1 + s)1−µ1
2
p+εds

)
. ‖u− v‖X0(t)

(
‖u‖p−1

X0(t) + ‖v‖p−1
X0(t)

)
,

what we wanted to prove.

Remark 6.3. It is possible to prove global existence (in time) of small data energy
solutions for µ1 < 2 for n = 1, 2, 3 imposing new hypothesis for p. Indeed, let us
suppose that

p > 1 +
4− µ1

µ1

, (6.34)

and 0 < µ1 < 2 for n = 1, 2, 3
4
< µ1 < 2 for n = 3 and ∆ ≤ 0. There is a constant

ε0 > 0 such that for all (u0, u1) ∈ D1 with ‖(u0, u1)‖D1 < ε0 there exists a unique
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solution to (6.1) in C([0,∞), H1) ∩ C1([0,∞), L2). Moreover, there exists a constant
C > 0 such that the solution satisfies the decay estimates

‖(ut(t, ·),∇xu(t, ·))‖L2 ≤ C(1 + t)−
µ1
2 (1 + ln(1 + t))γ‖(u0, u1)‖D1 ,

‖u(t, ·)‖L2 ≤ C(1 + t)−
µ1
2 q̃∆(t)‖(u0, u1)‖D1 .

Remark 6.4. When µ2 = 0 and 0 < µ1 ≤ 1, then Wakasuki has proved blow-up results
for

1 < p ≤ 1 +
2

n+ (µ1 − 1)

in his PhD thesis [56]. Note that the only case that we can choose µ2 = 0 is when
∆ = 0 and µ1 = 1. From Remark 6.3 we can conclude that there exist a global solution
in time for p > 4 and Wakasuki has proved blow-up for 1 < p ≤ 1 + 2

n
. There is a gap

for 1 + 2
n
< p ≤ 4.

Remark 6.5. Note that for n = 2, 3, 4 we proved global existence (in time) of small
data energy solutions for µ1 > 2, which is a large set of choices for µ1 compare with
the results in [14]. For n = 1 we improve the choice of the power of non-linearity for
p ≥ 2, but we pay a price choosing µ1 > 2. In the paper [14], D’Abbicco proved
global existence of small data energy solutions for p > 3 and µ1 ≥ 5

3
, if we restrict

ourselves to p > 3 it is possible to prove global existence (in time) for µ1 ≥ 4
3

which is
also a large set of choices for µ1. So, in general, the presence of the mass term allows
us to consider smaller µ1. We will write this information in the next corollary.

Corollary 6.2. Let n = 1 and suppose µ1 ≥ 4
3
, ∆ ≤ 0 and p > pFuj(1) = 3. There

exists ε0 > 0 such that for all (u0, u1) ∈ D1 with

‖(u0, u1)‖D1 ≤ ε0

there exists a unique solution to (6.1) in C([0,∞), H1)∩C1([0,∞), L2). Moreover, there
exists a constant C > 0 such that the solution satisfies the decay estimates

‖(ut(t, ·),∇xu(t, ·))‖L2 ≤ C(1 + t)−
µ1
2 (1 + ln(1 + t))γ‖(u0, u1)‖D1 ,

‖u(t, ·)‖L2 ≤ C(1 + t)−
µ1
2 q̃∆(t)‖(u0, u1)‖D1 ,

where γ = 1 if ∆ = 0 and γ = 0 if ∆ < 0.

6.4 Expectations for ∆ = 1

The goal in this section is to prove blow-up results and to show that in the case
when ∆ = 1 we expect a shift for the critical Strauss exponent as observed in [16].

Let us consider the following semi-linear scaling-invariant Cauchy problem for
the wave equation with time-dependent mass and dissipation

utt −∆u+
µ1

1 + t
ut +

µ2
2

(1 + t)2
u = |u|p, u(0, x) = u0(x), ut(0, x) = u1(x), (6.35)

with (t, x) ∈ [0,∞)×Rn, p > 1 and µ1 > 0, µ2 are real constants. Let us suppose that

∆ = (µ1 − 1)2 − 4µ2
2 = 1. (6.36)
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Performing the change of variables

u(t, x) = (1 + t)−
µ1
2 v(t, x),

we arrive at the following Cauchy problem:

vtt −∆v +
µ1(2− µ1) + 4µ2

2

4(1 + t)2
v = (1 + t)−

µ1
2

(p−1)|v|p, v(0, x) = v0(x), vt(0, x) = v1(x),

(6.37)
with v0(x) = u0(x) and v1(x) = u1(x) + µ1

2
u0(x). Note that ∆ = 1 implies that

µ1(2 − µ1) = −4µ2
2, then the Cauchy problem (6.37) becomes the Cauchy problem

for the semi-linear wave equation with non-linearity (1 + t)−
µ1
2

(p−1)|v|p, i.e.,

vtt −∆v = (1 + t)−
µ1
2

(p−1)|v|p, v(0, x) = v0(x), vt(0, x) = v1(x). (6.38)

Therefore we can expect that the critical value of p is a shift of the Strauss expo-
nent and we can apply the blow-up methods developed in the paper [64] to the
Cauchy problem (6.35). The following theorem was conjectured by D’Abbicco-
Lucente-Reissig in the paper [16] and we will give a formal proof in this section.

Theorem 6.3. Assume that u ∈ C2 ([0, T )×Rn) is a solution to (6.35) with ∆ =
(µ1 − 1)2 − 4µ2

2 = 1 and initial data (u0, u1) ∈ C2
0(Rn)×C1

0(Rn) such that u0, u1 > 0. If

p ∈ (1, pµ1(n)],

then T <∞, where

pµ1(n) = max
{
pFuj

(
n− 1 +

µ1

2

)
; p0(n+ µ1)

}
. (6.39)

Remark 6.6. In the paper [16] the number pµ1(n) was clarified as follows:

1. pµ1(1) = pFuj
(
µ1
2

)
,

2. pµ1(2) =

{
pFuj

(
1 + µ1

2

)
if µ1 ≥ 2,

p0 (2 + µ1) if µ1 ∈ [0, 2],

3. pµ1(n) = p0(n+ µ1) if n ≥ 3.

For the proof of this theorem we will use the following lemma on the blow-up
dynamics for ordinary differential inequalities with polynomial non-linearity.

Lemma 6.2. (Kato’s Lemma) Let p > 1, q ∈ R and F ∈ C2([0, T )) be positive,
satisfying

d2

dt2
F (t) ≥ k1(t+R)−q(F (t))p, (6.40)

for any t ∈ [T1, T ), for some k1, R > 0 and T1 ∈ [0, T ). If

F (t) ≥ k0(t+R)a (6.41)

for any t ∈ [T0, T ), for some a ≥ 1 satisfying a > q−2
p−1

and for some k0 and T0 ∈ [0, T ),

then T < ∞. Moreover, let q ≥ p + 1 in (6.40) and suppose that the constant
k0 = k0(k1) > 0 is sufficiently large such that, if (6.41) holds with a = q−2

p−1
for some

T0 ∈ [0, T ), then T <∞.
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Proof. See [16] and [49].

Transforming the problem (6.35) in (6.38) with ∆ = 1, Theorem 6.3 follows as
a consequence of the next proposition. In the proof we follow the techniques of the
papers [64, 63, 16].

Proposition 6.5. Let f ∈ C2(Rn) and g ∈ C1(Rn) be positive and compactly supported.
Assume u ∈ C2([0, T ) ×Rn) is the maximal, with respect to the time interval, solution
to

utt −∆u = (1 + t)−
µ1
2

(p−1)|u|p, u(0, x) = f(x), ut(0, x) = g(x). (6.42)

If 1 < p ≤ pµ1(n), with pµ1(n) as in (6.39), then T <∞.

Proof. In the proof we choose R > 0 such that supp f, supp g ⊂ B(R), where B(R)
is the ball centered in the origin with radius R. Therefore, suppu(t, ·) ⊂ B(R + t).
Define

F (t) :=

∫
Rn

u(t, x)dx.

Thanks to the finite speed of propagation of u we have

d2

dt2
F (t) =

∫
Rn

utt(t, x)dx = (1 + t)−
µ1
2

(p−1)

∫
B(t+R)

|u(t, x)|pdx. (6.43)

Hölder’s inequality implies that

|F (t)|p ≤
(∫

B(t+R)

|u(t, x)|dx
)p

≤
∫
B(t+R)

|u(t, x)|pdx
(∫

B(t+R)

dx
)p−1

∼ (t+R)n(p−1)

∫
B(t+R)

|u(t, x)|pdx.

Therefore, we can conclude from (6.43) the following relation:

d2

dt2
F (t) & (1 + t)−(

µ1
2

+n)(p−1)|F (t)|p. (6.44)

We want to apply Lemma 6.2 and for this reason we need to show that F (t) is positive.
So let us consider the functions

φ1(x) =

∫
Sn−1

ex·ωdω, ψ1(t, x) = φ1(x)e−t,

where Sn−1 is the n− 1 dimensional sphere and

F1(t) :=

∫
Rn

u(t, x)ψ1(t, x)dx.

Applying Hölder inequality once more we have

|F1(t)|p ≤
(∫

B(t+R)

|u(t, x)ψ1(t, x)|dx
)p

≤
∫
B(t+R)

|u(t, x)|pdx
(∫

B(t+R)

|ψ1(t, x)|
p
p−1dx

)p−1

.
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Therefore, from (6.43) it follows

d2

dt2
F (t) & (1 + t)−

µ1
2

(p−1)|F1(t)|p
(∫
|x|≤R+t

|ψ1(t, x)|
p
p−1

)−(p−1)

. (6.45)

Note that ψ1(t, x) > 0. Let us estimate the last integral. Recalling that ψ1(t, x) =
e−tφ1(x) we see that ∫

B(K)

(ψ1(t, x))
p
p−1dx ≤ C(K,A, p)(t+R)−A

for any fixed K < t+R and A > 0. Using that (see [12])

φ1(x) . |x|−
n−1
2 e|x| as |x| → ∞

we get for large t and K the estimate∫
B(t+R)\B(K)

(ψ1(t, x))
p
p−1dx .

∫ t+R

K

(1 + ρ)n−1− (n−1)p
2(p−1) e

p
p−1

(ρ−t)dρ.

After integration by parts we have∫ t+R

K

(1 + ρ)n−1− (n−1)p
2(p−1) e

p
p−1

(ρ−t)dρ

. (1 + t)n−1− (n−1)p
2(p−1) −

(
n− 1− (n− 1)p

2(p− 1)

)∫ t+R

K

e
p
p−1

(ρ−t)(1 + ρ)n−2− (n−1)p
2(p−1) dρ.

If n− 1− (n−1)p
2(p−1)

> 0, i.e., p ≥ 2 we may immediately conclude∫ t+R

K

(1 + ρ)n−1− (n−1)p
2(p−1) e

p
p−1

(ρ−t)dρ . (1 + t)n−1− (n−1)p
2(p−1) . (6.46)

The same estimate holds if n− 1− (n−1)p
2(p−1)

< 0. Indeed, we may write(
1 +

(
n− 1− (n− 1)p

2(p− 1)

) 1

1 +K

)∫ t+R

K

(1 + ρ)n−1− (n−1)p
2(p−1) e

p
p−1

(ρ−t)dρ . (1 + t)n−1− (n−1)p
2(p−1)

and for large K and t we recover (6.46).
Thus we can conclude from (6.45)

d2

dt2
F (t) & (1 + t)−

n−1+µ1
2

p+n−1+
µ1
2 |F1(t)|p. (6.47)

The sign of the non-linearity comes into play to estimate |F1(t)|p. More precisely,
the following result, which proof can be found in the paper [64], holds for any smooth
solution to utt −∆u = G(t, x, u) with positive G.

Lemma 6.3. (Lemma 2.2 in [64]) It holds

F1(t) &
1

2
(1− e−2t)

∫
Rn

(f(x) + g(x))φ1(x)dx+ e−2t

∫
Rn

f(x)φ1(x)dx (6.48)

for t ≥ 0.
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In particular, our assumptions for the initial data imply that F1(t) ≥ c > 0, for all
t ≥ 0. Then,

d2

dt2
F (t) & (1 + t)−

n−1+µ1
2

p+n−1+
µ1
2 , (6.49)

for all t ≥ 0. Integrating twice we arrive at

F (t) & (1 + t)max{−n−1+µ1
2

p+n+1+
µ1
2
,1} + t

d

dt
F (0) + F (0)

& (1 + t)max{−n−1+µ1
2

p+n+1+
µ1
2
,1}, (6.50)

once that our assumptions for the initial data also imply that F (0) ≥ 0 and d
dt
F (0) ≥ 0.

The subcritical case:

From (6.44) and (6.50) we can apply the Lemma 6.2 under the following con-
ditions:

−n− 1 + µ1

2
p+ n+ 1 +

µ1

2
> n+

µ1

2
− 2

p− 1
, (6.51)

1 > n+
µ1

2
− 2

p− 1
. (6.52)

The condition (6.51) holds if, and only if, p < p0 (n+ µ1) and the condition (6.52)
holds if, and only if, p < pFuj

(
n− 1 + µ1

2

)
. Then the proposition is true for the

subcritical case
p < max

{
pFuj

(
n− 1 +

µ1

2

)
, p0(n+ µ1)

}
.

The critical case if n = 1 :

For n = 1 we have that pµ1(1) = 1 + 4
µ1

. By (6.44) it follows that q = 2 + 4
µ1

. We
note that in this case the maximum of the right-hand side of (6.50) is 1. Thus, from
(6.44)

d2

dt2
F (t) & (1 + t)−1.

Integrating twice we arrive at

F (t) & (1 + t) ln(1 + t).

Note that q−2
p−1

= 1 and q = p+1, then the result follows from the application of Lemma
6.2 with a = 1.

The critical case if n = 2:

Let us suppose that µ1 ≥ 2, then for n = 2 we have that pµ1(2) = 1 + 4
2+µ1

.
By (6.44) it follows that q = 2µ1+8

2+µ1
. We note that in this case the maximum of the

right-hand side of (6.50) is 1. Thus, from (6.44)

d2

dt2
F (t) & (1 + t)−1.
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Integrating twice we arrive at

F (t) & (1 + t) ln(1 + t).

Note that q−2
p−1

= 1 and q = p+1, then the result follows from the application of Lemma
6.2 with a = 1.

If µ1 ∈ [0, 2), then p = pµ1(2) = p0(2 + µ1). This case will be treated together
with the critical case for n ≥ 3.

The critical case if n ≥ 3 or n = 2 with µ1 ∈ [0, 2):

For n ≥ 3 and for n = 2 with µ1 ∈ [0, 2), we have that pµ1(n) = p0(n + µ1). We
can suppose, without loss of generality, that u(t, ·) is radial. This is so because one
can use Darboux’s identity to transform the problem into a suitable one for the radial
case. Let us define

ũ(t, r) =
1

ωn

∫
|ω|=1

u(t, rω)dσω,

where ωn =
∫
|ω|=1

dσω.
From Hölder’s inequality it follows that ũ satisfies that following problem:

ũtt −∆ũ = |̃u|p(1 + t)−
µ1
2

(p−1)

= (1 + t)−
µ1
2

(p−1) 1

ωn

∫
|ω|=1

|u(t, rω)|pdσω

≥ (1 + t)−
µ1
2

(p−1)|ũ|p.

Following the technique of [64] we consider the Radon transform of u with respect to
the space variable defined by

Ru(t, ρ) :=

∫
x·ω=ρ

u(t, x)dσx, (6.53)

where dσx is the Lebesgue measure of the hyperplane {x : x · ω = ρ} and ω ∈ Rn

is a unitary vector. Next we show that Ru is independent of ω. From (6.53) and the
assumption that u(t, ·) is radial it follows that

Ru(t, ρ) =

∫
{x′:x′·ω=0}

u(t, ρω + x′)dσx

= cn

∫ ∞
0

u(t,
√
ρ2 + |x′|2)|x′|n−2d|x′|.

Using the change of variables r2 = ρ2 + |x′|2, we have

Ru(t, ρ) = cn

∫ ∞
|ρ|

u(t, r)(r2 − ρ2)
n−3
2 rdr, (6.54)

this shows that Ru(t, ρ) is independent of ω. Now let us derive a lower bound for
Ru(t, ρ).

Since u is a solution of (6.42), then Ru satisfies the one-dimensional wave
equation

∂2
tRu(t, ρ)− ∂2

ρRu(t, ρ) = (1 + t)−
µ1
2

(p−1)R|u|p(t, ρ).



162 6 Semi-linear wave models with scale-invariant time-dependent mass and dissipation

From the D’Alembert’s formula and the assumptions for the initial data it follows

Ru(t, ρ) ≥ 1

2

∫ t

0

(1 + s)−
µ1
2

(p−1)

∫ ρ+(t−s)

ρ−(t−s)
R|u|p(s, ρ1)dρ1ds. (6.55)

Note that suppu(s, ·) ⊂ B(s + R). Therefore, if |ρ1| > s + R, then, for any vector y
which is perpendicular to a unit vector ω, it holds

|ρ1ω + y| =
√
|ρ1|2 + |y|2 ≥ |ρ1| > s+R.

Thus
R|u|p(s, ρ1) =

∫
{y:y·ω=0}

|u(s, ρ1ω + y)|dσy = 0.

This shows that

suppR|u|p(s, ·) ⊂ B(s+R). (6.56)

Assume ρ ≥ 0. If s ≤ t−ρ−R
2

, then

ρ+ (t− s) ≥ s+R, ρ− (t− s) ≤ −(s+R).

By this, (6.55) and (6.56) we deduce

Ru(t, ρ) ≥ 1

2

∫ t−ρ−R
2

0

(1 + s)−
µ1
2

(p−1)

∫ ρ+(t−s)

ρ−(t−s)
R|u|p(s, ρ1)dρ1ds

=
1

2

∫ t−ρ−R
2

0

(1 + s)−
µ1
2

(p−1)

∫ ∞
−∞

R|u|p(s, ρ1)dρ1ds

=
1

2

∫ t−ρ−R
2

0

(1 + s)−
µ1
2

(p−1)

∫
Rn

|u(s, y)|pdyds

=
1

2

∫ t−ρ−R
2

0

d2

dt2
F (s)ds.

Recalling (6.49) we have

Ru(t, ρ) ≥ 1

2

∫ t−ρ−R
2

0

(1 + s)−
n−1+µ1

2
p+n−1+

µ1
2 ds.

Now note that
−n− 1 + µ1

2
p+ n− 1 +

µ1

2
6= −1.

Indeed, observe that

−n− 1 + µ1

2
p+ n− 1 +

µ1

2
= −1 if, and only if, p = p0(n+ µ1) =

2n+ µ1

n− 1 + µ1

.

Then recalling that

(n+ µ1 − 1)p2 − (n+ µ1 + 1)p− 2 = 0
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we arrive at
2n2 + (µ1 − 4)n− (3µ1 − 2) = 0

which is a contradiction once n ≥ 3. Note that this is also a contradiction for n = 2
and µ1 < 2.

So, we arrive at

Ru(t, ρ) & (R + t− ρ)−
n−1+µ1

2
p+n+

µ1
2 . (6.57)

Note that for any f ∈ Lp the operator T : Lp → Lp defined by

T (f)(τ) =
1

|t− τ +R|n−1
2

∫ t+R

τ

f(r)|r − τ |
n−3
2 dr

is bounded. Indeed,

|T (f)(τ)| ≤ 1

|t− τ +R|

∫ t+R

τ

|f(r)|dr

≤ 2

2|t− τ +R|

∫ t+R

−(t+R)+2τ

|f(r)|dr

≤ 2M(|f |)(τ),

where M(|f |) is the maximal function of f . Therefore,

‖T (f)‖Lp ≤ c‖f‖Lp . (6.58)

Applying (6.58) to the function

f(r) =

{
|u(t, r)|r

n−1
p if r ≥ 0,

0 if r < 0,

we have ∫ t+R

0

( 1

(t− ρ+R)
n−1
2

∫ t+R

ρ

|u(t, r)|r
n−1
p (r − ρ)

n−3
2 dr

)p
dρ

≤ C

∫ ∞
0

|u(t, r)|prn−1dr

= C

∫
Rn

|u(t, x)|pdx.

When r ≥ ρ and 1 < p ≤ 2, we observe that

r
n−1
p ≥ r

n−1
2 ρ(n−1)( 1

p
− 1

2).

Hence, ∫ t+R

0

( 1

(t− ρ+R)
n−1
2

∫ t+R

ρ

|u(t, r)|r
n−1
2 (r − ρ)

n−3
2 dr

)p
ρn−1−(n−1) p

2dρ

≤ C

∫
Rn

|u(t, x)|pdx. (6.59)
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From (6.54) and the fact that suppu(t, ·) ⊂ B(t+R) we know that

R|u|(t, ρ) = cn

∫ t+R

ρ

|u(t, r)|r(r2 − ρ2)
n−3
2 dr

= cn

∫ t+R

ρ

|u(t, r)|r(r − ρ)
n−3
2 (r + ρ)

n−3
2 dr

≤ c

∫ t+R

ρ

|u(t, r)|r
n−1
2 (r − ρ)

n−3
2 dr. (6.60)

Substituting (6.60) to (6.59), we reach∫ t+R

0

(R|u|(t, ρ))p

(t− ρ+R)(n−1) p
2

ρn−1−(n−1) p
2dρ ≤ c

∫
Rn

|u(t, x)|pdx. (6.61)

Using the lower bound of R|u| in (6.57) and (6.61), we arrive at∫
Rn

|u(t, x)|pdx ≥ CR

∫ t−R−1

0

ρn−1−(n−1) p
2

(t− ρ+R)
(n−1+µ1)p

2−(n+1+µ1)p
2

dρ.

Recalling
(n− 1 + µ1)p2 − (n+ 1 + µ1)p− 2 = 0

it follows that ∫
Rn

|u(t, x)|pdx ≥ CR

∫ t−R−1

0

ρn−1−(n−1) p
2

t− ρ+R
dρ.

Hence, ∫
Rn

|u(t, x)|pdx ≥ CR

∫ t−R−1

t−R−1
2

ρn−1−(n−1) p
2

t− ρ+R
dρ

≥ CR(t−R− 1)n−1−(n−1) p
2

∫ t−R−1

t−R−1
2

1

t− ρ+R
dρ,

and we obtain ∫
Rn

|u(t, x)|pdx ≥ CR(t−R)n−1−(n−1) p
2 ln(t−R).

Thus
d2

dt2
F (t) & (1 + t)−

n−1+µ1
2

p+n−1+
µ1
2 ln(t−R).

Integrating twice we arrive at

F (t) & (1 + t)−
n−1+µ1

2
p+n+1+

µ1
2 ln(t−R),

and the result follows for sufficiently large t after applying again Lemma 6.2 with
a = −n−1+µ1

2
p+ n+ 1 + µ1

2
.
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Summarizing, we expected for ∆ = 1

pcrit(n) = pµ1(n) = max
{
pFuj

(
n− 1 +

µ1

2

)
; p0(n+ µ1)

}
.

We collect in the following table the results obtained in this chapter for µ1 > 2:

∆ ≤ 0 ∆ = 1

n = 1 Global existence in time for p ≥ 2. Blow-up for 1 < p ≤ 1 +
4

µ1

.

n = 2 Global existence in time for p ≥ 2. Blow-up for 1 < p ≤ 1 +
4

2 + µ1

.

n = 3 Global existence in time for 2 ≤ p ≤ 3. Blow-up for 1 < p ≤ p0(3 + µ1).
n = 4 Global existence in time for p = 2. Blow-up for 1 < p ≤ p0(4 + µ1).
n ≥ 5 No result for global existence in time. Blow-up for 1 < p ≤ p0(n+ µ1).

Tab. 6.1: Interplay between global existence in time and blow-up result for the solution depending on
the choice of ∆.

If ∆ = 1, then we feel a shift of Strauss exponent p0(n) → p0(n + µ1) for n ≥ 3
(cf. with [16]).
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7 Notation-Guide to the reader

7.0.1 Preliminaries

〈·〉 which stands for 〈x〉 =
√

1 + |x|2,
| · | denotes the absolute value,

[ξ] with definition [ξ] =
|ξ|
〈ξ〉

d·e denotes the smallest integer then a given number,
i.e., dxe = min{m ∈ Z;x ≤ m},

‖ · ‖ denotes the norms for a vector or a matrix.,
‖ · ‖Lp norm in Lp spaces,
Lp → Lq for L(Lp, Lq), endowed with the norm topology
‖ · ‖Lp,r→Lq for operator norm in Lp,r → Lq,
f . g if there exists a constant c > 0 such that for all

arguments f ≤ cg.
f & g if there exists a constant c > 0 such that for all

arguments cf ≥ g.
f ≈ g if f & g and f . g.

f ∼ g if lim
t→∞

f(t)

g(t)
= 1, i.e., f and g have the same asymp-

totic behavior.
Dt denotes Dt = 1

i
∂t.

∂αx denotes the partial derivatives ∂α1
x1
∂α2
x2
· · · ∂αnxn with a

multi-index α = (α1, α2, · · · , αn), where αi is non-
negative for all i = 1, 2, · · · , n.

∆ denotes the Laplace operator with respect to x ∈
R
n, ie, ∆x = ∂2

x1
+ ∂2

x2
+ · · ·+ ∂2

xn .

f(t) = o(g(t)) if lim sup
t→∞

f(t)

g(t)
= 0.

7.0.2 Frequently used function spaces

We collect function spaces with are frequently used within this thesis.

Lp(Rn) Lp spaces , 1 ≤ p ≤ ∞,
LpLr(Rn ×Rm) mixed space Lp(Rn, Lr(Rm)) ,
Lp,α(Rn) Bessel potential space, Lp,α(Rn) = 〈D〉−αLp(Rn)
Ck(Rn) space of k times continuously differentiable func-

tion,
C∞(Rn) space of infinitely continuously differentiable func-

tions,
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C∞0 (Rn) space of infinitely continuously differentiable func-
tions with compact support,

Hs(Rn) Sobolev space based on L2(Rn),
S(Rn) Schwartz space of rapidly decay functions,
D′(Rn) space of distributions,
S ′(Rn) space of tempered distributions,
Bs
p,q(R

n) Besov space,
M q

p (Rn) space of multipliers inducing bounded translation
invariant operators Lp → Lq.

7.0.3 Symbols used throughout the thesis

h(t, ξ) h(t, ξ) =
1

1 + t
φpd,N(t, ξ) + i|ξ|φhyp,N(t, ξ), with the

characteristic functions φpd,N(t, ξ) and φhyp,N(t, ξ)
of the zones,

h̃(t, ξ) h̃(t, ξ) =

(
|ξ|2 +

N2

(1 + t)2

) 1
2

U(t, ξ) micro-energy U = (h(t, ξ)û, Dtû)T , satisfies DtU =
A(t, ξ)U,

E(t, s, ξ) fundamental solution of the Dt − A(t, ξ),
E0(t, s, ξ) fundamental solution of the free wave equation,
Ek(t, s, ξ) fundamental solution of the system after k steps of

diagonalization, k ≥ 1,
W+(ξ) multiplier corresponding to the Moeller wave oper-

ator.

7.1 Basic tools

7.1.1 Fourier multipliers and multiplier spaces

The next theorem is very important for we state Lp-Lq estimates.

Definition 7.1. Let f ∈ S ′. Define the following operator

m(D)f = F−1 [m(ξ)F(f)] ,

for a suitably regular function or distribution m(ξ). These operator are so-called
Fourier multipliers.

Definition 7.2. Denote by p ≤ q

M q
p = {m(ξ);m(D) : Lp(Rn)→ Lq(Rn)},

that so-called multiplier space.

The multiplier space M q
p is a Banach space endowed with the corresponding

operator norm. Holds
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Proposition 7.1. 1. M2
2 (Rn) = L∞(Rn),

2. Mp
p (Rn) ⊂M2

2 (Rn), for all p ∈ [1,∞],
3. Mp

p (Rn) = M q
q (Rn), for dual p and q,

4.L1(Rn) ⊂M∞
1 (Rn),

5. M∞
1 (Rn) ∩M2

2 (Rn) ⊂M q
p (Rn), for dual p and q.

Let us enunciate the Marcinkiewicz multiplier theorem.

Theorem 7.1. Assume that m(ξ) ∈ Ck(Rn − {0}) for k =
⌈
n
2

⌉
+ 1 and∣∣Dα

ξm(ξ)
∣∣ ≤ Cα|ξ|−|α|,∀ |α| ≤ k

in other words, m(ξ) ∈ Ṡ0
k. Then m(ξ) ∈Mp

p (Rn) for all p ∈ [1,∞].

Proof. Look [51].

7.1.2 Further lemmas of importance

According to the papers [43, 7] we can conclude the following estimate.

Lemma 7.1. Let us assume that K = K(t) is a real-valued function and a = a(t, ξ) ∈
C∞0 (Rn

ξ ). Then there exists a positive integer M such that∥∥F−1
(
eiK(t)|ξ|a(t, ξ)

)∥∥
L∞
≤ C (1 +K(t))−

n−1
2

∑
|α|≤M

‖Dα
ξ a(t, ξ)‖L∞ ,

with a constant C independent of t and ξ.

In order to handle with L1 − L∞ and L2 − L2 estimates, we have the following
lemma:

Lemma 7.2. Let a ∈ L1.

1. If ‖F−1(a)‖L∞ ≤ C0, then ‖F−1(aF (u))‖L∞ ≤ C0‖u‖L1 .

2. If ‖a‖L∞ ≤ C1, then ‖F−1(aF (u))‖L∞ ≤ C1‖u‖L2 .

In order to handle the Lp − Lq estimates we state the important Riesz-Thorin
interpolation theorem.

Theorem 7.2. (Riesz-Thorin Interpolation Theorem) Lets pi, qi ∈ [1,∞], for i = 0, 1
and if 0 < θ < 1, defines p and q by

1

p
=

1− θ
p0

+
θ

p1

,
1

q
=

1− θ
q0

+
θ

q1

.

If T is a linear operator of (Lp0 , Lp1) 7−→ (Lq0 , Lq1) , such that

‖Tu‖Lq0 ≤M0‖u‖Lp0 ,

‖Tu‖Lq1 ≤M1‖u‖Lp1 ,
thus,

‖Tu‖Lq ≤M1−θ
0 M θ

1‖u‖Lp .
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Lemma 7.3. Let a ∈ L∞(Rn) and assume that

‖F−1(aφjF (u))‖Lq ≤ C‖u‖Lp

uniformly for all j ∈ Z with 1 < p ≤ 2 and p, q conjugate line. Then there exists a
constant A independent of the function a such that

‖F−1(aF (u))‖Lq ≤ AC‖u‖Lp .

The next theorem was strongly used to define Moeller wave operator with the
goal to prove modified scattering theorem in the Chapters 2 and 4.

Theorem 7.3. (Banach-Steinhaus Theorem) Let A and B Banach spaces and sup-
pose that {Fn} is a sequence of continuous linear operators from A to B. Then Fn
converges pointwise to a continuous linear operator F : A→ B, i.e., Fn(x) converges
to F (x) for all x ∈ A or F = s-limFn, if and only if

1. the sequence of operator norms ‖Fn‖ is bounded;

2. the sequence Fn(x) converges to F (x) for all x ∈ L, where L is a dense subset
of A.

7.1.3 The Peano-Baker formula

Theorem 7.4. Let A(t) ∈ L1
loc(R,Cn×n). Then the fundamental solution E(t, s) to{

dE
dt

(t, s) = A(t)E(t, s)
E(s, s) = I

. (7.1)

is given by the Peano-Baker formula,

E(t, s) = I +
∞∑
k=1

∫ t

s

A(t1)

∫ t1

s

A(t2) · · ·
∫ tk−1

s

A(tk)dtk · · · dt1. (7.2)

Proposition 7.2. Assume r ∈ L1
loc(R). Then∣∣∣∣∫ t

s

r(t1)

∫ t1

s

r(t2) · · ·
∫ tk−1

s

r(tk)dtk · · · dt1
∣∣∣∣ ≤ 1

k!

(∫ t

s

|r(τ)|dτ
)k

, (7.3)

for all k ∈ N.

7.1.4 Faà di Bruno’s formula

In this section we will write two well-known form of Faà di Bruno’s formula. The
most simple one can be founded in [8] and [9] and says

Lemma 7.4. Let f(g(x)) = (f ◦ g)(x) with x ∈ R. Then we have

dn

dxn
f(g(x)) =

∑ n!

m1!1!m1m2!2!m2 · · ·mn!n!mn
f (m1+···+mn)(g(x))

n∏
j=1

(
g(j)(x)

)mj
,

where the sum is taken over all n−tuples of non-negative integers (m1, · · · ,mn) satis-
fying the condition

1m1 + 2m2 + · · ·+ nmn = n.
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A multivariate version of Faà di Bruno’s formula can be founded in [11], [37]
and is given in the next statement.

Lemma 7.5. Let y = g(x1, · · · , xn). Then the following identity holds regardless of
whether the n variables are all distinct, or all identical, or partitioned into several
distinguishable classes of indistinguishable variables

∂n

∂x1 · · · ∂xn
f(y) =

∑
π∈Π

f (|π|)(y)
∏
B∈π

∂|B|y∏
j∈B ∂xj

,

where,

• π runs through the set Π of all partitions of the set {1. · · · , n},

• B ∈ π means the variable B runs through the list of all “blocks” of the partition
π and

• |A| denotes the cardinality of the set A (so that |π| is the number of blocks in the
partition π and |B| is the size of the block B).

Let us give some generalizations of Faà di Bruno’s formula for a composite
function with a vector-valued argument, see [40].

Lemma 7.6. If f and t are scalars, x(t) = [x1(t), x2(t), · · · , xr(t)]T is an r−vector and
f(x(t)) is a composite function for which all the necessary derivatives are defined, then

Dnf(x(t)) =
∑

0

∑
1

· · ·
∑
n

C(n, ki, qij)
∂kf

∂xp11 ∂x
p2
2 · · · ∂x

pr
r

n∏
i=1

(xi1)qi1(xi2)qi2 · · · (xir)qir ,

where the respective sums are taken over all non-negative integer solution of the Dio-
phantine equation as follows:∑

0

→ k1 + 2k2 + · · ·+ nkn = n∑
1

→ q11 + q12 + · · ·+ q1r = k1

...∑
n

→ qn1 + qn2 + · · ·+ qnr = kn,

and the differential operator D = d
dt

, pj is the order of the partial derivative with
respect to xj, and k is the order of the partial derivative, more precisely

pj = q1j + q2j + · · ·+ qnj, j = 1, 2, · · · , r
k = p1 + p2 + · · ·+ pr = k1 + k2 + · · ·+ kn.
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7.1.5 Gagliardo-Nirenberg inequality

Here we write Gagliardo-Nirenberg inequalities which come into play in the
semi-linear theory to prove global existence of small energy data solutions for wave
models with scale-invariant mass and dissipation.

Lemma 7.7. Let j,m ∈ N with j < m, and let u ∈ Cmc (Rn), i.e., u ∈ Cm with compact
support. Let j

m
≤ a ≤ 1, and let p, q, r ∈ [1,∞] such that

j − n

q
=
(
m− n

r

)
a− n

p
(1− a).

Then

‖Dju‖Lq ≤ Cn,m,j,p,r,a‖Dmu‖ar‖u‖1−a
Lp (7.4)

provided that (
m− n

r

)
− j /∈ N, (7.5)

i.e., n
r
> m − j or n

r
/∈ N. If (7.5) is not satisfied, then (7.4) holds provided that

j
m
≤ a < 1.

Proof. See Theorem 9.3 in [20] part 1.

Remark 7.1. If j = 0, m = 1 and r = p = 2, then (7.4) reduces to

‖u‖Lq . ‖∇u‖θ(q)L2 ‖u‖1−θ(q)
L2 , (7.6)

where θ(q) is given from

−n
q

=
(

1− n

2

)
θ(q)− n

2
(1− θ(q)) = θ(q)− n

2
, (7.7)

that is,

θ(q) =
n

2
− n

q
= n

(
1

2
− 1

q

)
.

It is clear that θ(q) ≥ 0 if and only if q ≥ 2. Analogously θ(q) ≤ 1 if and only if

either n = 1, 2 or q ≤ qGN =
2n

n− 2
. (7.8)

Applying a density argument the inequality (7.6) holds for any u ∈ H1. Assuming
q <∞ the condition (7.5) can be neglected also for n = 2. Summarizing the estimate
(7.6) holds for any finite q ≥ 2 if n = 1, 2 and for any q ∈ [2, qGN ] if n ≥ 3.

7.2 Asymptotic integration lemma

In this appendix we collect some theorems on the asymptotic integration of
ordinary differential equations, which are particularly useful for the treatment on the
Chapter 4 of the pseudo-differential zone. We formulate them in more general form
than used in the Chapter 4. They follow [18, Sections 1.3 and 1.4] adapted to systems
of Fuchs type.
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7.2.1 Levinson type theorems

We consider the following system of ordinary differential equations

t∂tV (t, ν) =
(
D(t, ν) +R(t, ν)

)
V (t, ν), t ≥ 1, (7.9)

depending on a parameter ν ∈ Υ. The matrix

D(t, ν) = diag
(
µ1(t, ν), . . . , µd(t, ν)

)
(7.10)

is diagonal and R(t, ν) ∈ Cd×d denotes a remainder term.
Under a dichotomy condition imposed on D and appropriate smallness condi-

tions on the remainder R the diagonal matrix D determines asymptotic properties of
solutions to (7.9). We denote by ek the k-th basis vector of Cd.

Theorem 7.5. Assume that for i 6= j

lim sup
t→∞

sup
ν∈Υ
<
∫ t

1

(
µi(s, ν)− µj(s, ν)

)ds

s
< +∞

or lim inf
t→∞

inf
ν∈Υ
<
∫ t

1

(
µi(s, ν)− µj(s, ν)

)ds

s
> −∞ (7.11)

together with

sup
ν∈Υ

∫ ∞
1

‖R(t, ν)‖dt

t
<∞. (7.12)

Then there exist solutions Vk(t, ν) to (7.9) satisfying

Vk(t, ν) =
(
ek + o(1)

)
exp

(∫ t

1

µk(τ, ν)
dτ

τ

)
(7.13)

uniformly in the parameter ν ∈ Υ.

Proof. This is a reformulation of Theorem 1.3.1 from [18] with the substitution t = ex.
For the convenience of the reader we sketch the main idea of the proof. We may
replace the dichotomy condition (7.11) by an ’either-or’ statement assuming in the
first case that in addition

lim inf
t→∞

inf
ν∈Υ
<
∫ t

1

(
µi(s, ν)− µj(s, ν)

)ds

s
= −∞ (7.14)

holds true. This yields an ordering of the diagonal entries according to their strength
and we may assume without loss of generality that for i < j the first alternative holds
true. Furthermore, if we write

V (t, ν) = Z(t, ν) exp

(∫ t

1

µk(τ, ν)
dτ

τ

)
(7.15)

for a fixed index k then the function Z(t, ν) satisfies the transformed equation

t∂tZ(t, ν) = (D(t, ν)− µk(t, ν)I +R(t, ν))Z(t, ν) (7.16)
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and we have to show that there exists a solution to that equation tending to ek uni-
formly with respect to ν ∈ Υ. Thus it is sufficient to prove the original theorem for
the case µk = 0. Let Φ(t) = Φ−(t, ν) + Φ+(t, ν) be the fundamental solution to the
diagonal part, split as

Φ−(t, ν) = diag(exp

(∫ t

1

µ1(τ, ν)
dτ

τ

)
, . . . , exp

(∫ t

1

µk−1(τ, ν)
dτ

τ

)
, 0, . . .) (7.17)

and

Φ+(t, ν) = diag(0, . . . , 0, 1, exp

(∫ t

1

µk+1(τ, ν)
dτ

τ

)
, . . . , exp

(∫ t

1

µd(τ, ν)
dτ

τ

)
)

(7.18)
according to the asymptotics of the entries. Then (7.9) rewrites as an integral equation

V (t, ν) = ek + Φ−(t, ν)

∫ t

t0

Φ−1(τ, ν)R(τ, ν)V (τ, ν)
dτ

τ

− Φ+(t, ν)

∫ ∞
t

Φ−1(τ, ν)R(τ, ν)V (τ, ν)
dτ

τ
. (7.19)

By construction we obtain ‖Φ−(t, ν)Φ(τ, ν)−1‖ ≤ C− uniformly on 1 ≤ τ ≤ t and
‖Φ+(t, ν)Φ(τ, ν)−1‖ ≤ C+ uniformly on t ≤ τ <∞. Thus, this equation can be solved
uniquely in L∞([1,∞)) by the contraction mapping principle as∣∣∣∣Φ−(t, ν)

∫ t

1

Φ−1(τ, ν)R(τ, ν)V (τ, ν)
dτ

τ

− Φ+(t, ν)

∫ ∞
t

Φ−1(τ, ν)R(τ, ν)V (τ, ν)
dτ

τ

∣∣∣∣
≤ (C− + C+)

∫ ∞
t0

‖R(τ, ν)‖dτ

τ
‖V (·, ν)‖L∞ (7.20)

is contractive for t0 sufficiently large. Thus, solutions to (7.19) are uniformly bounded.
To show that they tend to ek for t → ∞ uniformly with respect to ν ∈ Υ one uses the
stronger form (7.11)–(7.14) of the dichotomy condition. Indeed, writing (7.19) for
t > T as

V (t, ν) = ek + Φ−(t, ν)

∫ T

t0

Φ−1(τ, ν)R(τ, ν)V (τ, ν)
dτ

τ
+ Ψ(t, ν) (7.21)

with

Ψ(t, ν) = Φ−(t, ν)

∫ t

T

Φ−1(τ, ν)R(τ, ν)V (τ, ν)
dτ

τ

− Φ+(t, ν)

∫ ∞
t

Φ−1(τ, ν)R(τ, ν)V (τ, ν)
dτ

τ
(7.22)

we obtain

‖Ψ(t, ν)‖ ≤ (C− + C+)

∫ ∞
T

‖R(τ, ν)‖dτ

τ
‖V (·, ν)‖L∞ (7.23)
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uniformly in t ≥ T and ν ∈ Υ. Hence, we can choose T large enough such that
‖Ψ(t, ν)‖ ≤ ε. But then the dichotomy condition implies Φ−(t, ν) → 0 uniformly in ν
and thus

‖V (t, ν)− ek‖ ≤ 2ε (7.24)

holds true uniformly in ν ∈ Υ and t > T sufficiently large. As ε was arbitrary, the
statement is proven.

Remark 7.2. We will use a special form of the previous theorem, where the diagonal
matrices D are constant and independent of ν,

D = diag(µ1, . . . , µd). (7.25)

In this case the dichotomy condition (7.11) is trivially satisfied as the appearing inte-
grals are all logarithmic functions in t which can’t approach both infinities. Hence,
(7.12) is sufficient to conclude the existence of solutions

Vk(t, ν) = (ek + o(1))tµk (7.26)

for all k and if in addition it is known that µi 6= µj for i 6= j this yields a fundamental
system of solutions. If the diagonal entries coincide, one has to make further assump-
tions on lower order terms to get precise asymptotic properties, in particular (7.12)
has to be replaced by adding logarithmic terms.

Levinson’s theorem yields a corresponding statement for the fundamental solution-
valued solution to (7.9). This follows immediately from the following variant of Liouville
theorem. We assume for simplicity that D is constant and that the entries are distinct.
Then we take the solutions Vk constructed above as fundamental system. Their Wron-
skian satisfies

WV1,...,Vd(t) = det
(
V1(t, ν)| · · · |Vd(t, ν)

)
= tµ1+µ2+···+µk . (7.27)

If we denote by EV (t, 1, ν) the matrix valued solution to

t∂tEV (t, 1, ν) =
(
D +R(t, ν)

)
EV (t, 1, ν), t ≥ 1, (7.28)

combined with EV (1, 1, ν) = I, it follows that

EV (t, 1, ν) =
(
V1(t, ν)| · · · |Vd(t, ν)

)(
V1(1, ν)| · · · |Vd(1, ν)

)−1 (7.29)

and the norm of the inverse matrix can be estimated by Cramer’s rule combined with
Hadamard’s inequality as

‖
(
V1(1, ν)| · · · |Vd(1, ν)

)−1‖ ≤ d
(

max
1≤k≤d

‖Vk(1, ν)‖
)d−1 (7.30)

and thus
‖EV (t, 1, ν)‖ ≤ Ctmaxj <µj (7.31)

uniformly in ν.
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Remark 7.3. We can use scaling properties of Fuchs type equations. If V (t, ν) solves
(7.9), then Ṽ (t, ν) = V (λt, ν) solves the re-scaled equation

t∂tṼ (t, ν) =
(
D(λt, ν) +R(λt, ν)

)
Ṽ (t, ν). (7.32)

If λ > 1 then ∫ ∞
1

‖R(λt, ν)‖dt

t
=

∫ ∞
λ

‖R(t, ν)‖dt

t
≤
∫ ∞

1

‖R(t, ν)‖dt

t
(7.33)

and similarly for the integrals in (7.11). Hence, the conditions of Levinson’s theorem
are uniform in λ and thus are the constructed solutions. Therefore, any estimate of the
fundamental solution given in Remark 7.2 is also uniform and therefore of the form

‖EV (λt, λ, ν)‖ = ‖EṼ (t, 1, ν)‖ ≤ Ctmaxj <µj (7.34)

uniformly in λ > 1 and ν ∈ Υ.

7.2.2 Hartman–Wintner type theorems

Now we discuss improvements of Theorem 7.5 based on a diagonalization
procedure. They allow to handle remainders satisfying∫ ∞

1

‖R(t, ν)‖σ dt

t
< C (7.35)

for some constant 1 < σ < ∞. They are constructive and give precise asymptotics
similar to the above theorem. We formulate it in more general form with diagonal
matrix D(t, ν) with entries satisfying the stronger form of the dichotomy condition

<
(
µi(t, ν) − µj(t, ν)

)
≤ C− or <

(
µi(t, ν) − µj(t, ν)

)
≥ C+ (7.36)

uniform in t ≥ t0 and ν ∈ Υ. It implies (7.11).

Theorem 7.6. Assume (7.36) in combination with (7.35). Let further

F (t, ν) = diagR(t, ν) (7.37)

denote the diagonal part of R(t, ν). Then we find a matrix-valued function N(t, ν)
satisfying ∫ ∞

1

‖N(t, ν)‖σ dt

t
< C ′ (7.38)

uniformly in ν ∈ Υ such that the differential expression(
t∂t −D(t, ν)−R(t, ν)

)(
I +N(t, ν)

)
−
(
I +N(t, ν)

)(
t∂t −D(t, ν)− F (t, ν)

)
= B(t, ν) (7.39)

satisfies ∫ ∞
1

‖B(t, ν)‖max{σ/2,1}dt

t
<∞. (7.40)

Furthermore, N(t, ν) → 0 as t → ∞ such that the matrix I + N(t, ν) is invertible for
t ≥ t0. Hence, Ṽ = (I +N(t, ν))−1V solves the transformed problem

t∂tṼ =
(
D(t, ν) + F (t, ν) +R1(t, ν)

)
Ṽ (7.41)

with R1(t, ν) = (I +N(t, ν))−1B(t, ν) also satisfying (7.40).
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Proof. This follows [18] Section 1.5 and is a version of the diagonalization scheme
we applied earlier on. We set D1(t, ν) = D(t, ν) + F (t, ν), F (t, ν) = diagR(t, ν) and
denote R̃(t, ν) := R(t, ν)− F (t, ν). We construct N(t, ν) as solution to

t∂tN(t, ν) = D(t, ν)N(t, ν)−N(t, ν)D(t, ν) + R̃(t, ν), lim
t→∞

N(t, ν) = 0, (7.42)

such that equation (7.39) becomes

B(t, ν) = N(t, ν)F (t, ν)−R(t, ν)N(t, ν). (7.43)

In a first step we estimate N(t, ν). Considering individual matrix entries (7.42) reads
as

t∂tnjj(t, ν) = 0, (7.44)
t∂tnij(t, ν) = (µi(t, ν)− µj(t, ν))nij(t, ν) + rij(t, ν) (7.45)

such that the diagonal entries are given by njj(t, ν) = 0. For the off-diagonal entries
we formulate integral representations and use the auxiliary function

δij(t, ν) =

∫ t

1

(µi(s, ν)− µj(s, ν))
ds

s
. (7.46)

Then the off-diagonal entries are given by Duhamel integrals

nij(t, ν) = −eδij(t,ν)

∫ ∞
t

e−δij(s,ν)rij(s, ν)
ds

s
(7.47)

for those i, j where <(µi − µj) ≥ C+ > 0 and

nij(t, ν) = eδij(t,ν)

∫ t

1

e−δij(s,ν)rij(s, ν)
ds

s
(7.48)

for those with <(µi−µj) ≤ C− < 0. It follows in particular that nij(t, ν)→ 0 as t→∞
and with ±C± ≥ δ > 0 the estimates

|nij(t, ν)| ≤
∫ ∞

1

s−δ|rij(ts±1, ν)|ds
s
, (7.49)

the ±-sign depending on the case of the Dichotomy condition. Therefore, the Lσ-
property of rij implies by Minkowski inequality(∫ ∞

1

|nij(t, ν)|σ dt

t

)1/σ

≤
∫ ∞

1

s−δ
(∫ ∞

1

|rij(ts±1, ν)|σ dt

t

)1/σ
ds

s
, (7.50)

and thus ∫ ∞
1

‖N(t, ν)‖σ dt

t
<∞. (7.51)

uniformly in ν ∈ Υ. Similarly, by Hölder’s inequality and with σσ′ = σ + σ′.

sup
t
|nij(t, ν)| ≤

∫ ∞
1

s−δ|rij(ts±1, ν)|ds
s

≤
(∫ ∞

1

s−δσ
′ ds

s

)1/σ′ (∫ ∞
1

|rij(ts±1, ν)|σ ds

s

)1/σ

(7.52)
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uniformly in ν ∈ Υ. Hence, the matrix N belongs to Lr([1,∞), dt/t) for all σ ≤ r ≤ ∞
uniformly in ν. If σ ≥ 2 then equation (7.43) implies that B(t, ξ) product of two Lσ-
functions and thus in Lσ/2. If σ ∈ [1, 2), then σ′ > σ and thus B(t, ξ) is product of an
Lσ-function with an Lσ′-function and thus in L1.

We distinguish two cases. If σ ∈ (1, 2] the transformation reduces the system to
Levinson form and Theorem 7.5 applies. If σ is larger, than one application of the
transform gives a new remainder satisfying (7.35) with σ replaced by σ/2.

In the first case one conclusion of Theorem 7.6 is the existence of solutions

Vk(t, ν) =
(
ek + o(1)

)
tµk exp

(∫ t

0

rkk(s, ν)
ds

s

)
, k = 1, . . . , d, (7.53)

uniformly in the parameter, provided D = diag(µ1, . . . , µd) with distinct entries and
R ∈ Lσ([1,∞), dt/t).
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