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Abstract

With the exponentially growing of data available on the Web, several projects were cre-

ated to automatically represent this information as knowledge bases(KBs). Knowledge

bases used in most projects are represented in an ontology-based fashion, so the data can

be better organized and easily accessible. It is common to map these KBs into a graph

to apply graph mining algorithms to extract implicit knowledge from the KB, knowl-

edge that sometimes is easy for human beings to infer but not so trivial to a machine.

One common graph-based task is link prediction, which can be used not only to predict

edges (new facts for the KB) that will appear in a near future, but also to find misplaced

edges (wrong facts present in the KB). In this project, we create algorithms that uses

graph-mining (mostly link-prediction based) approaches to find implicit knowledge from

ontological knowledge bases. Despite of common graph-mining algorithms, we mine not

just the facts on the KB, but also the ontology information (such as categories of in-

stances and relations among them). The implicit knowledge that our algorithms will

find, is not just new facts for the KB, but also new relations and categories, extending

the ontology as well.



Resumo

Com o crescimento exponencial dos dados dispońıveis na Web, diversos projetos foram

criados para automaticamente respresentar esta informação como bases de conheci-

mento(KBs). As bases de conhecimento utilizadas na maioria destes projetos são repre-

sentadas através de uma ontologia, então os dados ficam melhor organizados e facilmente

acesśıveis. É comum mapear estes KBs utilizando grafos para aplicação de algoritmos

de mineração em grafos com o inuito de extrair conhecimento impĺıcito do KB, conheci-

mento que as pode ser facil para seres humanos inferir mas não são tão triviais para uma

maquina. Uma tarefa comum é a predição de arestas, que pode ser usada para encontrar

arestas (fatos no KB) que vão aparecer em um futuro próximo, e além disso para encon-

trar arestas mal alocadas (fatos incorretos no KB). Neste projeto, criamos algoritmos

que utilizam mineração em grafos (na maioria baseados em predição de arestas) para

encontrar conhecimento impĺıcito em bancos de conhecimento ontológicos. Apesar do

uso comum de algoritmos de predição de arestas, vamos minerar tambem informacoes

da ontologia (como categorias das instancias e relacoes entre elas). O conhecimento

implicito que nossos algoritmos vai encontrar, serão nao somente novos fatos para o KB,

mas tambem novas relações e categorias, extendendo tambem a ontologia.
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Chapter 1

Introduction

1.1 Context

Currently, a number of different research projects focus on building large scale onto-

logical knowledge bases (also called ontologies), such as Knowledge Vault [2], Free-

base [3], YAGO [4–6], Gene Ontology1 and a continuous learning program called NELL

(Never Ending Language Learner)[1, 7]. An ontological knowledge base (OKB) is usu-

ally used to organize and store knowledge based on two different parts, here described

as: i) an ontological model, where categories (city, company, person, etc.) and relations

(worksFor(person, company), headQuarteredIn(company, city))) are defined, and ii)

a set of facts which are instances of categories (city (New York), company(Disney),

person(Walt Disney), as well as instances of relations (headQuarteredIn(Disney,

Orlando)).

The ontology structure above described is a very simple model, thus in many projects

such as YAGO [4] the initial ontology tends to evolve, being more and more sophisticated

and complex. In projects targeting to extract information (inference process) from

Knowledge Bases (KBs and also from OKBs), such as the few above mentioned, it is

common to see an approach that maps data from the KBs into graphs2. Such mapping

allows the use of graph-mining approaches to the KB. In this sense, techniques such as

1http://geneontology.org/
2sometimes the mapping process doesn’t require any adaptation so it results just in using the KB as

a graph - the mapping is trivial in such cases

1
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link-prediction (that can help finding and extracting useful implicit information from

the graph) can play an important role.

1.1.1 Link-Prediction Task

One of the most studied and disseminated topics in the graph-mining literature is the

link-prediction task. It can be defined as a task to estimate the likelihood of future

existence of an edge, between two nodes, based on the current graph information [8].

One traditional approach, used in several works, is the mapping of a social network

into a graph [9, 10], and then applying link prediction algorithms to find new edges

(friendship) among nodes (friends).

Figure 1.1: Link-Prediction used in ”People You May Know” recommendation in
social network

Figure 1.1 shows an example of a traditional link-prediction method, which is called

the common-neighbors approach, and is used to recommend a new connection between

two people. In the depicted example, John and Peter (nodes of the graph) have a large

number of friends in common, because of that, there will be a high probability of them

knowing each other. Thus, they can be recommended to become friends in the social

network [9].

Mapping a Knowledge Base into a graph, allows literals (or instances) to be repre-

sented as nodes, and the relations between them (the predicates) to be represented as

edges. By simply applying link prediction to the graph we can infer new facts (not

previously present in the KB), as shown in Figure 1.1. But, if we also add ontological

information, for example information about the category of literals(instances), we can

use link-prediction techniques to extend the ontological model itself by finding possible

new relations.
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Figure 1.2 shows an example of how link-prediction can be used to find a possible new

relation to extend the original ontological model. The idea is similar to the one used to

find new facts (instances). The difference is that, counting edges is performed to groups

of nodes (from the same category), instead of to single nodes. Suppose, for instance, that

many nodes from athlete category are related to nodes from sport category. In addition,

suppose also that many nodes from sport category are related to nodes from sportsLeague

category. In such a scenario, a relation between athlete and sportsLeague categories can

be recommended, in this case the new relation could be named athletePlaysInLeague.

Figure 1.2: Link-Prediction applied to propose a new relation(athletePlaysLeague)

1.1.2 Using Ontological Information to Find Implicit Knowledge

The main focus of our research is to investigate algorithms that would explore the use of

ontological information from an OKB to discover/extract implicit knowledge to augment

the original OKB itself. Starting from the definition of a simple OKB, such as presented

in this section (containing a set of categories, a set of relations among these categories,

instances of the categories and relations among the instances), we intend to proceed our

investigation and, also to propose approaches that can take advantage of such ontological

information to find new instances and also to extend the original ontology. By ontology

extension, we mean, the approach should focus also on finding new categories, as well

as new relations among the categories.
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In the last subsection we presented some link prediction techniques examples that help

to find instances (Figure 1.1), and also to find new possible relations among categories

(Figure 1.2. Beyond that, we also want to explore, in this research work, techniques

to extend the ontology finding new categories. For that purpose, we could use for

example another graph mining task, called community detection[11], to divide or find

sub-categories for a given category already in the OKB (see Figure 1.3 for an example).

Figure 1.3: Athlete category, and the sub-groups (or sub-categories) that could be
found with a community detection algorithm

Figure (1.3) shows an example of the task of find new categories (more specifically in this

case, sub-categories of an already existing category) through community detection. In

that figure, category athlete is present, and a community detection algorithm could find

soccer player, basketball player and baseball player subcategories, using the topology of

the graph. We can observe that the nodes of these groups are dense connected to each

other, while the connection with node of other groups are very sparse.

1.2 Motivation

As we show in the beginning of this chapter, there is a lot of interest on building

large OKBs, generally, by gathering data from large corpora of text, websites such as

Wikipedia, or the web in general. Despite of the gigantic size of these OKBs, the

techniques used to extract knowledge from text (and from semi-strutured sources, like

Wikipedia) generally are not enough to make a machine (computer) capable of infering
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implicit knowledge like human beings do. Thus, in addition to harvest these sources

to extract knowledge, a lot of implicit knowledge might be present in these OKBs,

which require inference-based algorithms to extract them. For example, consider the

two follow statements: “athlete Neymar Jr. plays on team Barcelona” and “athlete

Neymar Jr. plays on league Champions League”. Considering both statements, there

an implicit knowledge: “team Barcelona plays on league Champions League”. A human

being probably would easily infer this implicit knowledge just by reading the first two

facts, but for a machine, it is not so easy to learn to infer it.

Considering its never-ending learning characteristics, NELL [1, 7] is the main motiva-

tion of the research work here proposed. To build its continuously growing knowledge

base, NELL reads the web 24 hours per day, 7 days per week with two specific goals:

populate its own knowledge base and improve its learning abilities. A lot of research

was made to allow NELL performing these tasks based on different components (most

of the research is listed in its website3) and different theoretical approaches. NELL’s

different components work together extracting information and learning from the web

(such as CPL and CSEAL), as well as from NELL’s own knowledge base (such as CMC

, RL and PRA[12–14]).

An important characteristic of an OKB (such as NELL’s) is that the ontology structure

itself can be considered to have specific patterns that can be used to infer new knowl-

edge, thus, to learn new categories or new possible relations to be added to the OKB,

would mean to obtain new knowledge. There are not many research works focused on

extending an ontology by finding implicit knowledge in the form of new categories and

new relations. Considering NELL, for example, there were not any active component to

extend its own ontology, before this work. There were, however, two components that

were previously designed to find new relations, namely Prophet[15] and OntExt[16], and

there was previous research on finding sub-categories for categories already present in

NELL’s own OKB based on the use of matrix factorization to cluster instances from

each category[17].

The first attempt to automatically extend NELL’s OKB was designed based on a distant

supervision learning approach and is named OntExt (Ontology Extender)[16]. OntExt

was designed to match all pairs of categories present in NELL’s ontology. For each pair

3http://rtw.ml.cmu.edu/rtw/publications
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of categories, the idea is to gather all instances and use them to extract features from

an external textual corpus or database (such as subject-verb-object files, also known as

SVO). After that, OntExt creates a feature X feature co-occurency matrix and cluster

these pairs of features into groups. Each group is intended to represent a new possible

relation between two categories. The name of the relation would be the top ranked

feature in the group (or the group centroid).

The biggest problem with OntExt is that it does not scale well. To generate the features

co-ocurrency matrix, the complexity is O(n3), and to cluster the matrix, OntExt uses

K-Means clustering algorithm[18], that has a considerably high complexity too. Because

of this high complexity issue, it wouldn’t be feasible to run OntExt for all category pairs

combinations in an acceptable time window, to make it iterative and never-ending like

NELL.

Prophet [15] was designed to be one of NELL’s ontology extension components. The

main idea behind Prophet is to map NELL’s own OKB into a graph structure, and then,

apply link-prediction techniques into the generated graph. It executes a link-prediction

task using a metric called extra-neighbors[15] to extend NELL’s ontology by finding

new possible relations. Also, Prophet can be used to find new instances of the proposed

relations and some possible misplaced facts present on the KB.

Prophet’s first implementation has some software engineering issues, like, it doesn’t scale

well if the input graph grows too much on the number of nodes and edges. Also, the

score for the proposed relations (in its first implementation) are not precise, thus a great

part of those proposed relations might not be correct. Another limitation is that the

first implementation was directly coded into NELL’s KB by SQL queries, having his use

restricted to NELL. Besides all of that, Prophet just points two categories that might be

related, and it doesn’t give a name to the relation and can’t tell if there is more than one

possible relation among the two related categories (e.g playedAgainst(athlete, athlete),

teammate(athlete, athlete)).

Based on the lack of ontology extension components to NELL (and also to other OKB-

based projects), the main goals of this research were, given an Ontological Knowledge

Base as input:

I Design and Implement an algorithm to find new relations in NELL’s OKB;
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II Design and Implement an algorithm to find new categories in NELL’s OKB.

III Design and Implement an algorithm to find new facts for the OKB using the On-

tology Information.

1.3 Methodology

To accomplish all goals, we focused on a graph mining approach, so the main related

research works are Prophet[19] and PRA[12, 13]. Another research that worth attention,

mainly for the ontology extension algorithms, is OntExt[16]. Besides the main focus

being on these three related works, other contributions reported on the literature were

also studied during our work.

To achieve goal I, a new version of Prophet was designed and implemented in C++ to

be more generic, allowing other projects to use it (we intend to let it freely available for

download in the web), and also more scalable than the original one. After that, a new

OntExt version was also created and integrated with Prophet to take advantage of their

complementary characteristics.

It is important to mention that, because of Prophet’s intrinsic characteristics, its algo-

rithm can be easily adapted to be used as an OKB inference method. In this sense,

if instead of focusing only on open triangles (as done in Prophet), we focus on closed

triangles, the algorithm can be adapted to generate first order inference rules from the

OKB. Thus, as a side effect of the re-implementation of Prophet, a new inference rule

extractor for OKBs was designed and implemented. Considering that the new inference

algorithm is also based on link-prediction graph mining techniques, it is called the Graph

Rule Learner - GRL. Therefore, in spite of not having the main goal of proposing a new

OKB inference algorithm, this masters work contributes GRL as a side effect of its first

goal, and defined as the third goal.

To achieve the second goal, an algorithm that clusters each category to find sub-

categories was created. This algorithm is similar to OntExt, because it will build a

features-based matrix to cluster the instances of the given category to find new sub-

categories. And to achieve the third goal, as already mentioned, an algorithm that is
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very similar to Prophet, was created to find patterns that are present at the graph to

create inference rules to extract implicit facts.

A sumarization of the methodology is presented below:

• Investigation of past research works about ontology knowledge bases, and ontology

extension algorithms;

• Analysis of previous works about Prophet[15, 19] and OntExt[16] and Chunlei’s

category extension approach [17];

• Design and implementation of a new version of Prophet, as well as a new version

of OntExt, and integrate both of them to achieve goal I;

• Investigation the use of elements of OntExt and Prophet (like the Extra-Neighbors

Index) to create algorithms to achieve goal II and III;

• Implementation and validation of the algorithms designed to solve goals I, II and

III;

• Integration of these algorithms to run within NELL.

1.4 Organization

In the Chapter 2, the review of the literature for the research is present, containing also

one section briefly presenting NELL with its initial architecture. Chapter 3 presents the

Ontological Network structure and how to map an Ontological Knowledge Base using

it. This structure is used in the next chapters to explain and exemplify our projects:

in Chapter 4 the on that finds new facts, in Chapter 5 the one that finds new relations

and in Chapter 5.5 the one that finds new categories, all of them using the ontology to

find implicit knowledge. After that in Chapter 5.7 we present some future extensions

to our projects and following in Chapter 5.10 the final conclusion. Next to that are an

Appendix presenting some results of the projects and following that the bibliography

references.



Chapter 2

Literature Review

In this chapter we present the background theories and methods important to ours

masters project, and also Nell’s architecture and how its OKB is defined.

2.1 Background

As aforementioned, our proposal is to investigate, design and implement algorithms to

(semi)automatically extend OKBs. Our intention is to explore the possibility of mapping

an input OKB into a graph, and then use graph mining techniques. The main approach

in which our research is based on is link-prediction. In the last years a large number of

methods has been proposed on this topic, and a review on those can be seen in [20].

Most link prediction methods are based on graph structural properties [21] in which the

goal is to assign connection values, called score(u;w), to pairs of nodes 〈u,w〉 based on a

graph G. Traditionally, the assigned scores are later ranked in a list in decreasing order

of score(u;w), and then, predictions are made according to this list.

For a node u in the graph G, let Γ(u) denote the set of neighbors of u in G. A number

of link prediction approaches are based on the idea that two nodes in G (e.g u and w)

are more likely to link to each other, in the future, if their sets of neighbors Γ(u) and

Γ(w) largely overlap.

The most straightforward implementation of this link-prediction idea is the common-

neighbors metric [9], under which the scores are defined as score(u;w) := |Γ(u) ∩ Γ(w)|.

9
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Common-neighbors predictor captures the basic notion, inspired in social networks, that

two strangers who have a common friend may be introduced by that common friend and,

thus, become friends themselves. When analyzing his introduction act in a graph-based

context, it has the effect of “closing a triangle” in the graph and feels like a common

mechanism in real life [22].

Link prediction can make use not only of graph structural information but also relational

characteristics, for example attributes related with graph’s node as presented in [23].

This kind of approach is more used in relational or multi-relational learning [8, 24–26].

Besides the amount of different approaches described in the literature for the link predic-

tion task, results presented in [27] indicate that the simplest measure, namely common

neighbors has, in general, the best overall performance. Also, this very simple approach

has the property of making it easy to calculate a cumulative number of neighbors if

nodes were associate to a class.

Another technique that we widely use in this research is clustering. A review on those

can be seen in [28]. Clustering algorithms are mostly used to solve unsupervised learning

problems[29], so, as every other problem of this kind, it deals with finding a structure in

a collection of unclassified data. A loose definition of clustering algorithm could be “the

process of organizing objects into groups whose members are similar in some way”, so, a

cluster is a collection of objects which are “similar” between them and are “dissimilar”

to the objects belonging to other clusters.

One of the most famous clustering algorithm is called k-means[18]. It works iteratively

creating centroids(data points in which each feature is the mean of the group’s data

points feature) them relocating the data points to the closest centroid, until is error

is lower to a given threshold. Generally, k-means is used to cluster data points with

numerical features, so the most common distance functions used is Euclidean Distance

or Manhattan distance[30]. The distance function can be different to work with discrete

data (like text).

We also talk a lot about rule learners and inference rules. An inference Rule (or just

rule) is a logical form, consisting of a conclusion r, and premises p1, p2, ..., pn. One

possible representations is r ⇐= p1 ∧ p2 ∧ ... ∧ pn. The premises and the conclusion

are literals that can be predicates (p), a logical function p(x1, x2, ..., xn) that can only
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return true or false. For example. we can have the following rule: grandfather(A,C)⇐=

father(A,B)∧ father(B,C), that indicates that if A is father of B, and B father of C,

then A is grandfather of C.

2.2 NELL

The Read The Web project’s system is called the Never Ending Language Learner

(NELL) [1]. NELL is a long life learning system that reads the web 24h a day, 7 days

a week, since January, 2010. In each iteration NELL main goals are to learn new facts,

extends its ontology finding new categories and relations, and to improve its learning

abilities.

NELL’s knowledge Base can be considered an ontological knowledge base (OKB): com-

posed by categories (e.g. person, sportsTeam, fruit, emotion, etc.) and relations

(e.g. musicianPlaysInstrument(musician, instrument)). Category instances (e.g. per-

son(Barack Obama), sportsTeam(Pittsburgh Steelers)), as well as relation instances (e.g.

athletePlaysFroTeam(Ward, Pittsburgh Steelers)) are facts. NELL’s OKB is divided in

two main types of facts, Candidate Facts, are those facts that NELL has weak evidence

of their truth, but not enough to be confident about them. On the other hand, Beliefs

are facts that NELL is confident enough about their truth.

Figure 2.1: NELL initial core structure (figure presented at [1])
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Figure 2.1 shows the core structure of NELL, its OKB and the main four components

that read the web and transform the information available in knowledge. This four

components are briefly describe below:

CPL: extracts knowledge using contextual patters like “mayor of x” and “X plays for

Y”;

CSEAL: semi-structured extractor which queries the Internet with sets of beliefs from

each category and relation, and then mines lists and tables to extract novel in-

stances of the corresponding predicate;

CMC: based on simple set of binary L2-regularized logistic regression models which

classify noun phrases based on various morphological features (words, capitaliza-

tion, affixes, parts-of-speech, etc.);

RL: first-order relational learning algorithm similar to FOIL, which learns probabilistic

Horn clauses from the ontology. It is possible to compare it to a procedure that

identifies sets of relations (sets of three relations) that are already present in the KB

and can be connected in a transitivity-based approach such as: if relation1(A,B)

and relation2(B,C) both hold, then relation3(A,C) also holds.

The main motivation of this whole Masters research project is NELL and all of the

algorithms that are presented in the next chapters are intended to work as NELL’s

components, automatically and iteratively finding new facts (such as the ones presented

above), and also new relations and categories to extend its ontology.



Chapter 3

Ontological Networks

In this chapter we will present the Ontological Network structure, that was designed to

formally map an ontological knowledge base (OKB) into a graph. This structure was

designed mainly to help in the design and description of the algorithms of the projects of

this research. But we believe that is can also be very helpfull to other recent researches

that uses OKBs.

There are libraries such as graphOnt[31] that maps ontologies into graphs for better

visualization or analysis, and also a class called OWLGraphWrapper1 from OWLTools.

These libraries are very useful to directly apply some graph-like operations over onto-

logical knowledge bases, but none of them described a formal definition.

First there’s a definitions section to formally present some notations that will be used in

this chapter and in the algorithms in the next chapters either, then we formally define

an ontological KB to them formally define an ontological network and the mapping

process. We also present some examples in this chapter that will be used to exemplify

the algorithms in the next chapter either.

3.1 Base Definitions

Let G = (V,E) be an undirected graph with a set of nodes V and a set of edges E.

Γ(u) := {v ∈ V : ∃{v, u} ∈ E} of node u is defined to be the set of nodes in V that are

1http://owltools.googlecode.com/svn/trunk/docs/api/owltools/graph/OWL GraphWrapper.html

13
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adjacent to u. The number of common neighbors between two nodes (u and v) can be

defined as ℵ(u, v) = |Γ(u) ∩ Γ(v)|.

A closed triangle ∆(u, v, w) of a graph G = (V,E) is a set of three complete connected

nodes where u, v, w ∈ V and ∆(u, v, w) = {< u, v >,< v,w >,< w, u >} ∈ E. An

open triangle Λ(u,w) of a graph G = (V,E) is three connected node where Λ(u,w) =

{(u, v), (v, w)} ∈ E ∧ {u,w} /∈ E. The ∆c(c1, c2, c3) represents all the closed triangles

composed by node’s of categories c1, c2 and c3 and Λc(c1, c2) represents all the open

triangles composed by node’s categories of c1 and c2 (in this case, the middle nodes

categories doesn’t matter). Any ∆c is called a closed triangles category group and

any Λc is called a open triangles category group. The cu of a node u is the set of

the categories that u belongs to.

3.2 Defining an Ontological Knowledge Base (OKB)

To define an ontological network created from an OKB, we need to formally define an

OKB first. In this section an OKB format we call OKB2 is defined. To do so it is used

predicate logic elements.

Definition 1. An Ontological Knowledge Base OKB2 = (C,H,R, I) is composed by

four components: a set of categories(C), a set (H) of predicates “ako(a kind of)” that

express the hierarchy against the categories, a set (R) of predicates that express relation

among the categories.

• ∀ predicates p(t1, t2) ∈ H,R the arity of p is 2 (p/2) and t1, t2 ∈ C;

• The predicate “ako” ∈ H are transitive: if ako(t1, t2),ako(t2, t3) ∈ H, then ako(t1, t3)

∈ H;

• It must not exist predicates with equal terms in H: ako(t, t) /∈ H;

At last, a set of instances(I) of the categories(C) and relations(R). The instances set(I)

are the facts of the OKB2. The set (I) can be divided in two subsets, the categorization

set and the relational set (I = Ic ∪ Ir)

• The categorization set (Ic) is composed by predicates pc(t) with names of the

categories in C (pc in C) and the arity of pc is 1 (pc/1).
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• The relational set (Ir) is composed by predicates pr(t1, t2) such that: pr(c1, c2) ∈ R

and c1(t1), c2(t2) ∈ Ic.

The number 2 in the name of our OKB model (OKB2) was chosen because all of the

relations on this model can only have arity 2. Above we present an example to better

illustrate how OKB2 works.

Example 1. Consider an ontological knowledge base OKB2
social = (C,H,R, I) used to

store data from a social network that have different types of relations.

• C={Person, MaleP, FemaleP};

• H={ako(MaleP, Person), ako(FemaleP, Person)}

• R={friends(Person, Person), fatherOf(MaleP, Person), motherOf(FemaleP, Per-

son), descendant(Person, Person), relationship(MaleP, FemaleP), relationship(FemaleP,

MaleP)}

• I = Ic ∪ Ir = {Person(Lucas), MaleP(Lucas), Person(Jose), MaleP(Jose), Per-

son(Raquel), FemaleP(Raquel), Person(Julia), FemaleP(Julia), Person(Vinicius),

MaleP(Vinicius), Person(Leo), ...} ∪ {friends(Lucas, Leo), friends(Vinicius, Leo),

friends(Julia, Raquel), relationship(Lucas, Julia), relationship(Raquel, Jose), rela-

tionship(Jose, Raquel), descendant(Lucas, Jose), descendant(Vinicius, Jose), de-

scendant(Vinicius, Raquel), fatherOf(Jose, Lucas), motherOf(Raquel, Lucas), moth-

erOf(Raquel, Vinicius), ...}

3.3 Defining an Ontological Network (N o)

In this subsection we’ll define an ontological network (No) created from an arbitrary

ontological knowledge base OKB2.

Definition 2. An Ontological Network No = (Gm, Gi) is composed by two graphs, an

ontological model graph (Gm) and an ontological instances graph (Gi).

An Ontological Model Graph Gm = (Vm, Em) has the same purpose of the model parts

on the OKB2, to determine the categories that the instances can be and the possible

relationships between categories. The set of nodes Vm is composed by labeled nodes
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that represents categories, and the set of edges Em is composed by labeled edges that

represents a relation name.

Definition 3. Given an Ontological Knowledge Base OKB2 = (C,H,R, I), an Ontologi-

cal Model Graph Gm = (Vm, Em) can be created to map the ontological model of OKB2

such as:

• Vm ≡ C: ∀ c ∈ C ∃ v ∈ Vm | v.label = c;

• Em ≡ H ∪R: ∀ p(t1, t2) ∈ H ∪R ∃ e ∈ Em | e = p < t1, t2 >;

To better illustrate an ontological model graph, above an example is present, mapped

from the OKB2 of Example 1.

Example 2. Given the OKB2
social presented at Example 1, the ontological model graph

Gm = (Vm, Em) mapped by it would be:

• Vm = {Person,MaleP, FemaleP};

• Em = {ako < MaleP, Person >, ako < FemaleP, Person >, friends< Person,

Person >, fatherOf< MaleP, Person >,...};

Figure 3.1: Ontological Model Graph Example

The Figure 3.1 is the graphic representation of the graph presented in Example 2.

An Ontological Instances Graph Gi = (Vi, Ei, X) is the graph that will be the network of

the instances of the KB. The set of nodes Vi is composed by labeled nodes, representing

the instances (the parameters of the predicates ∈ I). The set of edges Ei is composed by

labeled edges that represents relations among two instances. The set X is the category

list, having the category information for each node.
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Definition 4. Given an Ontological Knowledge Base OKB2 = (C,H,R, Ic ∪ Ir) and

Ontological Model Graph Gm = (Vm, Em) mapped from OKB2, an ontological instances

graph Gi = (Vi, Ei, X) can be created to map the instances of OKB2 such as:

• ∀ pc(t) ∈ Ic ∃ v ∈ Vi | v.label = t;

• Ei ≡ Ir: ∀ pr(t1, t2) ∈ Ir ∃ e ∈ Ei | e = pr < t1, t2 >;

• X ≡ Ic: ∀ pc(t) ∈ Ic ∃ x ∈ X | x = (t, pc);

To better illustrate an ontological instances graph, above an example is present, mapped

from the OKB2 of Example 2.

Example 3. Given the OKB2
social presented at Example 1, the ontological instances

graph Gi = (Vi, Ei) mapped by it would be:

• Vi = {Lucas, Jose, Raquel, Vinicius, Leo, Julia, ...};

• Ei = {friends(Lucas, Leo), descendant(Lucas, Jose), fatherOf(Jose, Vinicius), re-

lationship(Lucas, Julia), ...};

• X = {(Lucas, Person), (Lucas, MaleP), (Raquel, Person), (Raquel, FemaleP),

(Leo, Person), ... }

Figure 3.2: Ontological Instances Graph Example
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The Figure 3.2 is the graphic representation of the portion of the graph presented in

Example 3 (mapped from I of Example 1). The categorization set X is represented by

the node colors and shapes.

An alternative format for a No, that can be also very interesting to apply graph-mining

algorithms, is a format with just one unified graph:

No′ = (Vm ∪ Vi, Em ∪ Ei ∪X)

In No′ there is just one graph, unifying the ontological model with the instances. In

practice this network generally will look like a small world network[32], with the category

nodes being the hubs.

We use an OKB2 to build (and define) and Ontological Network, but an No can exists

by itself, and not just mapped from an OKB. Actually, OKB2 and No are equivalent

models. It is possible to represent anyone of the two of them using the other.

3.4 Setting a second example

Now that OKB2 and No models are already defined, in this section a second example

is presented. It will be an OKB containing sport-related data. This example and the

social network example will both be used in the next chapters to exemplify the algorithms

created in this project. OKB2 and No will be presented to better exemplify the mapping

process.

3.4.1 OKB2
sports

Consider an ontological knowledge base OKB2
sports = (C,H,R, I) used to store data

from knowledge related to sports:

• C={Athlete, SportsTeam, SportsLeague, Stadium, Continent};

• H={} (empty)

• R={athletePlayedAtCountry(Athlete, Contry), athletePlaysForTeam(Athlete,

Team), athletePlayedAtStadium(Athlete, Stadium),
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teamPlaysLeague(SportsTeam, SportsLeague),

teamPlayedAtCountry(SportsTeam, Country), leagueUsesStadium(SportsLeague,

Stadium), stadiumLocatedAtCountry(Stadium, Contry),

athletePlayedAtStadium(Athlete, Stadium),

leaguePlacedAtCountry(SportsLeague, Country)}

• I = Ic ∪ Ir = {Athlete(Neymar Jr,), Athlete(Jorge Valdivia), Country(Spain),

Country(Brazil), Stadium(Camp Nou), Stadium(Vila Belmiro), Stadium(Allianz

Pq) SportsTeam(Barcelona), SportsTeam(Palmeiras), SportsLeague(Champions

League), SportsLeague(Brazillian Cup), athletePlayedAtStadium(Neymar Jr.,

Vila Belmiro), athletePlayedAtStadium(Jorge Valdivia, Vila Belmiro),

athletePlaysForTeam(Neymar Jr., Barcelona), athletePlaysForTeam(Jorge

Valdivia, Palmeiras), athletePlayedAtCountry(Neymar Jr., Spain),

athletePlayedAtCountry(Neymar Jr., Brazil), athletePlayedAtCountry(Jorge

Valdivia Brazil), stadiumLocatedAtCountry(Camp Nou, Spain),

stadiumLocatedAtCountry(Vila Belmiro, Brazil),

stadiumLocatedAtCountry(Allianz Pq, Brazil), teamPlaysLeague(Barcelona,

Champions League), teamPlaysLeague(Palmeiras, Brazillian Cup),

teamPlayedAtCountry(Barcelona, Spain), teamPlayedAtCountry(Palmeiras,

Brazil), leagueUsesStadium(Brazillian Cup, Allianz Pq.),

leagueUsesStadium(Champions League, Camp Nou),

leaguePlacedAtCountry(Champions League, Spain),

leaguePlacedAtCountry(Brazillian Cup, Brazil), ...}

3.4.2 N o
sports = (Gm, Gi)

Given the OKB2
sports, the ontological model graph Gm = (Vm, Em) mapped by it would

be:

• Vm = {Athlete, SportsTeam, SportsLeague, Stadium,Continent};

• Em = {athletePlayedAtCountry<Athlete, Contry>,

athletePlayedForTeam<Athlete, Team>, athletePlaysForTeam<Athlete, Team>,

athletePlayedAtStadium<Athlete, Stadium>, teamPlaysLeague<SportsTeam,

SportsLeague>, leagueUsesStadium<SportsLeague, Stadium>,
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stadiumLocatedAtCountry<Stadium, Contry>,

athletePlayedAtStadium<Athlete, Stadium>};

Figure 3.3: Ontological Model Graph Gm of Sports Network

Given the OKB2
sports, the ontological instances graph Gi = (Vi, Ei) mapped by it would

be:

• Vi = {Neymar Jr., Jorge Valdivia, Spain, Brazil, Camp Nou, Vila Belmiro,

Allianz Pq, Palmeiras, Barcelona, Champions League, Brazillian Cup, ...};

• Ei = {athletePlayedAtStadium<Neymar Jr., Vila Belmiro>,

athletePlayedAtStadium<Jorge Valdivia, Vila Belmiro>,

athletePlaysForTeam<Neymar Jr., Barcelona>, athletePlaysForTeam<Jorge

Valdivia, Palmeiras>, athletePlayedAtCountry<Neymar Jr., Spain>,

athletePlayedAtCountry< Neymar Jr., Brazil>, athletePlayedAtCountry< Jorge

Valdivia Brazil>, stadiumLocatedAtCountry<Camp Nou, Spain>,

stadiumLocatedAtCountry<Vila Belmiro, Brazil>, stadiumLocatedAtCountry<

Allianz Pq, Brazil>, teamPlaysLeague< Barcelona, Champions League>,

teamPlaysLeague< Palmeiras, Brazillian Cup>,

teamPlayedAtCountry<Barcelona, Spain>, teamPlayedAtCountry<Palmeiras,

Brazil>, leagueUsesStadium<Brazillian Cup, Allianz Pq.>,

leagueUsesStadium<Champions League, Camp Nou>,
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leaguePlacedAtCountry<Champions League, Spain>,

leaguePlacedAtCountry<Brazillian Cup, Brazil>, ...};

• X = {(Neymar Jr., Athlete), (Jorge Valdivia, Athlete), (Spain, Country),

(Brazil, Country), (Camp Nou, Stadium), (Vila Belmiro, Stadium), (Allianz Pq,

Stadium), (Barcelona, SportsTeam), (Palmeiras, SportsTeam), (Champions

League, SportsLeague), (Brazillian Cup, SportsLeague), ... }

Figure 3.4: ontological instances graph Gi of Sports Network

In this section we presented the sports OKB OKB2
sports then we formally present the

Ontological Network No
sports with both in text and in figures to the better visualization

of it. One interest observation is that mostly of the projects that uses OKBs such as

NELL, there are a lack of facts (and some wrong facts either). Observing the No
s ports

example, a human being might know that Neymar Jr. played at Camp Nou lots of times

because it plays for Barcelona and Camp Nou is Barcelona’s home stadium, but this fact

is missing. This is very common in the OKB of a continuous learning program such as

NELL because it cannot read everything instantaneously, it will be learning more and

more over time, but always it will have more to learn.



Chapter 4

Finding new facts

Even in a never-ending learning approach, the question of how to develop methodologies

to help populating OKBs with facts and improving their coverage is still a challenge [14].

Thus, the use of a rule-based inference approach (here called Rule Learner - RL) can

have relevant impact in the KB population task. In general, the goal of a RL is to induce

inference rules from structured or unstructured data[33].

An Inference Rule (or just rule) is a logical form, consisting of a conclusion r, and

premises p1, p2, ..., pn. One possible representations is r ⇐= p1 ∧ p2 ∧ ... ∧ pn. The

premises and the conclusion are literals that can be predicates (p), a logical function

p(x1, x2, ..., xn) that can only return true or false. For example. we can have the following

rule: grandfather(A,C) ⇐= father(A,B) ∧ father(B,C), that indicates that if A is

father of B, and B father of C, then A is grandfather of C.

In the context of graphs mapping knowledge bases we can use techniques similar to

link-prediction to find patterns of closed triangles instead of open triangles. Following

there’s an example using the model of No proposed to explain how a RL can use these

patterns to find inference rules.

If we create an algorithm that exploits patterns of close triangles, in a graph based on

three category nodes and the relations among them, it could be applied to the graph

of the Figure 4.1 and it could find ∆MaleP, Person, FemaleP as an interesting group

to promote a rule. It would happen because there are a lot of triangles with these 3

categories in the same “position” in terms of relations. In this case, the following rule

could be proposed:

22
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Figure 4.1: Example of a pattern of closed triangles between MaleP, Person and
FemaleP

husbandOf(MaleP : X,FemaleP : Y )⇐=

fatherOf(MaleP : X,Person : Z) ∧motherOf(FemaleP : Y, Person : Z)

The rule says that if a MaleP X is father of a Person Z and a FemaleP Y is the mother

of the same Person Z, then MaleP X is the husbandOf FemaleP Y.

This rule can be used to find new instances of the relation husbandOf to the No
social,

adding edges to Gi (the same thing as adding facts to the OKB).

4.1 The Graph Rule Learner

The Graph Rule Learner (GRL) is an algorithm designed to extract inference rules

from ontological knowledge bases. GRL uses a link-prediction metric called extra-

neighbors[15] to rank possible rules, and also to determine the antecedents and con-

sequents of each induced rule.

Rule induction from data is not a novel task and many different approaches have been

proposed. Due to space constraints, in this section we focus on more recent approaches

and which are closely related to GRL. The Online Rule Learner (ORL) [33] mines

inference rules from explicit information extracted from large corporas using automated

information extraction (IE) systems [34, 35]. ORL is similar to GRL in the sense that it

maps input corpora into a graph-based representation. Differently from GRL, however,
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ORL uses the topology of the created graph to extract rules, instead of link prediction

techniques used in GRL. The Universal Schema proposed in [36] focuses on the benefits

of using latent features for increasing coverage of KBs. Key differences between that

approach and the one proposed in the work described in our paper include our use of

graph-based link prediction measurements as opposed to surface-level patterns in theirs,

and also the ability of the proposed GRL method to generate useful (and comprehensible)

inference rules which is beyond the capability of the matrix factorization approach.

A traditional approach to extract inference rules is the inductive logic programming

(ILP), which deduces rules from ground facts. According to [37], current ILP systems

cannot be applied to KBs who gathers data from web with a large scope of categories

(anything in the world), such as NELL, mainly because they usually require negative

statements as counter-examples, and these projects just hold instances that they consider

correct or have some confidence1. Also, the ILP-based approach don’t scale to the huge

amount of data that these kind of KBs store.

Regarding NELL’s, when considering its KB as input to induce inference rules, there

are other previously proposed approaches. In [38] a Markov Logic approach is used to

allow inference over subsets of categories and relations. PRA[12], and the Latent PRA

[14] and Prophet[15] are graph-based approaches. PRA (Path Ranking Algorithm) uses

a combination of constrained, weighted, random walks through NELL’s KB graph to

reliably infer new beliefs for it’s KB. PRA performs such inference by automatically

learning semantic inference rules over the KB [13]. Latent PRA proposes the addition

of edges labeled with latent features mined from a large dependency parsed corpus of

500 million Web documents to improve performance of previous PRA. Recently the

PRA was combined with a vector space representations of surface forms to increase its

performance and be capable of execute with the sparsity of textual representations from

surface text[39].

Prophet, is not an inference component. However, it is important to mention this

component because GRL approach is closely related to Prophet graph mining approach.

Differently from PRA approaches (which are based on random walks), Prophet counts

on NELL’s KB (represented as a graph) as input to (semi-)automatically extend NELL’s

initial KB. As aforementioned, Prophet does not induce inference rules from the KB,

1Ontology properties such as mutual exclusion can be used to solve part of this problem as done in
[1, 4]
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but the same link prediction idea used in Prophet to extend the KB, is adapted in GRL

to induce inference rules.

According to [33], there are two problems with most of the existing inference rule learn-

ers: [40] [41] [42] [43], they do not scale when based on large corpora and they tend to

assume that the training data is largely accurate and complete. However, to be coupled

to a never-ending learning system, such as NELL, a RL must overcome both issues. It

happens mainly because NELL’s KB is continuously growing and continuously being

updated and revised by NELL’s components.

GRL assumes that the training data is mostly (but not completely) accurate and com-

plete. However, it is not a problem if the KB is either imperfect, or incomplete. Actually,

link prediction algorithms assume that the missing links are due to the KB evolution

in the near future, thus it is currently incomplete. To take advantage of more accurate

knowledge, GRL limits its learning process to the specific part of NELL’s OKB called

the set of beliefs (composed just by high confidence facts). Regarding scalability, GRL

scales with large graphs (the same as large KB’s), using a graph disk structure called

GraphDB-Tree [44].

4.1.1 GRL Algorithm

GRL needs an ontological instances graph as input, and its output is a list of induced

inference rules.

Algorithm 1 The GRL

Require: Gi = (V,E,X)
Ensure: List of Inference Rules

1: Find all ∆(u, v, w) in Gi

2: for all closed triangle ∆(u, v, w) do
3: Calculate ℵ(u, v), ℵ(v, w) and ℵ(w, u)
4: Group ∆(u, v, w) in ∆c(cu, cv, cw)
5: Group Λ(u, v) in Λc(cu, cv), Λ(v, w) in Λc(cv, cw) and Λ(w, u) in Λc(cw, cu)
6: end for
7: for all Λc(ci, cj) do
8: Calculate ℵc(ci, cj)
9: end for

10: for all ∆c(cu, cv, cw) do
11: Find the category pair with highest ℵc:

(ci, cj) = MAX(ℵc(cu, cv),ℵc(cv, cw),ℵc(cw, cu))
12: if ℵc(ci, cj) ≥ ξ then
13: Validate the rule: rcicj (ci, cj)⇐= rcick (ci, ck) ∧ rckcj (ck, cj)
14: end if
15: end for
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In line 1, GRL finds and lists all closed triangles ∆(u, v, w) present in graph Gi. Then,

for each triangle, the number of neighbors ℵ between each pair of nodes is calculated (e.g

ℵ(u, v)), and grouped in the respective open triangle category group Λc
2 (e.g Λ(cu, cv)).

The closed triangle is also grouped in the closed triangle category group ∆c(cu, cv, cw). In

line 8, for each open triangle category group Λc(ci, cj), the number of extra neighbors

ℵc is calculated. ℵc is the sum of the ℵ − 1 of all instances Λ(i, j) in the group. If

ℵc(ci, cj) = 0 it indicates that all pair of nodes Λ(i, j) in the group have only one

neighbor in common. In line 11, for each closed triangle category group ∆c(cu, cv, cw),

the pair of categories with the highest extra neighbors value ℵc will be selected (e.g

(cu, cv)). Then, if the extra neighbor value of this pair is greater or equal than a given

threshold ξ, the rule rcucv(cu, cv)⇐= rcucw(cu, cw)∧rcwcv(cw, cv) is validated. One literal

rcxcy(cx, cy) indicates a relation(predicate) rcxcy ∈ Ec between the categories cx and cy,

and its parameters must be instances of categories cx and cy respectively.

4.1.2 Example

In Figure 4.2, a simple example of the GRL algorithm for an arbitrary graph is pre-

sented.

We have the closed triangle category group ∆c (Athlete, Stadium, Country), and its

six instances:

∆(NeymarJr., CampNou, Spain),

∆(NeymarJr., V ilaBelmiro,Brazil),

∆(JorgeV aldivia,AllianzParque,Brazil) and

∆(NeymarJr., Pacaembu,Brazil),

∆(JorgeV aldivia,Morumbi,Brazil),

∆(Le′veonBell,HeinzF ield, USA).

2Despite the three nodes are connected, GRL considers that the edge between the pair of parameters
of Λ does not exist in each group
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Figure 4.2: GRL running example

Now we have to pick the pair of categories among this three categories with the greatest

extra-neighbor value, and the pair with the greatest is Athlete and Country:

ℵc(Athlete, Country) = ℵ(NeymarJr., Brazil)

+ ℵ(Neymar, Spain)

+ ℵ(JorgeV aldivia,Brazil)

+ ℵ(Le′veonBell, USA)

− |Λc(Athlete, Country)|

ℵc(Athlete, Country) = 2 + 2 + 3 + 2− 4 = 5 ≥ ξ(ξ = 5)

The other two pairs have a lower EN value (ℵc(Stadium,Country) = ℵc(Stadium,Athlete) =

0). If we consider a threshold equals to five (ξ = 5) then we can validate the rule among

the three categories (Athlete, Stadium and Country) with Athlete and Country being

the head because ℵc(Athlete, Country) = 5. Since there’s just one relation between the
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three categories of the group, the rule will be:

athleteP layedAtCountry(Athlete, Country)⇐=

athleteP layedAtStadium(Athlete, Stadium))

∧ stadiumIsLocatedAtCountry(Stadium,Country)

The rule says that if an athlete X played at a Stadium Y and this Stadium Y is located

at Country Z, then athlete X already played at Country Z. The generalization of the

rule to X,Y and Z process will be present in a subsection above.

Figure 4.3: Applying a rule to infer new facts

After GRL found a rule, then it is possible to use the rule to infer new facts to

the input OKB. Let’s suppose we have open triangles Λ(NeymarJr., England) and

Λ(Messi,Messi) (see Figure4.3), using the rule GRL just discover it is possible to add

two facts to the OKB (athleteP layedAtCountry(NeymarJr., England) and athleteP layedAtCountry(Messi.,

Spain)), closing the triangles because we have:

1.athleteP layedAtStadium(NeymarJr., S.Bridge)

∧ stadiumIsLocatedAtCountry(S.Bridge,England)

=⇒ athleteP layedAtCountry(NeymarJr., England)

2.athleteP layedAtStadium(Messi, CampNou)

∧ stadiumIsLocatedAtCountry(CampNou, Spain)

=⇒ athleteP layedAtCountry(Messi., Spain)
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In this example, there is also another possible closed triangle category group: ∆c

(Athlete, SportsTeam, Country) but no pair of categories (Λ) that belongs to these

groups achieves an ℵc greater or equal to 5 in this example.

4.1.3 Multi Relation CTCGs

In a closed triangle category group, more than one triple of relations is possible, let’s sup-

pose that the relation athleteP layedAgainstTeam <athlete, SportsTeam > is added

to our sports ontological network (No
sports) with the edges playsAgainst< NeymarJr.,

Real Madrid > and playedAt< Real Madrid, Spain >. With this changes, the graph

of Figure4.2 will be changed: see at Figure4.4 for the changes.

Figure 4.4: GRL example for multi relation CTCGs

If those two edges exist, then the closed triangle ∆c (Athlete, SportsTeam, Country)

will have a pair for which ℵc is higher than the threshold:

ℵc(Athlete, Country) = ℵ(NeymarJr., Spain)

+ ℵ(JorgeV aldivia,Brazil)

+ ℵ(Le′veonBell, USA)

− |Λc(Athlete, Country)|

ℵc(Athlete, Country) = 3 + 3 + 2− 3 = 5 ≥ ξ(ξ = 5)
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We can then, validate a rule having categories Athlete and Country as the head, but

we have multiple relations among the three categories of this group (see instances:

∆ (NeymarJr., Barcelona, Spain) and ∆ (NeymarJr., RealMadrid, Spain)). The

triple of relations for the first one is (athletePlaysForTeam, teamPlayedAtCountry, ath-

letePlayedAtCountry) and for the second is (athletePlayedAgainstTeam, teamPlayedAt-

Country, athletePlayedAtCountry). Having multiple triples of relations inside the same

group, indicates that multiple rules can be created, so it is necessary to decide how to

choose among these multiple triples of relations.

To solve the problem of choosing one rule from all the possible ones (for a single group)

GRL, for now, just counts the occurrence of each triple inside a closed triangle category

group and pick just the one that occurred more frequently. For the example above, we

have the two rules:

(a) athleteP layedAtCountry(Athlete, Country)⇐=

athleteP laysForTeam(Athlete, SportsTeam))

∧ teamPlayedAtCountry(SportsTeam,Country)

(b) athleteP layedAtCountry(Athlete, Country)⇐=

athleteP layedAgainstTeam(Athlete, SportsTeam))

∧ teamPlayedAtCountry(SportsTeam,Country)

Rule (a) relations combination occurred three times - with (Neymar Jr., Barcelona,

Spain),(Le’Veon Bell, Steelers, USA) and (Jorge Valdivia, Palmeiras, Brazil), while rule

(b) relations combination occurred just once, with (Neymar Jr., Real Madrid, Spain).

Because of that, rule (a) will be validated and rule(b) will be discarded. In this case

rule (a) makes more sense than rule (b), but in some cases more than one rule could be

correct, and because of that, in the future we plan to explore other possibilities to pick

up rules in case of Multi Relation CTCGs.

4.1.4 Grouping and Ranking Rules

When using NELL’s KB (as well as any other OKB) as input, it is expected to find several

repeated rules in terms of predicates, but with different categories as parameters. This
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is expected mainly because in such OKBs, there are hierarchy among categories and

multi-categorized instances. See the example below of GRL’s output on NELL’s graph:

teamPlaysSport(sportsTeam, sport)⇐= athleteP laysSport(sport, athlete)

∧ athleteP laysForTeam(athlete, sportsTeam)

teamPlaysSport(sportsTeam, sport)⇐= athleteP laysSport(sport, personAsia)

∧ athleteP laysForTeam(personAsia, sportsTeam)

teamPlaysSport(sportsTeam, sport)⇐= athleteP laysSport(sport, personUsa)

∧ athleteP laysForTeam(personUsa, sportsTeam)

Following along these lines, a grouping and ranking process is applied on the GRL

output. This process consists on simply grouping all rules, which share repeated predi-

cates, in one single generic rule with variables (X, Y and Z) as parameters, and ranking

these rules by the number of occurrences on GRL’s output list. After this process, we

can use this rank to increase confidence in some of the rules. Experiments over this

process are present in Section 5.6.2.

4.1.5 GRL Implementation

One common problem when implementing a graph mining algorithm is scalability, mainly

when working with graphs having a growing number (from hundreds to millions and

sometimes billions) of nodes and edges. To cope with this scalability issue, GRL stores

the graph representation in disk using a structure called GraphDB-Tree [44].

The GraphDB-Tree is a structure created for fast storage and recovery of a graph on

secondary memory. The complexity to recover the neighbor list for any node is O(1),

so this structure is very efficient to graph algorithms that uses just the locality of the

nodes (e.g., find graph cliques – such as triangles -, calculate Adamic/Adar and Jaccard

index, etc).

To achieve high performance in the node’s locality algorithms, GraphDB-Tree stores the

graph partitioned in disk pages, and the entire set of nodes being numeric, sorted and

continuous from 1 to |V |. Most of the graphs, such as the ones used in the experiments,
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does not have such specific characteristics (sorted numeric nodes), so a preprocessing

process is necessary before the storage on GraphDB-Tree.

Figure 4.5: GRL Execution Diagram

In Figure 4.5, we show a simple diagram of GRL implementation: It receives as input

an OKB file (mapped as a graph), pre-processes the file and stores the graph in the

GraphDB-Tree data structure. Then, GRL initiates its execution querying for closed

triangles in the graph and grouping then into their respective category groups. After

all triangles were found, extra neighbors values are calculated and GRL validates the

extracted rules based on the given threshold value. The output will be the list of inference

rules.

4.2 Experiments

In this section we show some results (inference rules) from a GRL experiment using both

NELL’s KB, as well as YAGO’s KB as input. Also, we present experiments running

GRL based on different link-prediction scores in place of extra-neighbors to validate

rules. Last, it is performed a comparative analysis of GRL, AMIE[37] and PRA[12] 3.

4.2.1 Finding Inference Rules with GRL

4.2.1.1 GRL applied to NELL’s KB

In this experiment, NELL’s KB, also called rtwgraph, was used as input for GRL. NELL’s

KB is automatically extended and populated in a iterative fashion. For this experiment

we use the KB from iteration 820. At iteration 820, rtwgraph has around 700.000

3All the experiments were performed using a personal computer with Intel(R) CoreTM i72.49Hz
with 6GB of RAM and on Linux Ubuntu 12.04 (32 bits)
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nodes and 500.000 edges.Using threshold equal to ten (xi = 10), the output rule list rl1

contains 3.780 rules before the grouping process. Two examples extracted from rl1 rules

are presented below, more can be seen in the appendix.

R1. teamplayssport(sportteam, sport)⇐= athleteplayssport(sport, personUsa)

∧ athleteplaysforteam(personUsa, sportteam)

R2. headquarteredin(city, company)⇐= atlocation(company, buildingfeature)

∧ atlocation(buildingfeature, city)

4.2.1.2 Grouping and Ranking Repeated Rules.

As we are working with an ontological graph, lots of rl1 rules are repeated, where only

the parameters of relations are different. Thus, as previously mentioned, one extra

grouping step is needed. Grouping this rules into generic ones and ranking them (based

on the number of times it is repeated in rl1) generates a new rule list rl2, with 870 rules.

Two of the top ranked rl2 rules are presented below, see more in the appendix.

R3. athleteplayssport(X,Z)⇐= teammate(X,Y ) ∧ athleteplayssport(Y,Z)

R4. animalistypeofanimal(X,Z)⇐= animalistypeofanimal(X,Y )

∧ animalistypeofanimal(Y,Z)

When running this experiments with NELL’s KB, some rules with generic relations, such

as everypromotedthing and proxyfor were induced. This kind of rules is automatically

removed from the output, because it tends to be noisy. As there is just a few generic

relations, it is better to manually create rules for them.

4.2.1.3 GRL applied to YAGO KB

As mentioned before, YAGO[4] is an OKB mined from wordnet4 and wikipedia5. In

this experiment, YAGO’s KB was used as input for GRL, its ontology is organized in a

different way than NELL’s, but it also has categories for the instances, so it is suitable to

4https://wordnet.princeton.edu/
5http://en.wikipedia.org/
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be used as input for GRL. The only problem we had was that YAGO’s ontology has a big

hierarchy with tens of thousands of categories (while NELL has less than a thousand)6,

so, GRL grouping process was not very effective. It is interesting to notice that YAGO

is currently in its third version, called YAGO3[6], where multi language knowledge was

gathered. In its second version, called YAGO2[5], it had gathered temporal relations

(and instances)7.

We could extract around 350.000 categorized nodes and 550.000 edges from YAGO’s

KB. Using threshold equal to ten (xi = 10), the output rule list rl1 contains 286 rules

before the grouping process. After the grouping and ranking process, the output rule

list rl2 contains 88 rules. Two examples from rl2 are presented below, more can be seen

in the appendix.

R5. locatedIn(X,Z)⇐= hasCapital(X,Y ) ∧ locatedIn(Y,Z)

R6. hasPredecessor(X,Z)⇐= hasPredecessor(X,Y ) ∧ hasPredecessor(Y, Z)

Again, the low number of rules, may be due to the detailed (deep hierarchy) ontology,

having lots of weak category groups instead.

4.2.1.4 Validating rules

GRL algorithm (and most other link-prediction algorithms) does not present 100% pre-

cision. We add the group process to make the output rules more generic, and we use

the rank given on this process to help enhance confidence in some rules. In table 4.1 the

precision curve over this rank is present for NELL and YAGO experiment.

Table 4.1 contains statistics captured by selecting rules on the grouped list by the rank

given on the group process. The columns are respectively: the values of rank used , the

number of total rules of rl2 with greater or equal first columns value and the percentage

of correct rules (precision), the two last columns are repeated, one time for GRL running

on NELL, and a second time for GRL running on Yago.

6Yago has very specific categories, such as: “Bob Dylan albuns” and “String quartets by Ludwig van
Beethoven”

7See in its web site for more http://www.mpi-inf.mpg.de/departments/databases-and-information-
systems/research/yago-naga/yago/
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Table 4.1: Applying rank as threeshold (GRL’s with ξ = 10)

GRL’s output precision by rank

NELL YAGO

rank ≥ Total Rules Correct Rules Total Rules Correct Rules

20 13 61.64% 3 100.00%
15 20 60.00% 3 100.00%
10 31 54.84% 7 71.42%
9 38 60.53% 8 62.25%
8 44 61.36% 9 66.66%
7 51 56.86% 9 66.66%
6 74 51.35% 12 58.33%
5 100 47.00% 15 53.33%
4 141 43.97% 17 52.94%

Despite the fact that the proposed rank can help to give more confidence to some

rules(since for lower ranked rules the precision tends to fall as shown in Table 4.1),

it is easy to see that using the rank as a fixed threshold tends to promote the extraction

of wrong rules. It is important to recall that in a never-ending learning environment

(such as NELL), wrong knowledge (generated by wrong rules) can be propagated and

deteriorate the whole KB (because of semantic drift).

To automate the identification of correct and wrong rules it is possible to train a simple

classification model using algorithms such as decision trees or logistic regression, but to

achieve good results in this task, enough labeled training examples is needed. Therefore,

manually classifying rules is ann interesting option. In NELL, GRL will be running every

x iteration(probably x=5, which would take about 10-15 days), so we estimate that if we

validate around 50 rules from each iteration of GRL, we would not expend more than

one hour/month8.

4.2.2 Using different link-prediction metrics

In addition to the extra-neighbors (EN) metric, we’ve also performed experiments using

rtwgraph as input, and common-neighbors (CN), Jaccard(Jac) and Salton(Sal) metrics

during the rule extraction process.

In Table 4.2 we show the manually defined threshold value used in GRL for each metric,

the number of Total Rules returned and the number of rules left after the grouping

8NELL already has around 15 minutes/week that can be used by the system to ask questions through
human supervision
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Table 4.2: Experimenting different LP metrics: Overall Statistics

Statistic Metrics

EN CN Jac Sal

Threeshold used 10 16 0.2 0.5

Rules Found 3780 3996 3404 3517

Grouped Rules 870 884 852 874

Table 4.3: Experimenting different LP metrics: Precision statistics using rank as
threeshold

- Extra-Neighbors Common-Neighbors Jaccard Salton

rank ≥ Rules Precision Rules Precision Rules Precision Rules Precision

30 6 50.00% 6 33.33% 5 40.00% 5 20.00%
25 8 50.00% 8 37.50% 9 55.56% 5 20.00%
20 13 61.54% 12 50.00% 11 54.54% 13 46.15%
15 20 60.00% 20 60.00% 15 60.00% 13 46.15%
10 31 54.84% 35 45.71% 31 48.39% 30 50.00%
9 38 60.53% 41 51.22% 37 48.65% 38 52.63%
8 44 61.36% 47 51.06% 44 43.18% 42 52.38%

process. The threshold values vary mainly because we wanted all experiments to generate

the closest number of rules possible, to better compare the precision of each one. Also,

each one of this metrics has different range(magnitude) of values. In Table 4.3 we

present the precision of each metric selecting grouped rules using rank as threshold.

Figure 4.6: Precision curve using different LP metrics
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- RulesFound Precision Gen.Facts Format

GRL 459 42/100 = 42% 115.59 r ⇐= p1 ∧ p2

AMIE 982 35/100 = 35% 89.25 r ⇐= p1 ∧ p2 ∨ r ⇐= p

PRA 49966 33/100 = 33% − r ⇐= p1 ∧ p2 . . . ∧ pn (n ≥ 1)

Figure 4.6 depicts the precision curve over the rank threshold for each used metric. The

extra-neighbors(EN) is in red, the common-neighbors(CN) in green, the Jaccard(Jac)

in light blue and the Salton(Sal) in dark blue. Observing Table 4.3 and Figure 4.6

numbers we can see that the extra-neighbors metric achieved the best overall precision.

If we compare by the number of correct rules, this greater precision may not look like a

big deal, but when the number of rules grows such difference can be more relevant.

4.2.3 Comparing GRL with similar state of the art Rule Learners

In this subsection, there’s a comparison of GRL with the state of the art Rule Learner

called AMIE[37] and also with the PRA[12] because it is a component of NELL. This

three algorithms find inference rules from ontological knowledge bases.

In Table ?? we present the results of GRL, AMIE and PRA running in NELL’s OKB

iteration 8859. In the first column there are the algorithm’s, in the second the total

number of rules the algorithm finds. In the third column the precision of the rules, to

measure that we randomly pick 100 rules from each algorithm and manually classified

each one as correct(c) or wrong(w), the precision is the number of correct rules(|c|)

divided by 100 (|c|/100). The fourth column is the potential to generate facts that the

rules provided by each algorithm has, to measure that we apply the correct rules in

NELL OKB and then divided the total resulting facts(f) for the number of correct rules

(|f |/|c|). In the last column is the format of the rules each algorithm generates.

Regarding the total number of rules, AMIE found double of the amount GRL found and

PRA found a largely great amount than the other two, but if we look at the precision,

GRL maintain a its closely half to half like in the experiments above while both PRA

and AMIE had poor precision. PRA is older, and currently AMIE is one of the state

of the art rule learner, but they might have achieved a similar value at this experiment

because PRA was designed specially to work with NELL.

9PRA found a larger amount of rules than the other two, because the version we used is acoplated
with NELL and uses the whole OKB and not just the (much smaller) set of beliefs
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When concerning the generated facts, GRL rules generate on average more facts than

AMIE’s.10

It is possible to notice that GRL has only one single format. We consider that as an

advantage, mainly because it produces very readable rules that are also easy to apply

on the OKB. AMIE has the same format used by GRL and, also, another one having

only one relation at the body of the rule, this might be interesting too, with rules such

as the one below:

AMIE.1. ismultipleof(X,Y )⇐= animalistypeofanimal(X,Y )

AMIE.2. synonymfor(X,Y )⇐= synonymfor(Y,X)

The first rule above uses the generalization concept (like the relation ismultipleof is a

generalization of animalistypeofanimal), and the second presents the symmetric relation.

Both factors can be very interesting to another projects, but NELLs ontology relation

file already have specification for these characteristics, for each relation is indicated if it

is reflexive, symmetric and its generalizations, so this rules doesn’t have a greater use

to it.

PRA itself, has the most non-standardized rule format, because its body might have

a great number of relations, and it also has categorization relations (e.g. athlete(X)).

This might be the reason why it found too many rules, but also if have a great number

of incorrect rules, despite the fact that is very hard to classify them. We found a correct

rule found by PRA and GRL that generates the same fact(has the same head), but with

a different body:

PRA. awardtrophytournamentisthechampionshipgameofthenationalsport(X,Z)⇐=

trophywonbyteam(X,Y ) ∧ athleteledsportsteam(W,Y ) ∧ agentcontrols(W,Y )

∧ teamplaysport(Y,Z)

GRL. awardtrophytournamentisthechampionshipgameofthenationalsport(X,Z)⇐=

athletewinsawardtrophytournament(Y,X) ∧ athleteplayssport(Y,Z)

10PRA was not used in this experiment because it’s rules generally have relations in the body that
doesn’t have instances in beliefs set



Chapter 4. Finding new facts 39

Looking at this two rules it is possible to see how GRL rule is more readable and why

it might be better to NELL to generate new facts. It produces the same fact but needs

a very simpler “condition“.

4.2.4 Scalability

Experiments evaluating scalability performance of the GRL implementation were not

performed. Considering that most of GRL computational effort is related to the task of

finding all closed triangles present in the graph, we can base our scalability analysis upon

results presented in [44]. We can conclude that GRL follows GraphDB-Tree scalability

performance, thus being a good option even for big graphs. The execution time of the

GRL with NELL’s graph as input was about one minute.

4.3 Conclusion

GRL, differently from most of the other current approaches, explores ontological knowl-

edge to get better results in inference rule extraction precision and scalability. Empirical

results show that GRL can cope with NELL’s KB characteristics of being a big and never-

ending growing KB, thus, not being noise free, neither being complete. Also, GRL can

be considered generic enough to be used having any other ontological knowledge base

as input.

Considering NELL’ KB is constantly evolving, as future work, we plan to investigate

how frequently (every iteration, or every 5 iterations, etc.) should GRL be used to get

most relevant results. Also, GRL can be coupled with other NELL’s components to help

in self-reflection (a key property for a never-ending learner). Last, we will evaluate GRL

with more ontological KBs besides NELL and YAGO.
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Finding new relations

Link-prediction techniques, can be referred as the task of finding edges that would appear

in a near future of a graph. In the last years a large number of approaches has been

proposed in link prediction tasks, an interesting review on those can be seen in [20].

There are also techniques that combine community detection with link prediction as the

one presented in [45], where the authors use a naive community detection approach to

help in link prediction. However, this approach only works for higher clustered networks.

In spite of this, the proposed idea is very useful, since the probability of an edge existing

between nodes in the same community is higher than between nodes from different

communities.

Link prediction can make use not only of graph structural information but also relational

characteristics, for example attributes related with graph’s node as presented in [23].

This kind of approach is more used in relational or multi-relational learning [8, 24–26].

In the context of graphs mapping knowledge bases these techniques are mostly used to

find new facts, but they can be used as well to find new edges on the ontological model

graph that is equivalent to new relations to an OKB as well, using the model of No

proposed.

Relations-Predictor Algorithm:

1. Find all open triangles Λ(u,w);

2. Calculate a score (such as CN[9]) for each triangle score(u,w);

40
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3. Group them at open triangle category groups Λc(cu, cw);

4. Calculate a score for each group

scorec(cu, cw) =
∑

Λ(x,y)∈Λc(cu,cw)

score(x, y)

5. Look for groups with high scores to propose relation between pairs of categories

(cu, cw);

Relations-Predictor Algorithm is a generic algorithm created just to exemplify the task

of finding new relations using link-prediction techniques in an No. It follows the idea

presented in figure 1.2, by grouping open triangles it found based on the nodes in the

edge, to suggest relations among the pair of categories if the pattern occurs various times

in the graph.

Figure 5.1: Example: Finding a new relation

In Figure 5.1 we use our imaginary social network to illustrate how the Relations-

Predictor algorithm can be used. In that case, if it finds too many open triangles with

a specific pattern, where the two edges are the relation “descendant” and the the nodes

of the category “Person” (Λc((Person, descendant), (Person, descendant))), it may find

that there exists a relation, in this case “brothers < Person, Person >”. We can observe

that the relations found have generic names, another approach (or human supervision)

is needed if we need to name the relation like in the example.

In the next sections of this chapter, we will present the Prophet algorithm that is some-

how similar to the Relations-Predictor algorithm, OntExt, an algorithm that will be used

to find names of relations proposed by Prophet and to finish PrOntExt, the project that
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connects this two algorithms and is currently running iteratively with NELL expanding

its ontology.

5.1 Prophet

The Prophet algorithm is similar to GRL, it finds all open triangles from the input

OKB (mapped as a graph), then, it groups them into groups based on the category of

the border nodes, and then, uses the link prediction-metric called Extra-Neighbors to

promote new possible relations and instances for them.

5.1.1 Prophet Algorithm

Prophet uses the beliefs present in NELL’s KB as an undirected and unweighted graph

to apply a link prediction algorithm with three main tasks: finding new relations, finding

new facts(instances of these new found relations) and finding wrong facts (also called

misplaced edges).

To find new relations, Prophet first finds all the open triangles Λ(u, v, w) in the graph,

and then, groups them by the categories of the extremity nodes in Λc(cu, cw). After

that, it calculates the number of extra neighbors of each group (1), which is the sum of

common neighbors, of each open triangle ℵ(u,w), subtracted by the size of the group

(sum for all Λ(u,w) instances). The bigger this value is, it indicates that the extremity

nodes of the open triangles in the group have more and more common neighbors. If ev-

ery open triangle extremity node has degree 1, the value of the extra neighbor measure

will be 0. If the extra neighbors value is greater than a given threshold (ξ), the relation

among cu and cw categories (cu, cw) will be consider a new valid relation.

ℵc(cu, cw) =
∑

Λ(u,w)∈Λc(cu,cw)

ℵ(u,w)− |Λc(cu, cw)|

Prophet also finds new facts, that indeed are instances of the new relations, found on

the respective open triangle category group. There are two ways to a pair Λ(u,w) be

considered a valid fact:
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First: If the number of distinct categories of the middle nodes δ(Λ(u,w)) is equal to

the total number of distinct middle node categories in the group δ(Λc(cu, cw));

Second: If the number of neighbors between u and w ℵ(u,w) are greater than, or equal

than the threshold (ξ).

The two conditions for an instance to be valid are shown in equation (2), that is the set

of all instances considered valid of a group Λc(cu, cw).

IΛc(cu,cw) = {〈u,w〉|(δ(Λ(u,w)) == δ(Λc(cu, cw))) ∨ (ℵ(u,w) ≥ ξ)}

Prophet Algorithm is presented in Algorithm 2:

Algorithm 2 Prophet Algorithm

Require: G(V,E,X)
Ensure: List of pairs of categories (cu, cw)

1: Find all Λ(u,w) in G
2: for all open triangle Λ(u,w) do
3: Calculate N(u,w) = |Γ(u) ∩ Γ(w)|
4: Group Λ(u,w) in Λc(cu, cw)
5: end for
6: for all Λc(cu, cw) do
7: Calculate Nc(cu, cw)
8: if Nc(cu, cw) ≥ ξ then
9: Propose the pair: (cu, cw)

10: for all Λ(u,w) ∈ Λc(cu, cw) do
11: Calculate Σ(Λ(u,w))
12: if Σ(Λ(u,w)) == Σ(Λc(cu, cw)) then
13: Validate Edge < u,w >
14: else
15: if N(u,w) ≥ ξ then
16: Validate Edge < u,w >
17: end if
18: end if
19: end for
20: end if
21: end for

5.1.2 Prophet Example

In Figure 5.2, an example of the Prophet is presented. We have the open category

group Λc(Athlete, SportsLeague), and the three instances Λ(NeymarJr., Champions

League), Λ(JorgeV aldivia, Brazilian Cup) and Λ(Lebron James,

ChampionsLeague).
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Figure 5.2: Example of Prophet

To validate the relation between Athlete and SportsLeague, the number of extra neigh-

bors have to be greater than, or equal than the given threshold that is equal to four. In

this example the relation will be created.

ℵc(Athlete, SportsLeague) = ℵ(NeymarJr., ChampionsLeague)

+ ℵ(JorgeV aldivia,BrazilianCup)

+ ℵ(LebronJames,ChampionsLeague)

− |Λc(Athlete, SportsLeague)|

ℵc(Athlete, SportsLeague) = 3 + 4 + 1− 3 = 5 ≥ ξ(ξ = 4)

Since the extra neighbor value is greater than the threshold (5 ≥ 4), the relation will be

validated. After that, each instance should be tested, and the result is:

δ(Λ(NeymarJr., ChampionsLeague)) = δ(Λc(Athlete, SportsLeague)) = 3

ℵ(JorgeV aldivia,BrazilianCup) = 4 ≥ ξ(ξ = 4)
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IΛc(cu,cw) = {〈NeymarJr., ChampionsLeague〉, 〈JorgeV aldivia,BrazilianCup〉}

The relation created on the example is named r1, but this is just a label given by

Prophet, because it cannot identify the semantic meaning of the relations that it finds.

Let’s suppose we use another program to find the name for that relation, and it found

that it athleteP laysLeague would be a emphsemantic meaninful name, then we can add

the relation to extend our sports ontological network, and name it (see at Figure 5.3).

Figure 5.3: Example of Prophet

5.1.3 New Prophet Implementation

There were two problems over the first Prophet implementation: the first one is that it

was implemented to query directly NELL’s KB stored on a database with pure SQL, so

it was not very suited to the use outside NELL and the second is that it’s performance

(execution time) doesn’t scale very well as the graphs vertex and edge number grows.

These problems were the main motivation to the creation of a New Prophet implemen-

tation and, in addition, to propose the graph structure GraphDB-Tree [44] used in the

Graph Rule Learner, that is also widely used by New Prophet1.

1More information about GraphDB-Tree is present at Chapter 4
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Figure 5.4: Prophet Execution Diagram

The New Prophet execution flow can be seen in Figure 5.4. The input is a graph file

in edge list format, then this file will be pre-processed if necessary, stored in GraphDB-

Tree, then later Prophet queries the GraphDB-tree graph to assemble the open triangles

and mount the open triangles category groups. After all the open triangles are found,

the Prophet passes through each group trying to validate the relation and the instances

of it. The output consists in a list of new relations(as pairs of categories) and a list of

instances(as pairs of facts) for these new found relations.

5.2 OntExt

As it was mentioned in the last section, Prophet can not name the relations it found, it

just suggests the category pairs that might be related, so we can use OntExt to do the

naming task.

OntExt receives as input two lists of instances representing instances of two cate-

gories(ex: sportsLeague and athlete) and a (generally huge) data set with triples in

the subject-predicate-object (spo) format 2, and an object. Lets call the “predicate” in

the spo triple a feature between the subject and the object, OntExt will mount a matrix

to record the number of co-occurrence between the features which links two categories.

Each cell of the matrix corresponds to the number of instance pairs of categories in

which both contexts co-occur (Matrix(i,j) value to contexts i and j - e.g. the sentences

”Neymar Jr. plays at Champions League” and ”Neymar Jr. dispute the Champions

League” provide a case where the 2 contexts ’plays at’ and ’dispute’ co-occur with an

instance pair [Neymar Jr., Champions League]). After that, the matrix is normalized:

first each cell value is divided by the total count of its line(row), and after that each

2An spo format file have triples with a subject, a predicate describing the relation (ex: ¡Jorge W.
Bush, was the president of, USA¿)
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Algorithm 3 OntExt Algorithm

Require: Two list of instances L1 and L2 and a set of svo triples (< s, f, o >) S
Ensure: A list of features and its clusters

1: fn = Number of different features f among the triples of S
2: Allocate matrix m[fn][fn]
3: for all triples < s1, f1, o1 > in S do
4: if (s1 ∈ L1) ∧ (o1 ∈ L2)) ∨ ((s1 ∈ L2) ∧ (o1 ∈ L1)) then
5: for all triples < s2, f2, o2 > in S do
6: if ((s2 == s1) ∧ (o2 == o1)) ∨ ((s2 == o1) ∧ (o2 == s1)) then
7: m[f1][f2] + +
8: m[f2][f1] + +
9: end if

10: end for
11: end if
12: end for
13: zn = number of empty lines in m
14: fn2 = fn− zn
15: Delete the zn empty lines and zn empty columns from m
16: for i = 0 to fn2 do
17: for j = 0 to fn2 do
18:

m[i][j] =
m[i][j]∑fn2
j=0m[i][j]

19: end for
20: end for
21: for i = 0 to fn2 do
22: cont = 0
23: for j = 0 to fn2 do
24: if m[i][j] > 0 then
25: cont+ +
26: end if
27: end for
28: for j = 0 to fn2 do
29:

m[i][j] = m[i][j] ∗ fn2

cont

30: end for
31: end for
32: Allocate vector clusters[fn2]
33: clusters = clusteringFunction(m, fn2)
34: RETURN clusters

cell will be multiplied by the fraction of the total number of features over the number of

elements greater than 0 in the same line(row). Doing this normalization, higher weight

is given to contexts which co-occur with only a few contexts (predicates), to promote

less generic contexts. OntExt algorithm is presented in 3.

5.2.1 OntExt Example

Let’s consider the following input:
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• S={<Neymar Jr., plays at, Champions League>, <Jorge Valdivia, plays at, Brazil-

liam Cup>, <Nathaniel Clyne, doesn’t play, Champions League>, <Neymar Jr.,

participates in the, Champions League>, <Nathaniel Clyne, wants to play at,

Champions League>, <Neymar Jr., commented about, Champions League>, <Nathaniel

Clyne, commented about, Champions League>};

• L1={Neymar Jr., Jorge Valdivia, Nathaniel Clyne}

• L2={Champions League, Brazilliam Cup}

Instances at L1 represent instances from category Athlete, and the ones at L2 come from

SportsLeague category. fn = 5 because we have four different features among all the

triples in S. Given this lists, OntExt will then mount the co-occurrence features matrix

(see at 5.5.

Figure 5.5: Co-Occurency matrix m

After this point, the algorithm presented in 3 will remove empty lines and empty columns

from the matrix. In this example, there are not any because all the triples in S have

subject and object present in L1 and L2 (so fn2 = fn = 5). OntExt will normalize the

matrix dividing each cell by the total count of its line, the resulting matrix is present at

figure 5.6.

Then each cell(i, j) will be multiplied for the fraction between the total number of

features (fn = 5) over the number of elements greater than 0 at the current line(i). The

resulting matrix is present at figure 5.7.
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Figure 5.6: Normalized m

Figure 5.7: Final Normalized m

Having the matrix 5.7, OntExt will apply a clustering algorithm3. After that, the final

results, the clusters vector, will probably be something like: clusters={(plays at, 1),

(participates in the, 1), (doesn’t play at, 2), (want to play at, 2), (commented about,

3)}

It’s possible to observe that we have 3 clusters, suggesting that there might exists 3

relations between categories Athlete and Sports League. At cluster 3, it suggests just

one name (commented about), in the other two, there’s more than one possible name

for the relation, another program or an human being must look at it and choose the best

fitting name.

3Currently using n-k-means++ presented in the next chapter
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5.3 PrOntExt

Prophet and OntExt complete each other, because OntExt itself generally is not viable

to run for all the possible category pairs of the input OKB (as it takes too much time

to run), so Prophet can help it to focus on specific pairs of categories, increasing its

precision and greatly reducing the execution time. On the other hand, Prophet alone

just suggest category pairs, but is not able to name them, and the most important thing:

it cannot determine when there exist more than one possible relation between a pair.

As we could just see in OntExt example above, OntExt can be used to try solve this

problem.

Since the old Prophet and the old OntExt were not very portable, we implemented

new versions of both, already looking towards their integration. The OntExt algorithm

is changed a bit in the clustering part, wherever the original used a simple k-means

we apply the K-means++[46] algorithm n times (n can be determined by user, we are

currently using n = 20 for NELL). Then, we use an algorithm we created to gather these

results and rank the resulting clusters4. This process was created to improve the final

clustering results and the ranks help the new OntExt to determine when there might be

more than one possible relation between a pair of categories.

Figure 5.8: The PrOntExt

Figure 5.8 shows an overview of the PrOntExt algorithm. PrOntExt will receive an OKB

as Input(A) (like NELL’s OKB), apply the Prophet algorithm in this OKB, having a

list of pairs of categories (indicating new possible relations). After that, PrOntext will

gather all the instances from all the categories (among the pairs) from the input OKB

and pass them to the New OntExt. New OntExt will then use the instances to gather

4this whole algorithm is called n-k-means++, and its presented in the next chapter
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features from an input(B) features file (like a spo data set) to mount its co-occurrence

matrix. After the matrix is mounted, it will cluster the matrix n times and gather

the results to define the final set of clusters. The algorithm to gather the clusters will

calculate a rank for each one of them, OntExt will always suggest a relation from the

best ranked cluster, and for the other clusters, if their rank is at least 75% of the best

one, a relation will be suggest for it too, in the end PrOntExt will output a list of

relations(C). PrOntExt also outputs a list of proposed seed instances(D) (for the new

relations) that comes from prophet (IΛc(cu,cw)).

In other words, in the output, there will be for each relation (represented by a category

pair, given by from Prophet), a list of proposed names and a list of proposed instances

for the relation. For now, we are using human supervision to decide on the best name

and to adjust it to NELL’s standards, and also for choosing which seed instances to use

or not (if there are just a few valid ones, we manually add some more).

5.4 Results

The list of possible relations that prophet generates (it’s output list of relations) is not

a hundred percent correct. In fact, good part of it usually consists in not very trustful

relations. Inserting wrong knowledge in the KB is not a wise decision. If we insert wrong

knowledge on NELL’s KB, this knowledge might be propagated and generate dangerous

semantic drifting[15].

To mitigate this factor, we are currently pick around 5-15 relations from each iteration

of PrOntExt and manually insert them into NELL. This is clearly not the best way to

proceed as NELL is supposed to be an autonomous system, but because of NELL’s need

of an ontology extension component to evolve, we are currently using this process.

NELL had 328 relation before this Masters project started adding relations to its ontol-

ogy. Currently, ProntExt has already added 70 relations, so it already increased NELL’s

relations set in more than 20%.

In Table 5.1 it’s possible to see how PrOntExt adds a relation to NELL. It starts with

Prophet that outputs a pair of categories(first and second column). Then, OntExt will
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Table 5.1: Some Relations Found by PrOntExt

Prophet OntExt HumanSupervision

Category 1 Category 2 Name FinalName

insect grain eats insectEatsGrain

company videogamesystem obtain companyProducesV ideoGameS.

agriculturalprod. invertebrate benefit ag.ProductIsEatenByInvertebrate

island skiarea have islandHasSkiArea

company stadium disclose companyDisclosesStadium

building park isf ind buildingWasBuiltAtPark

run and propose a list of names in which we pick the best (third column). And later,

we have to manually adjust the name proposed by OntExt (last column).

5.5 Conclusion

We didn’t present any scalability experiments in this section because in [44] has already

shown that local operation over graphs stored in GraphDB-Tree scales linearly. Exper-

iments over Prophet and OntExt will not be present either because it can be found in

their respective papers: [16] and [15].

Despite of that we have to shown some kind of precision measure of PrOntExt and

made experiments comparing it to another related work. Since we are going to add a

classification task in the future 5.7 to make PrOntExt more autonomous, we thought it

will be fair to do all of these experimentation after that.



Finding new categories

Another disseminated topic of graph-mining is the community detection task[47], briefly

explaining, this task uses the topology information of the graph to divide it in clusters

of nodes (called communities).

To find new categories in an No, we can use community detection algorithms in a similar

way of the link-prediction. We apply the algorithm in the graph, then we analyze each

community that was found (such as the triangle category groups), and, if the community

attends to a given condition, we can create a new category from it. Another option would

be, if the communities shares common features (same set of relations, for example), then

each community could be an instance of a new possible category.

Figure 5.9: Example: Finding a new category

In Figure 5.9 we exemplify how can we find a new category using community detection

in our imaginary social network. Imagine that we apply a community detection algorithm

that returns communities where nodes (inside the a community) are mostly related by the

53
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following relations: descendant, fatherOf, motherOf, brothers. Observing this pattern,

we can infer that this communities are families, so the category “family” can be added

to our No (Figure 5.10).

Figure 5.10: Incrementing the social network ontology with a new category

Same as in Prophet, this algorithm would not be capable of defining the name of the

community or initial relations with other categories. Thus, some human supervision (or

another approach) would be used to do that.

Figure 5.11: Social network instances graph (Gi) after we add a new category and
relations

In Figure 5.11 we present an example of a fact of the new category (family:Navarro)

added to the instances graph of No
social, and also a fact of the relation brother, discovered
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in the last Chapter5.

Using the topology of the communities within the ontology information, there is a lot

of ways to detect patterns to find new categories. We can focus, for example, at the

instances of a specific category to try to find sub-categories. Let’s look at the relation

teammate between two athletes in No
sports (see at Figure 5.12).

Figure 5.12: Relation teammate in No
sports

We can look for a community structure composed only by instances of the relation

teammate between athlete category instances, like at Figure 5.13 example.

Figure 5.13: Finding sub-categories for Athlete category

It is possible to see that, based on the topology, we might differ soccer players, from

basketball players, from volleyball players, etc., because each of this sports have different

number of players in a team. If we have sports with the same number of players in a

team or a close number such as Volleyball and Basketball, we can also use another

information like the team of the players or the sports league that they play.

5we manually added this facts to exemplify how the instances graph could become more complete
after the discovery of new relations and categories
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Despite we had all of these ideas using community detection, we cannot actually apply

them in NELL as it is right now. The main reason for this constraint is because NELL’s

OKB is currently too sparse (lacking lots of facts that it has not learned yet). Because

of the fact that NELL is lacking in ontology extension components, we thought that

it would be better to create a component that might find new categories faster so we

use another approach that uses external data sets within NELL’s. The component we

create using this approach is called the SubCategory Finder and it is presented in the

next sections of this chapter.

5.6 The Sub-Categories Finder

With the growth of the web-semantic research community, some projects developed

techniques to extract ontologies (also called taxonomic structures) from text (a good

revision of them can be seen at [48]). In [49], the OntoLearner is presented, an algorithm

that extracts terms, definitions and hypernyms from text, create a hypernym graph and

induces the ontology from this graph via optimal branching and a novel weighting policy.

A very interesting fact is that OntoLearner could obtain high-quality results not just

when used to build brand-new ontologies, but also to reconstruct sub-hierarchies in

already existing ontologies. In [50], a system to automatically learn concept hierarchies

was proposed (which is the same of refining categories into sub-categories), it is based on

Formal Concept Analysis (FCA; a method used to investigate and process explicitly given

information). It parses a corpus to extract verb/prepositional phrase (PP)-complement,

verb/object and verb/subject dependencies, then uses FCA to produce a lattice that is

converted into a special kind of partial order constituting a concept hierarchy. Our work

is focused in implicit information (present in the KB) instead of explicit information like

[50].

In this section the algorithm we created to find sub-categories, will be present. We call

this algorithm the Sub-Category Finder, it can be divided in two main tasks:

1- Cluster the instances of a given category

2- Give names to these clusters (new sub-categories)
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As mentioned before, one of the most common ways to detect category structures is

using clustering techniques, some works used similarity vector for instances to cluster

them into categories (also called concepts) [51] [52] [53] [54]. The clustering task is

also very important to this work, since it is responsible for grouping instances of a

category to find possible sub-categories (a review on clustering algorithms can be seen

in [28]). This algorithms are used to solve unsupervised learning problems[29], so, as

every other problem of this kind, it deals with finding a structure in a collection of

unclassified data. A loose definition of clustering algorithm could be “the process of

organizing objects into groups whose members are similar in some way”, so, a cluster

is a collection of objects which are “similar” between them and are “dissimilar” to the

objects belonging to other clusters. The k-means[18] is one of the most famous clustering

algorithms, it works iteratively creating centroids (data points in which each feature is

the mean of the group’s data points feature), then reallocating the data points to the

closest centroid, until the obtained error (of the objective function) is lower than a given

threshold. Generally, k-means is used to cluster data points with numerical features

(using distance functions such as Euclidean distance or Manhattan’s distance[30]), but

it can be adapted to work with discrete data as well [55, 56]). The sub-category finder,

uses a version of k-means.

A concept that is important in sub-category finder is hyponymy. It shows the rela-

tionship between the more general terms (hypernyms) and the more specific instances

of it (hyponyms). The paper [57] presents the traditionall approach of using specific

extraction patterns to gather instances for hyponym relations. Below we present some

extraction patterns proposed by Hearst (also known as Hearst patters):

1. NP0 such as {NP1, NP2, ..., (and|or)}NPn

Ex: . . . mammals such as cats, dogs and wales . . .

2. NP1{, NP2, NP3, ...} and other NP0

Ex: . . . mosquitoes, spiders, beetles and other insects . . .

3. NP0{, } including {NP1, NP2, ..., (and|or)}NPn

Ex: . . . basketball players including Michael Jordan, Kobe Bryant and Shaquille

O’Neal . . .
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In the patterns above, NP0 is the hypernym noun-phrase and the noun-phrasesNP1, NP2, ..., NPn

are the hyponym. After each pattern, there is an example to better illustrate how this

patterns works, and it also helps us to understand how hyponymy is useful to automat-

ically name new categories (in our case sub-categories).

The work of this paper is mostly based in the work presented in [17]. It was created

to find sub-categories (specifically for NELL) such as this work. It uses Non-negative

matrix factorization(NMF) to cluster the instances of the input category, finding the

sub-categories. To do that, it creates a co-occurrence matrix of features of the instances

where the features are the relations present in NELL’s ontology. The method presented

in that work was called coupled non-negative matrix factorization(CNMF), that

is a NMF method that clusters a matrix with the features coupled with side information

about the instances coupled. The side information used was hyponym relations, for

example: animalSuchAsAnimal, animalIsTypeOfAnimal, etc.

5.6.1 The SubCat-Finder Algorithm

The input for SubCat-Finder Algorithm is a list of instances I of a given category

and features F for these instances (could be the category instances relations in NELL

KB or/and features extracted from external data sets). The Sub-Category Finder will

create a matrix in which each cell ni,j will be the number of times instance Ii is related

to feature Fj , and after that, it will cluster this matrix in function of the instances I.

The clustering results will be the new sub-categories, after that an algorithm will be

applied to find the names of each sub-category (to do this, we were using generalization

relations of NELL’s KB, such as istypeOf and suchAs).

Figure 5.14 shows the Sub-Category Finder execution in four main tasks. First, (1) is the

acquisition of the given category(c) instances. Next, (2) the features for this instances

are gathered and the instances/features matrix is created. In part 3, the clustering task

is applied in the matrix, having the (k) clusters as output (see the algorithm 4), then in

part 4, the algorithm to find names for the clusters runs (see the algorithm 5) and the

final results will be the new k sub-categories of the input category(c), and the instances

set clustered into this new sub-categories.
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Figure 5.14: Sub-Category Finder

The first(1) and second(2) part are just algorithms to filter the input (NELL or external

data sets) and to extract the instances/features of the wanted category. The most

important part is the third(3), where the sub-categories will be found by the clustering

task, and the last(4), where the clusters will be named. We discuss this tasks in the

following subsections.

5.6.1.1 N-K-Means++ Algorithm

K-means++ algorithm is the clustering algorithm used in this project. It is a version of

K-means, where the initial cluster seeds (centroids) are not chosen totally at random, but

with a probability distribution weighted by the distance of the points to already chosen

seeds, preferring points more distant (distinct) from already chosen points. In[46], the

advantages of this approach are discussed.

K-means++ algorithm (as well as K-Means) does not guarantee that the (global) optimal

solution will be found, it just guarantees the local optimum, so we decided to create an

algorithm that will merge the results of various executions of the k-means++ algorithm,
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called n-k-means++, where the k is the number of clusters wanted like the original

k-means algorithm, and the n, is the number of times that the k-means++ will be

executed.

Algorithm 4 N-K-Means++

Require: Data matrix data, number of instances d, number of features f , number of clusters wanted
k, number of times of clustering task n

Ensure: Instances clustered in k clusters c1, c2, ..., ck
1: int cluster[n][d]
2: int coo[d][d]
3: for i = 0 to n do
4: cluster[i] = k-means++(data, d, f , k)
5: end for
6: for all pairs of instances i, j do
7: coo[i][j] = number of times instance i and j appears in the same cluster in the n results in

cluster[] (from 0 to n times)
8: end for
9: Defines a set S of k seed instances for the k clusters, where:

S = {s1, s2, ..., sk | min(

k∑
i=0

k∑
j=i

coo[si][sj ]})

10: for i = 0 to d do
11: Add instance i to the cluster cx where:

max(

|cx|∑
j=0

coo[i][cx[j]]

|cx|
)

12: end for

The N-K-Means++ algorithm is presented in 4. First it creates a matrix to store the

results of each k-means++ execution (cluster[n][d]) and a matrix (coo[d][d]) to store

the co-ocurrency between the instances in each K-means++ output. It then executes k-

means++ algorithm n times storing the results in cluster, following it will pass through

each pair of instances (i, j) counting how many times they appear in the same cluster

(in the n configurations), storing the value in coo[i][j]. After that, it chooses one seed

instance for each of the k clusters (c1, ..., ck) picking the combination which has the

minimal co-occurency (in the best scenario the k instances were never in the same

cluster in the n configurations, so the sum in line 15 will be 0). After the seeds were

chosen, it passes through each instance (d) and put it into the cluster cx where the mean

co-ocurrency with cx instances are greater (in best scenario, the sum in line 17 will be

equal to n).

The N-K-Means++ algorithm have two very important advantages over the regular

K-means++:
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1. It reduces the chance of the algorithm being stucked into local optimal solution;

2. It allows us to use two different features matrix for the instances to be clustered

by different k-means++ and then gathered in the end (we will do that in some

experiments using features from NELL and from external data sets).

5.6.1.2 Naming the clusters

To be capable of automatically naming the clusters is a desirable characteristic to be used

in NELL, and also in any autonomous learner system. To implement this task, we intend

to use hyponym relations, some example of this relations in NELL: athleteSuchAsAth-

lete, professionSuchAsProfession. And some example of instances for these relations:

〈basketballplayers, KobeBryant〉, 〈footballplayers, BenTate〉, 〈healthprofessionals,

doctors〉 .

Algorithm 5 Sub-Category Nominator

Require: Instances clustered in k clusters c1, c2, ..., ck, generalization(hyponym) relation hrel
Ensure: Names for each of the k clusters n1, n2, ..., nk

1: for i = 0 to k do
2: N = new associative array
3: for all instances y ∈ ci do
4: for all hrel(x, y) ∈ hrel do
5: N(x) + +
6: end for
7: end for
8: name ni = x | ∀x ∈ N,N(x) ≥ N(x)
9: end for

With enough instances of this kind of relations, its easy to name the clusters. Let’s

say almost every athlete instance in NELL’s KB participates in a instance of relations

athleteSuchAsAthlete, so we cluster the instances, and in the end we just need to look

at each cluster and count the most frequent hypernym. The algorithm 5 is the imple-

mentation this task. It receives a set of clusters and the hyponym relation (hrel) used to

the task, then for each cluster ci, it counts the ocurrency of each hyperonym(x) present

in hrel involving instances of ci (lines 4 and 5). After that, it names the cluster ci (line

8) with the most frequent hyperonym(x).

The algorithm itself is very simple, the idea is very neat, but the problem is that currently

in NELL’ KB there are just a few hyponym relations, and very few instances for them,

so its not possible to apply this algorithm.
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NELL populates the relations using different approaches, like seed examples given within

the relations and also extraction patterns, example for relation athletePlaysSportsTeam-

Position: ”X is the team Y”, ”X is a Y” and ”X plays Y”. We can easily create a dozens

of hyponyms relations manually and we believe that giving Hearst patters as the extrac-

tion patterns to them, NELL will be able to quickly populates this relations so that the

naming algorithm can be used, that’s our next steps to this project.

5.6.2 Experiments

In this section some experiments performed using the Sub-Category Finder algorithm

presented in the last section is presented. To test this algorithm, we performed ex-

periments in the following categories of NELL: athlete, chemical, profession, vehicle,

mammal and celebrity. The reasons why we chose these categories, is because they all

have a hyponym relation (ex: athleteSuchAsAthlete, vehicleIsTypeOfvehicle), so that

the algorithm can name the clusters at the end, and they are the categories with the

more instances of hyponym relations currently in NELL’s KB.

The overall results of the experiments weren’t very good, the only great results came

from the athlete category, and the reasons for that is because Athlete is the category

with the biggest number of direct relations (relations with athlete as parameter, such as

teammate, athleteplayssport, athleteplaysforteam, athleteCoach, etc.), these relations

have a great impact in the description of each athlete instance, helping a lot in the

clustering process. The athlete category have around 15 direct relations, while most

of the rest of categories in NELL today have less then 3 and no other category have

even half of the quantity of athlete category. Because of this factor, we will show the

results for the athlete category in the experiments below, since the results for the other

5 categories were very poor.

5.6.2.1 Clustering a Category to Find Sub-Categories

First we will present results involving the part 3 (see Figure 5.14), that is the clustering of

the instances of the input category using the n-k-means++ algorithm (see algorithm 4).

In the process of gathering the results for the final clustering configurations at the n-k-

means++, the instances are ranked by frequency with each other in the n configurations.
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Table 5.2: 20x K-means(NELL)

Cluster Instances Frequency

c1 Tennis-Players 9/10
c2 Golf-Players 9/10
c3 Football-Players 10/10
c4 Basketball-Players 4/10
c5 Baseball-Players 10/10

Average Frequency 8.4

Table 5.3: 10x K-means(NELL) + 10x K-means(Svo)

Cluster Instances Frequency

c1 Baseball-Players 10/10
c2 Tennis-Players 10/10
c3 Basketball-Players 6/10
c4 Football-Players 4/10
c5 Baseball-Players 9/10

Average Frequency 7.8

So to evaluate precision of the final clustering results in the experiments of this section,

we looked for the top ranked instances of each cluster.

To the first experiment NELLs KB relations involving the instances of the input

category was used as features to compose the matrix to be clustered. The N-K-Means++

were executed with n = 20 and k = 6. Its result (for athlete category) is present in Table

5.2.

To the second experiment, NELL’s KB was used (just as the first experiment) to a

n-k-means++ execution running with n = 10 and k = 6, and also a N-K-means++ was

applied into features of the instances of the given category gathered from a svo (subject

verb object) data set with 114 million triples (with also n = 10 and k = 6). The final

clusters where gathered (using the same algorithm 4) from the results of this 20 cluster

tasks. The result is present in Table 5.3.

Despite the athlete category having 15 direct relations, it also has dozens of relations

that are not direct, and in the first two experiments all of those had the same weight in

the clustering task. To the third experiment NELL’s KB was used as features again,

with n = 20 and k = 6 just like the first experiment, but in this experiment the ontology

information was used by changing the k-means++ distance function to give more weight

to direct relations. The result is present in Table 5.4.
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Table 5.4: 20x K-means(NELL weighted)

Cluster Instances Frequency

c1 Tennis-Players 10/10
c2 Basketball-Players 6/10
c3 Football-Players 10/10
c4 Golf-Players 10/10
c5 Baseball-Players 9/10

Average Frequency 9

By observing the results from the three experiments above, we can see that the svo we

used did not bring much contributions to the obtained results. Actually, for the other

5 categories there was some improvement despite none good enough. But for Athlete

category we believe that it make the results worse because this category is also well

described in NELL (because of the amount of direct relations), and since we used just

high confident instances of NELL (called beliefs), it tends to have less noisy instances

than the svo data set.

The third experiment achieved the bigger clusters configuration, and this strengthens

the importance of the direct relations for description of a category in the clustering task.

We can conclude that to achieve a better clustering over a category’s instances using

NELL’s KB, the category needs to have a good amount of direct relations.

5.6.2.2 Naming the Clusters

In the 4th part of the project (see Figure 5.14, the algorithm created to name the clusters

using hyponym relation (algorithm 5), was implemented and empirically tested for the

6 categories used in the clustering experiments (from section above). Unfortunately the

results were very poor. We chose the six categories with the biggest number of instances

in the hyponym relations, but even for these ones, less then 10% of instances participates

in hyponym relations. We intend to populate NELL’s KB with more hyponym relations

and instances and to try out this algorithm again.

5.7 Conclusion

To a self-learning system such as NELL, to be capable of automatically extending its

ontology, such as finding sub-categories for a given category is very important. It can
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play an important role in the capability of self-organizing instances into more specific

categories by itself when a category is well mature.

This work is not yet concluded and only initial steps were taken.But, the obtained

results so far helped us conclude that to achieve a better clustering in one of its category

instances, the category needs to be better described having a good amount of direct

relations. The athlete category, that is the most mature currently on NELL, make us

believe that work is very promising.

We also have some problems into the naming of the new clusters because of the lack of

hyponym relations (and its instances) in NELL’s KB. But we studied methods to help

populates this kind of relations, and its one thing that we should focus on the next steps.

Because of this conclusions, the next steps we have to do for the future of the Sub-

Category Finder (in NELL) can be resumed in two two main goals:

• Populates NELL’s KB with more relation to achieve better results in the clustering

a category: to this task, we had a project that finds new relation to NELL that

started to run in April/2015 and it should significantly increase NELL’s relations

in just a couple of months;

• Create and populate more hyponym relations on NELL’s KB: as we commented

in the end of section 5.6.1, we believe that using Hearst patterns NELL might be

able to populate hyponym relations faster;
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5.8 Extending the Ontological Network Model N o

The No model maps a very simple ontology consisting just of categories and relations,

but it’s possible to extend the model by adding more detailed components, such as

events. Currently some events are being added to NELL’s ontology, thus we are going

to use one of them as an example to better illustrate how this works with our model.

Let’s consider NELL’s OKB mapped into the No model:

No
NELL = (Gm, Gi)

An event, as NELL is implementing it, will be a new category to identify the event

(name) and a set of relations with the node of this category to describe the event.

To exemplify, one of the events recently added to NELL’s OKB, the Bombing event6:

• Category of the event={BombingEvent};

• Relations that describe the event={witnessOfBombing(Person, BombingEvent),

victimOfBombing(Person, BombingEvent),

bombingCausedByExplosive(BombingEvent, Explosive), timeOfBombing(time,

BombingEvent), locationOfBombing(Location, BombingEvent)}

We can observe that the event model is a sub-graph (GBombing) contained at Gm, and

each instance of the event will be a sub-graph with the exactly same format of GBombing.

The Sub-graph will be like:

6NELL’s bombing event and its relations can be observed at http://rtw.ml.cmu.edu/rtw/kbbrowser/
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Gm ⊂ GBombing

GBombing = (VBombing, EBombing)

VBombing={BombingEvent, Person, Explosive, time, Location}

EBombing={witnessOfBombing<Person, BombingEvent>, victimOfBombing<Person,

BombingEvent>, bombingCausedByExplosive<BombingEvent, Explosive>,

timeOfBombing<time,BombingEvent>, locationOfBombing<Location,

BombingEvent>}

Figure 5.15: Sub-graph of the Ontological Model representing the Bombing Event

Figure 5.15 illustrates how the sub-graph GBombing of the ontological model GNELL
m will

look like.

Figure 5.16 present the instance of a bombing event from the model of GBombing.

5.9 Future Classification Task

Every time PrOntExt (and also GRL) runs, it generates a file within the output relations

(category pairs) with a set of statistics that we take from it. The list of this statistics is

described below:
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Figure 5.16: Sub-graph of the Ontological Model representing the Bombing Event

1- Jaccard Index.[58] The sum of the Jaccard index of each instance of an open

triangle category group is calculated, then it is divided for the total number of instances

in the group to normalize the value, see in equation below.

∑
Λ(u,w)∈Λc(cu,cw)

scoreJac(u;w)

|Λc(cu, cw)|

2- Adamic/Adar Index.[10] Analogously to the jaccard index, the sum of the adamic

index in an open triangle category group is calculated and normalized, see in equation

below.

∑
Λ(u,w)∈Λc(cu,cw)

scoreAA(u;w)

|Λc(cu, cw)|

3- Extra Neighbors. This attribute is based on the previously presented extra neigh-

bor index. The equation below is used as an attribute, with the extra neighbor value

divided by the size of the open triangle category group.

ℵc(cu, cw)

|Λc(cu, cw)|

4- Promoted Instances. This attribute is based on the number of valid instances of

the group, in fact, it’s the percentage of instances of the group that will be promoted.
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See in equation below.

|IΛc(cu,cw)|
|Λc(cu, cw)|

5- Size of category group. The last attribute used is directly based on the size of the

open triangle category group, which was used to normalize all the other attributes. But

to his value doesn’t be so much disperse and to maintain the same range as the other

metrics, it’s applied a MIN-MAX normalization. See in the equation below.

|Λc(cu, cw)| − |Λc(cu, cw)|MIN

|Λc(cu, cw)|MAX − |Λc(cu, cw)|MIN

We save these statistics in every iteration of PrOntExt execution. Since we are currently

using human supervision to promote the relations, in a couple of months we are going to

have a lot of highly trust promoted relations and also negative examples, so we plan to

gather this examples within their statistics (the attributes presented above) to train a

classifier (using an algorithm we didn’t define yet). If we succeed we will make PrOntExt

task a step further to be an autonomous system7.

5.10 Sensibility of the algorithms, ignoring out of pattern

facts

All of the algorithms presented in this Masters’ thesis are sensitive to wrong facts previ-

ously stored in the OKB. A few wrong instances can generate lots of incorrect outputs,

so we have always the need of human supervision or a classification task. We design this

algorithms to work with NELL that is a never ending system that read from the web. It

is expected that NELL promotes some wrong facts, other famous OKBs are not immune

to this problem either, so we tough it may be good if our algorithms could “filter” the

facts to reduce the chance of using the wrong ones.

For our algorithms that tends to use groups of specific categories and relations isolated,

we thought that it will make sense to use a measure based on the degree distribution

of a category like the mean, median or the mode to determine a range of degrees that

7we already made some experiments using weka with a set of manually classified relation with some
classification algorithms and we achieve some reasonable precision (greater than 75%)



Chapter 7. Future Works 70

the instances of the category should have to increase the confidence that the instances

is really correct. Let’s stick to the example of the No
sports.

If we try to filter probably wrong athletes, we might use the mode between all athletes

instances to establish a pattern of “probably valid” athletes. Considering the ontology

presented in 3.3, and thinking of how things work in the real word. Probably an athlete

will have around 1-20 teammates, played at around 50 stadiums and 10 countries, plays

for 1 team, and plays at around 3 leagues, so the mode here will be some value around

85-105 (depending on the sports). We can use that, creating a soft interval of acceptable

degrees of each instance node of athlete category (let’s say from 40-200) to contemplate

exceptions, doing that, athlete instances with more than 200 or less than 30 connections

will be thrown away.

We are still experimenting what is the best measure and the best way to filter less

probably instances, but PrOntExt already achieve very better results with a filter by

the mode like in the example above, and it is actually already using it in its current

implementation.



Final Conclusion

The main focus of our whole work is to use the ontology information of an ontological

knowledge base to extract implicit knowledge in the form of new categories, with the

Sub-Category Finder, and relations, with the PrOntExt, this way extending the ontology

itself. We also find new facts with the Graph Rule Learner. The main motivation for this

work is the lack of researches that uses the ontology directly to find implicit knowledge,

plus nowadays there’s a lot of projects that uses OKBs to store its knowledge.

Our project was largely motivated by NELL and the algorithms we based most of our

own was NELL’s components Prophet and OntExt, but instead of just reprogram them

in another programming language, we enhance them to find new relations, and we use

its core ideas to create algorithms to extract different kinds of knowledge(categories and

facts). Also in the implementation, we seek to achieve good performance that will scale

with NELL’s never ending growing OKB.

Despite all of the algorithms presented in this work seems to be totally focused on NELL,

they are all very generic. With simple pre-processment any ontologycal knowledge base

with a simple ontological model like the one described in Chapter 1 should be able to

be used as input to these programs.

A structure called ontological network(No) that can be used to map and ontological

knowledge base(OKB) for the execution of graph-mining algorithms was formally pre-

sented (Chapter 3). It was used to help at the design of the algorithms, and also to

describe the algorithms used to find implicit knowledge.

We presented a lot of results over GRL(Chapter 4), because it is the most “mature”

project we currently have. It was possible to shown that is

71



Chapter 8. Final Conclusion 72

PrOntExt is lacking of experimentation, and it is using human supervision, but despite

of that it has shown to be very promissing, even more if we consider the classification

task and filters to reduce sensibility that might be implemented in the future (Chapter

5.7). PrOntExt already increases NELL’s relation base in more than 20%.

Some ideas within examples of how to use community detection techniques to find new

categories for an OKB were presented in Chapter 5.5. After that we present a project we

work for to find sub-categories using clustering techniques, this work is not very mature

yet but initial results has show that it is promissing if we can increases NELL’s relation

base(what we are doing with PrOntExt).

After we present all the components, we propose some future work to enhance and

improve them in Chapter 5.7. There aren’t currently much works involving ontologies

to discover implicit knowledge, it can be considered a very recent area, and with our

whole work it’s possible to imagine that there’s a plenty room for it to evolve.



Projects Results

.1 Running GRL with NELL OKB it. 820

Table of Figure 17 presents rules found by GRL running over NELL’s KB. Table of

Figure 18 presents rules found by GRL running over YAGO(1)’s KB. All rules presented

in this appendix are from the final list (rl2), so, they were grouped (to generic rules)

and ranked.

Figure 17: GRL outputed rules for NELL’s KB
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Figure 18: GRL outputed rules for YAGO’s KB

.2 GRL vs PRA vs AMIE

In this section, some rules found by PRA and AMIE from the experiment comparing

them to GRL are present. The Table of Figure 19 presents some of the rules found

by PRA and the Table of Figure 20 presents some of the rules found by AMIE. Both

running over NELL’s OKB of iteration 885.

Figure 19: PRA outputed rules for NELL’s OKB (iteration 885)

.3 PrOntExt Results running with NELL

In this section we present some results of PrOntExt. The relation presented are all

already inserted at NELL’s OKB. In the table of Figure 21 we present a list with

some relations: the first column is the relation name, the second is the relation that is
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Figure 20: AMIE outputed rules for NELL’s OKB (iteration 885)

the “father” of the current relation8, the third and forth is the two categories that the

relation connects.

Figure 21: Relations found by PrOntExt running with NELL

In the table of Figure 22 are present four relations and its seed instances. As mentioned

before, some comes from Prophet, another ones we manually added.

8It’s like the hierarchy of categories, but NELL also have a hierarchy for the relations either
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Figure 22: Relations found by PrOntExt running with NELL
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