

UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS AGRÁRIAS PROGRAMA DE PÓS-GRADUAÇÃO EM AGROECOLOGIA E DESENVOLVIMENTO RURAL

DIVERSIDADE DE CURCULIONIDAE (SCOLYTINAE, PLATYPODINAE) E
BOSTRICHIDAE EM PLANTIOS DE TECA, Tectona grandis L. f., 1782, NO
ESTADO DO PARÁ, BRASIL

CARLA SAMARA DOS SANTOS FERREIRA

Araras - SP 2016

UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS AGRÁRIAS PROGRAMA DE PÓS-GRADUAÇÃO EM AGROECOLOGIA E DESENVOLVIMENTO RURAL

DIVERSIDADE DE CURCULIONIDAE (SCOLYTINAE, PLATYPODINAE) E
BOSTRICHIDAE EM PLANTIOS DE TECA, Tectona grandis L. f., 1782, NO
ESTADO DO PARÁ, BRASIL

CARLA SAMARA DOS SANTOS FERREIRA

ORIENTADOR: PROF. Dr. CARLOS ALBERTO HECTOR FLECHTMANN
COORIENTADOR: ALEXANDRE MEHL LUNZ

Dissertação apresentada ao Programa de Pós-Graduação em Agroecologia e Desenvolvimento Rural como requisito parcial à obtenção do título de MESTRE EM AGROECOLOGIA E DESENVOLVIMENTO RURAL

Araras - SP

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária UFSCar Processamento Técnico com os dados fornecidos pelo(a) autor(a)

Ferreira, Carla Samara dos Santos

F383 Diversidade de Curculionidae (Scolytinae,
Platypodinae) e Bostrichidae em plantios de teca,
Tectona grandis L.f., 1782, no Estado do Pará,
Brasil / Carla Samara dos Santos Ferreira. -- São
Carlos : UFSCar, 2016.
62 p.

Dissertação (Mestrado) -- Universidade Federal de São Carlos, 2016.

1. Mielófagos . 2. Besouros da ambrosia. 3. Armadilha de etanol . 4. Variação sazonal. I. Título.

UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Agrárias Programa de Pós-Graduação em Agroecologia e Desenvolvimento Rural

Folha de Aprovação

Assinaturas dos membros da comissão examinadora que avaliou e aprovou a Defesa de Dissertação de Mestrado da candidata Carla Samara dos Santos Ferreira, realizada em 16/09/2016:

Prof. Dr. Carlos Alberto Hector Flechtmann UNESP

Prof. Dr. Rogério Goularte Moura Gomes de Oliveira FIC

Prof. Dr. Marcelo Nivert Schlindwein UFSCar

DEDICATÓRIA

À Minha querida avó, Antônia Ferreira por todo amor e carinho (In memoriam).

DEDICO

À minha mãe Rosineide Eguchi, pelo exemplo de vida e determinação.

OFEREÇO

AGRADECIMENTOS

A Deus, pelo dom da vida e por ter me concedido forças para terminar este trabalho.

À Universidade Federal de São Carlos (UFSCar) e ao Programa de Pós-Graduação em Agroecologia e Desenvolvimento Rural (PPGADR) pela oportunidade da realização deste curso.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela bolsa de estudo.

Ao meu orientador Prof. Dr. Carlos Alberto Hector Flechtmann, pela oportunidade, contribuições, ensinamentos e orientações para realização deste trabalho.

Ao meu coorientador, Dr. Alexandre Mehl Lunz por ter me proporcionado o primeiro passo para realização desta pesquisa, e pelo incentivo desde a graduação.

À Agência de Defesa Agropecuária do Estado do Pará (ADEPARÁ), à Empresa Brasileira de Pesquisa Agropecuária (Embrapa – Amazônia Oriental), e ao Ministério da Agricultura, Pecuária e Abastecimento (MAPA) pelo suporte técnico e financeiro deste experimento.

Aos funcionários da ADEPARÁ Wilson Silva, Luciano Guedes e Nelson Leite pela autorização desta pesquisa e fornecimento de dados para execução da mesma.

Aos fiscais agropecuários da ADEPARÁ Adra, Danielly, Deydiston, Eliana, José, Keyla, Luciana e Vitor pela coleta dos Insetos.

Aos senhores José, Virginia, Waldomiro, Valdice, Lourival, Giovanni, Paulo, Eliseu e à TKX Indústria Madeireira Ltda pela disponibilização das áreas do estudo.

Aos funcionários e docentes do programa de Pós-graduação em Agroecologia em Desenvolvimento Rural, especialmente à secretária Cris por toda atenção.

Aos professores do curso de PPGADR, Fabrício Rossi, Marcelo Nivert e Fernando Franco pelas contribuições no meu exame de qualificação.

À Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), pelas instalações necessárias para identificação dos insetos.

À bióloga Silvia Tanabe, pelos ensinamentos na identificação dos insetos, parceria e momentos de descontração.

Ao pesquisador, Thomas Harris Atkinson pela identificação dos Hypothenemus.

Aos amigos André Abrego e Vinícius Gomes, pelo suporte na confecção dos gráficos.

A Mayara Ribeiro pela amizade, sugestões e contribuições nas correções.

À turma de 2014 do PPGADR, pela troca de conhecimentos e experiências, e aos colegas do curso Carine, Adriel, Danilo, Nathália, Larissa, Otávio e Tatiana pelos bons momentos compartilhados em Araras.

Ao "Combo", Elizabethy e Natália por todo amor, carinho, conselhos e convivência em Araras, vocês foram fundamentais.

A toda equipe do laboratório de Entomologia da UNESP de Ilha Solteira, Gabriela, Fábio, Vinícius, Luana, Cris, e José pelo acolhimento, especialmente Barbarah e Jean pelas conversas, brincadeiras e incentivos durante a realização desta etapa.

Aos meus amigos de Ilha Solteira, Letícia, Paulo, André, Evelyn, Ana, Jennifer, Adriana, Neuter por me receberem tão bem e deixarem meus dias mais felizes em Ilha.

Aos meus grandes amigos, Ana, Eva, Camila, Renata, Wagner, Kazumi, Carolina, e Elaine que sempre se fizeram presente mesmo com a distância.

Aos meus pais, Carlos e Rosineide por sempre incentivarem meus estudos proporcionando todos os auxílios necessários, pelos cuidados, dedicação e amor.

Aos meus irmãos, Ellen e Davi pelo amor incondicional, exemplos de inspiração e companheirismo. Aos meus padrinhos Helena e Jorge, por estarem sempre presentes nesta jornada, e meu Padrasto Erivelton por todo incentivo.

Enfim, a todos que contribuíram de alguma forma, muito obrigada.

SUMÁRIO

	Página
ÍNDICE DE TABELAS	III
ÍNDICE DE FIGURAS	V
RESUMO	VII
ABSTRACT	VIII
1 INTRODUÇÃO	1
2 OBJETIVOS	4
2.1 Objetivo geral	5
2.2 Objetivos específicos	5
3 REVISÃO DE LITERATURA	6
3.1 Teca	7
3.2 Ordem Coleoptera: Curculionidae	9
3.2.2 Scolytinae e Platypodinae	9
3.3 Família Bostrichidae	11
3.4 Variação sazonal de insetos e influência de fatores me	teorológicos
	13
4 MATERIAL E MÉTODOS	14
4.1 Área de estudo	15
4.2 Áreas experimentais	16
4.3 Coleta de Coleoptera	21
4.4 Dados meteorológicos	24
4.5 Análise de dados	26
5 RESULTADOS E DISCUSSÕES 5.1 Abundância e diversidade de Curculionidae	
Platynodinae) e Rostrichidae	29

5.2 Variação sazonal de Curculionidae (Scolytinae, Platypodinae) e
Bostrichidae38
6 CONCLUSÕES50
7 LITERATURA CITADA52
APÊNDICES58
APÊNDICE A - DISTRIBUIÇÃO DE ARMADILHAS EM PLANTIOS DE TECTONA GRANDIS, SÍTIO DE JOSÉ COSTA, MUNICÍPIO DE CANAÃ DOS CARAJÁS, ESTADO DO PARÁ59
APÊNDICE B- DISTRIBUIÇÃO DE ARMADILHAS EM PLANTIOS DE TECTONA GRANDIS, FAZENDA MONGAGUÁ, MUNICÍPIO DE CUMARU DO NORTE, ESTADO DO PARÁ59
APÊNDICE C - DISTRIBUIÇÃO DE ARMADILHAS EM PLANTIOS DE TECTONA GRANDIS, FAZENDA SABRAN, MUNICÍPIO DE CUMARU DO NORTE, ESTADO DO PARÁ60
APÊNDICE D - DISTRIBUIÇÃO DE ARMADILHAS EM PLANTIOS DE TECTONA GRANDIS, FAZENDA VELUMA, MUNICÍPIO DE CUMARU DO NORTE, ESTADO DO PARÁ60
APÊNDICE E - DISTRIBUIÇÃO DE ARMADILHAS EM PLANTIOS DE TECTONA GRANDIS, FAZENDA RONGI-PORÃ, MUNICÍPIO DE RIO MARIA, ESTADO DO PARÁ
APÊNDICE F - DISTRIBUIÇÃO DE ARMADILHAS EM PLANTIOS DE <i>TECTONA GRANDIS</i> , FAZENDA GUZERÁ, MUNICÍPIO DE SÃO DOMINGOS DO ARAGUAIA, ESTADO DO PARÁ61
APÊNDICE G- DISTRIBUIÇÃO DE ARMADILHAS EM PLANTIOS DE TECTONA GRANDIS, FAZENDA PINGO DE OURO, MUNICÍPIO DE ULIANÓPOLIS, ESTADO DO PARÁ62
APÊNDICE H - DISTRIBUIÇÃO DE ARMADILHAS EM ÁREA DE SERRARIA, TKX INDUSTRIA MADEIREIRA LTDA, MUNICÍPIO DE PAU D'ARCO,

ÍNDICE DE TABELAS

Tabela 1 - Caracterização das áreas experimentais16
Tabela 2 - Relação das áreas experimentais, estações meteorológicas e tempo de coleta
Tabela 3 - Espécies de Scolytinae, Platypodinae e Bostrichidae mais abundantes para cada área experimental
Tabela 4 - Relação de Coleoptera: Curculionidae (Scolytinae, Platypodinae) e Bostrichidae utilizados nas demais tabelas, capturados com armadilhas de intercepção de voo iscadas com etanol em áreas experimentais com <i>Tectona grandis</i> , estado do Pará, de junho de 2011 a abril de 201330
Tabela 5 - Total de indivíduos Scolytinae, Platypodinae e Bostrichidae capturados com armadilhas de intercepção de voo iscadas com etanol em áreas experimentais com <i>Tectona grandis</i> , estado do Pará, de junho de 2011 a abril de 2013.
Tabela 6 - Índices de Margalef, Shannon e equitabilidade para espécies de Scolytinae, Platypodinae e Bostrichidae capturados com armadilhas de intercepção de voo iscadas com etanol em áreas experimentais com <i>Tectona grandis</i> , estado do Pará, de junho de 2011 a abril de 2013
Tabela 7 - Teste de comparação de médias de captura de Scolytinae, Platypodinae e Bostrichidae mais abundantes em armadilhas de intercepção de voo iscadas com etanol, em áreas experimentais com <i>Tectona grandis</i> , estado do Pará, de junho de 2011 a abril de 201336

Tabela 9 - Teste de comparação de médias de captura de Scolytinae, Platypodinae e Bostrichidae mais abundantes em armadilhas de intercepção de voo iscadas com etanol, em áreas experimentais com *Tectona grandis*, para os períodos seco e chuvoso, estado do Pará, de junho de 2011 a abril de 2013. .45

Tabela 10 - Teste de comparação de médias de captura de Scolytinae, Platypodinae e Bostrichidae mais abundantes em armadilhas de intercepção de voo iscadas com etanol, em áreas experimentais com *Tectona grandis*, para os períodos seco e chuvoso, estado do Pará, de junho de 2011 a abril de 2013. .47

ÍNDICE DE FIGURAS

Figura 1– Áreas de ocorrência natural de teca7
Figura 2 – Scolytinae: Cryptocarenus seriatus Eggers 193310
Figura 3 – Platypodinae: <i>Euplatypus parallelus</i> (F. 1801)11
Figura 4 – Bostrichidae: Sinoxylon unidentatum (Fabricius, 1801)12
Figura 5 – Mesorregião do sudeste do estado do Pará com destaque para as áreas de coleta de Scolytinae, Platypodinae e Bostrichidae15
Figura 6 - Plantios de <i>Tectona grandi</i> s no município de Cumaru do Norte, Fazenda Mongaguá, estado do Pará, maio de 201117
Figura 7 - Plantios de <i>Tectona grandi</i> s no município de Cumaru do Norte, Fazenda Veluma (A) e Fazenda Sabran (B), estado do Pará, maio de 201118
Figura 8 - Plantios de <i>Tectona grandis</i> no município de Rio Maria, Fazenda Rongi-Porã estado do Pará, abril de 201019
Figura 9 – Madeira de teca estocada em campo na Fazenda Rongi-Porã, município de Rio Maria, estado do Pará, abril de 201019
Figura 10 - Plantios de <i>Tectona grandis</i> no município de São Domingos do Araguaia, Fazenda Guzerá, estado do Pará, março de 201520
Figura 11 - Serraria de <i>Tectona grandis</i> no município de Pau D'Arco, TKX Indústria Madeireira Ltda, estado do Pará, agosto de 201020
Figura 12 - Armadilha de intercepção de voo modelo ESALQ-84 iscada com etanol em plantio de <i>Tectona grandis</i> , Pau D'Arco, estado do Pará, 200922

Figura 13 - Identificação de Scolytinae, Platypodinae e Bostrichidae23
Figura 14 - Gaveta com coleção de Scolytinae, Platypodinae e Bostrichidae23
Figura 15 - Precipitação pluvial (PP), temperatura média (Tméd) e umidade relativa do ar (UR) da estação de Conceição do Araguaia/PA, de junho de 2011 a abril de 2013
Figura 16 - Precipitação pluvial (PP), temperatura média (Tméd) e umidade relativa do ar (UR) da estação de Tucuruí/PA, de dezembro de 2011 a fevereiro de 2013
Figura 17 - Flutuação populacional de <i>Cryptocarenus heveae</i> , capturados com armadilhas de intercepção de voo iscadas com etanol em plantio de <i>Tectona grandis</i> , Sítio de José Costa, Canaã dos Carajás, estado do Pará, de fevereiro de 2012 a abril de 2013
Figura 18 - Flutuação populacional de Scolytinae, <i>Euplatypus parallelus</i> e <i>Micrapate</i> sp. ₅ capturados com armadilhas de intercepção de voo iscadas com etanol em plantio de <i>Tectona grandis</i> , TKX Indústria Madeireira Ltda, Pau D'Arco, estado do Pará, de junho de 2011 a julho de 201240
Figura 19 - Flutuação populacional de Scolytinae, <i>Euplatypus parallelus</i> e <i>Xyloperthella picea</i> capturados com armadilhas de intercepção de voo iscadas com etanol em plantio de <i>Tectona grandis</i> , Fazenda Rongi-Porã, município de Rio Maria, estado do Pará, de junho de 2011 a junho de 201241
Figura 20 - Flutuação populacional de Scolytinae e <i>Xyloperthella picea</i> capturados com armadilhas de intercepção de voo iscadas com etanol em plantio de <i>Tectona grandis</i> , Fazenda Guzerá, município de São Domingos do Araguaia, estado do Pará, de fevereiro de 2012 a fevereiro de 201342

DIVERSIDADE DE CURCULIONIDAE (SCOLYTINAE, PLATYPODINAE) E BOSTRICHIDAE EM PLANTIOS DE TECA, Tectona grandis L. f., 1782, NO ESTADO DO PARÁ, BRASIL

Autor: CARLA SAMARA DOS SANTOS FERREIRA

Orientador: PROF. DR. CARLOS ALBERTO HECTOR FLECHTMANN

Coorientador: DR. ALEXANDRE MEHL LUNZ

RESUMO

A madeira de teca é uma das mais valiosas do mundo, despertando interesse entre os produtores pela sua qualidade e grande valorização comercial. No Brasil as plantações estão concentradas na região Centro-Oeste e Norte, e devido ao aumento destes plantios exóticos, o monitoramento faz-se necessário para o conhecimento da diversidade de insetos. No ano de 2008. iniciou-se um programa de fiscalização da praga quarentenária Sinoxylon unidentatum (Coleoptera: Bostrichidae) em plantios de Tectona grandis no estado do Pará, devido à proximidade com o estado de Mato Grosso, área de ocorrência desta praga. O objetivo geral desta pesquisa foi realizar o monitoramento de S. unidentatum e demais brocas capturadas nos municípios de Canaã dos Carajás, Cumaru do Norte, Pau D' Arco, Rio Maria, São Domingos do Araguaia e Ulianópolis. Os objetivos específicos foram determinar a riqueza e diversidade, e verificar se há variação sazonal para as principais espécies de Curculionidae (Scolytinae, Platypodinae) e Bostrichidae em oito áreas experimentais no Pará. O experimento foi conduzido com armadilhas de intercepção de voo iscadas com etanol. As coletas foram realizadas a cada 15 dias, de junho de 2011 a abril de 2013, totalizando 115 coletas. Foram capturados 10147 espécimes de brocas, distribuídos em oito sub-tribos, totalizando 90 espécies. Em Rio Maria foi encontrada a maior diversidade de brocas e em São Domingos do Araguaia a maior riqueza. Houve predomínio de Scolytinae da sub-tribo Cryphalina, que se desenvolvem provavelmente no subbosque ou em material seco sobre o solo. Foram capturados significativamente mais Bostrichidae e Hypothenemus durante o período seco. Sinoxylon unidentatum, espécie alvo que iniciou esta pesquisa, não foi coletada.

Palavras-chave: mielófagos, besouros da ambrosia, armadilha de etanol, variação sazonal.

DIVERSITY OF CURCULIONIDAE (SCOLYTINAE, PLATYPODINAE) AND BOSTRICHIDAE IN TEAK PLANTATIONS, Tectona grandis L. f., 1782, IN THE STATE OF PARÁ, BRAZIL

Author: CARLA SAMARA DOS SANTOS FERREIRA

Adviser: PROF. DR. CARLOS ALBERTO HECTOR FLECHTMANN

Co-adviser: DR. ALEXANDRE MEHL LUNZ

ABSTRACT

The teak wood is one of the most valuable in the world, creating interest among producers in its quality and great commercial value. In Brazil plantations are concentrated in the Midwest and North, and due to the increase in these exotic plantations, monitoring is necessary to learn about their insect diversity. In 2008 a program to monitor the quarantine pest Sinoxylon unidentatum (Coleoptera: Bostrichidae) in Tectona grandis was started in the state of Pará, Brazil, because of the proximity to the state of Mato Grosso, area of occurrence of this pest. The general objective of this research was to monitor S. unidentatum and other beetle borers in Canaã dos Carajás, Cumaru do Norte, Pau D' Arco, Rio Maria, São Domingos do Araguaia and Ulianópolis. Our specific objectives were to determine the richness and diversity of Curculionidae (Scolytinae. Platypodinae) and Bostrichidae in these plantations, and to know if there was a seasonal variation for their most abundant species. Trappings were done biweekly with ethanol-baited flight intercept traps from June 2011 to April 2013. totaling 115 collections. We captured 10147 specimens of beetle borers, distributed in eight sub-tribes, and totaling 90 species. In Rio Maria we found the greatest diversity of beetles and in São Domingos do Araguaia the greatest richness. There was a predominance of Scolytinae of the sub-tribe Cryphalina, which probably develop in the understory or dry material above the soil. We trapped significantly more Bostrichidae and Hypothenemus during the dry season. Sinoxylon unidentatum, target species that started this research, was not detected.

Keywords: myelophagous, ambrosia beetles, ethanol-baited trap, seasonal variation.

1 INTRODUÇÃO

A teca (*Tectona grandis* L. f.) é uma árvore asiática utilizada em plantios florestais no Brasil, e sua madeira tem alto valor comercial, com plantios presentes em diversos continentes, desde a Ásia, África e América (PANDEY; BROWN, 2000). A sua madeira possui qualidade semelhante à do mogno e do cedro, podendo ser plantada em diferentes sistemas silviculturais, dentre estes, monocultivos, sistemas agroflorestais (SAFs) e agrosilvipastoris (FOELKEL, 2013).

No entanto, ataques de insetos podem ser limitantes em plantações florestais. Na sua região de origem, como Índia e países vizinhos, cerca de 174 espécies de insetos fitófagos atacam a teca (NAIR, 2007). A maioria dos insetos causa somente danos leves ou ocasionais, e os desfolhadores são considerados as principais pragas em plantações nativas e comerciais em diversos países (NAIR, 2000; ARGUEDAS et al., 2004; WYLIE; SPEIGHT, 2012).

Os coleópteros causam importantes danos em culturas florestais (BERTI FILHO, 1979), e neste estudo serão enfatizados três grupos de brocas de interesse econômico, dentre estes, os Bostrichidae que se desenvolvem em madeira seca, mas também eventualmente em galhos e troncos de plantas vivas (LIMA, 1953), e principalmente os escolitídeos e platipodídeos (Curculionidae: Scolytinae, Platypodinae), que podem atacar árvores vivas (geralmente estressadas) e recém-abatidas. Os escolitídeos também podem se alimentar de diversas partes da planta hospedeira (ATKINSON; EQUIHUA-MARTINEZ, 1986a).

Dentre os besouros que atacam a madeira de teca, Sinoxylon unidentatum (Fabricius, 1801) (Bostrichidae) é considerada como praga quarentenária presente (A2) (MAPA, 2016), espécie alvo que impulsionou o início deste estudo e foi detectada pela primeira vez no Brasil em Várzea Grande, Mato Grosso (PERES FILHO et al., 2006a). Diante disso, o Ministério de Agricultura Pecuária e Abastecimento (MAPA) e a Agência de Defesa Agropecuária do Estado do Pará (ADEPARÁ) iniciaram em 2008 um convênio para fiscalização desta praga no sul do estado do Pará, devido à proximidade desta região com o estado de Mato Grosso (LUNZ et al., 2010).

Estudos de variações espaciais e temporais da diversidade de insetos são necessários, visto que aparecem como indicadoras do bom funcionamento dos ecossistemas (PERONI; HERNÁNDEZ, 2011). Além do mais, o levantamento da diversidade de insetos pode servir de suporte ao manejo integrado de pragas, melhorando a eficiência na preservação do ecossistema (ALTIERI; NICHOLLS, 1999).

No Brasil estudos com Scolytinae, Platypodinae e Bostrichidae em plantios de teca ainda são escassos, com registro no estado do Espírito Santo (PAES et al., 2014), e principalmente em madeiras produzidas em Mato Grosso (MOURA et al., 2008; PERES FILHO et al., 2006b; PERES FILHO et al., 2006c). Desta forma, este é o primeiro estudo de diversidade destas brocas em plantações de teca no Pará e visa contribuir com o conhecimento de espécies dos grupos Scolytinae, Platypodinae e Bostrichidae.

2 OBJETIVOS

2.1 Objetivo geral

O objetivo geral desta pesquisa foi determinar as espécies de Curculionidae, sub-famílias Scolytinae e Platypodinae, e Bostrichidae capturados em oito áreas experimentais no Pará.

2.2 Objetivos específicos

Os objetivos específicos foram determinar e comparar a abundância e diversidade de Scolytinae, Platypodinae e Bostrichidae; e verificar se há variação sazonal para as principais espécies destas brocas em áreas de plantios e serraria de teca no estado do Pará.

3 REVISÃO DE LITERATURA

3.1 Teca

A árvore, *Tectona grandis* L. f., 1782, da família Lamiaceae é conhecida popularmente como teca, é nativa do sul e sudeste asiático, ocorrendo naturalmente na Índia, Myanmar, Tailândia e Laos, sendo também considerada natural da Indonésia (Ilhas de Java), onde foi introduzida 400 a 600 anos atrás (Figura 1) (NAIR, 2007; PANDEY; BROWN, 2000).

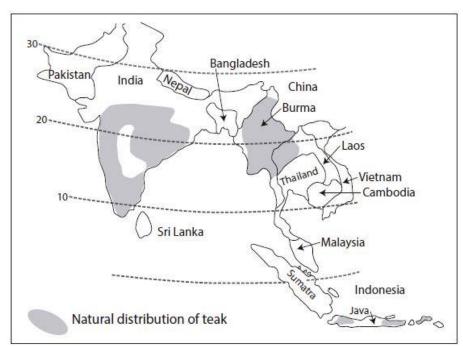


Figura 1- Áreas de ocorrência natural de teca.

Fonte: Gyi e Tint, 1998.

A teca é heliófita e caducifólia, podendo alcançar 2,5 m de diâmetro e mais de 50 m de altura. O clima mais indicado para o seu desenvolvimento é o tropical úmido, com verão chuvoso e inverno seco. Seu melhor desempenho ocorre em locais com altitude abaixo de 1000 m, temperatura mínima de 13-17°C, temperatura máxima de 39-43°C e precipitação anual de 1250-3750 mm, exigindo pelo menos um período de três meses secos (com precipitação inferior 50 mm/mês). Apresenta bom crescimento em solos de textura média, profundo e bem drenado, com fertilidades média e pH igual ou maior que 5,5 (PANDEY; BROWN, 2000).

A madeira da teca é conhecida pela resistência a pragas e umidade, apresenta cor clara, rusticidade, leveza, fácil maleabilidade e boa aparência. O principal uso da teca é a produção de madeira para serraria, sendo utilizada principalmente para fins nobres na construção de barcos, móveis, pisos, painéis e postes (PANDEY; BROWN, 2000).

Há cerca de 150 anos vem sendo plantada extensivamente, tanto na sua área nativa quanto em outras regiões, por exemplo, na África, América e toda Ásia. Monocultivos de teca foram conduzidos pela primeira vez em Java em 1680. Anos depois, em Myanmar (1856) e Indonésia (1880) surgiram os cultivos associados a outras culturas agrícolas. A área global de teca plantada é estimada em 6,8 milhões de hectares e uma proporção significativa pertence aos pequenos produtores (MIDGLEY et al., 2015).

Na América Latina, plantações de teca estão presentes na Argentina, Brasil, Chile, Colômbia, Costa Rica, El Salvador, Equador, Guatemala, Honduras, Panamá, Peru, Trinidad-Tobago, Suriname e Venezuela (PANDEY; BROWN, 2000). No Brasil os plantios comerciais começaram em 1971 em Cáceres/MT (CÁCERES FLORESTAL, 2006), sendo seu cultivo sido iniciado somente em 1993 no estado do Pará (COSTA et al., 2010). As maiores plantações de teca estão nos estados de Mato Grosso, Pará e Roraima (ABRAF, 2013). Atualmente existem 87499 ha plantados no Brasil (IBÁ, 2015).

A produção anual de teca é aproximadamente de 2,5 Mm³, considerada pequena em relação ao volume total de madeira mundial (MIDGLEY et al., 2015). Myanmar domina o comércio de exportação deste produto, enquanto a Índia responde por cerca de 75% das importações de teca no mundo (MIDGLEY et al., 2015; PANDEY; BROWN, 2000). Cerca de 1,3 milhões m³ da colheita anual de toras de teca plantada é comercializada como madeira serrada, com um valor estimado de 723 milhões de dólares (MIDGLEY et al., 2015).

3.2 Ordem Coleoptera: Curculionidae

A maior ordem de insetos no mundo é Coleoptera, e possui grande importância em termos de danos causados às árvores. Normalmente diferentes grupos de besouros atacam a madeira, em vários estágios, recémcortada, seca e processada. Geralmente o primeiro grupo que ataca a madeira são besouros das famílias Buprestidae, Cerambycidae e Curculionidae (Scolytinae, Platypodinae), e o segundo é Bostrichidae (NAIR, 2007).

A família Curculionidae é considerada a maior da classe dos insetos, com 65 sub-famílias no mundo e 37 no Brasil. Estes besouros têm rostro voltado para baixo, antenas genículo-clavadas, e exosqueleto esclerosado. Os adultos são fitófagos, assim como as larvas, que estão entre as grandes pragas de plantas cultivadas. A base alimentar é essencialmente dos tecidos vivos, podendo se alimentar de diversas partes da planta, desde troncos, ramos e frutos (LIMA, 1956).

3.2.2 Scolytinae e Platypodinae

Scolytinae e Platypodinae são sub-famílias de Curculionidae, sendo grupos semelhantes e que compartilham do mesmo nicho ecológico, padrões comportamentais e taxonômicos. A maioria perfura madeira e árvores, e também são conhecidos pelos seus efeitos benéficos na reciclagem de nutrientes nas florestas (ATKINSON; EQUIHUA-MARTINEZ, 1986b; MAITI; SAHA, 2009; WOOD, 1993).

São conhecidas cerca de 6000 espécies de escolitídeos no mundo, distribuídas em 227 gêneros, e 1339 encontram-se na América do Sul. São comumente chamados de besouros da casca e da ambrosia, referindo-se aos hábitos alimentares mais prejudiciais deste grupo, que são o consumo do floema (fleófagos) e de fungos que cultivam na árvore hospedeira (xilomicetófagos), respectivamente. Entretanto, podem também se alimentar de sementes (espermófagos), pequenos ramos (mielófagos), plantas herbáceas (herbífagos) e do xilema de árvores (xilófagos) (WOOD, 2007).

São besouros muito pequenos (entre 2 mm e 4 mm de comprimento) (Figura 2) e passam a vida na madeira, onde se alimentam e se abrigam, podendo completar seu ciclo de 20 a 90 dias (WOOD, 1982).

A maioria das espécies ataca árvores debilitadas, enfraquecidas ou doentes; outras podem atacar e matar árvores saudáveis, e algumas vivem normalmente sem matar o hospedeiro. As mais destrutivas espécies têm uma relação simbiótica mutualística com fungos, que podem causar a morte da árvore hospedeira (MAITI; SAHA, 2009; WOOD, 2007).

Figura 2 – Scolytinae: Cryptocarenus seriatus Eggers 1933.

Fonte: Javier Mercado, Bark Beetle Genera of the U.S., USDA APHIS ITP, Bugwood.org.

A despeito de algumas espécies serem insetos-praga de grande importância econômica, os escolitídeos podem desempenhar importante papel ecológico em florestas, ajudando a manter um crescimento vigoroso das plantas, bem como na reciclagem de tecidos de plantas mortas e de nutrientes. São os primeiros agentes biológicos a atacar madeira morta para posterior degradação e deterioração, e fornecem caminho para outros agentes degradadores que aceleram o processo (MAITI; SAHA, 2004; WOOD, 2007).

Quanto a Platypodinae, são conhecidas cerca de 1000 espécies, a maioria encontrada nos trópicos (SCHEDL, 1972). São todos xilomicetófagos e têm uma organização social monogâmica (Figura 3). Quando se trata de danos à madeira, são mais importantes que Scolytinae devido à profundidade de seus túneis (BROWNE, 1963). Algumas espécies atacam árvores

saudáveis, mas a preferência é por plantas estressadas e enfraquecidas, além de madeira recém-abatida (BEAVER, 2013).

Figura 3 – Platypodinae: *Euplatypus parallelus* (F. 1801).

Fonte: Pest and Diseases Image Library, Bugwood.org.

Várias espécies dos grupos Scolytinae e Platypodinae já foram relatadas causando danos em árvores vivas de teca em diversas áreas do mundo. Em Scolytinae, *Xyleborus abnormis* e *Xyleborinus andrewesi* (Índia) (MAITI e SAHA, 2004), *Xylosandrus morigerus* (Java) (KALSHOVEN, 1961), *Xyleborus affinis* (Costa Rica) (ARGUEDAS et al., 2004; ARGUEDAS, 2008), *Xylosandrus crassiusculus* (Costa Rica) (ARGUEDAS, 2008) e *Scolytus* sp. (Equador) (FLORES et al., 2010), e em Platypodinae, *Euplatypus parallelus* (Costa Rica) (ARGUEDAS et al., 2004; ARGUEDAS, 2008).

Os ataques podem ocorrer também em árvores cortadas e sua madeira em Scolytinae (*Hypothenemus eruditus*, *Xyleborus affinis*, *X. ferrugineus* e *Xyleborus* sp.) e em Platypodinae (*Euplatypus parallelus*) (PERES FILHO et al., 2006b; PERES FILHO et al., 2006c; MOURA et al., 2008).

3.3 Família Bostrichidae

Os ataques da família Bostrichidae estendem-se da madeira cortada às árvores enfraquecidas. Existem cerca de 520 espécies, das quais 100 vivem na Região Neotropical, distribuídas em três sub-famílias: Dysidinae,

Dinoderinae e Bostrichinae. Estes apresentam interesse econômico, uma vez que podem transformar a madeira em pó, sendo conhecidos popularmente como "pulverizadores da madeira" (FISHER, 1950; LIMA, 1953; NAIR, 2007).

Bostrichidae possuem o corpo alongado, cilíndrico, tegumento esclerosado, cabeça hipognata e élitros truncados. O comprimento varia de 1 mm a 30 mm e a maioria das espécies possui cor negra, parda ou acinzentada (Figura 4). Possuem hábito alimentar essencialmente xilófago, se desenvolvendo em madeira seca e, ou galhos e troncos de plantas vivas. As espécies têm três a quatro gerações por ano e sucessivas gerações podem atacar o mesmo pedaço de madeira (LIMA, 1953; NAIR, 2007).



Figura 4 – Bostrichidae: Sinoxylon unidentatum (Fabricius, 1801).

Fonte: Pest and Diseases Image Library, Bugwood.org.

No Brasil são reportados em árvores cortadas e madeira de teca as espécies *Bostrychopsis uncinata*, *Micrapate germaini*, *Micrapate* sp. e *Xyloperthella picea* (PERES FILHO et al., 2006b; PERES FILHO et al., 2006c; MOURA et al., 2008).

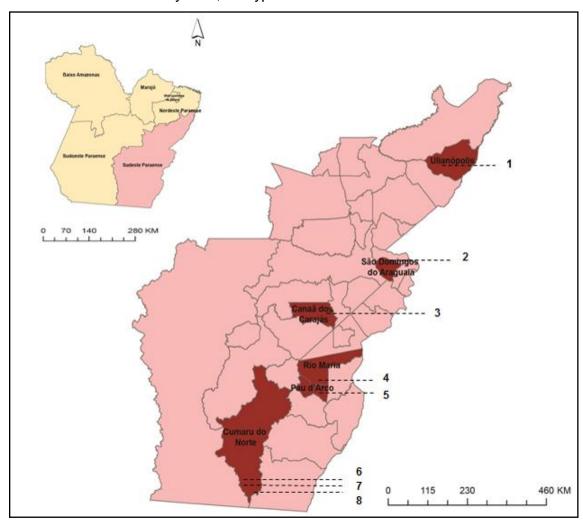
3.4 Variação sazonal de insetos e influência de fatores meteorológicos

O monitoramento através do uso de armadilhas é uma das técnicas utilizadas para conhecer a variação sazonal de insetos, incluindo-se aí as sub-famílias Scolytinae e Platypodinae e família Bostrichidae. Desta forma, é possível estimar a diversidade de espécies de determinada comunidade e o comportamento da população de insetos, assim como sua distribuição.

Os insetos normalmente apresentam distribuições mais condicionadas a determinados períodos do ano (sazonalidade) (ARAÚJO, 2013). Populações de Scolytinae flutuam significativamente de estação para estação, de ano para ano e de região para região; essas flutuações podem ser correlacionadas com o ciclo de vida, oportunidade biológica ou outros fatores inerentes nas populações (WOOD, 2007).

Embora os escolitídeos possuam substrato e microambiente estáveis, pois vivem todo seu ciclo dentro da planta hospedeira, com exceção para o voo de dispersão, há vários fatores climáticos que podem influenciar na determinação da distribuição e abundância de escolitídeos e seus predadores, tais como temperatura, precipitação, umidade relativa do ar, umidade do solo, luz do sol, luminosidade, correntes e pressão do ar (WOOD, 1982).

Para Scolytinae a temperatura é geralmente o fator mais importante para atividade de voo sazonal (DATERMAN et al., 1965), e a precipitação pluvial costuma afetar negativamente o voo de Scolytinae (FLECHTMANN et al., 1995).


Espécies de Scolytinae podem localizar a árvore hospedeira a partir de voláteis liberados pela planta estressada, e o etanol é um dos componentes mais conhecidos no qual simula este efeito da planta (BERTI FILHO; FLECHTMANN, 1986). Por isso, armadilhas iscadas com etanol são utilizadas em diversos experimentos para captura destes besouros em áreas de reflorestamento no Brasil (DORVAL et al., 2004; FLECHTMANN et al., 1999; FLECHTMANN et al., 2001; MORALES et al., 2000; MÜLLER; ANDREIV, 2004).

4 MATERIAL E MÉTODOS

4.1 Área de estudo

A pesquisa foi realizada na mesorregião sudeste do estado do Pará (Figura 5). Esta mesorregião está inserida em uma das mais importantes áreas de fronteira agrícola da Amazônia Oriental, apresentando importância econômica para o estado nos setores de mineração e agropecuária (MDA, 2010). O tipo climático desta mesorregião encontra-se entre o Equatorial de Monção (Am) e Equatorial de Savana (A//w), com inverno seco (KOTTEK et al., 2006).

Figura 5 – Mesorregião do sudeste do estado do Pará com destaque para as áreas de coleta de Scolytinae, Platypodinae e Bostrichidae.

Legenda: Fazenda Pingo de Ouro (1); Fazenda Guzerá (2); Sítio de José Costa (3); Fazenda Rongi-Porã (4); Serraria TKX Industria Madeireira Ltda (5); Fazenda Veluma (6); Fazenda Sabran (7); e Fazenda Mongaguá (8).

Fonte: Adaptado de Instituto Brasileiro de Geografia e Estatística (IBGE), 2016.

4.2 Áreas experimentais

As áreas experimentais para captura de Scolytinae, Platypodinae e Bostrichidae foram estabelecidas de acordo com o programa de monitoramento de *Sinoxylon unidentatum*, onde foram escolhidos plantios de teca no sul do estado devido à proximidade estratégica com o estado de Mato Grosso, área de ocorrência da praga. Os plantios de *Tectona grandis* foram plantados entre 1995 e 2008, adotando espaçamento de 3,0 m x 2,0 m entre plantas (Tabela 1).

Tabela 1 - Caracterização das áreas experimentais.

localização	propriedade	coordenadas centrais	altit. (m)	ano de plantio (nov.)	núm. de armadilhas	núm. de coletas	área (ha)
Canaã dos Carajás (CCA)	Sítio de José Costa	06°24'20.5''S 49°51'12''O	247	2004	10	21	1
Cumaru do Norte	Mongaguá (CNM)	09°27'52.27"S 51°14'20.99"O	386	1995	10	10	29
	Sabran (CNS)	09°22'20.04"S 51°24'43.62"O	366	2008	10	10	77
	Veluma (CNV)	09°18'14.75"S 51°25'02.62"O	341	2005	15	10	968
¹ Pau D'Arco (PDA)	TKX Indústria Madeireira Ltda	07°48'49.5''S 50°03'17.1''O	213	-	10	23	-
Rio Maria (RMA)	Rongi-Porã	7°38'5.88"S 50°1'18.66"O	211	2004	20	23	35
São Domingos do Araguaia (SDA)	Guzerá	05°31'57.4''S 48°42'35.2"O	112	2003	15	8	10
Ulianópolis (ULI)	Pingo de Ouro	03°49'58.9''S 47°44'15.9''O	154	2004	18	10	54

área de serraria

Fonte: Acervo pessoal, 2016.

Não foi adotado um procedimento padrão no número de coletas, número de armadilhas e tamanho do talhão em que estas foram instaladas, visto que inicialmente o único objetivo do programa realizado pela ADEPARÁ era verificar se havia a ocorrência de *Sinoxylon unidentatum* nestas áreas. No entanto, devido à necessidade de triar o material oriundo de coletas em campo,

observou-se que este material poderia conter diversas espécies, com material suficiente para realização de uma pesquisa. Dessa maneira, os experimentos foram conduzidos em áreas reflorestadas com *T. grandis* nos municípios de Canaã dos Carajás (CCA); Cumaru do Norte, Fazenda Mongaguá (CNM) (Figura 6); Cumaru do Norte, Fazenda Veluma (CNV) (Figura 7); Cumaru do Norte, Fazenda Sabran (CNS) (Figura 7); Rio Maria (RMA) (Figuras 7 e 8); São Domingos do Araguaia (SDA) (Figura 9); Ulianópolis (ULI), e área de serraria em Pau D'Arco (PDA) (Figura 10).

Figura 6 - Plantios de *Tectona grandis* no município de Cumaru do Norte, Fazenda Mongaguá, estado do Pará, maio de 2011.

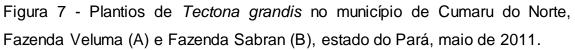


Figura 8 - Plantios de *Tectona grandis* no município de Rio Maria, Fazenda Rongi-Porã estado do Pará, abril de 2010.

Fonte: Lopes, L. S e Kramer, V. R.

Figura 9 – Madeira de teca estocada em campo na Fazenda Rongi-Porã, município de Rio Maria, estado do Pará, abril de 2010.

Figura 10 - Plantios de *Tectona grandis* no município de São Domingos do Araguaia, Fazenda Guzerá, estado do Pará, março de 2015.

Fonte: Silva, W. E. S.

Figura 11 - Serraria de *Tectona grandis* no município de Pau D'Arco, TKX Indústria Madeireira Ltda, estado do Pará, agosto de 2010.

Em Rio Maria as armadilhas foram dispostas em dois talhões e algumas armadilhas foram instaladas próximo de madeira estocada no campo (Figura 9). Em Pau D'Arco as armadilhas foram instaladas ao redor da serraria, formando um semicírculo. As madeiras depositadas na serraria eram originárias do município de Rio Maria (Fazenda Rongi-Porã) e de plantios próximos à serraria (Pau D' Arco).

4.3 Coleta de Coleoptera

A coleta de Curculionidae (Scolytinae, Platypodinae) e Bostrichidae foi realizada por técnicos da ADEPARÁ. No ano de 2009, a Embrapa Amazônia Oriental, situada em Belém, realizou um treinamento para o monitoramento destes insetos nos municípios de Pau D'Arco (PA); o curso serviu para capacitar os técnicos da ADEPARÁ, auxiliando na manutenção das armadilhas e coleta de insetos no campo (LUNZ et al., 2010).

Para o monitoramento da população de Scolytinae, Platypodinae e Bostrichidae utilizou-se armadilhas de intercepção de voo, modelo ESALQ-84 (Figura 12), iscadas com etanol 96% (BERTI FILHO; FLECHTMANN, 1986). As armadilhas foram instaladas a uma altura de 1,5 m do solo, dispostas aleatoriamente, e distribuídas de tal forma a cobrir homogeneamente o plantio.

Figura 12 - Armadilha de intercepção de voo modelo ESALQ-84 iscada com etanol em plantio de *Tectona grandis*, Pau D'Arco, estado do Pará, 2009.

Fonte: Silva, W. E. S., 2009.

Não houve também um espaçamento padrão entre armadilhas. O número de armadilhas e coletas variaram entre as propriedades (Tabela 1). As coletas foram realizadas a cada 15 dias, de junho de 2011 a abril de 2013, totalizando 115 coletas.

Após a coleta no campo, as brocas foram enviadas para a Universidade Estadual Paulista – UNESP, campus de Ilha Solteira, e espécimes foram identificados baseando-se em Wood (2007). *Vouchers* foram depositados na coleção do Museu de Entomologia da FEIS/UNESP (MEFEIS: Ilha Solteira/SP) (Figuras 13 e 14).

Figura 13 – Identificação de Scolytinae, Platypodinae e Bostrichidae.

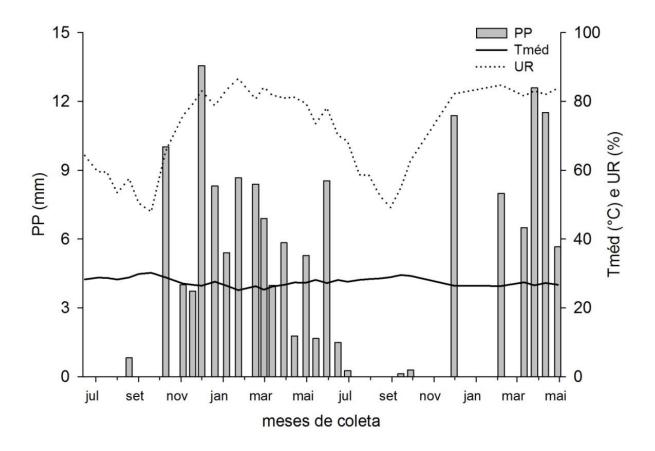
Figura 14 - Gaveta com coleção de Scolytinae, Platypodinae e Bostrichidae.

4.4 Dados meteorológicos

Foram utilizados dados meteorológicos diários de temperaturas (máxima, média e mínima), precipitação pluvial e umidade relativa, os quais foram transformados em média quinzenal para análise da variação sazonal de Scolytinae, Platypodinae e Bostrichidae capturados. Os dados foram obtidos junto ao Instituto Nacional de Meteorologia (INMET, 2015), e devido à ausência de estações nos municípios do estudo, foi considerada a estação meteorológica mais próxima de cada área experimental (Tabela 2).

Tabela 2 - Relação das áreas experimentais, estações meteorológicas e tempo de coleta.

áreas experimentais ¹	estação meteorológica	distância entre área experimental e estação (km)	início das coletas	fim das coletas
CCA	Conceição do Araguaia	215,83	17/02/2012	29/04/2013
CNM	Conceição do Araguaia	254,8	15/06/2011	01/12/2011
CNS	Conceição do Araguaia	266,42	15/06/2011	01/12/2011
CNV	Conceição do Araguaia	321,04	15/06/2011	01/12/2011
PDA	Conceição do Araguaia	100,19	20/06/2011	30/07/2012
RMA	Conceição do Araguaia	108,54	20/06/2011	08/06/2012
SDA	Tucuruí	222,14	23/02/2012	18/02/2013
ULI	Tucuruí	229,42	15/12/2011	28/06/2012


[™] vide tabela 1

Fonte: Acervo pessoal, 2016.

No estado do Pará a estação chuvosa pode variar de 6 a 7 meses (MORAES et al., 2005). Neste estudo o ano foi dividido em períodos seco e chuvoso, considerando-se a distribuição de chuvas na região e baseando-se em resultados de análises estatísticas.

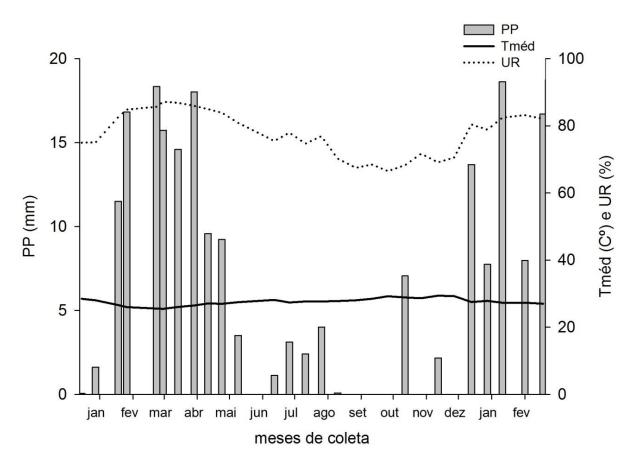

Para estação meteorológica de Conceição do Araguaia o período chuvoso ocorreu de 1 de outubro de 2011 a 20 de maio de 2012 e 26 de outubro de 2012 a 29 de abril de 2013 (Figura 15).

Figura 15 - Precipitação pluvial (PP), temperatura média (Tméd) e umidade relativa do ar (UR) da estação de Conceição do Araguaia/PA, de junho de 2011 a abril de 2013.

Para a estação de Tucuruí o período chuvoso foi de 5 de janeiro de 2012 a 25 de junho de 2012 e 3 de dezembro de 2012 a 18 de fevereiro de 2013 (Figura 16). Para ambas as estações, os demais meses foram considerados como período seco, com data final do experimento em abril de 2013.

Figura 16 - Precipitação pluvial (PP), temperatura média (Tméd) e umidade relativa do ar (UR) da estação de Tucuruí/PA, de dezembro de 2011 a fevereiro de 2013.

4.5 Análise de dados

Foi realizada a comparação entre áreas experimentais, com base na abundância, índices de diversidade e pico populacional de Scolytinae, Platypodinae e Bostrichidae.

As comunidades de brocas foram caracterizadas pelos índices de diversidade de Shannon (SHANNON e WEAVER, 1964), riqueza de Margalef (MARGALEF, 1974) e equitabilidade (PIELOU, 1966).

Para verificação da variação sazonal foram consideradas as espécies mais abundantes ao longo do ano para cada área experimental (Tabela 3), além de ser levado em consideração o fato de o local possuir pelo

menos um ano de coleta. Desta forma, verificou-se a variação sazonal de diferentes espécies em cada área da pesquisa.

Tabela 3 - Espécies de Scolytinae, Platypodinae e Bostrichidae mais abundantes para cada área experimental.

áreas experimentais ¹	espécies ²
CCA	Crdia; Crhev, Crser; Hyare
CNM	Bossp; Crhev, Crser; Hyser, Misp5; Xyaff; Xyfer; Xypic
CNS	Crhev, Hyser; Misp5; Xyaff; Xypic
CNV	Bossp; Crhev, Crser; Hyser; Misp5; Xyaff; Xyfer; Xypic
PDA	Bossp; Crdia; Crhev, Crser; Eupar; Hyare; Hybru; Hyeru; Hyman; Hyobs;
	Hyser; Misp5; Xyaff; Xyfer; Xysp1, Xyvol
RMA	Bossp; Crdia; Crhev, Crser; Eupar; Hyare; Hybru; Hyobs; Hyser; Hysus;
	Xyaff; Xyfer; Xypic
SDA	Crbre; Crdia; Crhev, Crser; Hybru; Hyeru; Hyobs; Xyaff; Xyfer; Xypic; Xyspi;
	Xyvol
ULI	Crhev; Eupar; Hyser; Xyaff; Xypic; Xypra

¹ vide tabela 1

Fonte: Acervo pessoal, 2016.

Os dados de capturas de Scolytinae, Platypodinae e Bostrichidae foram transformados em $\sqrt{(x + 0.5)}$ para remoção de heterocedasticidade (PHILLIPS, 1990). Os dados climáticos e capturas das brocas foram submetidos à análise de variância e teste de comparação de médias segundo o teste de Tukey ao nível de 5% de probabilidade. Em ambas as análises, faunística e estatística, utilizou-se o programa *Statistical Analysis System* – SAS (1990).

² vide tabela 4

5 RESULTADOS E DISCUSSÕES

5.1 Abundância e diversidade de Curculionidae (Scolytinae, Platypodinae) e Bostrichidae

Foram capturados 10147 espécimes de Bostrichidae e Curculionidae (Scolytinae, Platypodinae) distribuídos em 90 espécies, pertencentes às tribos Bostrichini e Xyloperthini em Bostrichidae, sub-tribos Corthylina, Cryphalina, Bothrosternina, Dryocoetina, Micracidina, Pityophthorina e Xyleborina em Scolytinae, e Platypodina em Platypodinae (Tabela 4).

Algumas espécies de Scolytinae foram detectadas pela primeira vez no Brasil, dentre estas *Dendrocranulus confinis* Wood, *Hypothenemus aulmanni* (Hagedorn), *Hypothenemus brunneus* (Hopkins), *Hypothenemus interstitialis* (Hopkins), *Hypothenemus suspectus* Wood, *Hypothenemus vesculus* Wood, *Trischidias minutissimus* Wood e *Xyleborinus tribulosus* Wood (Tabela 4).

A maior abundância de espécies foi encontrada no grupo dos escolitídeos, com mais de 76% do total de besouros capturados. Somente as sub-tribos Cryphalina e Xyleborina somaram mais de 98% do total de escolitídeos. O maior número de Scolytinae, Platypodinae e Bostrichidae foi registrado em SDA, totalizando 3113 indivíduos, distribuídos em 58 espécies (Tabela 5).

No total de 90 espécies encontradas, Cryptocarenus brevicollis Eggers, Cryptocarenus diadematus Eggers, Cryptocarenus heveae (Hagedorn), Cryptocarenus seriatus Eggers, Hypocryphalus mangiferae (Stebbing), Hypothenemus areccae (Hornung), Hypothenemus brunneus (Hopkins), Hypothenemus (Panzer), Hypothenemus crudiae eruditus Westwood, Hypothenemus Hypothenemus plumeriae obscurus (F.), (Nordlinger), Hypothenemus (Eichhoff), Hypothenemus seriatus suspectus Wood, Premnobius cavipennis Eichhoff, Xyleborus affinis Eichhoff, Xyleborus ferrugineus (F.), Xyleborus sp.1, Xyleborus spinulosus Blandford e Xyleborus volvulus (F.) em Scolytinae, Euplatypus parallelus (F.) em Platypodinae, e Bostrichinae sp., Micrapate sp.5, Xyloperthella picea (Olivier) e Xyloprista praemorsa (Erichson) em Bostrichidae, foram capturadas em números suficientes para serem analisadas estatisticamente.

Tabela 4 - Relação de Coleoptera: Bostrichidae e Curculionidae (Scolytinae, Platypodinae) utilizados nas demais tabelas, capturados com armadilhas de intercepção de voo iscadas com etanol em áreas experimentais com *Tectona grandis*, estado do Pará, de junho de 2011 a abril de 2013.

código	espécies	família/sub-família	tribo/sub-tribo
Amopi	Ambrosiodmus opimus	Scolytinae	Xyleborina
Arasp	Araptus sp.	Scolytinae	Pityophthorina
Bounc	Bostrychopsis uncinata	Bostrichidae	Bostrichini
Bossp	Bostrichinae sp.	Bostrichidae	-
Cndiv	Cnesinus dividuus	Scolytinae	Bothrosternina
Cnsp1	Cnesinus sp. ₁	Scolytinae	Bothrosternina
Cnsp2	Cnesinus sp. ₂	Scolytinae	Bothrosternina
Cnsp3	Cnesinus sp. ₃	Scolytinae	Bothrosternina
Cocar	Coccotrypes carpophagus	Scolytinae	Dryocoetina
Codis	Coccotrypes distinctus	Scolytinae	Dryocoetina
Cocsp	Coccotrypes sp.	Scolytinae	Dryocoetina
Cpsp1	Coptoborus sp. ₁	Scolytinae	Xyleborina
Cpsp2	Coptoborus sp.2	Scolytinae	Xyleborina
Corsp	Corthylus sp.	Scolytinae	Corthylina
Crbre	Cryptocarenus brevicollis	Scolytinae	Cryphalina
Crdia	Cryptocarenus diadematus	Scolytinae	Cryphalina
Crhev	Cryptocarenus heveae	Scolytinae	Cryphalina
Crser	Cryptocarenus seriatus	Scolytinae	Cryphalina
Crysp	Cryptocarenus sp.	Scolytinae	Cryphalina
Decon	Dendrocranulus confinis	Scolytinae	Dryocoetina
Dinsp	Dinoderus sp.	Bostrichidae	-
Drsp1	Dryocoetoides sp. ₁	Scolytinae	Xyleborina
Drsp2	Dryocoetoides sp. ₂	Scolytinae	Xyleborina
Eupar	Euplatypus parallelus	Platypodinae	Platypodina
Euseg	Euplatypus segnis	Platypodinae	Platypodina
Hyman	Hypocryphalus mangiferae	Scolytinae	Cryphalina
Hyare	Hypothenemus areccae	Scolytinae	Cryphalina
Hyaul	Hypothenemus aulmanni	Scolytinae	Cryphalina
Hybru	Hypothenemus brunneus	Scolytinae	Cryphalina
Hycru	Hypothenemus crudiae	Scolytinae	Cryphalina
Hyeru	Hypothenemus eruditus	Scolytinae	Cryphalina
Hyham	Hypothenemus hampei	Scolytinae	Cryphalina
Hyint	Hypothenemus interstitialis	Scolytinae	Cryphalina
Hyjav	Hypothenemus javanus	Scolytinae	Cryphalina
Hyobs	Hypothenemus obscurus	Scolytinae	Cryphalina
Hyopa	Hypothenemus opacus	Scolytinae	Cryphalina
Hyplu	Hypothenemus plumeriae	Scolytinae	Cryphalina
Hypub	Hypothenemus pubescens	Scolytinae	Cryphalina
Hyser	Hypothenemus seriatus	Scolytinae	Cryphalina
Hyset	Hypothenemus setosus	Scolytinae	Cryphalina
Hysp1	Hypothenemus sp. ₁	Scolytinae	Cryphalina
Hysp2	Hypothenemus sp.2	Scolytinae	Cryphalina
Hysp3	Hypothenemus sp.₃	Scolytinae	Cryphalina

^{*} Continua

Continuação...

código	espécies	família/sub-família	tribo/sub-tribo
Hysp4	Hypothenemus sp.4	Scolytinae	Cryphalina
Hysp5	Hypothenemus sp.5	Scolytinae	Cryphalina
Hysp6	Hypothenemus sp.6	Scolytinae	Cryphalina
Hysp7	Hypothenemus sp.7	Scolytinae	Cryphalina
Hysp8	Hypothenemus sp.8	Scolytinae	Cryphalina
Hysus	Hypothenemus suspectus	Scolytinae	Cryphalina
Hyves	Hypothenemus vesculus	Scolytinae	Cryphalina
Hylsp	Hylocurus sp.	Scolytinae	Micracidina
Mihor	Micrapate horni	Bostrichidae	Bostrichini
Mimin	Microcorthylus minimus	Scolytinae	Corthylina
Misp1	<i>Micrapate</i> sp. ₁	Bostrichidae	Bostrichini
Misp2	Micrapate sp. ₂	Bostrichidae	Bostrichini
Misp3	<i>Micrapate</i> sp. ₃	Bostrichidae	Bostrichini
Misp4	Micrapate sp. ₄	Bostrichidae	Bostrichini
Misp5	<i>Micrapate</i> sp. ₅	Bostrichidae	Bostrichini
Pesob	Periocryphalus sobrinus	Scolytinae	Cryphalina
Plsp1	Platypodinae sp. ₁	Platypodinae	-
Plsp2	Platypodinae sp. ₂	Platypodinae	-
Plsp3	Platypodinae sp. ₃	Platypodinae	-
Plsp4	Platypodinae sp. ₄	Platypodinae	-
Plsp5	Platypodinae sp.5	Platypodinae	-
Plsp6	Platypodinae sp.6	Platypodinae	-
Pramb	Premnobius ambitiosus	Scolytinae	Xyleborina
Prcav	Premnobius cavipennis	Scolytinae	Xyleborina
Sadam	Sampsonius dampfi	Scolytinae	Xyleborina
Scosp	Scolytinae sp.	Scolytinae	-
Tausp	Taurodemus sp.	Scolytinae	Xyleborina
Tepro	Teloplatypus procer	Platypodinae	Platypodina
Trimi	Trischidias minutissimus	Scolytinae	Cryphalina
Trsp1	Tricolus sp. ₁	Scolytinae	Corthylina
Trsp2	Tricolus sp. ₂	Scolytinae	Corthylina
Xyaff	Xyleborus affinis	Scolytinae	Xyleborina
Xycap	Xylopsocus capucinus	Bostrichidae	Xyloperthini
Xycom	Xylosandrus compactus	Scolytinae	Xyleborina
Xycur	Xylosandrus curtulus	Scolytinae	Xyleborina
Xyfer	Xyleborus ferrugineus	Scolytinae	Xyleborina
Xypic	Xyloperthella picea	Bostrichidae	Xyloperthini
Xypra	Xyloprista praemorsa	Bostrichidae	Xyloperthini
Xyrec	Xyleborinus reconditus	Scolytinae	Xyleborina
Xysp1	<i>Xyleboru</i> s sp.₁	Scolytinae	Xyleborina
Xysp2	Xyleborus sp. ₂	Scolytinae	Xyleborina
Xysp3	Xyleborus sp.₃	Scolytinae	Xyleborina
Xysp4	Xyleborus sp.₄	Scolytinae	Xyleborina
Xylsp	Xyleborini?	Scolytinae	Xyleborina
Xyspi	Xyleborus spinulosus	Scolytinae	Xyleborina
Xytri	Xyleborinus tribulosus	Scolytinae	Xyleborina
Xyvol	Xyleborus volvulus	Scolytinae	Xyleborina

Tabela 5 - Total de indivíduos Scolytinae, Platypodinae e Bostrichidae capturados com armadilhas de intercepção de voo iscadas com etanol em áreas experimentais com Tectona grandis, estado do Pará, de junho de 2011 a abril de 2013.

espécies ¹	áreas experimentais ²											
	CCA	CNM	CNS	CNV	PDA	RMA	SDA	ULI	Total			
Amopi	1	0	0	2	0	0	2	0	5			
Arasp	0	0	0	0	0	0	1	0	1			
Bounc	0	4	2	4	8	3	4	0	25			
Bossp	0	36	13	30	31	52	0	0	162			
Cndiv	0	0	0	0	0	0	5	0	5			
Cnsp1	0	0	0	0	0	0	12	0	12			
Cnsp2	0	0	0	0	0	0	2	0	2			
Cnsp3	0	0	0	0	0	0	2	0	2			
Cocar	0	0	0	0	4	0	12	0	16			
Codis	0	0	0	0	3	0	2	0	5			
Cocsp	2	0	0	0	0	0	0	0	2			
Cpsp1	0	0	0	0	1	0	3	0	4			
Cpsp2	0	0	0	0	0	0	3	0	3			
Corsp	0	0	0	0	1	0	0	0	1			
Crbre	0	0	0	1	5	2	52	1	61			
Crdia	11	20	16	0	353	145	171	5	721			
Crhev	180	137	86	78	696	269	1781	25	3252			
Crser	31	34	22	16	414	135	132	6	790			
Crysp	0	1	0	0	2	2	0	0	5			
Decon	0	1	0	0	0	0	0	0	1			
Dinsp	1	0	0	0	0	0	0	0	1			
Drsp1	0	0	0	0	0	1	0	0	1			
Drsp2	0	0	1	0	0	0	0	0	1			
Eupar	6	3	1	6	57	81	13	74	241			
Euseg	0	0	0	0	2	1	0	2	5			
Hyman	0	0	0	0	93	0	0	0	93			
Hyare	11	6	2	0	24	59	76	1	179			
Hyaul	0	0	0	0	0	0	1	0	1			
Hybru	4	3	3	3	74	58	120	1	266			
Hycru	0	0	1	0	9	30	17	10	67			
Hyeru	1	6	4	4	26	30	51	3	125			
Hyham	0	0	0	0	0	0	1	0	1			
Hyint	0	0	0	0	7	0	0	0	7			
Hyjav	2	0	0	0	5	3	9	0	19			
Hyobs	8	12	5	6	55	126	35	8	255			
Нуора	2	5	0	4	11	5	7	1	35			
Hyplu	2	2	0	0	22	28	14	7	75			
Hypub	0	0	0	0	0	0	1	0	1			
Hyser vide tabela 4	3	30	60	24	79	140	23	27	386			

vide tabela 4 vide tabela 1

^{*} Continua

Continuação...

, , 1				áreas	experime	entais ²			
espécies ¹	CCA	CNM	CNS	CNV	PDA	RMA	SDA	ULI	Total
Hyset	2	3	0	1	3	31	0	0	40
Hysp1	0	0	0	0	1	0	2	0	3
Hysp2	0	3	0	0	7	2	0	0	12
Hysp3	0	0	0	0	5	4	6	0	15
Hysp4	0	0	0	0	0	0	30	0	30
Hysp5	0	0	0	0	0	0	2	0	2
Hysp6	0	0	0	0	0	0	1	0	1
Hysp7	2	0	0	0	1	0	29	0	32
Hysp8	0	1	0	0	0	0	0	0	1
Hysus	7	8	5	7	21	88	2	1	139
Hyves	0	0	0	0	0	2	0	0	2
Hylsp	0	0	0	0	1	0	0	0	1
Mihor	0	2	9	2	3	6	2	2	26
Mimin	0	0	0	0	0	0	1	0	1
Misp1	0	3	0	2	0	0	0	0	5
Misp2	0	0	0	0	1	3	5	0	9
Misp3	0	1	2	4	0	0	0	0	7
Misp4	0	0	0	0	0	0	2	0	2
Misp5	0	59	147	167	54	4	4	1	436
Pesob	0	0	0	0	0	1	0	0	1
Plsp1	0	0	0	0	3	0	0	0	3
Plsp2	0	0	0	0	3	0	0	1	4
Plsp3	0	0	0	0	1	0	0	0	1
Plsp4	0	0	0	0	0	0	0	2	2
Plsp5	0	0	0	0	0	0	0	1	1
Plsp6	0	0	0	0	0	0	0	1	1
Pramb	0	0	0	0	0	0	1	0	1
Prcav	3	9	3	3	1	5	30	3	57
Sadam	0	9	3	2	0	10	1	0	25
Scosp	0	0	0	0	1	0	0	0	1
Tausp	0	0	0	1	0	0	0	0	1
Tepro	0	0	0	0	0	1	0	0	1
Trimi	0	0	0	0	0	0	2	0	2
Trsp1	1	0	0	0	3	0	1	0	5
Trsp2	1	0	0	0	0	0	0	0	1
Xyaff	8	18	25	34	131	135	173	21	545
Хусар	0	3	2	3	18	4	10	5	45
Xycom	0	2	0	1	0	3	1	0	7
Xycur	0	0	1	0	12	5	12	0	30
Xyfer	2	14	11	16	39	88	53	9	232
Xypic	8	328	152	234	14	151	95	283	1265
Xypra	0	0	0	0	5	1	7	21	34

vide tabela 4 vide tabela 1

* Continua

Continuação...

o opé sia s ¹				áreas	experim	entais²			
espécies ¹	CCA	CNM	CNS	CNV	PDA	RMA	SDA	ULI	Total
Xyrec	0	4	0	1	0	1	3	0	9
Xysp1	0	11	2	2	72	1	1	2	91
Xysp2	5	0	0	0	0	0	0	0	5
Xysp3	1	0	0	0	0	0	0	0	1
Xysp4	0	0	0	0	0	1	0	0	1
Xylsp	0	0	0	0	0	0	1	0	1
Xyspi	3	1	0	2	13	25	48	0	92
Xytri	0	0	0	0	2	3	0	0	5
Xyvol	1	0	0	1	29	12	36	0	79
Total	309	779	578	662	2425	1757	3113	524	10147

vide tabela 4

² vide tabela 1

Fonte: Elaborada pela autora, 2016.

A comunidade de Scolytinae, Platypodinae e Bostrichidae apresentou maior diversidade de Shannon (2,89) e equitabilidade (Pielou) (0,76) em RMA. A menor diversidade obteve-se em ULI (1,82) e menor equitabilidade em SDA (0,49). A riqueza de Margalef foi maior em SDA (6,58) e menor em CNS (3,77) (Tabela 6).

Tabela 6 – Índices de Margalef, Shannon e equitabilidade para espécies de Scolytinae, Platypodinae e Bostrichidae capturados com armadilhas de intercepção de voo iscadas com etanol em áreas experimentais com *Tectona grandis*, estado do Pará, de junho de 2011 a abril de 2013.

Índices	áreas experimentais ¹									
maices	CCA	CNM	CNS	CNV	PDA	RMA	SDA	ULI		
Riqueza de espécie (Margalef)	4,70	4,65	3,77	4,61	6,15	5,62	6,58	4,47		
Diversidade de espécie (Shannon)	1,84	2,17	2,14	2,06	2,52	2,89	1,97	1,82		
Equitabilidade	0,55	0,62	0,66	0,60	0,64	0,76	0,49	0,54		

vide tabela 1

Fonte: Acervo pessoal, 2016.

Houve diferença estatística significativa para os fatores área experimental, precipitação pluvial, umidade relativa, temperaturas (média, máxima e mínima); e interação área experimental X período seco e área experimental X período chuvoso (p < 0,05).

Independente do período do ano, significativamente mais escolitídeos foram capturados em PDA e SDA. Em Scolytinae, *C. heveae* e *C. brevicollis* foram significativamente mais capturados em SDA, *C. diadematus*, *C. seriatus*, *H. mangiferae* e *X. affinis* foram significativamente mais capturado em PDA e *H. crudiae* foi a única espécie que não apresentou diferença significativa de captura entre todas as áreas experimentais. Em Platypodinae, *E. parallelus* foi significativamente mais capturado em ULI, e *X. picea* foi significativamente mais capturada em ULI e Cumaru do Norte (Tabela 7).

Tabela 7 - Teste de comparação de médias de captura de Scolytinae, Platypodinae e Bostrichidae mais abundantes em armadilhas de intercepção de voo iscadas com etanol, em áreas experimentais com *Tectona grandis*, estado do Pará, de junho de 2011 a abril de 2013.

			áreas	experimentais ² -	- médias de car	otura ³		
espécies ¹	CCA	CNM	CNS	CNV	PDA	RMA	SDA	ULI
Scolytinae								
Crbre	$0.00 \pm 0.00 b$	$0.00 \pm 0.00 b$	$0.00 \pm 0.00 b$	$0.00 \pm 0.00 b$	$0.02 \pm 0.01 b$	$0.00 \pm 0.00 b$	$0,15 \pm 0,02$ a	$0.01 \pm 0.01 b$
Crdia	0.05 ± 0.02 cd	$0,20 \pm 0,06$ bcd	$0,16 \pm 0,06$ cd	$0.00 \pm 0.00 d$	1,53 ± 0,26 a	0.31 ± 0.04 bc	$0,50 \pm 0,07 b$	0.03 ± 0.01 cd
Crhev	$0,86 \pm 0,15$ cd	$1,37 \pm 0,47$ c	$0.86 \pm 0.31 \text{ cd}$	$0,52 \pm 0,13 \text{ cd}$	$3,03 \pm 0,36 b$	$0,58 \pm 0,06$ cd	$5,17 \pm 0,57$ a	$0,14 \pm 0,04 d$
Crser	$0,15 \pm 0,03$ bc	$0.34 \pm 0.10 b$	$0,22 \pm 0,06$ bc	$0,11 \pm 0,04$ bc	1,80 ± 0,25 a	0.30 ± 0.04 bc	$0.38 \pm 0.05 b$	$0.03 \pm 0.02 c$
Hyman	$0.00 \pm 0.00 b$	$0.00 \pm 0.00 b$	$0.00 \pm 0.00 b$	$0.00 \pm 0.00 b$	$0,40 \pm 0,11 a$	$0.00 \pm 0.00 b$	$0.00 \pm 0.00 b$	$0.00 \pm 0.00 b$
Prcav	$0.01 \pm 0.01 c$	$0.09 \pm 0.03 a$	0.03 ± 0.02 bc	$0.02 \pm 0.01 c$	$0,00 \pm 0,00 c$	$0.01 \pm 0.00 c$	0.09 ± 0.02 ab	$0.02 \pm 0.01 c$
Xyaff	$0.04 \pm 0.01 d$	$0,18 \pm 0,05 \text{ cd}$	$0,25 \pm 0,09 \text{ cd}$	$0,23 \pm 0,05 \text{ cd}$	$0,57 \pm 0,08 a$	$0,29 \pm 0,04 bc$	$0,50 \pm 0,06$ ab	$0,12 \pm 0,03 \text{ cd}$
Xyfer	$0.01 \pm 0.01 c$	$0,14 \pm 0,04$ ab	$0,11 \pm 0,04$ abc	$0,11 \pm 0,03$ abc	$0,17 \pm 0,03$ ab	$0,19 \pm 0,03$ a	$0,15 \pm 0,02$ ab	0.05 ± 0.02 bc
Xysp1	$0,00 \pm 0,00 b$	$0,11 \pm 0,08 b$	$0.02 \pm 0.02 b$	$0.01 \pm 0.01 b$	$0.32 \pm 0.08 a$	$0.01 \pm 0.01 b$	$0.00 \pm 0.00 b$	$0.01 \pm 0.01 b$
Xyspi	$0.01 \pm 0.01 b$	$0.01 \pm 0.01 b$	$0.00 \pm 0.00 b$	$0.01 \pm 0.01 b$	$0,06 \pm 0,02$ ab	$0,05 \pm 0,02$ ab	$0,14 \pm 0,03$ a	$0.00 \pm 0.00 b$
Xyvol	$0,00 \pm 0,00 b$	$0.00 \pm 0.00 b$	$0.00 \pm 0.00 b$	$0.01 \pm 0.01 b$	$0,13 \pm 0,03$ a	$0.03 \pm 0.01 b$	$0,10 \pm 0,02$ a	$0.00 \pm 0.00 b$
∑ Scolytinae	$1,40 \pm 0,17$ cd	$3,40 \pm 0,74 b$	$2,50 \pm 0,55$ bc	$1,40 \pm 0,26 \text{ cd}$	$9,67 \pm 0,87$ a	$3,15 \pm 0,25 b$	$8,61 \pm 0,81 a$	$0.73 \pm 0.12 d$
Hypothenemus								
Hyare	$0.05 \pm 0.02 b$	0.06 ± 0.03 ab	$0.02 \pm 0.02 b$	$0.00 \pm 0.00 b$	$0,10 \pm 0,03$ ab	$0,13 \pm 0,02$ ab	$0,23 \pm 0,05$ a	$0.01 \pm 0.01 b$
Hybru	$0.02 \pm 0.01 c$	$0.03 \pm 0.03 c$	$0.03 \pm 0.02 c$	$0.02 \pm 0.01 c$	$0,32 \pm 0,12$ ab	$0,13 \pm 0,03$ bc	0.35 ± 0.07 a	$0.01 \pm 0.01 c$
Hycru	$0,00 \pm 0,00 a$	$0.00 \pm 0.00 a$	$0.01 \pm 0.01 a$	$0.00 \pm 0.00 a$	0.04 ± 0.01 a	$0.07 \pm 0.02 a$	0.05 ± 0.02 a	$0.06 \pm 0.02 a$
Hyeru	$0.00 \pm 0.00 b$	0.06 ± 0.02 ab	0.04 ± 0.02 ab	0.03 ± 0.01 ab	$0,11 \pm 0,03$ ab	0.07 ± 0.01 ab	$0,15 \pm 0,04 a$	0.02 ± 0.01 ab
Hyobs	$0.04 \pm 0.01 c$	$0,12 \pm 0,06$ abc	0.05 ± 0.02 bc	$0.04 \pm 0.02 c$	$0,24 \pm 0,06$ ab	$0.27 \pm 0.05 a$	$0,10 \pm 0,02$ abc	$0.04 \pm 0.02 c$
Hyplu	$0.01 \pm 0.01 b$	0,02 ± 0,01 ab	$0,00 \pm 0,00 b$	$0,00 \pm 0,00 b$	$0,10 \pm 0,03$ a	0.06 ± 0.01 ab	0.04 ± 0.01 ab	0.04 ± 0.02 ab

vide tabela 4

* Continua

² vide tabela 1

 $^{^3}$ Dados originais foram transformados em $\sqrt{(x + 0.5)}$; médias seguidas por letras iguais não são significativamente diferentes d entro da linha (P > 0.05; teste de Tukey).

Continuação...

espécies ¹		áreas experimentais ² – médias de captura ³											
especies	CCA	CNM	CNS	CNV	PDA	RMA	SDA	ULI					
Hy_seria	0,01 ± 0,01 d	0.30 ± 0.08 ab	0,60 ± 0,20 a	$0,16 \pm 0,05$ bcd	0,34 ± 0,07 ab	$0,30 \pm 0,05$ bc	0.07 ± 0.02 ab	$0,15 \pm 0,05$ bcd					
Hy_ suspe	$0.03 \pm 0.01 b$	0.09 ± 0.05 ab	0.05 ± 0.03 ab	$0.05 \pm 0.03 b$	0.09 ± 0.02 ab	$0,19 \pm 0,03$ a	0.09 ± 0.02 ab	$0.01 \pm 0.01 b$					
∑ Hypothenemus	$0.21 \pm 0.04 d$	$0,79 \pm 0,16 bc$	0.80 ± 0.25 bcd	$0.33 \pm 0.08 d$	1,52 ± 0,23 a	1,32 ± 0,13 ab	1,24 ± 0,21 ab	0.33 ± 0.07 cd					
Platypodinae													
Eu_paral	0.03 ± 0.01 c	$0.03 \pm 0.02 c$	$0.01 \pm 0.01 c$	$0.04 \pm 0.02 c$	$0,25 \pm 0,04$ ab	$0,18 \pm 0,07$ bc	0.04 ± 0.01 ab	$0,41 \pm 0,09 a$					
∑ Platypodinae	$0.03 \pm 0.01 b$	$0.03 \pm 0.02 b$	$0.01 \pm 0.01 b$	$0.04 \pm 0.02 b$	$0,29 \pm 0,04$ a	$0.18 \pm 0.07 b$	$0.04 \pm 0.01 b$	$0,45 \pm 0,09 a$					
Bostrichidae													
Bos_sp01	$0.00 \pm 0.00 c$	$0.36 \pm 0.14 a$	$0,13 \pm 0,06$ bc	$0,20 \pm 0,09$ ab	$0,13 \pm 0,03$ abc	$0,11 \pm 0,03$ bc	$0,00 \pm 0,00 c$	$0.00 \pm 0.00 c$					
Mi_sp07	$0.00 \pm 0.00 e$	$0,59 \pm 0,27 c$	$1,47 \pm 0,34 a$	1,11 ± 0,31 b	0.23 ± 0.05 cd	$0.01 \pm 0.00 de$	$0,01 \pm 0,01 de$	$0.01 \pm 0.01 de$					
Xy_picea	0.04 ± 0.02 c	$3,28 \pm 0,61$ a	$1,52 \pm 0,41 b$	$1,56 \pm 0,27 b$	$0.06 \pm 0.02 c$	$0.33 \pm 0.06 c$	$0,28 \pm 0,05 c$	$1,57 \pm 0,24 b$					
Xy_praem	$0.00 \pm 0.00 b$	$0.00 \pm 0.00 b$	$0.00 \pm 0.00 b$	$0.00 \pm 0.00 b$	$0.02 \pm 0.01 b$	$0.00 \pm 0.00 b$	$0.02 \pm 0.01 b$	$0,12 \pm 0,04 a$					
∑ Bostrichidae	$0.04 \pm 0.02 e$	$4,36 \pm 0,76 a$	$3,27 \pm 0,66$ ab	$2,97 \pm 0,48 b$	$0,58 \pm 0,09 d$	$0,49 \pm 0,08 de$	$0.37 \pm 0.05 de$	$1,73 \pm 0,25 c$					

vide tabela 4

vide tabela 1

and tabela 4

and tabela 4 Fonte: Acervo pessoal, 2016.

5.2 Variação sazonal de Curculionidae (Scolytinae, Platypodinae) e Bostrichidae

Durante os meses de coleta houve uma distinção clara entre os períodos seco e chuvoso. Na estação de Conceição de Araguaia as médias da precipitação pluvial (7,65 mm \pm 0,75 mm) e umidade relativa (81,01% \pm 0,33%) no período chuvoso foram significativamente maiores que no período seco (0,42 mm \pm 0,14 mm; F_{1,682} = 48,92, α < 0,0001; 59,22% \pm 0,63%, F_{1,682} = 976.84, α < 0,0001, respectivamente). Já as temperaturas máxima (36,53°C \pm 0,11°C) e média (28,81°C \pm 0,07°C) foram significativamente maiores no período seco que no chuvoso (32,49°C \pm 0,11°C e 26,81°C \pm 0,07°C, respectivamente; α < 0,0001), e a temperatura mínima foi significativamente menor na período seco (22,02 °C \pm 0,08 °C) do que no período chuvoso (22,74 °C \pm 0,05 °C, α < 0,0001).

Baseando-se nos dados da estação de Tucuruí, durante o período chuvoso, a precipitação pluvial e umidade relativa (10.44 mm \pm 0.95 mm e 82.26% \pm 0.31%, respectivamente) foram significativamente maiores do que no período seco (1.66 mm \pm 0.65 mm; F_{1,429} = 48,75, α < 0,0001; 71,28% \pm 0,41%, F_{1,429} = 452,42, α < 0,0001, respectivamente). As temperaturas máxima, média e mínima (34.13 °C \pm 0.10 °C, 28.42 °C \pm 0.06 °C e 24.31 °C 0.07 °C, respectivamente) foram significativamente maiores no período seco em relação ao chuvoso (32.04 \pm 0.10, 27.02 \pm 0.07 e 23.45 \pm 0.06, respectivamente; α < 0,0001).

No período chuvoso ocorreu maior pico populacional de *C. heveae* em CCA (Figura 17), e *E. parallelus* e *C. diadematus* em PDA (Figura 18). No entanto, o pico populacional do total de Scolytinae, Platypodinae e Bostrichidae capturados coincidiu com o período mais seco para as regiões estudadas, incluindo *Cryptocarenus*, *Hypothenemus*, *Xyleborus*, *E. parallelus*, *Micrapate* sp.₅ e *X. picea* em PDA (Figura 18), RMA (Figura 19) e SDA (Figura 20). O pico populacional de *X. affinis* em SDA ocorreu durante o período chuvoso (Figura 20).

Figura 17 - Flutuação populacional de *Cryptocarenus heveae*, capturados com armadilhas de intercepção de voo iscadas com etanol em plantio de *Tectona grandis*, Sítio de José Costa, Canaã dos Carajás, estado do Pará, de fevereiro de 2012 a abril de 2013.

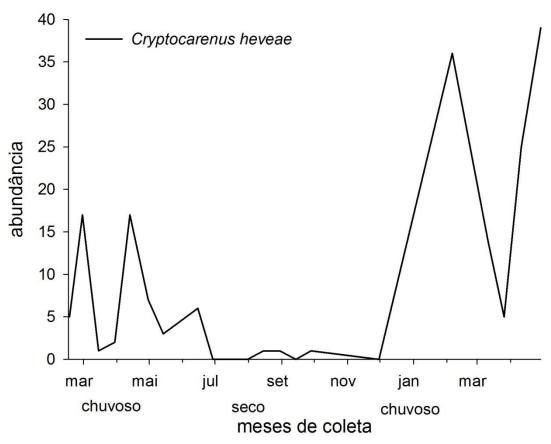


Figura 18 - Flutuação populacional de Scolytinae, *Euplatypus parallelus* e *Micrapate* sp.₅ capturados com armadilhas de intercepção de voo iscadas com etanol em plantio de *Tectona grandis*, TKX Indústria Madeireira Ltda, Pau D'Arco, estado do Pará, de junho de 2011 a julho de 2012.

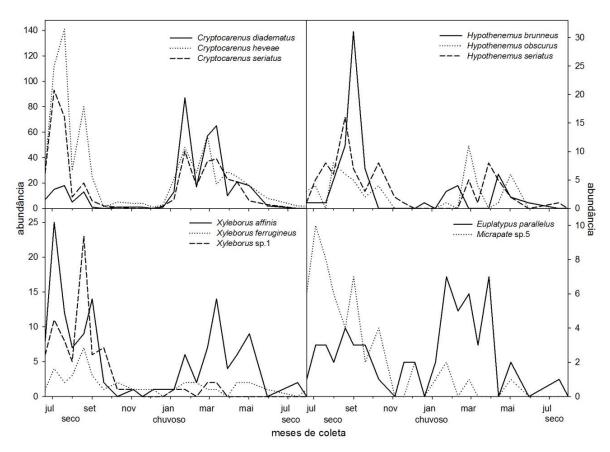


Figura 19 - Flutuação populacional de Scolytinae, *Euplatypus parallelus* e *Xyloperthella picea* capturados com armadilhas de intercepção de voo iscadas com etanol em plantio de *Tectona grandis*, Fazenda Rongi-Porã, município de Rio Maria, estado do Pará, de junho de 2011 a junho de 2012.

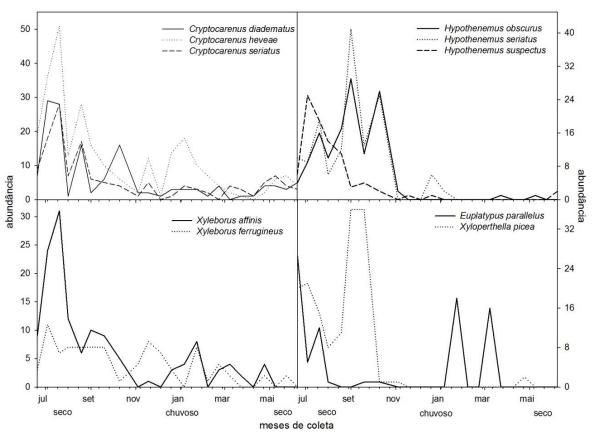
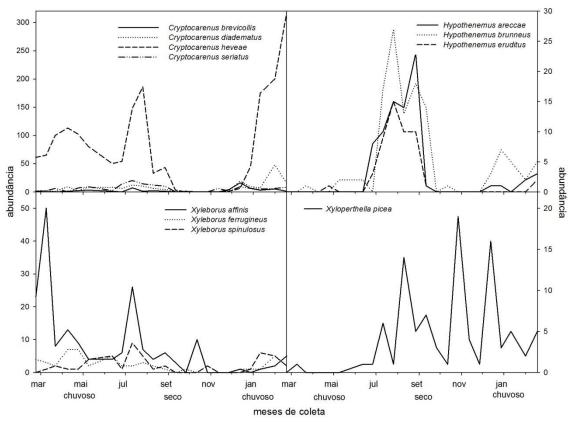



Figura 20 - Flutuação populacional de Scolytinae e *Xyloperthella picea* capturados com armadilhas de intercepção de voo iscadas com etanol em plantio de *Tectona grandis*, Fazenda Guzerá, município de São Domingos do Araguaia, estado do Pará, de fevereiro de 2012 a fevereiro de 2013.

Confirmando os resultados de pico populacional, Scolytinae, Platypodinae e Bostrichidae foram mais abundantes no período seco, sendo que cerca de 58% do total de besouros foram coletados neste período. No entanto, durante o período chuvoso ocorreu mais Scolytinae em CCA e SDA, Platypodinae em SDA e PDA, e Bostrichidae em ULI (Tabela 8).

Tabela 8 - Total de indivíduos Scolytinae, Platypodinae e Bostrichidae mais abundantes capturados em armadilhas de intercepção de voo iscadas com etanol, em áreas experimentais com *Tectona grandis*, para os períodos seco e chuvoso, estado do Pará, de junho de 2011 a abril de 2013.

							á	reas expe	erimen	tais¹						
espécies		CCA	C	NM	(CNS CNV			PDA RMA		RMA	;	SDA	ULI		
	seco	chuvoso	seco	chuvoso	seco	chuvoso	seco	chuvoso	seco	chuvoso	seco	chuvoso	seco	chuvoso	seco	chuvoso
Scolytinae	47	247	229	111	163	87	145	65	1121	1104	1087	363	1062	1909	86	45
Hypothenemus	24	20	49	30	39	41	37	12	203	147	498	108	333	96	36	23
Platypodinae	6	0	2	1	1	0	6	0	26	40	47	36	4	9	54	27
Bostrichidae	8	1	373	63	298	29	431	15	87	47	211	13	83	46	91	221
Total	85	268	653	205	501	157	619	92	1437	1338	1843	520	1482	2060	267	316

vide tabela 1

Do total de 24 espécies analisadas, somente as espécies de *Hypothenemus* e Bostrichidae apresentaram um padrão de captura, sendo significativamente mais capturadas no período seco. Já para as demais espécies analisadas estatisticamente, não foi possível de se observar um padrão consistente de abundância em função do período (Tabelas 9 e 10). Desta forma, considera-se aqui que, para estas demais espécies de brocas, estas ocorrem em números similares de indivíduos em ambos períodos seco e chuvoso. Espécies de *Hypothenemus* e Bostrichidae se desenvolvem bem em material seco, e é possível que, no período seco, estas compitam mais eficientemente com as demais espécies por material vegetal.

Tabela 9 - Teste de comparação de médias de captura de Scolytinae, Platypodinae e Bostrichidae mais abundantes em armadilhas de intercepção de voo iscadas com etanol, em áreas experimentais com *Tectona grandis*, para os períodos seco e chuvoso, estado do Pará, de junho de 2011 a abril de 2013.

	áreas experimentais ² – médias de captura ³													
espécies ¹	C	CA	CI	NM	CI	NS	CNV							
	seco	chuvoso	seco	chuvoso	seco	chuvoso	seco	chuvoso						
Scolytinae														
Crbre	-	-	-	-	-	-	-	-						
Crdia	$0.00 \pm 0.00 b$	0.08 ± 0.03 a	$0,28 \pm 0,10 a$	0.08 ± 0.04 a	$0,17 \pm 0,08$ a	$0,15 \pm 0,10$ a	-	-						
Crhev	$0,11 \pm 0,05 b$	$1,32 \pm 0,22$ a	1,35 ± 0,73 a	1,40 ± 0,41 a	1,15 ± 0,50 a	$0,43 \pm 0,15$ a	$0,61 \pm 0,19 a$	0.38 ± 0.13 a						
Crser	$0.05 \pm 0.02 b$	$0,21 \pm 0,05$ a	$0,50 \pm 0,15$ a	$0,10 \pm 0,06 b$	$0,27 \pm 0,09 a$	$0,15 \pm 0,07$ a	$0,10 \pm 0,06$ a	$0,12 \pm 0,06$ a						
Hyman	-	-	-	-	-	-	-	-						
Prcav	0.01 ± 0.01 a	0.02 ± 0.01 a	$0,13 \pm 0,04$ a	0.03 ± 0.03 a	0.05 ± 0.03 a	$0,00 \pm 0,00 a$	0.03 ± 0.02 a	0.00 ± 0.00 a						
Xyaff	0.03 ± 0.02 a	0.05 ± 0.02 a	$0,22 \pm 0,07$ a	$0,13 \pm 0,06$ a	$0,27 \pm 0,14 a$	$0,23 \pm 0,12$ a	$0,23 \pm 0,06$ a	$0,22 \pm 0,08 a$						
Xyfer	$0.01 \pm 0.01 a$	$0.01 \pm 0.01 a$	$0.05 \pm 0.03 b$	$0,28 \pm 0,09 a$	$0.08 \pm 0.04 a$	$0,15 \pm 0,07$ a	0.09 ± 0.03 a	$0,13 \pm 0,06$ a						
Xysp1	-	-	$0,18 \pm 0,14 a$	$0,00 \pm 0,00 a$	0.03 ± 0.03 a	$0.00 \pm 0.00 a$	0.02 ± 0.02 a	$0,00 \pm 0,00 a$						
Xyspi	$0,00 \pm 0,00 a$	0.02 ± 0.02 a	0.02 ± 0.02 a	$0,00 \pm 0,00 a$	-	-	0.02 ± 0.02 a	$0,00 \pm 0,00 a$						
Xyvol	$0.01 \pm 0.01 a$	$0,00 \pm 0,00 a$	-	-	-	-	$0.01 \pm 0.01 a$	$0,00 \pm 0,00 a$						
∑ Scolytinae	$0,59 \pm 0,12 b$	$1,90 \pm 0,26 a$	3,82 ± 1,17 a	$2,78 \pm 0,64 a$	$2,72 \pm 0,80$ a	$2,18 \pm 0,71 a$	1,61 ± 0,38 a	$1,08 \pm 0,30 a$						
Hypothenemus														
Hyare	$0,10 \pm 0,03$ a	$0.02 \pm 0.01 b$	0.08 ± 0.04 a	0.03 ± 0.03 a	$0,00 \pm 0,00 a$	0.05 ± 0.05 a	-	-						
Hybru	0.05 ± 0.03 a	$0.00 \pm 0.00 b$	0.05 ± 0.05 a	$0.00 \pm 0.00 a$	0.02 ± 0.02 a	$0.05 \pm 0.05 a$	0.03 ± 0.02 a	0.00 ± 0.00 a						
Hycru	$0.00 \pm 0.00 b$	$0.00 \pm 0.00 a$	-	-	0.02 ± 0.02 a	$0,00 \pm 0,00 a$	-	-						
Hyeru	0.00 ± 0.00 a	$0.01 \pm 0.01 a$	0.08 ± 0.04 a	0.03 ± 0.03 a	0.02 ± 0.02 a	0.08 ± 0.04 a	0.03 ± 0.02 a	0.02 ± 0.02 a						
Hyobs	0.03 ± 0.02 a	0.05 ± 0.02 a	0.05 ± 0.03 a	$0,23 \pm 0,14 a$	0.07 ± 0.03 a	0.03 ± 0.03 a	0.03 ± 0.02 a	0,05 ± 0,04 a						

¹ vide tabela 4

² vide tabela 1

³ Dados originais foram transformados em √ (x + 0,5); médias seguidas por letras iguais não são significativamente diferentes d entro da linha (P > 0,05; teste de Tukey).

Continuação...

espécies ¹	áreas experimentais ² – médias de captura ³								
	CCA		CNM		CNS		CNV		
	seco	chuvoso	seco	chuvoso	seco	chuvoso	seco	chuvoso	
Hyplu	0,00 ± 0,00 a	0,02 ± 0,01 a	0,03 ± 0,02 a	0,00 ± 0,00 a	-	-	-	-	
Hyser	0.03 ± 0.02 a	0.01 ± 0.01 a	0.25 ± 0.07 a	$0.38 \pm 0.16 a$	$0,45 \pm 0,13$ a	0.83 ± 0.46 a	$0,18 \pm 0,06$ a	$0,13 \pm 0,08 a$	
Hysus	0.06 ± 0.03 a	0.02 ± 0.01 a	$0,10 \pm 0,06$ a	$0.08 \pm 0.08 a$	0.08 ± 0.04 a	$0,00 \pm 0,00$ a	0.08 ± 0.04 a	$0,00 \pm 0,00$ a	
∑ Hypothenemus	$0.30 \pm 0.08 a$	$0,15 \pm 0,04$ a	0.82 ± 0.17 a	$0,75 \pm 0,29$ a	$0,65 \pm 0,19 a$	1,53 ± 0,54 a	$0,41 \pm 0,12$ a	$0,20 \pm 0,09$ a	
Platypodinae									
Eupar	0.08 ± 0.03 a	$0.00 \pm 0.00 b$	0.03 ± 0.02 a	0.03 ± 0.03 a	0.02 ± 0.02 a	$0,00 \pm 0,00$ a	0.07 ± 0.04 a	$0,00 \pm 0,00$ a	
∑ Platypodinae	0.08 ± 0.03 a	$0.00 \pm 0.00 b$	0.03 ± 0.02 a	0.03 ± 0.03 a	0.02 ± 0.02 a	$0,00 \pm 0,00$ a	0.07 ± 0.04 a	$0,00 \pm 0,00$ a	
Bostrichidae									
Bossp	-	-	$0,53 \pm 0,22$ a	$0,10 \pm 0,10 a$	$0,22 \pm 0,09$ a	0.00 ± 0.00 a	$0.33 \pm 0.14 a$	$0.00 \pm 0.00 b$	
Misp5	-	-	$0.98 \pm 0.45 a$	$0.00 \pm 0.00 b$	2,37 ± 0,53 a	$0,13 \pm 0,07 b$	1,18 ± 0,50 a	$0.02 \pm 0.07 b$	
Xypic	$0,10 \pm 0,05$ a	$0.00 \pm 0.00 b$	4,58 ± 0,93 a	$1,33 \pm 0,51 b$	2,13 ± 0,67 a	$0,60 \pm 0,19 b$	$2,44 \pm 0,42 a$	$0,23 \pm 0,09 b$	
Xypra	-	-	-	-	-	-	-	-	
∑ Bostrichidae	$0,10 \pm 0,05$ a	$0.01 \pm 0.01 b$	6,22 ± 1,14 a	$1,58 \pm 0,63 b$	4,97 ± 1,04 a	$0.73 \pm 0.21 b$	$4,79 \pm 0,73$ a	$0,25 \pm 0,09 b$	

vide tabela 3
vide tabela 1
black tabela 1
Dados originais foram transformados em √(x + 0,5); médias seguidas por letras iguais não são significativamente diferentes de entro da linha (P > 0,05; teste de Tukey). Fonte: Acervo pessoal, 2016.

Tabela 10 - Teste de comparação de médias de captura de Scolytinae, Platypodinae e Bostrichidae mais abundantes em armadilhas de intercepção de voo iscadas com etanol, em áreas experimentais com Tectona grandis, para os períodos seco e chuvoso, estado do Pará, de junho de 2011 a abril de 2013.

espécies ¹	áreas experimentais² – médias de captura³								
	PDA		RMA		SDA		ULI		
	seco	chuvoso	seco	chuvoso	seco	chuvoso	seco	chuvoso	
Scolytinae									
Crbre	$0.00 \pm 0.00 a$	0.04 ± 0.02 a	$0.01 \pm 0.01 a$	$0,00 \pm 0,00$ a	$0,10 \pm 0,03 b$	$0,20 \pm 0,04$ a	0.02 ± 0.02 a	$0.00 \pm 0.00 a$	
Crdia	$0,61 \pm 0,13 b$	$2,25 \pm 0,44$ a	$0,54 \pm 0,09$ a	$0,16 \pm 0,04 b$	$0.25 \pm 0.05 b$	$0,72 \pm 0,12 a$	0.07 ± 0.04 a	$0.01 \pm 0.01 b$	
Crhev	$4,32 \pm 0,72$ a	$2,03 \pm 0,29 b$	1,02 ± 0,13 a	$0.30 \pm 0.04 b$	$2,84 \pm 0,78 b$	7.3 ± 0.79 a	$0.33 \pm 0.12 a$	$0.06 \pm 0.02 b$	
Crser	$2,15 \pm 0,47$ a	$1,53 \pm 0,24$ a	$0,54 \pm 0,08$ a	$0,14 \pm 0,03 b$	$0,43 \pm 0,10$ a	$0.34 \pm 0.05 a$	$0.09 \pm 0.05 a$	$0.01 \pm 0.01 b$	
Hyman	0.24 ± 0.07 a	$0,53 \pm 0,18 a$	0.02 ± 0.01 a	$0,00 \pm 0,00$ a	-	-	-	-	
Prcav	$0.01 \pm 0.01 a$	$0,00 \pm 0,00 a$	0.02 ± 0.01 a	$0,00 \pm 0,00$ a	$0,10 \pm 0,03$ a	0.08 ± 0.02 a	0.02 ± 0.02 a	0.02 ± 0.01 a	
Xyaff	$0.79 \pm 0.16 a$	$0,40 \pm 0,08 b$	$0,56 \pm 0,09$ a	$0,12 \pm 0,03 b$	$0.32 \pm 0.07 b$	$0,67 \pm 0,10 a$	$0,26 \pm 0,08 a$	$0.06 \pm 0.02 b$	
Xyfer	$0,23 \pm 0,05$ a	$0,12 \pm 0,03$ a	$0,28 \pm 0,06$ a	$0,13 \pm 0,03 b$	$0.08 \pm 0.02 \mathrm{b}$	$0,22 \pm 0,04$ a	$0,13 \pm 0,07$ a	$0.02 \pm 0.01 b$	
Xysp1	$0,66 \pm 0,17$ a	$0.06 \pm 0.02 \mathrm{b}$	0.02 ± 0.01 a	$0.00 \pm 0.00 b$	0.00 ± 0.00 a	0.01 ± 0.01 a	$0,00 \pm 0,00 a$	0.01 ± 0.01 a	
Xyspi	$0,11 \pm 0,05$ a	0.02 ± 0.01 a	$0,13 \pm 0,04$ a	$0.00 \pm 0.00 b$	$0,12 \pm 0,04$ a	$0,16 \pm 0,04 a$	$0.00 \pm 0.00 b$	$0.00 \pm 0.00 a$	
Xyvol	0.05 ± 0.02 a	$0,18 \pm 0,06$ a	0.06 ± 0.03 a	$0.00 \pm 0.00 b$	0.07 ± 0.03 a	$0,13 \pm 0,03$ a	$0.00 \pm 0.00 b$	$0.00 \pm 0.00 a$	
∑ Scolytinae	11,21 ± 1,46 a	8,49 ± 1,06 a	$6,04 \pm 0,52$ a	$1,30 \pm 0,16 b$	$6,44 \pm 1,32 b$	10,61 ± 0,96 a	1,59 ± 0,32 a	$0.36 \pm 0.08 b$	
Hypothenemus									
Hyare	$0,17 \pm 0,05$ a	$0.05 \pm 0.03 b$	0.27 ± 0.06 a	$0.04 \pm 0.02 b$	$0,43 \pm 0,10$ a	$0.04 \pm 0.02 b$	0.02 ± 0.02 a	$0.00 \pm 0.00 a$	
Hybru	$0,51 \pm 0,26$ a	$0,18 \pm 0,05$ a	0.27 ± 0.07 a	$0.03 \pm 0.02 b$	$0,56 \pm 0,13$ a	$0,15 \pm 0,04 b$	0.00 ± 0.00 a	0.01 ± 0.01 a	
Hycru	0.06 ± 0.03 a	0.02 ± 0.01 a	$0,14 \pm 0,04$ a	$0.01 \pm 0.01 b$	0.07 ± 0.03 a	0.03 ± 0.02 a	0.09 ± 0.04 a	0.04 ± 0.03 a	
Hyeru	$0,13 \pm 0,05$ a	0,10 ± 0,03 a	$0,14 \pm 0,03$ a	$0.01 \pm 0.01 b$	$0,29 \pm 0,09$ a	$0.02 \pm 0.01 b$	0.04 ± 0.03 a	0,01 ± 0,01 a	
Hyobs	$0,28 \pm 0,09 a$	0,21 ± 0,08 a	0,53 ± 0,10 a	$0,11 \pm 0,05 b$	0,12 ± 0,04 a	$0.08 \pm 0.02 a$	0,09 ± 0,04 a	$0.02 \pm 0.01 b$	

vide tabela 3 vide tabela 1

³ Dados originais foram transformados em $\sqrt{(x + 0.5)}$; médias seguidas por letras iguais não são significativamente diferentes d entro da linha (P > 0.05; teste de Tukey).

^{*} Continua

Continuação...

espécies ¹	áreas experimentais² – médias de captura³								
	PDA		RMA		SDA		ULI		
	seco	chuvoso	seco	chuvoso	seco	chuvoso	seco	chuvoso	
Hyplu	0,06 ± 0,02 a	0,12 ± 0,05 a	0,14 ± 0,03 a	$0.01 \pm 0.01 b$	0,07 ± 0,03 a	0,02 ± 0,01 a	0,13 ± 0,07 a	$0.00 \pm 0.00 b$	
Hyser	$0,47 \pm 0,15$ a	$0,25 \pm 0,06$ a	$0,59 \pm 0,11 a$	$0,14 \pm 0,03 b$	0.05 ± 0.02 a	0.08 ± 0.03 a	$0,28 \pm 0,13$ a	$0,10 \pm 0,04$ a	
Hysus	$0,15 \pm 0,04$ a	$0.05 \pm 0.02 b$	$0,47 \pm 0,08 a$	$0.01 \pm 0.01 b$	$0,16 \pm 0,04$ a	$0.03 \pm 0.02 b$	0.02 ± 0.02 a	0.00 ± 0.00 a	
∑ Hypothenemus	$2,03 \pm 0,47$ a	$1,13 \pm 0,18 b$	$2,77 \pm 0,26$ a	$0.39 \pm 0.11 b$	$2,02 \pm 0,42$ a	$0,53 \pm 0,09 b$	$0,67 \pm 0,16 a$	$0.18 \pm 0.06 b$	
Platypodinae									
Eupar	$0,20 \pm 0,05$ a	$0,28 \pm 0,06$ a	$0,26 \pm 0,14 a$	$0,13 \pm 0,08 a$	0.02 ± 0.01 a	0.05 ± 0.02 a	$0,93 \pm 0,25 a$	$0,19 \pm 0,06 b$	
∑ Platypodinae	$0,26 \pm 0,05$ a	0.31 ± 0.07 a	$0,26 \pm 0,14 a$	$0,13 \pm 0,08 a$	0.02 ± 0.01 a	0.05 ± 0.02 a	1,00 ± 0,27 a	$0,21 \pm 0,06$ b	
Bostrichidae									
Bossp	$0,14 \pm 0,05$ a	$0,13 \pm 0,04 a$	$0,26 \pm 0,08 a$	$0.02 \pm 0.01 b$	$0.00 \pm 0.00 b$	$0,00 \pm 0,00 a$	-	-	
Misp5	$0,43 \pm 0,10 a$	$0.08 \pm 0.02 b$	0.02 ± 0.01 a	$0.00 \pm 0.00 a$	$0.02 \pm 0.01 a$	$0,00 \pm 0,00 a$	$0,00 \pm 0,00 a$	$0.01 \pm 0.01 a$	
Xypic	0.07 ± 0.03 a	0.05 ± 0.03 a	0,82 ± 0,15 a	$0.01 \pm 0.01 b$	$0.38 \pm 0.08 a$	$0,18 \pm 0,04 b$	1,35 ± 0,35 a	1,67 ± 0,31 a	
Xypra	0.03 ± 0.02 a	0,02 ± 0,01 a	0,01 ± 0,01 a	$0.00 \pm 0.00 a$	0,01 ± 0,01 a	0.03 ± 0.01 a	0,26 ± 0,11 a	$0.06 \pm 0.03 b$	
∑ Bostrichidae	0,87 ± 0,17 a	$0.36 \pm 0.07 b$	1,17 ± 0,19 a	$0.05 \pm 0.01 b$	$0,50 \pm 0,09 a$	$0.26 \pm 0.06 b$	1,69 ± 0,41 a	1,75 ± 0,32 a	

Tivide tabela 3
2 vide tabela 1
3 Dados originais foram transformados em √(x + 0,5); médias seguidas por letras iguais não são significativamente diferentes d entro da linha (P > 0,05; teste de Tukey). Fonte: Acervo pessoal, 2016.

Cryptocarenus e Hypothenemus foram os gêneros mais abundantes nesta pesquisa, e resultados semelhantes foram encontrados em áreas reflorestadas com outras espécies no Brasil (DALL'OGLIO; PERES FILHO, 1997; DORVAL et al., 2004; ROCHA et al., 2011).

Provavelmente espécies dos gêneros *Cryptocarenus* e *Hypothenemus* se desenvolviam na vegetação de sub-bosque ou em galhos e ramos de teca, oriundos de ações de desrama com vistas à qualidade da madeira, operação fundamental para produção de madeira de alta qualidade de teca. Espécies destes gêneros são comuns em áreas antropizadas (PENTEADO et al., 2011), como bem são os monocultivos de teca. Ademais, espécies de *Cryptocarenus* desenvolvem-se em trepadeiras (WOOD, 1982), que abundam em áreas abertas (maior luminosidade), como são os plantios de teca.

O número de espécies de escolitídeos (69) em plantios de teca no Pará foi inferior ao encontrado em plantios de *E. grandis* (75) no Paraná (FLECHTMANN et al., 2001) e superior aos plantios de *P. taeda* (62) no Paraná (FLECHTMANN et al., 2001), *E. camaldulensis* (26) no Mato Grosso (ROCHA et al., 2011), e *E. grandis* em São Paulo e Santa Catarina, respectivamente (66 e 35) (FLECHTMANN; GASPARETO, 1997; MULLER; ANDREIV, 2004).

A diversidade de Shannon encontrada em Rio Maria (2,89) foi superior às de *Eucalyptus grandis* e *Pinus taeda* (2,45 e 2,06, respectivamente) no Paraná (FLECHTMANN et al., 2001), e *Eucalyptus camaldulensis* (2,61) no Mato Grosso (ROCHA et al., 2011). A maior riqueza de Margalef (6,58) encontrada em São Domingos do Araguaia também foi superior aos plantios de *E. grandis* em São Paulo (4,05) (FLECHTMANN; GASPARETO, 1997) e Santa Catarina (2,98) (MULLER; ANDREIV, 2004).

Estudos de diversidade destes besouros em plantios de teca ainda são escassos no Brasil. No entanto, a diversidade de espécies obtida pode ser considerada alta em relação a áreas reflorestadas com outras culturas. Rio Maria foi o ambiente que apresentou maior equitabilidade (0,76). A maior diversidade encontrada em Rio Maria pode estar relacionada ao fato deste local ter tido maior número de armadilhas (20) e coletas (23).

6 CONCLUSÕES

Este é o primeiro estudo de levantamento de Curculionidae (Scolytinae, Platypodinae) e Bostrichidae em plantios de teca no estado do Pará, onde a espécie alvo que iniciou este estudo, *Sinoxylon unidentatum* não foi encontrada.

Em função do trabalho desenvolvido, contribuiu-se com o registro de oito novas espécies de Scolytinae não somente para o estado, mas como para o país.

Recomenda-se para região do estudo e regiões circunvizinhas deixar a área livre de material proveniente da desrama, principalmente em pequenas propriedades de fácil manutenção, evitando local de desenvolvimento de Scolytinae, Platypodinae e Bostrichidae. Além disso, fixar o calendário de desramas para se evitar datas coincidentes com pico dos principais gêneros (*Euplatypus* e *Xyleborus*).

Verificou-se que as espécies mais abundantes capturadas, da sub-tribo Cryphalina, muito provavelmente desenvolviam-se em vegetação de sub-bosque ou material vegetal seco sobre o solo, e em condições normais não se constituem em espécies potenciais como pragas da teca.

Muito embora *Xyleborus affinis* e *Euplatypus parallelus* já tenham sido reportados na literatura atacando teca (ARGUEDAS et al., 2004) e estejam presentes nos plantios estudados, ao menos na época do estudo não houve registros de ataques destas à teca, bem como de qualquer outra das espécies estudadas.

7 LITERATURA CITADA

ABRAF - ASSOCIAÇÃO BRASILEIRA DE PRODUTORES DE FLORESTAS PLANTADAS. **Anuário estatístico da ABRAF 2013:** Ano base 2012. Brasília, 2013. 146p.

ALTIERI, M.A.; NICHOLLS, C.L. Biodiversity, ecosystem function, and insect pest management in agricultural systems. In: COLLINS, W.A.; QUALSET, C.O. **Biodiversity in Agroecosystems**. London: RC Press LCC, 1999. cap.5, p.69-84.

ARAÚJO, W.S.A. importância de fatores temporais para a distribuição de insetos herbívoros em sistemas Neotropicais. **Revista de Biologia**, v.10, n.1, p.1-7, 2013.

ARGUEDAS, M; CHAVERRI, P.; VERJANS, J.M. Problemas fitosanitarios de la teca em Costa Rica. **Recursos Naturales y Ambiente**, n.41, p.130-135, 2004.

ARGUEDAS, M. **Plagas y enfermedades forestales en Costa Rica**. San José: Corporación Garro y Moya, 2008. 69p.

ATKINSON, T.H.; EQUIHUA-MARTINEZ, A. Biology of bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae) of a tropical rain forest in southeastern Mexico with an annotated checklist of species. **Annals of the Entomological Society of America**, v.79, n.3, p.414-423, 1986a.

ATKINSON, T.H.; EQUIHUA-MARTINEZ, A. Biology of the Scolytidae and Platypodidae (Coleoptera) in a tropical deciduous forest at Chamela, Jalisco, Mexico. **The Florida Entomologist**, v.69, n.2, p.303-310, 1986b.

BEAVER, R.A. The invasive Neotropical ambrosia beetle *Euplatypus parallelus* (Fabricius, 1801) in the Oriental region and its pests status (Coleoptera: Curculionidae, Platypodinae). **Entomologist's Monthly Magazine**, v.149, p.143-154, 2013.

BERTI FILHO, E. Coleópteros de importância florestal: 1 - Scolytidae. **IPEF**, Piracicaba, v.19, p.39-43, 1979.

BERTI FILHO, E.; FLECHTMANN, C.A.H. A model of ethanol trap to collect Scolytidae and Platypodidae (Insecta, Coleoptera). **IPEF**, Piracicaba, n.34, p.53-56, 1986.

BROWNE, F.G. Notes on the habits and distribution of some Ghanaian bark beetles and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae). **Bulletin of Entomological Research**, v.54, n.2, p.229-266, 1963.

CACERES FLORESTAL. **Manual de Cultivo da teca**. 2006. Disponível em: http://www.caceresflorestal.com.br/Manual_do_cultivo_da_teca-Caceres_Florestal.pdf>. Acesso em: 18 fev.2016.

- COSTA, D.H.M; LOPES, M.L.B.; REBELLO, F.K.; SANTANA, A.C. **Oportunidades de Negócios na Cadeia florestal da Amazônia Brasileira**. Belém: Banco da Amazônia, 2010. 68p. (Estudos Setoriais, 8).
- DAll'OGLIO, O.T.; PERES FILHO, O. Levantamento e flutuação populacional de coleobrocas em plantios homogêneos de seringueira em Itiquira-MT. **Scientia Forestalis**, Piracicaba, v.51, p.49-58, 1997.
- DATERMAN, G.E.; RUDINSKY, J.A.; NAGEL, W.P. Flight patterns of bark and timber beetles associated with coniferous forests of western Oregon. Corvallis, Oregon State University/Agricultural Experiment Station, 1965. 46p. (Technical Bulletin, 87).
- DORVAL, A.; FILHO, O.P.; MARQUES, E.N. Levantamento de Scolytidae (Coleoptera) em plantações de *Eucalyptus* spp. em Cuiabá, estado de Mato Grosso. **Ciência Florestal**, v.14, n.1, p.47-58, 2004.
- FISHER, W.S. A revision of the North American species of beetles belonging to the family Bostrichidae. Misc. Publ., U. S. Dep. Agric. n.698, 1950. 157 p.
- FLECHTMANN, C.A.H.; COUTO, H.T.Z.; GASPARETO, C.L.; BERTI FILHO, E. **Scolytidae em reflorestamento com pinheiros tropicais**. Piracicaba: IPEF, 1995. 201p. (Manual de Pragas em Florestas, 4).
- FLECHTMANN, C.A.H.; GASPARETO, C.L. Scolytidae em pátio de serraria da fábrica Paula Souza (Botucatu/SP) e fazenda Rio Claro (Lençóis Paulista/SP). **Scientia Forestalis**, Piracicaba, v.51, n.2, p.61-75, 1997.
- FLECHTMANN, C.A.H.; OTTATI, A.L.T.; BERISFORD, C.W. Attraction of Ambrosia Beetles (Coleoptera: Scolytidae) to Different Tropical Pine Species in Brazil. **Environmental Entomology**, v.28, n.4, p.649-658, 1999.
- FLECHTMANN, C.A.H.; OTTATI, A.L.T.; BERISFORD, C.W. Ambrosia and bark beetles (Scolytidae: Coleoptera) in pine and Eucalypt stands in Southern Brazil. **Forest Ecology and Management**, v.142, n.2001, p.183-191, 2001.
- FLORES, T.V.; CRESPO, R.G; CABEZAS, G.F. Pagas y enfermedades en plantaciones de Teca (*Tectona grandis* L.F) en la zona de Balzar, Provincia del Guayas. **Ciencia y Tecnología**, v.3, n.1, p.15-22, 2010.
- FOELKEL, C. **Espécies de Importância Florestal para a Ibero-América:** Teca *Tectona grandis*, 2013. Disponível em: http://www.celso-foelkel.com.br/pinus/pinus_40.pdf>. Acesso em: 18 abr. 2016.
- GYI, K.K.; TINT, K. Management status of natural teak forests. In: KASHIO, M.; WHITE, K. "Teak for the future. Proceedings of the Second Regional

- **Seminar on Teak, 29 May–3 June 1995, Yangon, Myanmar**". Bangkok: FAO Regional Office for Asia and the Pacific (RAP), 1998, cap.5, p. 27–48.
- IBÁ INDÚSTRIA BRASILEIRA DE ÁRVORES. **Anuário estatístico da IBÁ:** Ano base 2014. Brasília, 2015. 77p.
- INMET INSTITUTO NACIONAL DE METEOROLOGIA. **Dados históricos**. Conceição do Araguaia e Tucuruí, 2015. Disponível em: http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep>. Acesso em: 5 ago. 2015.
- KALSHOVEN, L.G.E. A study of the twig borer, Xyleborus morigerus Blandford, mainly based on observations in Java. **Tijdschrift voor Entomologie**, v.104, p.93-110, 1961.
- KOTTEK, M.; GRIESER, J.; BECK, C.; RUDOLF, B.; RUBEL, F. World Map of the Köppen-Geiger climate classification updated. **Meteorologische Zeitschrift**, v.15, n.3, p.259-263, 2006.
- LIMA, A.M.C. **Insetos do Brasil:** coleópteros. ENA: Rio de Janeiro, v.10, pt.2, 1953. 323p.
- LIMA, A.M.C. **Insetos do Brasil:** coleópteros. ENA: Rio de Janeiro, v.10, pt.4, 1956. 373p.
- LUNZ, A.M.; PERES FILHO, O.; CARDOSO, J.E.F.; SILVA, J.L.S.; Monitoramento de *Sinoxylon conigerum* (Gerstacker, 1885) em madeira de Teca (*Tectona grandis* L. f.) no estado do Pará. Belém: Embrapa Amazônia Oriental, 2010. 7p. (Série Documentos, 224).
- MAITI, P.K.; SAHA, N. Fauna of India and the adjacent countries. Scolytidae: Coleoptera (Bark and Ambrosia beetles), v.1 (Part 1). Introduction and Tribe Xyleborini. Kolkata: Zoological Survey of India, 2004. 268p.
- MAITI, P.K.; SAHA, N. **Fauna of India and the adjacent countries. Scolytidae**: Coleoptera (Bark and Ambrosia Beetles). Kolkata: Zoological Survey of India, 2009. 245p.
- MARGALEF, R. **Ecologia**. Barcelona: Omega, 1974. 951 p.
- MIDGLEY S.; SOMAIYA, R.T.; STEVENS, P.R.; BROWN, A.; NGUYEN, D. K.; LAITY, R. **Planted teak:** global production and markets, with reference to Solomon Islands. Australian Centre for International Agricultural Research: Canberra, 2015. 92p.
- MAPA MINISTÉRIO DE AGRICULTURA PECUÁRIA E ABASTECIMENTO. **Lista de Pragas Quarentenárias Presentes – (A2)**. Disponível em: http://www.agricultura.gov.br/arq_editor/file/vegetal/lmportacao/Arquivos%20d

- e%20Quarentenas_Pragas/Listas%20de%20Pragas%20Quarenten%C3%A1ria s%20Presentes%20-%20A2.pdf>. Acesso em: 26 mar. 2016.
- MDA MINISTÉRIO DO DESENVOLVIMENTO AGRÁRIO. Plano territorial de desenvolvimento rural sustentável do Sudeste paraense. Marabá, 2010. Disponível em: http://sit.mda.gov.br/download/ptdrs/ptdrs_qua_territorio087.pdf>. Acesso em: 10 out. 2016.
- MORAES, B.C.; COSTA, J.M.N.; COSTA, A.C.L.; COSTA, M.H. Variação espacial e temporal da precipitação no estado do Pará. **Acta Amazonica**, v.35, n.2, p.207-214, 2005.
- MORALES, N.E.; ZANUNCIO, J.C.; PRATISSOLI, D.; FABRES, A.S. Fluctuación poblacional de Scolytidae (Coleoptera) en zonas reforestadas con *Eucalyptus grandis* (Myrtaceae) en Minas Gerais, Brasil. **Revista de Biologia Tropical**, v.48, n.1, 2000.
- MOURA, R.G.; BERTI FILHO, E.; PERES FILHO, O.; DORVAL, A. Coleobrocas (Insecta: Coleoptera) associadas à madeira de *Tectona grandis* Linn. F. (Lamiaceae). **Revista de Agricultura**, v.83, n.1, p.35-46, 2008.
- MÜLLER, J.A.; ANDREIV, J. Caracterização da família Scolytidae (Insecta: Coleoptera) em três ambientes florestais. **Cerne**, v.10, n.1, p.39-45, 2004.
- NAIR, K.S.S. **Insect pests and diseases in Indonesian forest:** an assessment of the major threats, research efforts and literature. Bogor: Center for International Forestry Research, 2000. 101p.
- NAIR, K.S.S. **Tropical Forest Insect Pests:** ecology, impact and management. New York: Cambridge University Press, 2007. 404 p.
- PAES, J.B.; LOIOLA, P.L.; CAPELINI, W.A.; SANTOS, L.L. dos; SANTOS JUNIOR, H.J.G. dos. Entomofauna associada a povoamentos de teca localizados no sul do Estado do Espírito Santo. **Pesquisa Florestal Brasileira**, v.34, n.78, p.125-132, 2014.
- PANDEY, D.; BROWN, C. Teak: a global overview. **Unasylva**, v. 51, n. 1, p. 3-13, 2000.
- PENTEADO, S.R.C.; CARPANEZZI, A.A.; NEVES, E.J.M.; SANTOS, A.F.; FLECHTMANN, C.A.H. Escolitídeos como bioindicadores do "declínio do nim" no Brasil. **Pesquisa Florestal Brasileira**, v.31, n.65, p.69-73, 2011.
- PERES FILHO, O.; TEIXEIRA, E.P.; BEZERRA, M.L.M.; DORVAL, A.; BERTI FILHO, E. First Record of *Sinoxylon conigerum* Gerstäcker (Coleoptera: Bostrichidae) in Brazil. **Neotropical Entomology**, v.35, n.5, p.712–713, 2006a.

PERES FILHO, O.; DORVAL, A.; BEZERRA, M.L.M.; BERTI FILHO, E.; MOURA, R. G. Estudo de infestação por coleobrocas em madeira de *Tectona grandis* Linn.f. (Verbenaceae) estocada no campo, no município de Rosário Oeste, Estado de Mato Grosso. **Revista de Agricultura**, Piracicaba, v.81, n.1, p.31-43, 2006b.

PERES FILHO, O.; DORVAL, A.; BERTI FILHO, E. **A Entomofauna associada à teca,** *Tectona grandis* **L. f. (Verbenaceae), no Estado de Mato Grosso**. Piracicaba: IPEF, 2006c. 58 p.

PERONI, N.; HERNÁNDEZ, M.I.M. **Ecologia de populações e comunidades**. Florianópolis: CCB/EAD/UFSC, 2011. 123p.

PHILLIPS, T.W. Responses of *Hylastes salebrosus* to turpentine, ethanol, and pheromones of *Dendroctonus* (Coleoptera: Scolytidae). **The Florida Entomologist**, v.73, n.2, p.286-292, 1990.

PIELOU, E.C. Species-diversity and pattern-diversity in the study of ecological succession. **Journal of Theoretical Biology**, v.10, p.370-383, 1966.

ROCHA, J.R.M.; DORVAL, A.; PERES FILHO, O.; SOUZA, M.D.; COSTA, R.B. Análise da Ocorrência de Coleópteros em Plantios de *Eucalyptus camaldulensis* Dehn. em Cuiabá, MT. **Floresta e Ambiente**, v.18, n.4, p.343-352, 2011.

SHANNON, C.E.; WEAVER, W. **The mathematical theory of communication.** Indiana: The University of Illinois, 1964.

SCHEDL, K.E. **Monographie der Famile Platypodidae (Coleoptera)**. W. Junk, the Hague. 1972. 322p.

STATISTICAL ANALYSIS SYSTEM - SAS. **SAS/STAT user's guide**. v.2. Cary, 1990.

WOOD, S.L. Bark and ambrosia beetles of South America (Coleoptera: Scolytidae). Provo: Brigham Young University, 2007. 900p.

WOOD, S.L. Revision of the genera of Platypodidae (Coleoptera). **Great Basin Naturalist**, v.53, n.3, p.259-281, 1993.

WOOD, S.L. **The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph**. Provo: Great Basin Naturalist Memoirs, 1982. 1359p.

WYLIE, F.R.; SPEIGHT, M.R. **Insect pests in tropical forestry**. 2nd ed. Wallingford: CABI, 2012. 408p.

APÊNDICES

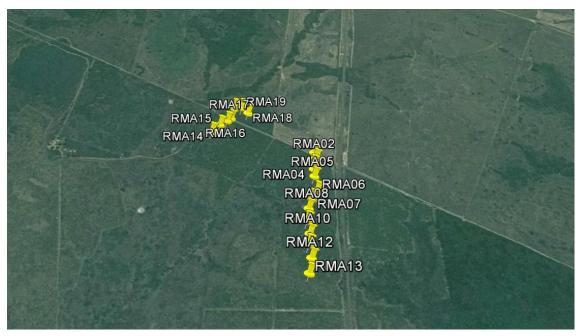
APÊNDICE A - Distribuição de armadilhas em plantios de *Tectona grandis*, Sítio de José Costa, município de Canaã dos Carajás, estado do Pará.


Fonte: Adaptado de Goggle Earth Pro, 2015.

APÊNDICE B- Distribuição de armadilhas em plantios de *Tectona grandis*, Fazenda Mongaguá, município de Cumaru do Norte, estado do Pará.

Fonte: Adaptado de Goggle Earth Pro, 2007.

APÊNDICE C - Distribuição de armadilhas em plantios de *Tectona grandis*, Fazenda Sabran, município de Cumaru do Norte, estado do Pará.


Fonte: Adaptado de Goggle Earth Pro, 2007.

APÊNDICE D - Distribuição de armadilhas em plantios de *Tectona grandis*, Fazenda Veluma, município de Cumaru do Norte, estado do Pará.

Fonte: Adaptado de Goggle Earth Pro, 2007.

APÊNDICE E - Distribuição de armadilhas em plantios de *Tectona grandis*, Fazenda Rongi-Porã, município de Rio Maria, estado do Pará.

Fonte: Adaptado de Goggle Earth Pro, 2010.

APÊNDICE F - Distribuição de armadilhas em plantios de *Tectona grandis*, Fazenda Guzerá, município de São Domingos do Araguaia, estado do Pará.

Fonte: Adaptado de Goggle Earth Pro, 2012.

APÊNDICE G- Distribuição de armadilhas em plantios de *Tectona grandis*, Fazenda Pingo de Ouro, município de Ulianópolis, estado do Pará.

Fonte: Adaptado de Goggle Earth Pro, 1970.

APÊNDICE H - Distribuição de armadilhas em área de serraria, TKX Industria Madeireira Ltda, município de Pau D'Arco, estado do Pará.

Fonte: Adaptado de Goggle Earth Pro, 2010.