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Resumo

Nesta dissertação são apresentadas algumas estimativas a priori para soluções de sistemas

mean-field games (MFG), definidos em domínios limitados Ω ⊂ Rd. Tais estimativas são apli-

cadas em um modelo mean-field específico, que descreve o acúmulo de riqueza e capital.

No Capítulo 1, é apresentada uma breve introdução histórica sobre os mean-field games.

Nesta introdução, exploramos sua relação com a teoria dos jogos, cujos alicerces foram construí-

dos por economistas e matemáticos ao longo do século XX. O objetivo do capítulo é transmitir

ao leitor, as origens da Teoria Econômica contemporânea, que surgem à partir da utilização da

Matemática na formulação e resolução de problemas econômicos. Tal abordagem é motivada

principalmente pelo rigor e clareza da Matemática em tais circunstâncias.

No Capítulo 2, apresentamos um problema de controle ótimo em que cada agente é suposto

ser indistinguível, racional e inteligente. Indistinguível no sentido de que cada um é governado

pela mesma equação diferencial estocástica. Racional no sentido de que todos os esforços do

agente são no sentido de maximizar um funcional de recompensa e, inteligente no sentido de que

são capazes de resolver um problema de controle ótimo. Descreve-se este problema de controle

ótimo, e apresenta-se a derivação heurística dos mean-field games; obtém-se através de um

Teorema de Verificação, a equação de Hamilton-Jacobi (HJ) associada, e em seguida, obtém-

se a equação de Fokker-Planck. De posse destas equações, apresentamos alguns resultados

preliminares, como uma fórmula de representação para soluções da equação de HJ e alguns

resultados de regularidade.

No Capítulo 3, descreve-se um problema específico de controle ótimo e apresenta-se a re-

spectiva derivação heurística culminando na descrição de um MFG com condições não per-

iódicas na fronteira; esta abordagem é original na literatura de MFG. O restante do capítulo é

dedicado à exposição de dois tipos bem conhecidos de estimativas: a fórmula de Hopf-Lax e

estimativa de Primeira Ordem. Uma observação relevante, é a de que o trabalho em obter-se

estimativas a priori é aumentado substancialmente neste caso, devido ao fato de lidarmos com

estimativas para os termos de fronteira com normas em Lp.

No Capítulo 4, apresenta-se o modelo de jogo do tipo mean-field de acúmulo de capital e

riqueza, o que deixa claro a relevância do estudo dos MFG em um domínio limitado. À luz dos

resultados obtidos no Capítulo 3, encerramos o Capítulo 4 com as estimativas do tipo Hopf-Lax

e de Primeira Ordem.

Três apêndices encerram o texto desta dissertação de mestrado; estes reúnem material ele-

mentar sobre Cálculo Estocástico e Análise Funcional.

Palavras-chave: Mean-field games, Equação de Hamilton-Jacobi, Equação de Fokker-

Planck, estimativas a priori, domínios limitados, método adjunto não-linear.
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Abstract

In this thesis, we present a priori estimates for solutions of a mean-field game (MFG) defined

over a bounded domain Ω ⊂ Rd. We propose an application of these results to a model of capital

and wealth accumulation.

In Chapter 1, an introduction to mean-field games is presented. We also put forward some of

the motivation from Economics and discuss previous developments in the theory of differential

games. These comments aim at indicating the connection between mean-field games theory, its

applications and the realm of Mathematical Analysis.

In Chapter 2, we present an optimal control problem. Here, the agents are supposed to be

undistinguishable, rational and intelligent. Undistinguishable means that every agent is governed

by the same stochastic differential equation. Rational means that all efforts of the agent is to

maximize a payoff functional. Intelligent means that they are able to solve an optimal control

problem. Once we describe this (stochastic) optimal control problem, we produce a heuristic

derivation of the mean-field games system, which is summarized in a Verification Theorem; this

gives rise to the Hamilton-Jacobi equation (HJ). After that, we obtain the Fokker-Plank equation

(FP). Finally, we present a representation formula for the solutions to the (HJ) equation, together

with some regularity results.

In Chapter 3, a specific optimal control problem is described and the associated MFG is

presented. This MFG is prescribed in a bounded domain Ω ⊂ Rd, which introduces substantial

additional challenges from the mathematical view point. This is due to estimates for the solutions

at the boundary in Lp. The rest of the chapter puts forward two well known tips of estimates: the

so-called Hopf-Lax formula and the First Order Estimate.

In Chapter 4, the wealth and capital accumulation mean-field game model is presented. The

relevance of studying MFG in a bounded domain then becomes clear. In light of the results ob-

tained in Chapter 3, we close Chapter 4 with the Hopf-Lax formula, and the First Order estimates.

Three appendices close this thesis. They gather elementary material on Stochastic Calculus

and Functional Analysis.

Keywords: Mean-field games, Hamilton-Jacobi equation, Fokker-Plank equation, a priori

estimates, bounded domains, non-linear adjoint method.
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Chapter 1

Introduction

1.1 Game Theory and Mean-field Games

The introduction of mathematical methods in economic theory gave rise to a new research

area, called mathematical economics. It consists in applications of mathematical methods to rep-

resent economic theories and to analyse problems from economic realm. One of the greatest

advantages of such area is to make possible for the economists to make clear, specific and

positive statements about their problems of interest. A further advantage of the mathematical

formalism is that it enables authors to formulate and solve models in a unified language.

The formal modelling in economics started in the beginning of the XIX century, with advances

of differential calculus, to represent and justify the economic behavior originated in utility maxi-

mization. Economics became more mathematical as a subject during the first half of the XX cen-

tury, see for example [25]. However, the introduction of new and generalized techniques around

the IIGWW period, as game theory, greatly expanded the mathematical formulation of economic

problems.

Nowadays, in modern economic theory, mathematical methods are central, even while not all

economists agree that the behavior of agents can be reduced to a precise mathematical formu-

lation. In any case, utility maximization principle and game-theoretical equilibria explain, at least

partially, many economic phenomena.

One of the fundamentals characteristics of economic models is the concept of competing

agents, as illustrated in the works of A. Cournot and L. Walras. Indeed, Walras, also known as

the founder of the École de Lausanne, refers to Cournot in 1873, as the first author to seriously

recur to the mathematical formalism in investigating economic problems. Cournot duopoly model

is one of the earliest formulations of a non-cooperative game. This pioneering work sets up the

foundations of contemporary game theory. Walras developed a first theory of a competitive market

1



2 CHAPTER 1. INTRODUCTION

(general) equilibrium. W. S. Jevons and C. Menger are also well known for their influence on the

presence of mathematical formalism in economics.

The mathematical formulation of economic problems has attracted the attention of notable

mathematicians, including E. Borel and J. von Neumann. In the mid-20th century, in the paper

[20], J. Nash developed a concept of equilibrium that is fundamental in modern game theory. The

arguments in that paper rely on a fixed-point theorem, due to S. Kakutani. For his “contributions

to the analysis of equilibria in the theory of non-cooperative games", J. Nash (together with C.

Harsanyi and R. Selten) was awarded the Nobel Prize in Economics in 1994.

Another Nobel Prize Laureate, R. Aumann, introduced in 1964 the idea of an economy with a

continuum of players, which are atomized in nature [4]. In that paper, Aumann argues that only

for an economy with infinitely many participants it is reasonable to assume that the actions of

individual agents are negligible in determining the overall outcome.

In 1995, the Noble Prize was awarded to R. Lucas, for the development and applications

of the hypothesis of rational expectations, in the early 70’s, [19]. This hypothesis states that

economic agents’ predictions of economically relevant quantities are not systematically wrong.

More precisely, the subjective probabilities as perceived by the agents agree with the empirical

probabilities. After the introduction of this framework, an important paradigm in economic theory

is based on three hypotheses: efficient markets, rational expectations, and representative agent.

It is only around the 90’s that alternatives to the representative agent model begin to be

considered in mainstream economics. The idea of heterogeneous agents, as suggested in the

works of S. Aiyagari [1], T. Bewley [5], M. Huggett [13] and P. Krussel and A. Smith [14], points out

in an alternative direction. In this formulation, agents in the economy are charaterized by different

levels of the model’s variables. For example, individuals can have distinct income or wealth levels.

In the theory of mean-field games (MFG), the concept of Nash equilibrium and the rational

expectation hypothesis are combined to produce mathematical models for large systems, with

infinitely many indistinguishable rational players. The term indistinguishable refers to a setting

where agents share common structures of the model, though they are allowed to have hetero-

geneous states. In other terms, the MFG theory enables us to investigate the solution concept

of Nash equilibrium, for a large population of heterogeneous agents, under the hypothesis of

rational expectations.

The formalism of mean-field games was developed in a series of papers by J.-M. Lasry and

P.-L. Lions [16], [17], [18], and M. Huang, R. Malhamé and P. Caines [11] and [12]. Methods and

techniques to study differential games with a large population of rational players are introduced in

these papers. The agent’s preferences does not depend only on their states (e.g., wealth, capital)

but also on the distribution of the remaining individuals in the population. It is fair to say that

mean-field games theory studies generalized Nash equilibria for these systems. Typically, these
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models are formulated in terms of partial differential equations, namely a transport or Fokker-

Planck equation for the distribution of the agents coupled with a Hamilton-Jacobi equation.

An important research direction in the theory of MFG concerns the study of the existence and

regularity of solutions. Well-posedness in the class of smooth solutions was investigated, both in

the stationary and in the time-dependent setting. In [9] we can find results related to this research

direction but concerning certain problems; In particular in [9] the authors consider problems in

the periodic setting.

1.2 Mean-field games and economic theory

The traditional approach to economic models often involves the simplifying assumption that

all agents are identical (called representative agent assumption). However, heterogeneous agent

problems allow the study of questions in which the differences among agents are of primary

relevance. Matters such as wealth distribution or income inequality are inherently associated with

differences among agents. In different problems, the representative agent assumption can not

adequately capture the effect of heterogeneity.

Mean-field games theory aims at modelling large populations of rational, heterogeneous

agents. The analytical spectrum of the MFG framework accommodates preference structures

and effects that depend on the whole distribution of the population. A rational agent is an agent

with defined preferences that she seeks to optimize. In the vast majority of cases, these prefer-

ences can be modelled through a utility functional. Rationality means that the agent always acts

optimally, seeking to maximizes her utility. Finally, MFG are closely linked to the assumption of

rational expectations. The prediction of future quantities by the agents is an essential part of any

economic model. The rational expectation hypothesis states that predictions by the agents of the

value of relevant variables do not differ systematically from equilibrium conditions. This hypothe-

sis has several advantages: firstly, it can be a good approximation to reality, as agents who act in a

non-rational way will be driven out in a competitive market; secondly, it produces well-defined and

relatively tractable mathematical problems; finally, because of this, it is possible to make quanti-

tative and qualitative predictions that can be compared to real data. In mean-field game models,

the actions of the agents are determined by looking at objective functionals involving expectated

values with respect to probability measures that are consistent with the equilibrium behavior of

the model. This contrasts with the adaptative expectations approach, where the model for future

behavior of the agents is built on their past actions.

Computational methods based in agents are very common and useful tools to study heterogeneous-

agents economic problems. Unfortunately, numerical methods are not able to provide analytical

models from which qualitative properties can be derived. In modern macroeconomics, an impor-
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tant role is played by dynamic stochastic general equilibrium models. These aim to understand

the fundamental questions such as uniqueness, existence of economic equilibrium. However,

many MFG problems arising in mathematical economics raise issues that cannot be dealt with

current results. In this sense, this contributes to the literature by studying MFG with non trivial

boundary conditions, in a bounded domain Ω ⊂ Rd.

1.3 General assumptions and main results

In this thesis, we study the following mean-field game system

−ut +H(x,Du) = ∆u+ g[m] in Ω× [0, T ] ,

mt − div(DpHm) = ∆m in Ω× [0, T ] ,

(1.1)

equipped with boundary conditions,

u(x, T ) = uT (x) in Ω,

m(x, 0) = m0(x) in Ω,

(1.2)

and u(x, t) = h(x, t) on ∂Ω× [0, T ],

m(x, t) = k(x, t) on ∂Ω× [0, T ].

(1.3)

Here, T > 0 is a fixed terminal instant, Ω is a bounded subset of Rd, and h, k : ∂Ω× [0, T ]→ R are

real functions with suitable regularity. The map g[m] is the mean-field hypothesis (MFh, for short)

and encodes the dependence of the value function on the measure. Some typical examples in

the literature are the following:

g[m](x, t) := mα(x, t) ∀(x, t) ∈ Ω× [0, T ], (1.4)

g[m](x, t) :=
−1

mα(x, t)
∀(x, t) ∈ Ω× [0, T ], (1.5)

g[m](x, t) := ln[m](x, t) ∀(x, t) ∈ Ω× [0, T ]. (1.6)

The formulation in (1.4) is inspired by the notion of hyperbolic absolute risk aversion util-

ity function. The singular formulation is (1.5), it is inspired in Alt-Philips [2] formulation of the
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stochastic problem. In (1.6) it is the considered the logarithmic utility.

The derivation of the problem (1.1)-(1.3) is presented further in this work/thesis. In this thesis

we work under several assumptions on the Hamiltonian H, as well as on the boundary condi-

tions which cover a wide range of examples and applications. As an instance of the latter, we

investigate the following model of Economic Growth.

Vt(a, k, t) +H(a, k, r, p, δ,DaV,DkV ) + ∆V = 0,

mt + ((DqaH)m)a + ((DqkH)m)k = ∆m,

(1.7)

in Ω× [0, T ] = (a, a)× (0, k)× [0, T ], with initial-terminal boundary conditions:

V (a, k, T ) = VT (a, k) in Ω,

m(a, k, 0) = m0(a, k) in Ω,

(1.8)

and V (a, k, t) = f(a, k, t) on ∂Ω× [0, T ],

m(a, k, t) = 0 on ∂Ω× [0, T ].

(1.9)

The state of the model, x = [at, kt] ∈ R2, comprises the wealth at and the stock of capital kt

of each agent, over time. The bounds {a, a, k}, encodes the boundaries for wealth and stock of

capital in a finite time 0 < t < T . In addition,

1. p is the price level of the economy,

2. δ ∈ (0, 1) is a constant that measures the depreciation of the capital,

3. r is a fixed interest rate.

It is reasonable to suppose that a ∈ (a, a), because the levels of wealth in Economy are

bounded in finite horizon T . In addition, assuming k ∈ (0, k) is reasonable because the stock of

capital is also bounded from below; also, negative values of k are not expected to be verified.

We proceed by listing general hypotheses on the Hamiltonian H, the MFGh g as well as on

the boundary conditions.

A 1. The Hamiltonian H : Ω× Rd → R

1. is of class C 2(Ω× Rd);

2. for fixed x, the map p 7→ H(x, p) is a strictly convex function;
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3. satisfies the coercivity condition

lim
|p|→∞

H(x, p)

|p|
=∞,

and without loss of generality we suppose further that H(x, p) ≥ 1.

A 2. The mean-field-hypothesis, g : R+
0 → R, is a non-negative increasing function. Therefore,

there exists G : R+
0 → R, convex and increasing, such that g = G′.

We define the Legendre transform of H by

L(x, v) := sup
p

(−p.v −H(x, p)). (1.10)

Then if we set

L̂(x, p) = DpH(x, p)p−H(x, p), (1.11)

by standard properties of the Legendre transform

L̂(x, p) = L(x,−DpH(x, p)). (1.12)

A 3. For some constants, c, C > 0

L̂(x, p) ≥ cH(x, p)− C. (1.13)

Next we impose conditions on the first and second order derivatives of H.

A 4. H satisfies the following bounds

|DxH|, |D2
xxH| ≤ CH + C, (1.14)

where C > 0.

The next assumption addresses the initial conditions

A 5. The initial conditions satisfy (uT ,m0) ∈ C∞(Ω× [0, T ]) with m0 ≥ κ0 for some κ0 ∈ R+ and

∫
Ω

m0(x)dx = 1. (1.15)
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A 6. H satisfies the sub-quadratic growth conditions;

H(x, p) ≤ C|p|γ + C, (1.16)

|DpH(x, q)| ≤ C|q|γ−1 + C, (1.17)

|div(DpH(x, q))| ≤ C|q|γ−1 + C, (1.18)

for some 1 < γ < 2 and C > 0.

Finally we obtain the following results for a mean-field game model in a bounded domain. We

emphasize the fact that such results are new, although expected; in this sense the next theorems

constitute the main contribution of this work to the mean-field game theory.

Our first result is a representation formula, in the spirit of the Hopf-Lax theory.

Theorem 1.1 (Stochastic Hopf-Lax Formula in bounded domain). Suppose that A1 holds. Let

(u,m) be a solution to (1.1)-(1.3). Then for any solution to
ξt + div(b.ξ) = ∆ξ in Ω× (τ, T ),

ξ(x, τ) = ξτ (x) in Ω,

ξ(x, t) = 0 in ∂Ω× (τ, T ),

and for any smooth vector field b : Ω ⊂ Rd × (τ, T )→ Rd. We have the following inequality:

∫
Ω

u(x, τ)ξτ (x)dx ≤
∫ T

τ

∫
Ω

(L(b, x) + g[m]) ξ(x, t)dxdt+

∫
Ω

uT (x)ξ(x, T )dx

+ ‖h‖Lr(τ,T ),Lp(∂Ω))

(
C + C‖ξτ‖L2(Ω)

)
.

Theorem 1.1 is instrumental in producing a pivotal class of estimates in the realm of MFG

theory; Next we present the so-called First Order Estimates.

Theorem 1.2. Let (u,m) be a solution to (1.1)-(1.3), then, there exists C > 0 such that

c

∫ T

0

∫
Ω

H(x,Du)mdx dt+

∫ T

0

∫
Ω

G(m)dxdt ≤ C + ‖h‖Lr(0,T ;Lp(∂Ω)) + C osc u(·, T )

+ CT + C‖h‖Lp(Ω)

[
1 + ‖Du‖

γ−1
1−α
L(γ−1)jr

]
,

where G′ = g.

Also, we especialize the former results to the case of the wealth and capital accumulation

model described in (1.7)-(1.9). The former theorems become:

Theorem 1.3. Suppose that A1 holds. Let (V,m) be a solution to (1.7)-(1.9). Then for any solution
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to 
ξt + div(b.ξ) = ∆ξ in Ω× (τ, T ),

ξ(x, τ) = ξτ (x) in Ω,

ξ(x, t) = 0 in ∂Ω× (τ, T ),

where b is any smooth vector field b : Ω ⊂ R2 × (t, T )→ R2, we have the following upper bound:

∫ k

0

∫ a

a

V (k, a, τ)ξτ (a, k)dadk ≤
∫ T

τ

∫ k

0

∫ a

a

u(ct)ξ(a, k, t)dadkdt+ ‖VT ‖L∞(Ω) + C

+ C‖f‖Lr(τ,T ;Lp(∂Ω))

Theorem 1.4. Let (V,m) be a solution to (1.7)-(1.9), then, there exists C > 0 such that

c

∫ T

0

∫
Ω

H(a, k,DaV,DkV )mdx dt ≤ C + ‖f‖Lr(0,T ;Lp(∂Ω)) + C osc V (·, T )

+ CT + C‖f‖Lr(0,T ;Lp(Ω))

[
1 + ‖DV ‖

γ−1
1−α
L(γ−1)jr

]
,

The proofs of Theorems 1.1 and 1.2 are presented in Chapter 3. The proofs for Theorems

1.3 and the 1.4 are presented in Chapter 4. In the next chapter we describe an optimal control

problem and associated MFG is obtained through the heuristic derivation. Some estimates for

the Hamilton-Jacobi equation are presented.



Chapter 2

Second order MFG

In this chapter, we produce a heuristic derivation of a (reduced) second order MFG; it consists

of a system of two PDE’s, namely: a Hamilton-Jacobi and a Fokker-Planck equation. Some of the

basic concepts of stochastic calculus necessary to our derivation are put forward in the Appendix

A. For the sake of presentation, we proceed by considering the heuristic derivation in Rd. Suitable

adaptations to our setting are mentioned later (Chapter 3).

2.1 Hamilton-Jacobi equation

Consider a very large group of agents, where each one of them is fully characterized by a

point x ∈ Rd. Each agent can decide to change its state, and this is done by applying a control

v ∈ Rd. However, the agents are subject to independent random forces that are modeled by a

Brownian motion (white noise). This is, briefly speaking, a formal way to describe "unexpected

events". To make matters precise, fix T > 0 and fix a stochastic basis P = (Ω, {Ft}0≤t≤T ,P),

supporting a d-dimensional Brownian motion Bt. Let σ > 0. In this simplified model, the trajectory

of the agent is governed by the stochastic differential equation (SDE): dxt = vtdt+
√
σdBt,

xt0 = x,
(2.1)

where vt is a progressively measurable control with respect to the filtration Ft, or simply Ft-

progressively measurable.

Definition 2.1. A control is progressively measurable with respect to the filtration Ft if we have

that for each 0 ≤ s ≤ t, the map

(s, ω) 7→ v(s, ω)

9
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is measurable with respect to B([t0, t])× Ft.

Consider a Lagrangian L : Rd × Rd × R → R. By selecting the control v in a progressively

measurable way, the agent seeks to maximize a payoff functional given by

J(v,x; t) := Ex

[∫ T

t

L(xs,vs;m(xs, s))ds+ Ψ(xT )

]
, (2.2)

where m represents the population’s density and t ∈ [0, T ]. In (2.2), Ex denotes the expectation

operator, given that xt = x. Furthermore, Ψ : Rd → R is the terminal cost of the system. Observe

that we are supposing that the state of the agent belongs to Rd; if we study the case when Rd is

replaced by a bounded subset Ω ∈ Rd, suitable adaptations, on the payoff functional are required.

These are described in Chapter 3.

The Legendre transform of L is

H(x, p;m) = sup
v∈Rd

(p · v + L(x, v;m)). (2.3)

We are interested in the value function of this problem, denoted by u, which is determined by

u(x, t) := sup
v∈V

J(v,x; t), (2.4)

where V is the class of admissible controls. The function u : Rd × [t0, T ] → R is called the value

function associated with the (stochastic) optimal control problem (2.1)-(2.2). We can start to build

a conection between this optimal control problem and the theory of partial differential equations

with the following result:

Theorem 2.1. If the value function u of the optimal control problem (2.1)-(2.2) is twice differen-

tiable with respect to x and differentiable with respect to t, then it solves ut(x, t) + H(x,Dxu(x, t);m) +
Tr(σTσD2

xu(x,t))
2 = 0 in Rd × [t0, T )

u(x, T ) = Ψ(x) in Rd.
(2.5)

For a proof of this result, see [8]. This result motivates the following question:

“Let w be a solution to (2.5); what conditions should be imposed on w to ensure that it is the

value function of the problem (2.1)-(2.2)?"

We can give an answer to this question in rigorous form by means of a Verification Theorem. Be-

fore we proceed, we introduce the definition of the infinitesimal generator of a stochastic process

and state the Dynikin’s formula. See Appendix A.



2.1. HAMILTON-JACOBI EQUATION 11

Definition 2.2 (Infinitesimal Generator). Let xt be a solution to (2.1), adapted to a fixed stochastic

basis. The infinitesimal generator of the stochastic process xt is the operator A defined by

A(f)(x0, t0) = lim
t↓t0

Ex(t0)=x0(f(xt, t))− f(x0, t0)

t− t0
.

The set of functions f for which the limit above exists and is finite for all x, is called the domain of

A and is denoted by D(A).

Example 2.1 (Itô Diffusion). Consider the following SDE:

dxs = h(xs,vs, s)ds+ σ(xs,vs, s)dBs,

where h and σ satisfy certain growth conditions as in Appendix A for b = h. Assume that v is a

Markovian control; it means that vs is a random variable whose probability does not depends on

the past of the system. Then, (2.1) is called a Markov diffusion. In this case, Av is given by

Avf(x, t) =
∂

∂t
f(x, t) + h · fx(x, t) +

Tr
(
σTσD2

xf(x, t)
)

2
.

This example is a particular case of Theorem A.2; before we state and prove a Verification

Theorem, we present the Dynkin’s formula.

Proposition 2.1 (Dynkin’s formula). Let xs be a Markov diffusion with infinitesimal generator A.

Assume that xt0 = x. If f ∈ D(A), then

E(x,t0)(f(xt, t))− f(x, t0) = E(x,t0)

(∫ t

t0

Af(xs, s)ds

)
, (2.6)

for every t ≥ t0.

For the proof of Dynkin’s formula we suggest [8]. We observe that (2.6) is the stochastic

counterpart of the Mean Value Theorem.

Theorem 2.2 (Verification Theorem). Let w be a solution to (2.5). Assume that w is differentiable

with respect to the time variable and twice differentiable with respect to the space variable. Then,

w ≥ u. In addition, if there exists v∗ such that

v∗ ∈ argmax [Avw(x∗s, s) + L(x∗s,vs;m)] (2.7)

we have w = u.
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Proof. Applying the Dynkin’s formula for w in the point (xT , T ) we have:

E(x,t)(w(xT , T ))− w(x, t) = E(x,t)

(∫ T

t

Avw(xs, s)ds

)
.

i.e.,

− w(x, t) = E(x,t)

(∫ T

t

wt + v ·Dxw +
Tr
(
σTσD2

xw
)

2
ds− w(xT , T )

)
.

Because w is a solution to (2.5), we have that w(xT , T ) = Ψ(xT ); indeed,

− w(x, t) = E(x,t)

[∫ T

t

wt + vDxw +
Tr
(
σTσD2

xw
)

2
+ L(xs, vs;m)− L(xs, vs;m)ds−Ψ(xT )

]

≤ E(x,t)

[∫ T

t

wt +H(x,Dxw;m) +
Tr
(
σTσD2

xw
)

2
− L(xs, vs;m)ds−Ψ(xT )

]
. (2.8)

Using the equation (2.5), we have

w(x, t) ≥ E(x,t)

(∫ T

t

L(xs, vs;m)ds+ Ψ(xT )

)
.

The inequality above is true for all admissible control v ∈ V. In particular, the definition of value

function yields u ≤ w. If we assume (2.7) is in force, i.e., in case there exists an optimal control

v∗, the inequality (2.8) becomes an equality with v∗ and x∗ replacing vs and xs.

By the Verification Theorem we obtain that under certain assumptions on the solution w of

the Hamilton-Jacobi equation (2.5), we have that w is the value function of the optimal control

problem (2.1)-(2.2), and in addition, the optimal control v∗ is given in feedback form by

v∗ = DpH(x,Dxu(x, t);m).

These assumptions require w to be a classical solution to the problem. We observe that much

weaker requirements can be made; for example as in the theory of viscosity solutions, see [8].

2.2 Fokker-Planck equation

In this section, we examine the Fokker-Planck equation. Consider a population of agents

whose state is x ∈ Rd. Assume further that the state of each agent in the population is governed

by the stochastic differential equation in (2.1). Under the assumption of uncorrelated noise, the

evolution of the population’s density is determined by a Fokker-Planck equation. To discuss the
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derivation of this equation, we depend once more on the notion of infinitesimal generator of a

(Markov) process.

Let A be the generator of a Markov process xt. The formal adjoint of A, denoted by A∗, acts

on functions in a suitable regularity class and is determined by the identity

∫
Rd×[0,T ]

φ(x, t)Af(x, t)dx =

∫
Rd×[0,T ]

f(x, t)A∗φ(x, t)dx, (2.9)

for every φ ∈ C∞0 (Rd × [0, T ]).

Example 2.2 (Markov diffusions). The infinitesimal generator of a Markov diffusion is given in

Example (2.1). It has the form

Av[f ](x, t) =
∂

∂t
f(x, t) + h · fx(x, t) +

Tr
(
σTσD2

xf
)

2
.

Therefore, A∗ can be obtained by applying the equation (2.9) as follows:

∫
Rd×[0,T ]

φ(x)Av[f ](x, t)dxdt =

∫
Rd×[0,T ]

f(x, t)A∗φ(x, t)dxdt, (2.10)

for every φ ∈ C∞0 (Rd × [0, T ]). Using the definition of Av we have

∫
Rd×[0,T ]

φ(x, t)

[
∂

∂t
f(x, t) + h · fx(x, t) +

Tr
(
σTσD2

xf
)

2

]
dxdt

=

∫
Rd×[0,T ]

φ(x, t)
∂

∂t
f(x, t)dxdt︸ ︷︷ ︸

I

+

∫
Rd×[0,T ]

φ(x, t)h(x, v, t)f(x, t)dxdt︸ ︷︷ ︸
II

+

∫
Rd×[0,T ]

φ(x, t)

[
Tr
(
σTσD2

xf
)

2

]
dxdt︸ ︷︷ ︸

III

Using integration by parts we obtain:

for I:

∫
Rd×[0,T ]

φ(x, t)
∂

∂t
f(x, t)dxdt = −

∫
Rd×[0,T ]

∂

∂t
φ(x, t)f(x, t)dxdt;

for II:

∫
Rd×[0,T ]

φ(x, t)h(x, v, t)f(x, t)dxdt = −
∫
Rd×[0,T ]

f(x, t) div(φ(x, t)h(x, v, t))dxdt;
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for III:

∫
Rd×[0,T ]

φ(x, t)

[
Tr
(
σTσD2

xf
)

2

]
dxdt =

∫
Rd×[0,T ]

φ(x, t)

[(
(σTσ)i,jf(x, t)

)
xixj

2

]
dxdt

=

∫
Rd×[0,T ]

f(x, t)

(
(σTσ)i,jφ(x, t)

)
xixj

2
dxdt.

Using the results from I, II and III in the equation (2.10), we conclude that

(Av)∗[m](x, t) = − ∂

∂t
m(x, t)− div(h(x, v, t)m(x, t)) +

(
(σTσ)i,jm(x, t)

)
xixj

2
.

A fundamental result, that we can find in [3] for example, states that the evolution of the

population’s density, given an initial configuration m0, is described by the equation: A∗[m](x, t) = 0,

m(x, t0) = m0(x).
(2.11)

Example (2.2) builds upon (2.11) to yield the Fokker-Plank equation

mt(x, t) + div(h(x, v, t)m(x, t)) =

(
(σTσ)i,jm(x, t)

)
xixj

2
. (2.12)

2.3 Second order mean-field games

Here, we combine elements from the two previous sections to derive a model second-order

mean-field game system.

Consider a large population of agents whose state xt ∈ Rd is governed by (2.1). Assume

further that each agent in this population faces the same optimization problem, given by (2.2).

The Verification Theorem 2.2 shows that the solution to the Hamilton-Jacobi equation (2.5) is the

value function. Moreover, the optimal control v∗ is given in feedback form by

v∗ = DpH(x, Dxu(x, t);m).

On the other hand, the agents’ population evolves according to (2.12). By setting h ≡ v, we obtain

mt(x, t) + div(vm(x, t)) =

(
(σTσ)i,jm(x, t)

)
xixj

2
.

Under the assumption of rationality of the agents, the population is driven by the optimal
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control; hence, it evolves according to

mt(x, t) + div(DpH(x, Dxu(x, t);m)m(x, t)) =

(
(σTσ)i,jm(x, t)

)
xixj

2
.

Therefore, the MFG system associated with (2.1)-(2.2) is:

 ut +H(x,Dxu;m) +
TrσTσD2

xu
2 = 0, (x, t) ∈ Rd × [t0, T )

mt + div(DpH(x,Dxu;m)m) =
((σTσ)i,jm)

xixj

2 , (x, t) ∈ Rd × (t0, T ],
(2.13)

equipped with the initial-terminal conditions u(x, T ) = uT (x), x ∈ Rd,

m(x, t0) = m0(x), x ∈ Rd.
(2.14)

2.4 A formula inspired by the adjoint method

Consider a (non-linear) differential operator L : Y → Y and the corresponding homogeneous

equation

L[u](x) = 0. (2.15)

It is possible to associate with (2.15) a linear equation that encodes important information

about the solutions of (2.15). The idea presented in [7] is to construct a new method to improve

the standard viscosity solution approach to Hamilton-Jacobi PDE’s; this is called adjoint method

and consists in examining the solution ξ of the adjoint equation to the formal linearization of the

HJ equation. This procedure leads to a natural phase space kinetic formulation and also a new

compensated compactness technique. Here, inspired by this idea, we calculate the adjoint of the

formal linearization to obtain a representation formula for the solutions of the HJ equation. We

start by considering then the linearized operator L of L, determined by

lim
h→0

L(f + h)− L(f)− L(f)h

h
= 0.

Next, we compute its formal adjoint, in the L2 sense:

∫
Ω

φ(x)L[v](x)dx =

∫
Ω

v(x)L∗[φ](x)dx. (2.16)
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The equation

L∗[ρ](x) = 0

is called the adjoint equation to (2.15), and ρ is called the adjoint variable. In what follows, we

consider specific operators L and produce a few elementary results that illustrate the adjoint

methods. For obvious reasons, we specialize L to be the H-J operator studied so far. Hence

L[u](x, t) := ut +H(x,Du) + ∆u− g[m],

Where Du = Dxu for x ∈ Rd. To obtain the formal linearization of the Hamilton-Jacobi equation,

we produce a linear operator Lu : C∞0 (Ω) → C∞0 (Ω) related, to L(u). We start considering the

following limit

lim
h→0

L(u+ h.v)− L(u)

h
= lim

h→0

1

h
(u+ h.v)t +H(x,D(u+ h.v)) + ∆(u+ h.v)− g[m]

−ut −H(x,Du)−∆u+ g[m]

= lim
h→0

1

h
h.vt +H(x,D(u+ hv)) + h∆v −H(x,Du)

= lim
h→0

h.vt +H(x,D(u+ h.v)) + h.∆v −H(x,Du)

h

= vt + ∆v + lim
h→0

H(x,D(u+ hv))−H(x,Du)

h

= vt + ∆v +DpH(x,Du)Dv.

Now we have the linear operator

Lu[v] = vt + ∆v +DpH(x,Du)Dv,

for every function v in a suitable function space. Then we will obtain the formal adjoint of Lu in

the L2 sense; as we know from functional analysis, L2(Ω× [0, T ]) with the following inner product

is a Hilbert space:

〈f, g〉 :=

∫
Ω×[0,T ]

f.gdxdt =

∫
Ω×[0,T ]

f.gdxdt ,∀f, g ∈ L2(Ω× [0, T ]).

Searching for the adjoint of Lu consists in finding an linear operator L∗u satisfying

〈Lu[v], φ〉 = 〈v, L∗u[φ], 〉 ∀v ∈ L2(Ω× [0, T ]), φ ∈ C∞0 (Ω× [0, T ]).
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Using the definition of the inner product in L2 we have,

∫
Ω×[0,T ]

φLu(v)dxdt =

∫
Ω×[0,T ]

L∗u(φ).vdxdt (2.17)

But if we expand the left-hand side of (2.17) we obtain:

∫
Ω×[0,T ]

φ(vt + ∆v +DpH(x,Du)Dv)dxdt = +

∫
Ω×[0,T ]

φvtdxdt︸ ︷︷ ︸
I

+

∫
Ω×[0,T ]

φ∆vdxdt︸ ︷︷ ︸
II

+

∫
Ω×[0,T ]

φ[DpH(x,Du)Dv]dxdt︸ ︷︷ ︸
III

Using the integration by parts formula we obtain the following expressions:

for I: ∫
Ω×[0,T ]

φvtdxdt = −
∫

Ω×[0,T ]

vφtdxdt;

for II: ∫
Ω

φ∆vdxdt = −
∫

Ω

DφDvdxdt =

∫
Ω×[0,T ]

v∆φdxdt

for III: ∫
Ω×[0,T ]

φDpH(x,Du).Dvdxdt = −
∫

Ω×[0,T ]

v div(φDpH(x,Du))dxdt.

Remark 2.1. Observe that the equation in the item II means that the Laplacian operator is self-

adjoint, i.e. its adjoint in L2 is itself.

It follows that:

∫
Ω×[0,T ]

L∗u[φ]vdxdt = −
∫

Ω×[0,T ]

vφtdxdt+

∫
Ω×[0,T ]

v∆φdxdt−
∫

Ω×[0,T ]

v div(φDpH(x,Du)) =

=

∫
Ω×[0,T ]

v[−φt + ∆φ− div(φDpH(x,Du))]dxdt

So we conclude

L∗u[φ] = −φt + ∆φ− div(φDpH(x,Du)).

Hence

L∗u[ρ] = 0
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is, indeed,

ρt + div(DpH(x,Du)ρ) = ∆ρ. (2.18)

This is the Fokker-Plank equation describing the evolution of a population that solves the optimal

control problem. Together with the HJ equation it gives rise to the MFG-system to be studied in

the next chapter.

Fokker-Planck equation and conservation of mass In the case that we are searching for

solutions to the Fokker-Planck equation in ΩT = Td × [0, T ] where Td is the d-dimensional torus,

we can verify that such solutions have an interesting property, this is the context of the next

proposition:

Proposition 2.2 (Conservation of mass). Let m be a solution to (2.18), then:

∫
Ω

m(x, t)dx = 1 ∀t ∈ [0, T ].

Proof. We have:

d

dt

∫
Ω

m(x, t)dx =

∫
Ω

mt(x, t)dx =

∫
Ω

div(DpHm)dx︸ ︷︷ ︸
I

+

∫
Ω

∆mdx︸ ︷︷ ︸
II

Considering Ω = Td and using the integration by parts formula we obtain:

for I: ∫
Ω

div(DpHm).1dx =

∫
∂Ω

mDpHdS −
∫

Ω

(DpHm)D(1)dx = 0

and for II: ∫
Ω

∆mdx = −
∫

Ω

D(1)Dmdx+

∫
∂Ω

DmνdS = 0.

With these equalities we conclude that the integral of m(x, τ) for any instant τ ≥ 0 is constant,

and moreover, the constant is one, given that m0 is the initial density and

∫
Ω

m0dx = 1

.

Remark 2.2. When we consider Ω arbitrary, the equality in II becomes an inequality because∫
∂Ω
DmνdS ≤ 0. In our problem it means that the population in the system is non-increasing over

time. For more details see [23].
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In the sequel, we equip (2.18) with appropriate initial conditions. This choice is arbitrary and

motivated by the amount of information we can extract. We start by fixing an initial time τ ∈ [t0, T )

and a point x0 in Rd. Then, set

ρ(x, τ) = δx0
(x), (2.19)

where δx0(x) is the Dirac delta centered at x0. The aforementioned choice leads to the next

lemma.

Lemma 2.1 (Representation formula for u). Let u be a solution to (2.5). Assume that ρ solves the

adjoint equation (2.18) with initial condition (2.19). Then

u(x, t) =

∫ T

τ

∫
Rd

(H(x,Du;m)−DpH(x,Du) ·Du)ρdx

+

∫
Rd
uT (x)ρ(x, T )dx+

∫ T

τ

∫
Rdg[m]dxdt.

Proof. Multiply (2.5) by ρ, (2.18) by u, sum them and integrate by parts to obtain

d

dt

∫
Rd
uρdx =

∫ T

τ

∫
Rd

(H(x,Du)−DpH(x,Du) ·Du)ρdx+

∫
Rdg[m]dx.

By integrating with respect to t we get:

u(x0, τ) =

∫ T

τ

∫
Rd

(H(x,Du)−DpH(x,Du) ·Du)ρdx

+

∫
Rd
uT (x)ρ(x, T )dx+

∫ T

τ

∫
Rd
g[m]dxdt.

Since x0 and τ are chosen arbitrarily, the former computation finishes the proof.

Similar ideas yield a representation formula for the directional derivatives of the value function.

Lemma 2.2 (Representation formula for uξ). Let u be a solution to (2.5). Assume that ρ solves

the adjoint equation (2.18) with initial condition (2.19). Fix a direction ξ in Rd. Then

uξ(x, t) =

∫ T

τ

∫
Rd
DξH(x,Du;m)dxdt+

∫
Rd

(uT )ξ(x)ρ(x, T )dx. (2.20)

Proof. Differentiate (2.5) in the ξ direction and multiply it by ρ. Then, multiply (2.18) by uξ, sum

them and integrate by parts to get:

d

dt

∫
Rd
uξ(x, t)ρ(x, t)dx =

∫
Rd
DξH(x,Du)ρ(x, t)dx. (2.21)
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Integrating the former equality with respect to t and noticing that x0 and t are arbitrary, we obtain

the result.

In Lemmas (2.1) and (2.2) we can obtain information about the values of u and uξ in a given

point of the domain.In what follows, we show that under general assumptions on H, we can get

uniform upper bound for the solutions of (2.5).

Corollary 2.1 (Upper bounds for u). Let u be a solution to (2.5). Assume that ρ solves the adjoint

equation (2.18) with initial condition (2.19). Assume further that there exists C > 0 so that

H −DpH · p ≤ −C. (2.22)

Hence,

u(x, t) ≤ ‖uT ‖L∞(Rd) +

∫ T

τ

∫
Rd
g[m]dxdt, (2.23)

for every (x, t) ∈ Rd × [t0, T ].

Proof. It follows from Lemma (2.1), by using (2.22) and taking the supremum in the right-hand

side of the representation formula.

Remark 2.3. The assumption (2.22) seems to be artificial, but it is not. If we study the case the

Hamiltonian is suppose to be quadratic, i.e.,

H(x, p) =
|p|2

2

we have that

H −DpH(x, p) · p =
|p|2

2
− |p|

2

2
= −|p|

2

2
< 0.

We conclude this chapter with a corollary about the Lipschitz regularity of the value function

u. In order to have a better presentation,we assume that DxH is uniformly bounded, i.e., there

exists a constant C > 0 such that

|DxH(x, p)| ≤ C.

Corollary 2.2 (Lipschitz regularity for u). Let u be a solution to (2.5). Assume that ρ solves the

adjoint equation (2.18) with initial condition (2.19). Assume further that tehre exists C > 0 so that

|DxH(x, p)| ≤ C.
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Hence,

Du ∈ L∞(Rd × [t0, T ]).

Proof. Lemma (2.2) yields:

uξ(x, t) =

∫ T

τ

∫
Rd
DxH(x,Du)dxdt+

∫
Rd

(uT )ξ(x)ρ(x, T )dx;

Take absolute values on both sides of the previous equality and use (2.24) to conclude the proof.

Note that these results were obtained under the assumption of solutions defined over Rd ×

[0, T ]. What will be done on the next chapter, is to explore the same structure of the problem, i.e.

a MFG, but with solutions over a different domain, Ω× [0, T ], where Ω is a bounded subset of Rd.



Chapter 3

General model: a second order

mean-field game

In this chapter we prove some estimates for a mean-field game that comes from the heuristic

derivation presented before. In this chapter, however, we work in a bounded domain Ω contained

in the Euclidean space Rd. Here, Ω always represents a bounded subset of Rd , where ∂Ω is of

class C 1.

3.1 The General Model

3.1.1 Hamilton-Jacobi equation for a specific case

Following the ideas presented in the previous chapter, we can obtain a mean-field game from

heuristic derivation associated with an optimal control problem, and more, if we impose some

conditions in this optimal control problem we can obtain a different Hamilton-Jacobi equation.

Having this information in hands,it is natural from a mathematical approach to this problem, to

investigate the relations between the conditions of an optimal control problem and the respectively

hypothesis in the correspondent MFG obtained from a heuristic derivation.

One interesting problem in this sense, trying to obtain a mean-field game in a bounded do-

main, i.e., search for solutions of a MFG (which regularity assumed as smooth as it possible),

whose domain is a bounded subset of Rd. The motivation to investigate this kind of problem

comes from models that better approximates concrete situation in economic models, like the one

presented in Chapter 4. There, the Wealth and Capital accumulation are bounded processes,

and the Fokker-Plank equation, which describes the density of a population, has to vanish at the

boundary to encode the hypothesis of zero-mass in such situation.

22
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To obtain a MFG with these characteristics we describe an optimal control problem, whose

agent’s state is determined by a point x ∈ Ω ⊂ Rd. Where Ω is an bounded subset of Rd. As in

Chapter 2, the trajectory of the agent is governed by the SDE:

dxt = vdt+
√

2dBt

x0 = x ∈ Ω ⊂ Rd,
(3.1)

In this optimal control problem, the agent faces the payoff functional:

J(x,v; t) := Ex

[∫ T∧τ

t

L(xs,vs) + g[m]ds+ Ψ(xT , T )

]
, (3.2)

where the Lagrangian L : Ω ⊂ Rd × Rd × [0, T ]→ R is:

L(x, v;m) := L(x, v) + g[m], ∀x, v ∈ Rd,and m ∈ R. (3.3)

Note that L(x, v) and L(x, v;m) are denoted by the same letter L for simplicity. The formulation

in (3.3) is called additive with respect to the measure m. The terminal payoff of the system is Ψ,

which is given by:

Ψ(xτ , τ) =

 uT (x), if τ ≥ T

h(x, τ), if τ < T.
(3.4)

For any instance τ > 0. Each case in (3.4) reflects a distinct situation; if T ≤ τ the state

remained in the interior of Ω until t = T . In case τ ≤ T , the system has reached the boundary at

instant τ . From heuristic derivation we obtain the Hamilton-Jacobi equation as follows:

−ut +H(x,Du) = ∆u+ g[m] in Ω× [0, T ]

with the following boundary conditions,

u(x, T ) = uT (x) in Ω,

u(x, t) = h(x, t) on ∂Ω× [0, T ],

where h is a function whose regularity is prescribed in the following section.

3.1.2 The associated Fokker-Plank equation

To compose a MFG system, we need to work to obtain a second equation, which one is

able to describe the evolution of the population of agents, to do so, we remark two of them. The
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first one, as we can see in Example (2.2), is to obtain the adjoint operator of the infinitesimal

generator of a Markov diffusion. In a similar way (using adjoint linear operators), we can obtain

the Fokker-Plank equation so that it is derived from Hamilton-Jacobi equation. In what follows

we choose to work in this second approach to obtain the Fokker-Plank equation. Approximating

non-linear structures by linear ones is a very common strategy in Mathematics. One example of

such strategy is to approximate the values of a differentiable function by a linear one, in order to

obtain the infinitesimal small errors. It can be done using the Taylor’s formula, which uses the best

approximation on each point evaluating the derivative of suitable order of the function. In problems

which involving non-linear PDE’s, it is common trying to search for structures of operators in

space functions to better understand the behavior of a solution to these equations. In our case,

the Hamilton-Jacobi is non-linear, and it is obtained as the heuristic derivation of an optimal

control problem. An interesting fact is that we can obtain the Fokker-Plank equation searching

for the formal adjoint of the linearized Hamilton-Jacobi equation. This process is described as

follows: to linearize the Hamilton-Jacobi equation consists in finding a linear operator L(u)[·] or

Lu : C∞0 (Ω)→ C∞0 (Ω) related a non-linear on N(u), defined as:

N(u) := −ut +H(x,Du)−∆u− g[m]. (3.5)

We start considering the following limit

lim
h→0

N(u+ h.v)−N(u)

h
= lim

h→0

1

h
− (u+ h.v)t +H(x,D(u+ h.v))−∆(u+ h.v)− g[m]

+ut −H(x,Du) + ∆u+ g[m] =

= lim
h→0

1

h
− h.vt +H(x,D(u+ hv))− h∆v −H(x,Du) =

= lim
h→0

−h.vt +H(x,D(u+ h.v))− h.∆v −H(x,Du)

h

= −vt −∆v + lim
h→0

H(x,D(u+ hv))−H(x,Du)

h
=

= −vt −∆v +DpH(x,Du)Dv.

Now we have the linear operator

Lu[v] = −vt −∆v +DpH(x,Du)Dv (3.6)

for every fucntion v in a suitable function space. Then we will obtain the formal adjoint of Lu in the

L2 sense; as we know from functional analysis, L2(Ω) with the following inner product is a Hilbert
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space:

〈f, g〉 :=

∫
Ω

f.g =

∫
Ω

f.gdx ,∀f, g ∈ L2(Ω) (3.7)

Searching for the adjoint of Lu consists in finding an linear operator L∗u satisfying

〈Lu[v], φ〉 = 〈vL∗u[φ]〉 ,∀v ∈ L2(Ω), φ ∈ C∞0 (Ω). (3.8)

Using the definition of the inner product in L2 we have,

∫
Ω×[0,T ]

φLu(v)dxdt =

∫
Ω×[0,T ]

L∗u(φ).vdxdt (3.9)

But if we expand the left-hand side of (3.9) we obtain:

∫
Ω×[0,T ]

φ(−vt −∆v +DpH(x,Du)Dv)dxdt = −
∫

Ω×[0,T ]

φvtdxdt︸ ︷︷ ︸
I

−
∫

Ω×[0,T ]

φ∆vdxdt︸ ︷︷ ︸
II

+

∫
Ω×[0,T ]

φ[DpH(x,Du)Dv]dxdt︸ ︷︷ ︸
III

Using the integration by parts formula we obtain the following expressions:

for I:

−
∫

Ω×[0,T ]

φvtdxdt = +

∫
Ω×[0,T ]

vφtdxdt

for II:

−
∫

Ω×[0,T ]

φ∆vdx =

∫
Ω×[0,T ]

DφDvdxdt = −
∫

Ω×[0,T ]

v∆φdxdt

for III: ∫
Ω×[0,T ]

φDpH(x,Du).Dvdxdt = −
∫

Ω×[0,T ]

v div(φDpH(x,Du))dxdt

Remark 3.1. Observe that the equation in the item II means that the Laplacian operator is self-

adjoint, i.e. its adjoint in L2(Ω), 〈, 〉) is itself.

It follows that:

∫
Ω×[0,T ]

L∗u[φ]vdxdt =

∫
Ω×[0,T ]

vφtdxdt−
∫

Ω×[0,T ]

v∆φdxdt−
∫

Ω×[0,T ]

v div(φDpH(x,Du)) =

=

∫
Ω×[0,T ]

v[φt −∆φ− div(φDpH(x,Du))]dxdt
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So we conclude

L∗u[φ] = φt −∆φ− div(φDpH(x,Du))

Hence

L∗u[m] = 0

mt − div(DpH(x,Du)m) = ∆m. (3.10)

is the Fokker-Plank equation describing the evolution of a population that solves the optimal

control problem that, with H-J equation composing a the MFG-system studied in this Chapter.

3.1.3 The Mean-Field Game in a bounded domain

The coupling of those two equations obtained above gives us the MFG problem that is at the

center of our estimates. Observe that the boundary conditions in a bounded domain reflect the

fact that we are trying to establish bounds for the wealth and capital of an agent in a situation

as the stock market. For example, the condition m ≡ 0 encodes that there is no player on the

boundary, that is, the density is null on the boundaries. Another consideration is about the function

h that traduces the behavior of a solution to Hamilton-Jacobi equation on the boundary; h encodes

the cost of reaching the boundary at times τ ≤ T and is supposed be non trivial. The m0 is the

initial distribution of the population, and uT the final payoff for a player. We have

−ut +H(x,Du) = ∆u+ g[m] in Ω× [0, T ]

mt − div(DpHm) = ∆m in Ω× [0, T ] ,

(3.11)

equipped with boundary conditions,

u(x, T ) = uT (x) in Ω,

m(x, 0) = m0(x) in Ω,

(3.12)

and u(x, t) = h(x, t) on ∂Ω× [0, T ]

m(x, t) = 0 on ∂Ω× [0, T ].

(3.13)
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The null mass on the boundary impacts on the conservation of mass In Chapter 1 we

presented a brief discussion about the conservation of mass property of F-P equation on that

case. Here the hypothesis that m ≡ 0 on ∂Ω× [0, T ] has an direct impact on that property as we

can check through the following inequality:

d

dt

∫
Ω

m(x, t)dx =

∫
Ω

div(DpH(x,Du)m)dx+

∫
Ω

div(Dm)dx

=

∫
∂Ω

Dm · ν dS ≤ 0

This inequality occurs because we are assuming that an agent has only two possible states in

the final instant: Remained in the game (in the domain) or not. With this we can conclude that the

population is non-increasing over time.

3.2 Hopf-Lax estimate

In the sequel, we explore some estimates for the MFG; although well known, these estimates

hold a substantial degree of originality, since the domains treated here are bounded and the

boundary conditions are not periodic (as in the majority of papers in the literature). We begin with

a concept of solution to the MFG (3.11).

Definition 3.1. We say that a pair of functions (u,m) ∈ C∞(Ω × [0, T ]) is a solution to the MFG

(3.11) if u satisfies the Hamilton-Jacobi equation and m satisfies the Fokker-Plank equation in

(3.11) with conditions (3.12)-(3.13) both in the classical sense.

Remark 3.2. Note that we are supposing the best regularity possible, because existence of such

solutions are not the objective in this work, the main question is; "If such solution exists, what

kind of a priori information can be obtained from the problem". Answering this kind of question, is

important to justify the study of existence and uniqueness of solutions.

Theorem 3.1 (Hopf-Lax Formula). Suppose that A1 holds. Let (u,m) be a solution to (3.11).

Then for any solution to 
ξt + div(b.ξ) = ∆ξ in Ω× (τ, T ),

ξ(x, τ) = ξτ (x) in Ω,

ξ(x, t) = 0 in ∂Ω× (τ, T ),

(3.14)
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and for any smooth vector field b : Ω ⊂ Rd × (t, T )→ Rd, we have the following upper bound:

∫
Ω

u(x, τ)ξτ (x)dx ≤
∫ T

τ

∫
Ω

(L(b, x) + g[m]) ξ(x, t)dxdt+

∫
Ω

uT (x)ξ(x, T )dx

+ ‖h‖Lr(τ,T ;Lp(∂Ω))

(
C + C‖ξτ‖L2(Ω)

)
(3.15)

To prove the Theorem 3.1, we will need some previous results that are organized as lemmas

and propositions in what follows.

Lemma 3.1. Let (u,m) be a solution to (3.11), and ξ a solution to (3.14), we have the following

upper bound:

∫ T

τ

∫
∂Ω

uDξ νdSdt ≤ ‖h‖Lr(τ,T ;Lp(∂Ω)) ‖Dξ‖Ls(τ,T ;Lq(∂Ω)), (3.16)

where
1

p
+

1

q
= 1 and

1

r
+

1

s
= 1 (3.17)

Proof. Applying the Hölder’s inequality and the definitions of norm in Lp and in anisotropic

Lebesgue spaces we have:

∫ T

τ

∫
∂Ω

uDξ νdxdt ≤
∫ T

τ

∫
∂Ω

|uDξ| |ν|dSdt

≤
∫ T

τ

[
‖u‖Lp(∂Ω) ‖Dξ‖Lq(∂Ω)

]
dt

≤ ‖h‖Lr(τ,T ;Lp(∂Ω)) ‖Dξ‖Ls(τ,T ;Lq(∂Ω)), (3.18)

where
1

p
+

1

q
= 1 and

1

r
+

1

s
= 1

Proposition 3.1. Suppose that A1 holds. Let (u,m) a solution to (3.11). Then, for any smooth

vector field b : Ω ⊂ Rd × (t, T ) → Rd, and any solution (3.14) on this conditions, we have the

following upper bound:

∫
Ω

u(x, τ)ξτ (x)dx ≤
∫ T

τ

∫
Ω

(L(b, x) + g[m]) ξ(x, t)dxdt

∫
Ω

uT (x)ξ(x, T )dx

+ ‖h‖Lr(τ,T ;Lp(∂Ω)) ‖Dξ‖Ls(τ,T ;Lq(∂Ω))

where
1

p
+

1

q
= 1 and

1

r
+

1

s
= 1

Since that ξT ≥ 0 and
∫

Ω
ξT (x)dx = 1.
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Proof. Multiplying the first equation in (3.14) by −u and the first equation in (3.11) by ξ we obtain:

−ξut + ξH(x,Du) = ξ∆u+ ξg[m],

−uξt − u div(b.ξ) = −u∆ξ.

Adding these equations we obtain:

−ξut − uξt + ξH(x,Du)− u div(b.ξ) = ξ∆u− u∆ξ + ξg[m], i.e.,

− d

dt
(ξu) + ξH(x,Du)− u div(b.ξ) = ξ∆u− u∆ξ + ξg[m].

Integrating with respect to the Lebesgue measure in Ω we have

− d

dt

∫
Ω

(ξu)dx = −
∫

Ω

[ξH(x,Du)− u div(b.ξ)] dx︸ ︷︷ ︸
C

+

∫
Ω

ξ∆udx︸ ︷︷ ︸
A

−
∫

Ω

u∆ξdx︸ ︷︷ ︸
B

+

∫
Ω

ξg[m]dx (3.19)

Now, let us evaluate A and B using integration by parts in A we obtain:

∫
Ω

ξ∆udx =

∫
Ω

ξ div(Du)dx = −
∫

Ω

DξDudx

= −
∫

Ω

DξDudx.

The integral vanishes at the boundary because of the conditions prescribed in (3.14). Proceeding

in the same way with B we have:

−
∫

Ω

u∆ξdx = −
∫

Ω

udiv(Dξ)dx =

∫
Ω

DuDξdx−
∫
∂Ω

uDξνdS

Then A+ B = −
∫
∂Ω
uDξνdS. Applying the same techniques we obtain a simplification of the term C:

∫
Ω

[ξH(x,Du)− u div(b.ξ)] dx =

∫
Ω

(H(x,Du) +Du.b) ξdx.

So, with this simplifications for A, B and C, (3.19) becomes:

− d

dt

∫
Ω

(ξu)dx = −
∫

Ω

(H +Du.b) ξdx−
∫
∂Ω

uDξνdS +

∫
Ω

ξg[m]dx
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By definition of L(b, x) = sup
p

(−pb−H(x, p)) we have:

− d

dt

∫
Ω

(ξ(x, t)u(x, t))dx ≤
∫

Ω

(L(b, x) + g[m]) ξ(x, t)dx−
∫
∂Ω

u(x, t)Dξ(x, t) νdS +

∫
Ω

ξg[m]dx.

Integrating with respect to the Lebesgue measure in (τ, T ) :

∫
Ω

u(x, τ)ξ(x, τ)dx ≤
∫ T

τ

∫
Ω

(L(b, x) + g[m]) ξ(x, t)dxdt

−
∫ T

τ

∫
∂Ω

u(x, t) Dξ(x, t) νdxdt+

∫
Ω

u(x, T )ξ(x, T )dx. (3.20)

We will now proceed to find an upper bound for the boundary term that appears on the right-hand

side of inequality (3.20). It can be done using Lemma 3.1. Rewriting the inequality (3.20) with the

result in Lemma 3.1 we obtain

∫
Ω

u(x, τ)ξτ (x)dx ≤
∫ T

τ

∫
Ω

(L(b, x) + g[m]) ξ(x, t)dxdt+

∫
Ω

uT (x)ξ(x, T )dx

+ ‖u‖Lr(τ,T ;Lp(∂Ω)) ‖Dξ‖Ls(τ,T ;Lq(∂Ω))

≤
∫ T

τ

∫
Ω

(L(b, x) + g[m]) ξ(x, t)dxdt+

∫
Ω

uT (x)ξ(x, T )dx

+ ‖h‖Lr(τ,T );Lp(∂Ω) ‖Dξ‖Ls(τ,T );Lq(∂Ω)

≤
∫ T

τ

∫
Ω

(L(b, x) + g[m]) ξ(x, t)dxdt

∫
Ω

uT (x)ξ(x, T )dx

+ ‖h‖Lr(τ,T ;Lp(∂Ω)) ‖Dξ‖Ls(τ,T ;Lq(∂Ω)) (3.21)

where
1

p
+

1

q
= 1 and

1

r
+

1

s
= 1 (3.22)

and we have used that ξT ≥ 0 and
∫

Ω
ξT (x)dx = 1. In the path to prove the Theorem 3.1,

we need to work on an estimate for the term ‖Dξ‖Ls(τ,T );Lq(∂Ω). This is the subject of the next

Section.

3.2.1 Estimates and Results Needed

We state some well-know results in Lemmas 3.2, 3.3 and 3.4, whose proofs can be found in :

[15] (Appendix D), [21] and [6] ( Theorem 1,p.275 ) respectively.

Proposition 3.2. Let ξ ∈ C∞([0, τ ]×Ω) be a solution to (3.14). If f = div(b·ξ), ξτ ∈ L2([0, T ]×Ω),
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then exists a C > 0 such that:

‖ξ(·, t)‖L2(Ω) ≤ C‖ξτ‖2L2(Ω).

Proof. Let ξ as in the Propositon’s statement, using the chain rule, integration by parts formula,

and the Cauchy’s inequality wiht ε we can evaluate the following:

d

dt

∫
Ω

ξ2

2
dx =

∫
Ω

2ξ ξt
2

dx =

∫
Ω

ξ(∆ξ − div(b · ξ))dx =

∫
Ω

ξ(x, t) ∆ξ(x, t)−
∫

Ω

ξ(x, t) div(b · ξ)dx =

= −
∫

Ω

Dξ.Dξdx+

∫
Ω

Dξ(x, t) · b.ξdx

≤ −
∫

Ω

|Dξ|2dx+
ε

2

∫
ξ2(x)dx+

1

2

∫
Ω

b2ξ2(x, t)dx

≤ −1

2

∫
|Dξ|2(x)dx+

1

2

∫
Ω

b2ξ2(x, t)dx.

So we conclude:

d

dt

∫
Ω

ξ2(x, t)

2
≤ 1

2

∫
Ω

|Dξ|2dx+
1

2

∫
Ω

b2(x, t)ξ2(x, t)dx

i.e,

d

dt

∫
Ω

ξ2(x, t) ≤ −
∫

Ω

|Dξ|2 + |b2(x, t)|
∫

Ω

ξ2dx.

Integrating in (τ, t) we have:

∫ t

τ

∫
Ω

ξ2(x, s)dxds ≤
∫

Ω

ξ2
τ (x)dx+ sup

x∈Ω
|b|2

∫ t

τ

∫
Ω

ξ2(x, s)ds.

Applying the Gronwall’s Inequality, we obtain

‖ξ(·, t)‖2L2(Ω) ≤ ‖ξτ‖2L2(Ω) exp t sup
x∈Ω
|b|2

≤ C‖ξτ‖2L2(Ω).

Lemma 3.2. Let v be a solution to (3.14), for every integer s such that 1 < s < ∞ we have the

following upper bounds:

‖vt‖La(Ω) + ‖D2v‖La(Ω) ≤ C‖ div(b.ξ)‖La(Ω)

for a ∈ (1,∞).

Lemma 3.3 (Gagliardo-Nirenberg interpolation Inequality). Let u : Ω → R lying in Lq(Rn) with
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mth derivative in Lr(Rn) also having jth derivative in Lp(Rn) be defined on a bounded Lipschitz

domain Ω ⊂ Rd, then

‖Dju‖Lp(Ω) ≤ C1‖Dmu‖αLr(Ω)‖u‖
1−α
Lq(Ω) + C2‖u‖Ls(Ω),

where s > 0 is arbitrary, and

1

p
=

j

d
+ α

(
1

r
− m

d

)
+

1− α
q

, (3.23)

with j
m ≤ α ≤ 1. Naturally the constants C1 and C2 depends upon the domain Ω as the parame-

ters.

Lemma 3.4 (The Poincaré-Wirtinger inequality). Let Ω be a bounded, connected, open subset

of Rd, with a C 1 boundary ∂Ω. Assume 1 ≤ p ≤ ∞. Then there exist constants C1 and C2,

depending on d, p and Ω, such that:

‖u‖Lp(Ω) ≤ C1‖Du‖Lp(Ω) + C2.

for each function u ∈W 1,p(Ω). More specifically, the constant C2 is the average of u over Ω. Then,

if u ∈ L1(Ω).

Lemma 3.5. Let ξ be a solution to (3.14), then we have the following inequality:

‖D2ξ‖Lr(Ω) ≤ Cb + Cb‖Dξ‖Lr(Ω)

Proof. Follows from a immediate application of Lemma (3.2) as we can see:

‖D2ξ‖Lr(Ω) ≤ ‖div(b.ξ)‖Lr(Ω)

≤ ‖div(b.ξ)‖Ls(Ω) + ‖b ·Dξ‖Lr(Ω)

≤ Cb + Cb‖Dξ‖Lr(Ω)

Lemma 3.6. Let ξ be a solution to (3.14), then exists a constant C depending upon b and ξτ such

that:

‖Dξ‖Lp(Ω) ≤ C + C‖ξτ‖L2(Ω).
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where

1

p
=

1

d
+ α

(
1

r
− m

d

)
+

1− α
q

(3.24)

with

1

2
≤ α ≤ 1.

Proof. Applying Gagliardo-Nirenberg interpolation inequality, (Lemma 3.3) and Proposition 3.2

we obtain that

‖Dξ‖Lp(Ω) ≤ C1‖D2ξ‖1−αLr(Ω)‖ξ‖
α
Lq(Ω) + C2‖ξ‖L2(Ω)

for

1

p
=

1

d
+ α

(
1

r
− 2

d

)
+

1− α
q

where α ∈
[

1

2
, 1

]
, 1 ≤ q ≤ 2,and s > 0.

‖Dξ‖Lp(Ω) ≤ C1‖D2ξ‖1−αLr(Ω)‖ξτ‖
α
L2(Ω) + ‖ξτ‖L2(Ω)

≤ C‖Dξ‖1−αLr(Ω)‖ξτ‖
α
L2(Ω) + ‖ξτ‖L2(Ω),

as r ≤ p we have that

‖Dξ‖Lp(Ω) ≤ C + C‖ξτ‖L2(Ω).

Lemma 3.7. Let ξ be a solution to (3.14), then we have the following upper bound for Dξ in Lp

norm on the boundary of Ω.

‖Dξ‖Lp(∂Ω) ≤ C + C‖Dξ‖Lr(Ω).
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Proof. By the Lemmas 3.5, and 3.6, and applying the Theorem C.4

‖Dξ‖Lp(∂Ω) ≤ C‖Dξ‖W 1,p(Ω) = C

∑
|α|≤1

∫
Ω

| Dα(Dξ) |p
 1

p

≤ ‖Dξ‖Lp(Ω) + ‖D2ξ‖Lp(Ω)

≤ C + C‖ξτ‖L2(Ω) + Cb + Cb‖Dξ‖Lp(Ω)

≤ C + C‖ξτ‖L2(Ω)

We Conclude this section by gathering the former computation in order to proof of Theorem 3.1.

Proof of Theorem 3.1: Applying the Lemma 3.7, in the inequality (3.21) we obtain that

∫
Ω

u(x, τ)ξτ (x)dx ≤
∫ T

τ

∫
Ω

(L(b, x) + g[m]) ξ(x, t)dxdt+

∫
Ω

uT (x)ξ(x, T )dx

+ ‖h‖Lr(τ,T ),Lp(∂Ω))

(
C + C‖ξτ‖L2(Ω)

)
(3.25)

which establishes the result.

3.3 First Order Estimate

Next we apply the Hopf-Lax estimate to produce a cornerstone of the regularity theory for

MFG problems. That is the so-called First Order Estimate. We begin by defining the oscillation of

a given function f as follows:

osc f := sup f − inf f.

Theorem 3.2. Let (u,m) be a solution to (3.11), then, there exists C > 0 such that

c

∫ T

0

∫
Ω

H(x,Du)mdx dt+

∫ T

0

∫
Ω

G(m)dxdt ≤ C + ‖h‖Lr(0,T ;Lp(∂Ω)) + C osc u(·, T )

+ CT + C‖h‖Lp(Ω)

[
1 + ‖Du‖

γ−1
1−α
L(γ−1)jr

]
,

where G′ = g.

The proof of Theorem 3.2 is presented next.

Proposition 3.3. Let (u,m) be a solution to (3.11), if we assume that b ≡ 0 on (3.14), then we

have the following upper bound
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C

∫ T

0

∫
Ω

H(x,Dxu)mdxdt ≤ CT −
∫ T

0

∫
∂Ω

uDmν dSdt+

∫ T

0

∫
Ω

g[m](x, t)(µ(x, t)−m(x, t))dxdt

+

∫
Ω

u(x, T )(µ(x, t)−m(x, T ))dx+ C‖h‖Lr(τ,T );Lp(Ω) + C. (3.26)

Proof. We multiply the first equation in (3.11) by m and the second equation by −u. Then sum

then integrate by parts to obtain

− d

dt

∫
Ω

umdx +

∫
Ω

mH(x,Du)dx+

∫
Ω

udiv(DpH(x,Du).m)dx =

=

∫
Ω

m∆udx︸ ︷︷ ︸
A

−
∫

Ω

u∆mdx︸ ︷︷ ︸
B

+

∫
Ω

mg[m]dx

Applying the integration by parts formula in A we obtain:

∫
Ω

m∆udx =

∫
Ω

m div(Du)dx = −
∫

Ω

Dm ·Dudx

and for B we obtain:

−
∫

Ω

u∆mdx = −
∫

Ω

udiv(Dm)dx =

∫
Ω

Dm ·Dudx−
∫
∂Ω

uDm · ν dS

Then A+B = −
∫
∂Ω
uDm · ν dS. Hence,

− d

dt

∫
Ω

umdx +

∫
Ω

(H(x,Du)−Dxu ·DpH)mdx =

= −
∫
∂Ω

uDm · ν dS +

∫
Ω

mg[m]dx

Integrating in [0, T ]

−
∫

Ω

uT (x)mT (x)dx +

∫ T

0

∫
Ω

(H(x,Du)−Du ·DpH)mdxds =

= −
∫ T

0

∫
∂Ω

uDm · νdSdt+

∫ T

0

∫
Ω

mg[m]dxdt

−
∫

Ω

u(x, 0)m0(x)dx (3.27)

If L̂(x, p) = DpH(x, p) · p−H(x, p),

L̂(x, p) = L(x,−DpH(x, p)) = sup
p

(p ·DpH(x, p)−H(x, p))

L̂(x, p) = Dxu ·DpH(x, p)−H(x, p).
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Multiplying (3.27) by (−1), using the definition of L̂ and the assumption A3 the Hamiltonian H we

obtain:

∫ T

0

∫
Ω

(CH(x,Dxu)− C)mdxdt ≤ −
∫ T

0

∫
∂Ω

uDmν dSdt−
∫ T

0

∫
Ω

mg[m]dxdt

+

∫
Ω

u(x, 0)m(x, 0)− u(x, T )m(x, T )dx

Integrating the constants, and observing the conservation of mass property from m we obtain

∫ T

0

∫
Ω

H(x,Dxu)mdxdt ≤ −
∫ T

0

∫
∂Ω

uDmν dSdt−
∫ T

0

∫
Ω

mg[m]dxdt

+

∫
Ω

u(x, 0)m(x, 0)− u(x, T )m(x, T )dx+ CT (3.28)

If we put b ≡ 0 in (3.14), we will have a solution to the heat equation denoted by µ(x, 0) =

m(x, 0) = m0. Using the Lax-Hopf formula in this case and applying on(3.28) we obtain

C

∫ T

0

∫
Ω

H(x,Dxu)mdxdt ≤ CT −
∫ T

0

∫
∂Ω

uDmν dSdt+

∫ T

0

∫
Ω

g[m](x, t)(µ(x, t)−m(x, t))dxdt

+

∫
Ω

u(x, T )(µ(x, t)−m(x, T ))dx+ C‖h‖Lr(0,T ;Lp(Ω)) + C

3.3.1 Integral estimates on the boundary

The following steps will be in the direction of finding an upper bound for the following term.

∫ T

0

∫
∂Ω

uDmν dSdt (3.29)

We rewrite the Fokker-Plank equation as follows,

mt −∆m = div(DpHm),

where

DpHm = [mDp1H(x, p), . . . ,mDpdH(x, p)]

and

D(DpHm) =


(Dp1Hm)x1 . . . (Dp1Hm)xd

... . . .
...

(DpdHm)x1
. . . (DpdHm)xd

 .
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So

TrD(DpHm) =

d∑
i=1

DpiHxim+DpiHmxi = m div(DpH) +DpHDm.

Now we can rewrite the Fokker-Plank equation as

mt −∆m = m div(DpH) +DpHDm. (3.30)

In equation (3.30) we have to find an upper bound to

‖m div(DpH) +DpHDm‖Lj(Ω),

for some 1 ≤ j ≤ ∞. For it we will assume the hypothesis A1 and A6 for the Hamiltonian H.

Lemma 3.8. Let (u,m) be a solution to(3.30), and assume that the Hamiltonian H satisfies A1

and A6. Then there exists C > 0 so that

‖ div(DpH)m+DpH ·Dm‖jLj(Ω) ≤ C
(

1 + ‖Dm‖jLsj(Ω)

)(
1 + ‖Du‖(γ−1)j

Lr(γ−1)j(Ω)

)
.

for 1 < γ < 2.

Proof. Using Minkonsky’s inequality:

‖div(DpH)m+DpH ·Dm‖jLj(Ω) ≤ C

‖ div(DpH)m‖jLj(Ω)︸ ︷︷ ︸
I

+ ‖DpH ·Dm‖jLj(Ω)︸ ︷︷ ︸
II

 (3.31)

for II:

‖DpH ·Dm‖jLj(Ω =

∫
Ω

|DpH|j .|Dm|jdx ≤
∫

Ω

|(C + C|Du|γ−1)|j |Dm|j

≤
∫

Ω

C|Dm|jdx+

∫
Ω

C|Du|(γ−1)j |Dm|jdx

≤ C

∫
Ω

|Dm|jdx+ C‖|Du|(γ−1)j‖Lr(Ω)‖|Dm|j‖Ls(Ω)

≤ C‖Dm‖jLj(Ω) + C‖Du‖(γ−1)j

L(γ−1)jr(Ω)
‖Dm‖jLjs(Ω)
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where r−1 + s−1 = 1. On the other hand, for I:

‖ div (DpH)m‖jLj(Ω) =

∫
Ω

|div(DpH)|j |m|jdx ≤
∫

Ω

|
(
C + C|Du|j

)(γ−1) ||m|jdx

≤
∫

Ω

C|m|jdx+

∫
Ω

C|Du|j(γ−1)|m|jdx

≤ C‖m‖jLj(Ω) + C‖|Du|(γ−1)j‖Lr(Ω)‖|m|j‖Ls(Ω)

≤ C‖m‖jLj(Ω) + C‖Du‖(γ−1)j

Lr(γ−1)j(Ω)
‖m‖jLsj(Ω)

≤ C‖m‖jLsj(Ω)(1 + C‖Du‖(γ−1)j

Lr(γ−1)j(Ω)
)

Then, combining the upper bounds for I and II in (3.31), and using Poincaré-Winteger inequality

as in Lemma 3.4 for ‖m‖jLjs(Ω) we have:

‖ div(DpH)m+DpH ·Dm‖jLj(Ω) ≤ C‖m‖jLsj(Ω)

(
1 + C‖Du‖(γ−1)j

Lr(γ−1)j(Ω)

)
+C‖Dm‖jLjs(Ω)

(
1 + C‖Du‖(γ−1)j

Lr(γ−1)j(Ω)

)
≤ C

(
1 + C‖Du‖(γ−1)j

Lr(γ−1)j(Ω)

)
+

+C‖Dm‖jLsj(Ω)

(
1 + C‖Du‖(γ−1)j

Lr(γ−1)j(Ω)

)
≤ C

(
1 + ‖Dm‖jLsj(Ω)

)(
1 + ‖Du‖(γ−1)j

Lr(γ−1)j(Ω)

)
.

Lemma 3.9. Let (u,m) be a solution to (3.11); H satisfying A1- A1, A4 and A6, we have the

following upper bound for the gradient of m:

‖Dm‖Lp(Ω) ≤ C + C‖Du‖
(γ−1)α
(1−α)

L(γ−1)jr(Ω)
,

where q = 1, js < p and
1

p
=

1

d
+ α

(
1

j
− 2

d

)
+

(1− α)

q
,

for α ∈
(

1
2 , 1
)
. And constants C > 0.

Proof. Applying the Lemma 3.2, (the estimate for ‖D2m‖Lp(Ω)) and the result obtained in Lemma 3.8

we have:

‖D2m‖Lj(γ−1)(Ω) ≤ C
(
1 + ‖Dm‖Lsj(Ω)

) (
1 + ‖Du‖(γ−1)j

Lr(γ−1)j(Ω)

)
. (3.32)

Now, to estimate ‖Dm‖Lp(Ω) we proceed by applying Gagliardo-Nierenberg (Lemma 3.3), the



3.3. FIRST ORDER ESTIMATE 39

inequality (3.32) and Hölder’s Inequality as follows:

‖Dm‖Lp(Ω) ≤ C1‖D2m‖αLj(Ω)‖m‖
1−α
Lq(Ω) + C2‖m‖Lq̃(Ω)

≤ C1

(
1 + ‖Dm‖Lsj(Ω)

)α (
1 + ‖Du‖(γ−1)j

Lr(γ−1)(Ω)

)α
‖m‖1−αLq(Ω) + C2‖m‖Lq̃(Ω),

where q = 1, s < 1 and q̃ = 1. As m is a probability measure we have

‖Dm‖Lp(Ω) ≤ C1

(
1 + ‖Dm‖Lsj(Ω)

)α (
1 + ‖Du‖(γ−1)

Lr(γ−1)j(Ω)

)α
‖m‖1−α

Lq̃(Ω)
+ C2

≤ C1 + C1‖Du‖(γ−1)α

Lr(γ−1)j(Ω)
+ C‖Du‖(γ−1)α

Lr(γ−1)j(Ω)
‖Dm‖αLsj(Ω)︸ ︷︷ ︸

A

Applying Young with ε on A we obtain:

C‖Du‖(γ−1)α

Lr(γ−1)j(Ω)
‖Dm‖αLsj(Ω) ≤ C‖Du‖

(γ−1)α
1−α

Lr(γ−1)j(Ω)
+ Cε‖Dm‖Lsj(Ω).

As Ω is bounded and we are supposing sj < p we have that.

(1− εC)‖Dm‖Lp(Ω) ≤ C1 + +C‖Du‖
(γ−1)α
1−α

L(γ−1)jr(Ω)

Here we are using p = j, q = 1, js < p and

1

p
=

1

d
+ α

(
1

j
− 2

d

)
+

(1− α)

q

Then we have that:

‖Dm‖Lp(Ω) ≤ C(ε) + ‖Du‖
(γ−1)α
(1−α)

L(γ−1)jr(Ω)

With C(ε) = C +
(

ε
1−α

)α−1
α

α.

Lemma 3.10. Let m be a solution to (3.30), then we have that

‖Dm‖Lq(∂Ω) ≤ C

[
1 + ‖Du‖

(γ−1)
1−α
L(γ−1)jr(Ω)

]

Proof. Now we use the Trace Theorem C.4, and the inequality (3.32) and Lemma 3.9 to evaluate

the therm

‖Dm‖Lq(∂Ω).
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We have,

‖Dm‖Lj(∂Ω) ≤ C‖Dm‖W 1,j(Ω) ≤
(∫

Ω

‖Dm‖j
) 1
j

+

(∫
Ω

‖D2m‖j
) 1
j

≤ ‖Dm‖Lj(Ω) + ‖D2m‖Lj(Ω)

≤ ‖Dm‖Lj(Ω) + C
(
1 + ‖Dm‖Lsj(Ω)

) (
1 + ‖Du‖(γ−1)j

Lr(γ−1)j(Ω)

)
.

if q ≥ sj, Then:

‖Dm‖Lq(∂Ω) ≤ ‖Dm‖Lsj(Ω)

[
1 + C

(
1 + ‖Du‖(γ−1)

L(γ−1)jr(Ω)

)]
+ C

(
1 + ‖Du‖(γ−1)

L(γ−1)jr(Ω)

)
≤

[
C̃1 + C̃2‖Du‖

(γ−1)α
1−α

L(γ−1)jr(Ω)

] [
1 + C

(
1 + ‖Du‖(γ−1)

L(γ−1)jr(Ω)

)]
+C

(
1 + ‖Du‖(γ−1)

L(γ−1)jr(Ω)

)
≤ 1 + C̃2C

(
1 + ‖Du‖(γ−1)

L(γ−1)jr(Ω)

)
+ C̃2‖Du‖

(γ−1)α
1−α

L(γ−1)jr(Ω)
+

+C
(

1 + ‖Du‖(γ−1)

L(γ−1)jr(Ω)

)
(3.33)

We can apply The Young with epsilon inequality (B.3) to obtain that:

‖Dm‖Lq(∂Ω) ≤ C

[
1 + ‖Du‖

(γ−1)
1−α
L(γ−1)jr(Ω)

]

Lemma 3.11. Let (u,m) be a solution to (3.11), then we have the following upper bound

∫
∂Ω

uDmν dS ≤ ‖h‖Lp(∂Ω)‖Dm‖Lq(∂Ω)

with p−1 + q−1 = 1.

Proof. The proof follows direct from aplication of Hölder’s inequality to the therm on the left-hand

side (3.29) and the function h on the boundary of Ω× [0, T ] as in (3.11).

∫
∂Ω

uDmν dS ≤
∫
∂Ω

|u|‖Dm‖dS ≤ ‖u‖Lp(∂Ω)‖Dm‖Lq(∂Ω)

≤ ‖h‖Lp(∂Ω)‖Dm‖Lq(∂Ω)

with p−1 + q−1 = 1.

Proof of Theorem 3.2 : Using Lemma 3.10, in (3.11), and after using this estimate obtained in

inequality (3.26) from Proposition 3.3 and integrating the therms, unsing A2 we obtain the result.



Chapter 4

A Model of wealth and capital

accumulation

In this chapter, we present a model that describes the wealth and capital accumulation de-

noted by at and kt, respectively. Such phenomena involves other variables like consumption,

investment, interest rate etc. The accumulation of wealth and capital of a single agent will be

described by an SDE; the stochastic term in this SDE represents the unexpected events in the

economy dynamics, whereas constants σa and σk represent the volatility of wealth and capital. In

[10], this kind of problem is presented in a different domain.

Description of the optimal control problem The state of the model, x = [at,kt] ∈ R2, com-

prises the wealth at and the stock of capital kt, over time. These evolve according to the following

SDE:

dxt = b(x, z)dt+
√

2σdBt, (4.1)

where b : Ω × R5 → R2 is a smooth vector field to be detailed later, z represents a number of

variables of interest, x ∈ R2, and Bt is a two-dimensional Brownian motion. The matrix
√

2σ is

given by
√

2σ :=

 √2σa 0

0
√

2σk



41
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We notice that (4.1) is a vectorial equation composed of two unidimensional stochastic differential

equations. These are

dat = (−ct − it + rat + ρkt)dt+
√

2σa dB
a
t ,

dkt = (−it − δkt)dt+
√

2σk dB
k
t ,

(4.2)

where,

1. it and ct are respectively the investment and the consumption of the agent over time,

2. δ ∈ (0, 1) is a constant that measures the depreciation of the capital,

3. r is a fixed interest rate,

4. σa is the volatility of wealth,

5. σk is the volatility of the capital.

Agent’s preferences are represented by an instantaneous utility function u. Its intertemporal coun-

terpart is the following utility functional:

J(c, i, a, k, t) := Ex

[∫ t∧T

0

u(cs)ds+ Ψ(xT , T )χ{T<τ} + f(xτ , τ)χ{τ<T}

]
. (4.3)

Then,

V (a, k, t) = sup
c,i

J(c, i, a, k, t).

is value function of the state-constrained problem described by (4.2)-(4.3). Define the Hamiltonian

as

H(a, k, r, p, δ, qa, qk) = sup
c,i

((−c− i+ ra+ ρk)qa + (i− δk)qk + u(c)) .

Then, after a change of variables, we know that a (viscosity) solution to

Vt(a, k, t) +H(a, k, r, p, δ, Va, Vk) + ∆V = 0, (4.4)

Also, the feedback optimal control is given by

DqaH(a, k, r, ρ, δ, Va(a, k, t), Vk(a, k, t)) = −c∗(a, k, t)− i∗(a, k, t) + ρk

DqkH(a, k, r, ρ, δ, Va(a, k, t), Vk(a, k, t)) = i∗(a, k, t)− δk.
(4.5)

Using the adjoint of the formal linearized Hamilton-Jacobi equation we obtain the associated

Fokker-Planck equation, describing the evolution of the population density, given an initial config-
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uration m0. This is given by:

mt + ((−c− i+ ra+ ρk)m)a + ((i− δk)m)k = ∆m. (4.6)

The coupling of (4.4) and (4.6) yields the following MFG:

Vt(a, k, t) +H(a, k, r, p, δ, Va, Vk) + ∆V = 0

mt + ((DqaH)m)a + ((DqkH)m)k = ∆m,

(4.7)

in Ω× [0, T ] = (a, a)× (0, k)× [0, T ], with initial-terminal boundary conditions:

V (a, k, T ) = VT (a, k) in Ω

m(a, k, 0) = m0(a, k) in Ω,

(4.8)

and V (a, k, t) = f(a, k, t) on ∂Ω× [0, T ]

m(a, k, t) = 0 on ∂Ω× [0, T ].

(4.9)

Theorem 4.1. Suppose that A1 holds. Let (V,m) be a solution to (4.7)-(4.9). Then for any solution

to 
ξt + div(b.ξ) = ∆ξ in Ω× (τ, T ),

ξ(x, τ) = ξτ (x) in Ω,

ξ(x, t) = 0 in ∂Ω× (τ, T ),

where b is any smooth vector field b : Ω ⊂ R2 × (t, T )→ R2, we have the following upper bound:

∫ k

0

∫ a

a

V (k, a, τ)ξτ (a, k)dadk ≤
∫ T

τ

∫ k

0

∫ a

a

u(ct)ξ(a, k, t)dadkdt+ ‖VT ‖L∞(Ω) + C

+ C‖f‖Lr(τ,T ;Lp(∂Ω))

Proof. The proof follows from direct application of Theorem 3.1 to the case (4.7)-(4.9).

Theorem 4.2. Let (V,m) be a solution to (4.7)-(4.9), then, there exists C > 0 such that

c

∫ T

0

∫
Ω

H(a, k,DaV,DkV )mdx dt ≤ C + ‖f‖Lr(0,T ;Lp(∂Ω)) + C osc V (·, T )

+ CT + C‖f‖Lr(0,T ;Lp(Ω))

[
1 + ‖DV ‖

γ−1
1−α
L(γ−1)jr

]
,

Proof. The proof follows from direct application of Theorem 3.2 to the case (4.7)-(4.9).



Appendix A

Elementary notions in stochastic

calculus

In this appendix, we introduce the basic concepts of stochastic calculus to develop the theory

for a stochastic mean-field game. We begin defining what is a stochastic basis, then the nec-

essary concepts to build the notion of the Itô’s Integral, Diffusion processes and the associated

infinitesimal generator.

A.1 Stochastic Basis

Definition A.1. Let Ω be a set. A collection U of subsets of Ω is called a σ-algebra if it satisfies:

i) Ω ∈ U; A ∈ U implies Ac = Ω\A (the complement of A in Ω ) belongs to U.

ii) U is stable under intersections and unions of elements of U.

Definition A.2. A probability measure on Ω is a function P : U→ [0, 1] with:

i) P (∅) = 0, P (Ω) = 1 and which,

ii) Is σ-additive i.e., for any sequence {An} ⊂ U such that A =
⋃
n>0

An ∈ U and Ai ∩ Aj =

∅, for i 6= j, one has

P (A) =
∑
n≥0

P (An).

With these concepts we have:

Definition A.3. A probability space is a triple (Ω,U, P ), U is a σ-algebra and P is a probability

measure on Ω.

44
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We are considering complete probability spaces which are the probability spaces where U

contains all P -null sets; this condition is formally stated as :

Definition A.4. N ⊂ Ω is a P -null set if there exists B ∈ U such that N ⊂ B and P (B) = 0.

An Euclidian space is a subset of Rd, d ∈ N, endowed with the topology induced by the

euclidean metric of Rd. It will be denoted by E.

The Borel σ-algebra of E (i.e., the smallest σ-algebra which contains all open sets of E) will

be indicated by E.

Definition A.5. A Random variable in a probability space is a function x : Ω → E such that

x−1(A) ∈ U for every A ∈ E; it is common to say that x is U-measurable.

The smallest σ-algebra which makes x measurable is σ(x) = {x−1(B), B ∈ E}.

A.1.1 Expected Value, Variance

Integration with respect to a measure. If (Ω,U, P ) is a probability space and x =
k∑
i=1

aiχAi

is a real-valued simple random variable, we define the integral of x by

∫
Ω

x dP :=

k∑
i=1

aiP (Ai). (A.1)

If next x is a nonnegative random variable, we define

∫
Ω

x dP := sup
y≤x,y simple

∫
Ω

y dP. (A.2)

Finally if x : Ω→ R is a random variable, we write

∫
Ω

x dP :=

∫
Ω

x+ dP −
∫

Ω

x− dP, (A.3)

provided at least one of the integrals on the right is finite. Here x+ = max(x, 0) and x− =

max(− x, 0); so that x = x+ − x−.

Next, suppose x : Ω → Rn is a vector-valued random variable, x = (X1, X2, . . . , Xn). Then we

write

∫
Ω

x dP =

(∫
Ω

X1 dP,

∫
Ω

X2 dP, . . . ,

∫
Ω

Xn dP

)
. (A.4)

We will assume the usual rules for these integrals.
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Definition A.6. We call

E(x) :=

∫
Ω

x dP, (A.5)

the expected value (or mean value) of x.

Definition A.7. We call

V (x) :=

∫
Ω

|x− E(x)|2 dP (A.6)

the variance of x, where | · | denotes the Euclidean norm.

A.1.2 Distribution Functions

Let (Ω,U, P ) be a probability space and suppose x : Ω→ Rn is a random variable.

Notation: Let x = (x1, . . . , xn) ∈ Rn, and y = (y1, . . . , yn) ∈ Rn. Then

x ≤ y

means that xi ≤ yi for i = 1, . . . , n.

Definition A.8. i) The distribution function of x is the function Fx : Rn → [0, 1] defined by

Fx(x) := P (x ≤ x) for all x ∈ Rn, (A.7)

ii) If x1, . . . ,xm : Ω → Rn are random variables, their joint distribution function is Fx1,...,xm :

(Rn)m → [0, 1],

Fx1,...,xm(x1, . . . , xm) := P (x1 ≤ x1, . . . ,xm ≤ xm) for all xi ∈ Rn, i = 1, . . . ,m.

Definition A.9. Suppose x : Ω→ Rn is a random variable and F = Fx its distribution function. If

there exists a nonnegative, integrable function f : Rn → R such that

F (x) = F (x1, . . . , xn) =

∫ x1

−∞
· · ·
∫ xn

−∞
f(y1, . . . , yn)dyn . . . dy1, (A.8)

then f is called the density function of x.

It follows that

P (x ∈ B) =

∫
B

f(x)dx for all B ∈ E (A.9)
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The formula above is important as the expression on the right-hand-side is an ordinary integral,

and can often be explicitly calculated. With the definition of density function of a random variable

we can introduce the concept of distribution of a random variable. The distribution of a random

variable depends solely on its density function.

Definition A.10. If x : Ω→ R has density

f(x) =
1√

2πσ2
exp−

|x−m|2

2σ2 (x ∈ R), (A.10)

we say that x has a Gaussian (or normal) distribution, with mean m and variance σ2.

In this case let us write

x is N(m,σ2) random variable.

Lemma A.1. Let x : Ω → Rn be a random variable, and assume that its distribution function

F = Fx has the density f . Suppose g : Rn → R, and

y = g(x)

is integrable. Then

E(y) =

∫
Rn
g(x)f(x)dx (A.11)

In particular,

E(x) =

∫
Rn
xf(x) dx and V (x) =

∫
Rn
|x− E(x)|2f(x) dx (A.12)

Proof. Suppose first g is a simple function on Rn:

g =

m∑
i=1

biχBi (Bi ∈ E) (A.13)

Then

E(g(x)) =

m∑
i=1

bi

∫
Ω

χBi(x) dP =

m∑
i=1

biP (x ∈ Bi). (A.14)
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But also

∫
Rn
g(x)f(x)dx =

m∑
i=1

bi

∫
Bi

f(x)dx

=

m∑
i=1

biP (x ∈ Bi).

Consequently the formula holds for all simple functions g and, by approximation, it holds therefore

for general function g.

Hence we can compute E(x), V (x), etc. in terms of integrals over Rn. This is an important

observation, since as mentioned before the probability space (Ω,U, P ) is “unobservable”: all that

we “see” are the values x takes on in Rn. Indeed, all quantities of interest in probability theory

can be computed in Rn in terms of the density f .

Example A.1. If x is N(m,σ2), then

E(x) =
1√

2πσ2

∫ +∞

−∞
xe−

(x−m)2)

2σ2 dx = m

and

V (x) =
1√

2πσ2

∫ +∞

−∞
(x−m)2e−

(x−m)2)

2σ2 dx = σ2.

Therefore m is indeed the mean, and σ2 the variance.

To conclude this section defining what is a stochastic basis we now introduce a fundamental

concept in stochastic calculus:

Definition A.11. A Stochastic Process is a collection x = {xt, t ∈ T} of random variables taking

values in E, but we can also see it as a function x = x(t, ω) : T × Ω → E. where T ⊂ R+, and

t ∈ T is meant to represent an evolution parameter, usually taken to be time. For each ω ∈ Ω the

map t 7→ xt(ω) is a trajectory or the sample path of the stochastic process. A stochastic Process

{xt, t ∈ T} is called continuous or almost surely continuous(a.s.) if its trajectories(or paths) are

continuous.

Definition A.12. i) A a filtration {Ft, t ∈ T} is a family of sub-σ-algebras of U increasing in

time,i.e., if s < t the Fs ⊂ Ft. We add to the filtration {Ft, t ∈ T} the σ-algebra F∞ =
∨
t∈T

Ft,

where the right hand side stands for the minimal σ-algebra, which contains all Ft.

ii) We define for every t ∈ T the following σ-algebra Ft+ =
⋂

t<s∈T
Fs.

Definition A.13. The Filtration {Ft, t ∈ T} is right-continuous if for every t ∈ T , Ft = Ft+.
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Assume we are given a stochastic process X = {xt, t ∈ T} and a filtration {Ft, t ∈ T} on

(Ω,F, P ). We say that the process X is adapted to the filtration {Ft, t ∈ T} if, for every t ∈ T

fixed, the random variable xt is Ft-measurable on Ω; equivalently, we say that X is adapted to

(Ω,F, {Ft}, P ). It is always possible to construct a filtration with respect to which the process

is adapted, by setting FXt = σ(xs, s ≤ t); FXt is called the natural filtration of X. A stochastic

process X is adapted to a filtration {Ft, t ∈ T} if and only if one has FXt ⊂ Ft, t ∈ T .

For technical difficulties, we shall always require that the filtration satisfies in addition the so-

called standard assumptions:

1. the filtration is right continuous, that is, for any t ∈ T : Ft = Ft+.

2. the filtration is complete, that is, for any t ∈ T , Ft contains all P -null sets.

Now we include the notion of filtration in a probability space to obtain the definition of Stochas-

tic Basis.

Definition A.14. Stochastic Basis: A filtered probability space or a stochastic basis is the quadru-

plet (Ω,U, {Ft}, P ), where the filtration {Ft} verifies the standard assumptions.

We say that a stochastic process X = {xt, t ∈ T} is defined on a stochastic basis (Ω,U, {Ft}, P ),

we also require that it is adapted to {Ft}.

A.2 Itô’s Integral

Motivation: If we fix b0 ∈ Rd and consider

 ẋt = b(xt) +G(xt).ξ(t)(t > 0)

x0 = b0,
(A.15)

where b0 ∈ Rd, G : Rd → Md×m and ξ(.) ∈ Rm is called a “White Noise”. To fully understand

this equation, we need

1. To define the “white noise” ξ(.) in a rigourous way.

2. Understand what does it mean to solve this equation.

A.2.1 Some Heuristics

Let us first study (A.15) in the case d = m, x0 = 0 b ≡ 0, and G ≡ I. The solution to (A.15)

in this setting turns out to be the d-dimensional Brownian motion, denoted by B. Thus we may

symbolically write

Ḃ = ξ(),



50 APPENDIX A. ELEMENTARY NOTIONS IN STOCHASTIC CALCULUS

thereby asserting that "white noise" is the time derivative of the Brownian motion. Now return to

the general case of the equation (A.15), writing d
dt instead of the dot:

dxt
dt

= b(xt) +G(xt)
dB(t)

dt

and multiply by "dt":  dxt = b(xt)dt+G(xt)dBt(t > 0)

x0 = b0

This expression, properly interpreted, is a stochastic differential equation. We say that x(·) solves

(SDE) provided

xt = x0 +

∫ t

0

b(xs)ds+

∫ t

0

G(xs)dB (A.16)

So we can say that solving (A.15) is equivalent to search for stochastic processes that satisfy the

expression (A.16). To check if a specific process is a solution, we need to define the meaning of

the second integral, and for which integrands we can compute it. In this direction, we begin by

setting a special case of stochastic process, which is the "White noise" and answer (1).

Definition A.15. An m-dimensional Brownian motion B = {Bt, t ≥ 0} defined on a stochastic

basis (Ω,U, {Ft, t ≥ 0}, P ) is a continuous stochastic process such that

1. B0 = 0 a.s.( means that B0(ω) = 0 ∀A ∈ U except in P -null sets);

2. for every 0 ≤ s < t the random variable Bt −Bs is independent of Fs;

3. for every 0 ≤ s < t the random variable Bt −Bs has a Gaussian law N(0, (t− s)Id), where

Id is the (m-dimensional) identity matrix.

Remark A.1. In this work, if the filtration {Ft} is not explicitly mentioned, we can assume that we

are using the completed natural filtration {FBt } of B. In [24] it is shown that the completed natural

filtration of any Brownian motion is right continuous and so it satisfies the standard assumptions.

A Brownian Motion B defined on (Ω,U, {FBt , t ≥ 0}, P ) is also called a natural Brownian Motion.

A.2.2 The 1-dimensional Itô’s Integral

Let us define the Itô’s Integral for the 1-dimensional case, i.e., d = m = 1. With this purpose

in mind we begin defining a specific set of stochastic process, which will be the set of integrands

for Itô’s Integral.

Definition A.16. A real-valued stochastic process {Gt, t ∈ [0, T ]} on a stochastic basis (Ω,U, {Ft, t ∈

[0, T ]}, P ) adapted with respect to filtration {Ft} for every t ∈ [0, T ] is called progressively men-

surable.
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The idea is that for each time t ≥ 0, the random variable Gt “depends upon only the informa-

tion available in the σ-algebra Ft”.

Definition A.17. (i) We denote by L2(0, T ) the space of all real-valued, progressively measur-

able stochastic processes G(·) such that

E

(∫ T

0

G2dt

)
<∞.

• Likewise, L1(0, T ) is the space of all real-valued, progressively measurable processes F (·)

such that

E

(∫ T

0

| F | dt

)
<∞.

Definition A.18. A process G ∈ L2(0, T ) is called a step process if there exists a partition P =

{0 = t0 < t1 < . . . < tm = T} such that

G(t) ≡ Gk for tk ≤ t < tk+1 (K = 0, . . . ,m− 1)

then each Gk is an F(tk)-measurable random varable, since G is progressively measurable.

Definition A.19. Let G ∈ L2(0, T ) be a step process, as above, Then

∫ T

0

GdB :=

m−1∑
k=0

Gk(Btk+1
−Btk)

is the Itô stochastic integral of G on the interval (0, T ).

Lemma A.2 (Properties of the stochastic integral for step processes). We have for all constants

a, b ∈ R and for all step processes G,H ∈ L2(0, T ):

(i) ∫ T

0

aG+ bHdB = a

∫ T

0

GdB + b

∫ T

0

HdB

(ii)

E

(∫ T

0

GdB

)
= 0

(iii)

E

(∫ T

0

GdB

)2
 = 0

To define the Itô integral of an arbitrary process G ∈ L2(0, T ), we will approximate it by step

processes in L2(0, T ), and then take limits.



52 APPENDIX A. ELEMENTARY NOTIONS IN STOCHASTIC CALCULUS

Lemma A.3 (Approximation by step processes). If G ∈ L2(0, T ), there exists a sequence of

bounded step processes Gn ∈ L2(0, T ) such that

E

(∫ T

0

| G−Gn |2 dt

)
→ 0.

Definition A.20. If G ∈ L2(0, T ), take step processes Gn as above. Then

E

(∫ T

0

Gn −GmdB

)2
 (A.2)

= E

(∫ T

0

(Gn −Gm)2dt

)
→ 0 as n,m→ 0,

and so the limit ∫ T

0

GdB := lim
n→∞

∫ T

0

GndB

exists in L2(Ω).

A.2.3 The Multi-dimensional Itô’s Integral

LetBt = (B1
t , . . . , B

m
t ) be an m-dimensional Brownian motion, where eachBit is a 1-dimensional

Brownian Motion (as in (A.15)) for i = 1, . . . ,m. Now we have to define a new a integrand’s

space for a m-dimensional Brownian Motion, which is similar to the set of progressive mensu-

rable stochastic process defined above for the 1-dimensional case of Itô’s Integral.

Definition A.21. (i) An Md×m-valued stochastic process G = ((Gij)) belongs to L2
d×m(0, T ) if

Gij ∈ L2(0, T ) (i = 1, . . . , d; j = 1, . . . ,m)

(ii) An Rd-valued stochastic process F = (F 1, F 2, . . . , F d) belongs to L1
n(0, T ) if

F i ∈ L1(0, T ) (i = 1, . . . , d).

Definition A.22. If G ∈ Ld×m(0, T ), then

∫ T

0

GdB

is an Rd-valued random variable, whose, i-th component is

m∑
j=1

∫ T

0

GijdBj (i = 1, . . . , d).

Approximating by step processes as before, we can establish the following Lemma.
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Lemma A.4. If G ∈ L2
d×m, then

E

(∫ T

0

GdB

)
= 0,

and

E

(∣∣∣∣ ∫ T

0

GdB

∣∣∣∣2
)

= E

(∫ T

0

|G|2dt

)
,

where |G|2 :=
∑

0<i<d
1≤j≤m

|Gij |2.

Definition A.23. If xt = (x1
t , . . . ,xdt ) is an Rd-valued stochastic process such that

xr = xs +

∫ r

s

Fdt+

∫ r

s

GdB

for some F ∈ L1
d(0, T ), G ∈ L2

d×m(0, T ) and all 0 ≤ s ≤ r ≤ T , we say x(·) has the stochastic

differential

dx = Fdt+ gdB.

Remark A.2. It means that;

dxi = F idt+

m∑
j=1

GijdBj for i = 1, . . . , d.

Theorem A.1 (Itô’s formula in n-dimensions). Suppose that dx = Fdt + GdB, as above. Let

u : Rd × [0, T ] be continous, with continuous partial derivatives ∂u
∂t ,

∂u
∂xi

, ∂2u
∂xi∂xj

, (i, j = 1, . . . , d).

Then

d(u(xt, t)) =
∂u

∂t
dt+

d∑
i=1

∂u

∂xi
dxi +

1

2

d∑
i,j=1

∂2u

∂xi∂xj

m∑
l=1

GilGjldt, (A.17)

where the argument of the partial derivatives of u is (xt, t).

We can write the equation A.17 as

ut(x(t), t) +DxudX +
Tr(GD2

xu(x(t), t)GT )

2
,

where Dxu =
(
∂u
∂xi

, . . . , ∂u∂xd

)
is the gradient of u in the x -variables, D2

xu =
(

( ∂2u
∂xi∂xj

)
)

is the

Hessian matrix, GT is the transposed matrix of G and Tr is the trace function.

An alternative notation: When

dx = Fdt+GdB,

we sometimes write

Hij :=

m∑
k=1

GikGjk.
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Then Itôs formula reads

du(x, t) =

(
∂u

∂t
+ F.Dxu+

1

2
H : D2u

)
dt+Du.GdB,

where

F.Dxu =

d∑
i=1

F i
∂u

∂xi

H : D2
x =

d∑
i,j=1

Hij ∂2u

∂xi∂xj
,

Dxu.GdB =

d∑
i=1

m∑
k=1

∂u

∂xi
GikdBk.

We may formally compute

d(u(x, t)) =
∂u

∂t
dt+

d∑
i=1

∂u

∂xi
dxi +

1

2

d∑
i,j=1

∂2u

∂xi∂xj
dxidxj (A.18)

and then simplify the term “dxidxj” by expanding it out and using the formal multiplication rules

(dt)2 = 0 dtdBk = 0 dBkdBl = δkldt (k, l = 1, . . . ,m). (A.19)

A.3 The Infinitesimal Generator

Definition A.24. An Itô diffusion is a stochastic process

xt(ω) = x(t, ω) : [0,∞)× Ω→ Rd,

satisfying a stochastic differential equation of the form

dxt = b(xt)dt+ σ(xt)dBt, t ≥ s; xs = x (A.20)

where Bt is a m-dimensional Brownian motion and b : Rd → Rd, σ : Rd → Rd×m satisfy the

following condition:

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ C|x− y|; x, y ∈ Rd, (A.21)

where |σ|2 =
∑
|σij |2, for some C > 0, fixed.

Remark A.3. Under certain conditions this equation has a unique solution, and it is denoted by
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xt = xs,xt ; t ≥ s. In (A.20) we assumed that b and σ do not depend on t but on x only, for the

general case reduces to his one by setting (x, t) =: x̃ ∈ Rd+1.

Definition A.25. Let {xt} be a Itô diffusion in Rd. The infinitesimal generator A of xt is defined

by

Af(x) = lim
t↓0

Ex[f(xt)]− f(x)

t
; x ∈ Rd. (A.22)

The set of functions f : Rd → R such that the limit exists at x is denoted by DA(x), while DA

denotes the set of functions for which the limit exists for all x ∈ Rd.

To find the relation between A and the coefficients b,σ in the stochastic differential equation

(A.20) defining xt, we need the following result, which is useful.

Lemma A.5. Let yt = yxt be a stochastic process in Rd such that

Yxt (ω) = x+

∫ t

0

u(s, ω)ds+

∫ t

0

v(s, ω)dBs(ω),

where B is m-dimensional. Let f ∈ C2
0 (Rd), and let [0, T ) ⊂ R. Assume that u(t, ω) and v(t, ω)

are bounded on the set of (t, ω) such that y(t, ω) belongs to the support of f . Then

Ex[f(xT )] = f(x) + Ex

∫ T

0

 d∑
i

bi(xs)
∂f

∂xi
(xs) +

1

2

d∑
i,j=1

(σσT )ij(xs)
∂2f

∂xi∂xj
(xs)

 ds


where Ex is the expectation w.r.t. stochastic process yt, such that y0 = x.

Theorem A.2 (The infinitesimal generator of a diffusion). Let xt be a Itô diffusion

dxt = b(xt)dt+ σ(xt)dBt

if f ∈ C2
0 (Rd) then f ∈ DA and

Af(x) =

d∑
i=1

bi(x)
∂f

∂xi
(x) +

1

2

d∑
i,j=1

(σσT )ij(x)
∂2f

∂xi∂xj
(x).

Remark A.4. In Øksendal [22] you can find the demonstration of Lemma A.5 and the justification

for the Theorem A.2. Here we present a proof that makes clear how both results are linked and

the idea to obtain the theorem starting from the lemma’s proof.

Proof. Put z = f(y); by applying Itôs formula in the form (A.18) and simplifying the notation
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supressing the index t we have

dz =
�
�
��>

0
∂f

∂t
(y)dt+

d∑
i=1

∂f

∂xi
(y)dyi +

1

2

d∑
i,j=1

∂2f

∂xi∂xj
(y)dyidyj , (A.23)

where 

dyi = ui(t, ω)dt+

m∑
j=1

vijdB
j

︸ ︷︷ ︸
(vdB)i

, i = 1, . . . , d.

dyj = uj(t, ω)dt+

m∑
i=1

vjidB
i

︸ ︷︷ ︸
(vdB)j

, j = 1, . . . , d.

Now, using these equations above and (A.19) we calculate dyidyj :

dyidyj = uiuj + (vdB)i(vdB)j (A.24)

where (vdB)i(vdB)j can be expanded, and observing that dBkdBl = δkldt we have:

(vdB)i(vdB)j =

(
m∑
k=1

vikdBk

)(
m∑
l=1

vjldBl

)

=

(
m∑
k=1

vikvjk

)
dt = (vvT )ijdt. (A.25)

Putting A.25 and the expression of dyi in A.23 we have

dz =

d∑
i=1

ui
∂f

∂xi
(y)dt+

d∑
i=1

∂f

∂xi
(y)(vdB)i +

1

2

d∑
i,j=1

∂2f

∂xi∂xj
(y)(vdB)i(vdB)j

=

 d∑
i=1

ui
∂f

∂xi
(y) +

1

2

d∑
i,j=1

(vvT )ij
∂2f

∂xi∂xj
(y)

 dt+

d,m∑
i,j=1

vij
∂f

∂xi
(y)dBj .

Which means:

f(yt) = f(y0) +

∫ t

0

 d∑
i

ui
∂f

∂xi
+

1

2

d∑
i,j=1

(vvT )ij
∂2f

∂xi∂xj
(y)

 ds

+

d∑
i=1

m∑
k=1

∫ t

0

vik
∂f

∂xi
(y)dBk. (A.26)
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Hence

Ex[f(yT )] = f(x) + Ex

∫ T

0

 d∑
i

ui
∂f

∂xi
(y) +

1

2

d∑
i,j=1

(vvT )ij
∂2f

∂xi∂xj
(y)

 ds


+

d∑
i=1

m∑
k=1

Ex

[∫ T

0

vik
∂f

∂xi
(y)dBk

]
. (A.27)

In our context, we can replace the functions u(t, ω) and v(t, ω) respectively by b(xt) and σ(xt), so

(A.27) becomes

Ex[f(xT )] = f(x) + Ex

∫ T

0

 d∑
i

bi(xs)
∂f

∂xi
(xs) +

1

2

d∑
i,j=1

(σσT )ij(xs)
∂2f

∂xi∂xj
(xs)

 ds


+

d∑
i=1

m∑
k=1

Ex

[∫ T

0

σik(xs)
∂f

∂xi
(xs)dBk

]
. (A.28)

But in the last summand in (A.28) we have that σ = (σij) is constant, so we can take σ∗ such that

σ∗ ≥
d∑
i=1

m∑
k=1

σik(xs) ∂f∂xi (xs) for . Which give us:

d∑
i=1

m∑
k=1

Ex

[∫ T

0

σik(xs)
∂f

∂xi
(xs)dBk

]
≤ σ∗Ex[

∫ T

0

dB]

= σ∗Ex[B(T )] = 0. (A.29)

Combining (A.28) and (A.29) we get

Ex[f(xT )] = f(x) + Ex

∫ T

0

 d∑
i

bi(xs)
∂f

∂xi
(xs) +

1

2

d∑
i,j=1

(σσT )ij(xs)
∂2f

∂xi∂xj
(xs)

 ds

 .
If we interpret the equation above as a differential equation we can interpret the left-hand-side

as the right-derivative of the function Ex[f(xt)], using the notation d
dt we have:

dEx[f(xt)]
dt

=

d∑
i=1

bi(xt)
∂f

∂xi
(xt) +

1

2

d∑
i,j=1

(σσT )ij(xt)
∂2f

∂xi∂xj
(xt). (A.30)
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If we evaluate this right-derivative in 0 ∈ (0, T ) we conclude:

lim
t↓0

Ex[f(x0+t)]− Ex[f(x0)]

t
=

d∑
i=1

bi(x0)
∂f

∂xi
(x0) +

1

2

d∑
i,j=1

(σσT )ij(x0)
∂2f

∂xi∂xj
(x0)

lim
t↓0

Ex[f(xt)]− f(x)

t
=

d∑
i=1

bi(x)
∂f

∂xi
(x) +

1

2

d∑
i,j=1

(σσT )ij(x)
∂2f

∂xi∂xj
(x). (A.31)



Appendix B

Notation, Inequalities and Calculus

facts

In this chapter, we present the notation and collect some important calculus results that are

used along the text. Some proofs are omitted for thy can be easily found in classical books as [6],

on which this appendix is largely based.

B.1 Notation

B.1.1 Function spaces.

(i) C(U) = {u : U → R | u continuous}

C(U) = {u ∈ C(U) | u is uniformly continuous on bounded subsets ofU}

Ck(U) = {u : U → R | uis k-times continuosly differentiable}

Ck(U) = {u ∈ Ck(U) | Dαu is uniformly continuous on bounded subsets of U for

all |α| ≤ k}.

ii) C∞(U) = {u : U → R | uis infinitely differentiable} =
∞⋂
k=0

Ck(U)

C∞(U) =
∞⋂
k=0

Ck(U).

iii) Cc(U), Ckc (U), etc, denote these functions in C(U), Ck(U), etc, with compact support .

iv) Lp(U) = {u : U → R | is Lebesgue measurable, ‖u‖Lp(U) <∞}, where

‖u‖Lp(U) =

(∫
U

|f |pdx
) 1
p

(1 ≤ p <∞).

59
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L∞(U) = {u : U → R | u is Lebesgue measurable, ‖u‖L∞(U) <∞}, where

‖u‖L∞(U) = ess sup
U
|u|.

Lploc(U) = {u : U → R | v ∈ Lp(V ) for each V ⊂⊂ U}.

v) ‖Du‖Lp(U) = ‖|Du|‖Lp(U)

‖D2u‖Lp(U) = ‖|D2u|‖Lp(U).

vi) W k,p(U), Hk(U), etc. (k = 0, 1, 2, . . . , 1 ≤ p ≤ ∞) denote Sobolev spaces.

vii) Ck,β(U), Ck,β(U) (k = 0, . . . , 0 < β ≤ 1) denote Hölder spaces.ø

B.1.2 Vector-valued functions

i) If now m > 1 and u : U → Rm,u = (u1, . . . , um), we define

Dαu = (Dαu1, . . . , Dαum)for each multiindexα

Then

Dku = {Dαu | |α| = k}.

and

|Dku| =

∑
|α|=k

|Dαu|2
 1

2

,

as before.

ii) In the special case k = 1, we write

D(u) =


∂u1

∂x1
. . . ∂u1

∂xn
...

. . .
...

∂um

∂x1
. . . ∂um

∂xn


m×n

= gradient matrix.

iii) If m = n, we have

divu = Tr(Du) =

n∑
i=1

uixi = divergence of u.

iv) The spacesC(U ;Rm), Lp(U ;Rm), etc., consist of those functions u : U → Rm,u = (u1, . . . , um),

with ui ∈ C(U),Lp(U), etc.(i = 1, . . . ,m).
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B.2 Inequalities

B.2.1 Convex functions

Definition B.1. A function f : Rn → R is called convex provided

f(τx+ (1− τ)y) ≤ τf(x) + (1− τ)f(y) (B.1)

for all x, y ∈ Rn and each 0 ≤ τ ≤ 1.

Theorem B.1. (Jensen’s inequality). Assume f : R→ R is convex, and U ⊂ Rn is open, bounded.

Let u : U → R be a summable. Then

f

(∫
−
U

udx

)
≤
∫
−
U

f(u)dx. (B.2)

Proof. Since f is convex, for each p ∈ R there exists r ∈ R such that

f(q) ≥ f(p) + r(q − p) for all q ∈ R.

Let p =
∫
−
U
udx,q = u(x):

f(u(x)) ≥ f
(∫
−
U

udx

)
+ r

(
u(x)−

∫
−
U

udx

)
.

Integrate with respect to x over U .

B.2.2 Elementary inequalities

Following is a collection of elementary, but fundamental, inequalities. Thes estimates are con-

tinually employed throughout the text.

Cauchy’s inequality. Let a, b be a real numbers then

ab ≤ a2

2
+
b2

2
(a, b ∈ R).

Proof. It comes from 0 ≤ (a− b)2 = a2 − 2ab+ b2.

Cauchy’s inequality with ε.

ab ≤ εa2 +
b2

4ε
(a, b > 0, ε > 0).
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Proof. Write

ab = ((2ε)
1
2 a))

(
b

(2ε)
1
2

)
and apply Cauchy’s inequality.

Young’s inequality. Let 1 < p, q <∞, 1
p + 1

q = 1.Then

ab ≤ ap

p
+
bq

q
(a, b > 0).

Proof. The mapping x 7→ ex is convex, and consequently

ab = elog a+log b = e
1
p log ap+ 1

q log bq ≤ 1

p
elog ap +

1

q
elog bq =

ap

p
+
bq

q
.

Young’s inequality with ε.

ab ≤ εap + C(ε)bq (a, b > 0, ε > 0) (B.3)

for C(ε) = (εp)
−q
p q−1.

Proof. Write ab =
(

(εp)
1
p a)
)(

b

(εp)
1
p

)
and apply Young’s inequality.

Hölder’s inequality. Assume 1 ≤ p, q ≤ ∞, 1
p + 1

q = 1. Then if u ∈ Lp(U), v ∈ Lq(U), we have

∫
U

|uv|dx ≤ ‖u‖Lp(U)‖v‖Lq(U).

Proof. By homogeneity, we may assume ‖u‖Lp = ‖v‖Lq = 1. Then Young’s inequality implies for

1 < p, q <∞ that

∫
U

|uv|dx ≤ 1

p

∫
U

|u|pdx+
1

q

∫
U

|v|qdx = 1 = ‖u‖Lp‖v‖Lq .

Minkowski’s inequality. Assume 1 ≤ p ≤ ∞ and u, v ∈ Lp(U). Then

‖u+ v‖Lp(U) ≤ ‖u‖Lp(U) + ‖v‖Lp(U).
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Proof.

‖u+ v‖pLp(U) =

∫
U

|u+ v|pdx ≤
∫
U

|u+ v|p−1(|u|+ |v|)dx

≤
(∫

U

|u+ v|pdx
) p−1

p

((∫
U

|u|pdx
) 1
p

+

(∫
U

|v|pdx
) 1
p

)
= ‖u+ v‖p−1

Lp(U)(‖u‖Lp(U) + ‖v‖Lp(U))

General Hölder inequality. Let 1 ≤ p1, . . . , pm ≤ ∞, with 1
p1

+ 1
p2

+ . . . 1
pm

= 1, and assume

uk ∈ Lpk(U) for k = 1, . . . ,m. then

∫
U

|u1 . . . um|dx ≤
m∏
k=1

‖ui‖Lpk (U).

Proof. Indution, using Hölder’s inequality.

Interpolation inequality for Lp-norms Assume 1 ≤ s ≤ r ≤ t ≤ ∞ and

1

r
=
θ

s
+

(1− θ)
t

.

Suppose also u ∈ Ls(U) ∩ Lt(U). Then u ∈ Lr(U), and

‖u‖Lr(U) ≤ ‖u‖θLs(U)‖u‖
1−θ
Lt(U).

Proof. We compute

∫
U

‖u‖rdx =

∫
U

|u|θr|u|(1−θ)r)dx

≤
(∫

U

|u|θr sθr dx
) θr

s
(∫

U

|u|(1−θ)r
t

(1−θ)r dx

) (1−θ)r
t

.

Here was used the Hölder’s inequality, which applies since θr
s + (1−θ)r

t = 1.

Cauchy-Schwarz inequality.

|x · y| ≤ |x||y| (x, y ∈ Rn).
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Proof. Let ε > 0 and note

0 ≤ |x± εy|2 = |x|2 ± 2εx · y + ε2|y|2.

Consequently

±x · y ≤ 1

2ε
|x|2 +

ε

2
|y|2.

Minimize the right-hand side by setting ε = |xy |, provided y 6= 0.

Gronwall’s inequality (differential form). Let η(·) be a nonnegative, absolutely continuous

function on [0, T ], which satisfies for a.e t the differential inequality

η′(t) ≤ φ(t)η(t) + Ψ(t), (B.4)

where φ(t) and ψ(t) are nonnegative, summable functions on [0, T ]. Then

η(t) ≤ e
∫ t
0
φ(s)ds

[
η(0) +

∫ t

0

Ψ(s)ds

]
(B.5)

for all 0 ≤ t ≤ T. In particular if

η′ ≤ φη on [0, T ] and η(0) = 0,

then

η ≡= 0 on [0, T ].

Proof. From (B.4) we see

d

ds

(
η(s)e−

∫ s
0
φ(r)dr

)
= e−

∫ s
0
φ(r)dr(η′(s)− φ(s)η(s)) ≤ e−

∫ s
0
φ(r)drΨ(s)

for a.e. 0 ≤ s ≤ T . Consequently for each 0 ≤ t ≤ T , we have

η(t)e−
∫ t
0
φ(r)dr ≤ η(0) +

∫ t

0

e−
∫ s
0
φ(r)drΨ(s)ds ≤ η(0) +

∫ t

0

Ψ(s)ds.

This implies the inequality (B.5).

Gronwall’s inequality(integral form). Let ξ(t) be a nonnegative, summable function on [0, T ]

which satisfies for a.e. t the integral inequality

ξ(t) ≤ C1

∫ t

0

ξ(s)ds+ C2 (B.6)
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for constants C1, C2 ≥ 0. Then

ξ(t) ≤ C2(1 + C1te
C1t)

for a.e. 0 ≤ t ≤ T . In particular if

ξ(t) ≤ C1

∫ t

0

ξ(s)ds

for a.e. 0 ≤ t ≤ T , then

ξ(t) = 0 a.e.

Proof. Let η(t) :=
∫ t

0
ξ(s)ds; then η ≤ C1η + C2 a.e. in [0, T ]. According to the differential form of

Gronwall’s inequality above:

η(t) ≤ eC1t(η(0) + C2t) = C2te
C1t.

Then (B.6) implies

ξ(t) ≤ C1η(t) + C2 ≤ C2(1 + C1te
C1t).

B.3 Calculus Facts

B.3.1 Boundaries

Let U ⊂ Rn be open and bounded, k ∈ 1, 2, . . ..

Definition B.2. We say ∂U is Ck if for each point x0 ∈ ∂U there exist r > 0 and a Ck function

γ : Rn−1 → R sucha that- upon relabeling and reorienting the coordinates axes if necessary- we

have

U ∩B[x0, r] = {x ∈ B[x0, r] | xn > γ(x1, . . . , xn−1)}.

Likewise ∂U is C∞ if ∂U is Ck for k = 1, 2, . . . , and ∂U is analytic if the mapping γ is analytic.

Definition B.3. i) If ∂U is C1, the along ∂U is defined the outward pointing unit normal vector

field

ν = (ν1, . . . , νn).

The unit normal at any point x0 ∈ ∂U is ν(x0) = ν = (ν1, . . . , νn).
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ii) Let u ∈ C1(U). We call
∂u

∂ν
:= ν ·Du

the (outward) normal derivative of u.

B.3.2 Gauss-Green Theorem.

In this section we assume U is boundade, open subset of Rn, and ∂U is C1

Theorem B.2. (Gauss-Green Theorem). Suppose u ∈ C1(U). Then

∫
U

uxidx =

∫
∂U

uνi dS (i = 1, . . . , n). (B.7)

Theorem B.3. (Integration-by-parts formulas).

i) Let u, v ∈ C1(U). Then

∫
U

uxivdx = −
∫
U

uvxidx+

∫
∂U

uvνi dS (i = 1, . . . , n). (B.8)

ii)

Proof. Apply Theorem (B.2) to uv.

Theorem B.4. (Green’s formulas) Let u, v ∈ C2(U). Then

i)
∫
U

∆udx =
∫
∂U

∂u
∂ν dS,

ii)
∫
U
Dv ·Dudx = −

∫
U
u∆vdx+

∫
∂U

∂v
∂νu dS,

iii)
∫
U

∆v − v∆udx =
∫
∂U

u ∂v∂ν − v
∂u
∂ν dS

Proof. Using (B.8), with uxi in place u and v ≡ 1, we see

∫
U

uxixidx =

∫
∂U

uxiν
i dS. (B.9)
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Sum i = 1, . . . , n to estabilish i). To derive (ii), we employ (B.8) with v = uxi

∫
U

Du ·Dvdx =

∫
U

n∑
i=1

uxivxidx =

n∑
i=1

∫
U

uxivxidx =

=

n∑
i=1

(∫
∂U

uvxiν
i dS −

∫
U

uvxixidx

)
=

=

∫
∂U

n∑
i=1

uvxiν
i dS −

∫
U

n∑
i=1

uvxixidx =

=

∫
∂U

u

n∑
i=1

vxiν
i dS −

∫
U

u

n∑
i

vxixidx =

=

∫
∂U

uDv · ν dS −
∫
U

u∆vdx =

=

∫
∂U

uDv.ν dS −
∫
U

udiv(Dv)dx (B.10)

Write (ii) with u and v interchanged and then subtract, to obtain (iii).

The (B.10) will be referred as Integration-by-parts formula too.



Appendix C

Sobolev Spaces

C.1 Linear Functional Analysis

C.1.1 Banach spaces

Let X denote a real linear space.

Definition C.1. A mapping ‖ ‖ : X → [0,∞) is called a norm if

i) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for allu, v ∈ X.

ii) ‖λu‖ = |λ|‖u‖ for all u ∈ X,λ ∈ R.

iii) ‖u‖ = 0 if and only if u = 0.

Hereafter we assume X is a normed linear space.

Definition C.2. We say a sequence {uk}∞k=1 ⊂ X converges to u ∈ X, written

uk → u,

if

lim
k→∞

‖uk − u‖ = 0.

Definition C.3. i) A sequence {uk}∞k=1 ⊂ X is called a Cauchy sequence provided for each

ε > 0 there exists N > 0 such that

‖uk − ul‖ < ε for all k, l ≥ N.

ii) X is complete if each Cauchy sequence in X converges; that is whenever {uk}∞k=1 is a

Cauchy sequence, there exists u ∈ X such that {uk}∞k=1 converges to u.

68
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iii) A Banach space X is a complete, normed linear space.

iv) We say X is separable if X contains a countable dense subset.

Example C.1. Lp spaces. Assume U is an open subset of Rn, and 1 ≤ p ≤ ∞. If f : U → R is a

measurable, we define

‖f‖Lp(U) :=


(∫
U
|f |pdx

) 1
p if 1 ≤ p <∞

ess supU |f | if p =∞

We define Lp(U) to be the linear space of all measurable functions f : U → R for which

‖f‖Lp(U) < ∞. The Lp(U) is a Banach space, provided we identify two functions which agree

a.e. We can also generalize the space Lp to vector functions u : U → Rn. Let U be an open

subset of Rn, and 1 ≤ p ≤ ∞. If f = (f1, . . . fn) : U → Rn where fi for each i = 1, . . . n is a

measurable function, we define

‖f‖Lp(U,Rn) :=


(∫

U

(
n∑
i=1

|f i|2
) p

2

dx

) 1
p

if 1 ≤ p <∞

ess supU ‖f‖ if p =∞

Then we have that Lp(U,Rn) := {f : U → Rn | ‖f‖Lp(U,Rn) < ∞} Another example of Banach

space are the Sobolev spaces, that deserves a more complete description.

Example C.2. Another example of a normed space functions are the Anisotropic Lebesgue

spaces or Strichartz spaces. Let Ω ⊂ Rd and (0, T ) ⊂ R with Lebesgue measure. For each

measurable function f : Ω× (0, T )→ R define

‖f(t, x)‖Lp(0,T ;Lq(Ω)) :=

[∫
Ωt

(∫
Ωx

|f(t, x)|qdx
) p
q

dt

] 1
p

. (C.1)

C.2 Hölder Spaces

Before turning to Sobolev spaces, we first discuss the simpler Hölder spaces. Assume U ∈ Rn

is open and 0 < γ ≤ 1. We have previously considered the class of Lipschitz continuous functions

u : U → R, which by definition satisfy the estimate

|u(x)− u(y)| ≤ C|x− y| (x, y ∈ U), (C.2)

for some constant C. The above inequality implies u is continuous, and more importantly provides

a uniform modulus of continuity. It turns out to be useful to consider also functions u satisfying a
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variant of it, namely

|u(x)− u(y)| ≤ C|x− y|γ (x, y ∈ U) (C.3)

for some constant C. Such function is said to be Hölder continuous with expoent γ.

Definition C.4. i) If u : U → R is bounded and continuous, we write

‖u‖C(U) := sup
x∈U
|u(x)|.

ii) The γth-Hölder seminorm of u : U → R is

[u]C0,γ(U) := sup
x,y∈Ux 6=y

{
|u(x)− u(y)|
|x− y|γ

}
,

and the γth−Hölder norm is

‖u‖C0,γ(U) := ‖u‖C(U) + [u]C0,γ(U).

Definition C.5. The Hölder space

Ck,γ)(U)

consists of all functions u ∈ Ck(U) for which the norm

‖u‖Ck,γ(U) :=
∑
|α|≤k

‖Dαu‖C(U) +
∑
|α|=k

[Dαu]C0,γ(U) (C.4)

is finite.

So the space Ck,γ((U) consists of those functions u that are k−times consinuously differ-

entiable and whose kth−partial derivatives are Hölder continuous with exponent γ. Such func-

tions are well-behaved, and furthermore the space Ck,γ(U) itself possesses a good mathematical

structure:

Theorem C.1 (Hölder spaces as function spaces). The space of functions Ck,γ(U) is a Banach

space.

The Hölder spaces introduced above, are unfortunately not often suitable settings for the

elementary theory of Partial Differential Equations, as we usually cannot make good enough

analytic estimates to demonstrate that the solutions actually belong to such spaces, we must

strike a balance, by designing spaces comprising functions which have some, but not too great,

smoothness properties.
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Definition C.6. Let C∞0 (U) denote the space of infinitely differentiable functions φ : u→ R, with

compact support in U . We will call a function φ belonging to C∞0 (U) a test function.

Definition C.7. Suppose u, v ∈ L1
loc(U), and α is a multiindex. We say that v is the αth−weak

partial derivate of u written

Dαu = v,

provided

∫
U

uDαφdx = (−1)|α|
∫
U

vφdx (C.5)

for all test functions φ ∈ C∞0 (U).

Lemma C.1 (Uniqueness of weak derivatives). A weak αth−partial derivative of u, if it exists, is

uniquely defined up to a set of measure zero.

Proof. Assume that v, ṽ ∈ L1
loc(U) satisfy

∫
U

uDαφdx = (−1)|α|
∫
U

vφdx = (−1)|α|
∫
U

ṽφdx

for all φ ∈ C∞0 (U). Then

∫
U

(v − ṽ)φdx = 0 (C.6)

for all φ ∈ C∞0 (U); whence v − ṽ = 0 a.e..

Fix 1 ≤ p ≤ ∞ and let k be a nonnegative integer. We define now certain function spaces,

whose members have weak derivatives of various orders lying in various Lp spaces.

Definition C.8. The Sobolev space

W k,p(U)

consists of all locally summable functions u : U → R such that for each multiindex α with |α| ≤ k,

Dαu exists in the weak sens and belongs to Lp(U).

Definition C.9. If u ∈W k,p(U), we define its norm to be

‖u‖Wk,p(U) :=


( ∑
|α|≤k

∫
U
|Dαu|pdx

) 1
p

(1 ≤ p <∞)∑
|α|≤k

ess supU |Dαu| (p =∞).
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Definition C.10. We denote by

W k,p
0 (U)

the closure of C∞0 (U) in W k,p(U). Thus u ∈ W k,p
0 (U) if and only if there exist functions um ∈

C∞0 (U) such that um → u in W k,p(U). We interpret W k,p
0 (U) as comprising those functions

u ∈W k,p(U) such that

“Dαu = 0on ∂U”for all |α| ≤ k − 1.

C.2.1 Elementary properties

Next we verify certain properties of weak derivatives. Note very carefully that whereas thes

various rules are obiously tru for smooth functions, functions in Sobolev space are not necessarily

smooth: We must always rely solely upon the definition of weak derivatives.

Theorem C.2 (Properties of weak derivatives). Assume u, v ∈W k,p(U),|α| ≤ k. Then

i) Dαu ∈ W k−|α|,p(U) and Dβ(Dαu) = Dα(Dβu) = Dα+βu for all multiindex α, β with |α| +

|β| ≤ k.

ii) For each λ, µ ∈ R, λu+ µv ∈W k,p(U) and Dα(λu+ µv) = λDαu+ µDαv, |α| ≤ k.

iii) If V is an open subset of U , then u ∈W k,p(V ).

iv) If ζ ∈ C∞0 (U), the ζu ∈W k,p(U) and

Dα(ζu) =
∑
β≤α

(
α

β

)
DβζDα−βu ( Leibniz’ formula)

where (
α

β

)
=

α!

β!(α− β)!
.

Proof. To prove (i), first fix φ ∈ C∞0 (U). Then Dβφ ∈ C∞0 (U), and so

∫
U

Dαudβφdx = (−1)|α|
∫
U

uDα+βφdx

= (−1)|α|)(−1)|α+β|
∫
U

Dα+βuφdx

= (−1)|β|
∫
U

Dα+βuφdx. (C.7)

Thus Dβ(Dαu) = Dα+βu in the weak sense. Assertions (ii) and (iii) are easy, and the formula

in (iv) is proved by induction on |α|.

Theorem C.3 (Sobolev spaces as function spaces). For each k = 1, . . . and 1 ≤ p ≤ ∞, the

Sobolev space W k,p is a Banach space.
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It is awkward to return continually to the definition of weak derivatives. To study the deeper

properties of Sobolev spaces, we therefore need to develop some systematic procedures for

approximating a function in a Sobolev space by smooth functions.

C.2.2 Traces

In this subsection we present some results that answer the question about the possibility of

assigning “boundary values" along ∂U to a function u ∈ W 1,p(U), assuming that ∂U is C1. If

u ∈ C(U), then clearly u has values on ∂U in the usual sense. The problem is that a typical

function u ∈ W 1,p(U) is not in general continuous and, even worse, is only defined a.e. in U .

Since ∂U has n−dimensional Lebesgue measure zero, there is no direct meaning we can give to

the expression “ u restricted to ∂U ". The notion of a trace operator resolves this problem. For this

subsection we take 1 ≤ p <∞.

Theorem C.4 (Trace Theorem). Assume U is bounded and ∂U is C1. Then there exists a

bounded linear operator

T : W 1,p(U)→ Lp(∂U)

such that

i) Tu = u|∂U if u ∈W 1,p(U) ∩ C(U) and

ii)

‖Tu‖Lp(∂U) ≤ C‖u‖W 1,p(U),

for each u ∈W 1,p(U), with the constant C depending only on p and U .

Definition C.11. We call Tu the trace of u on ∂U .

Corollary C.1. Assume U is bounded and ∂U is C1. Then there exists a bounded linear operator

T̃ : W 1,p(U,Rn)→ Lp(U,Rn)

such that

i) Tu = u|∂U if u ∈W 1,p(U,Rn) ∩ C(U,Rn) and

ii)

‖Tu‖Lp(∂U,Rn) ≤ C‖u‖W 1,p(U,Rn),

for each u ∈W 1,p(U), with the constant C depending only on p and U .
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C.2.3 Sobolev Inequalities

Our goal in this subsection is to discover embeddings of various Sobolev spaces into others.

The crucial analytic tools here will be certain so-called “Sobolev-type inequalities", which will

prove below for smooth functions. Thes will then establish the estimates for arbitrary functions in

the various relevant Sobolev spaces. To clarify the presentetion we will consider first only Sobolev

space W 1,p(U) and ask for the following basic question: “If a function u belongs to W 1,p(U) does

u automatically belong to certain other spaces? The answer will be “yes", but which other spaces

depends upon whether.

(1)

1 ≤ p < n,

(2)

p = n,

(3)

n < p ≤ ∞.

We study case (1) in(C.5), case (3) in (C.8)

Definition C.12. If 1 ≤ p < n the Sobolev conjugate of p is

p∗ :=
np

n− p
.

Note that
1

p∗
=

1

p
− 1

n
, p∗ > p.

Theorem C.5. (The Gagliardo-Nirenberg-Sobolev Inequality) Assume 1 ≤ p < n. There exists a

constant C, depending only on p and n such that

‖u‖Lp∗ (Rn) ≤ C‖Du‖Lp(Rn) (C.8)

for all u ∈ C1
0 (Rn).

Theorem C.6. (Estimates for W 1,p,1 ≤ p < n) Let U be a bounded, open subset of Rn, and

suppose ∂U is C1. Assume 1 ≤ p < n, and u ∈W 1,p(U). Then u ∈ Lp∗(U), with the estimate

‖u‖Lp∗ (U) ≤ C‖u‖W 1,p(U), (C.9)

the constant C depending only on p, n and U .
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Theorem C.7. (Poincaré’s inequality)(Estimates for W 1,p
0 ,1 ≤ p < n.) Assume U is a bounded,

open subset of Rn. Suppose u ∈W 1,p
0 (U) for some 1 ≤ p < n. Then we have the estimate

‖u‖Lq(U) ≤ C‖Du‖Lp(U)

for each q ∈ [1, p∗], the constant C depending only on p, q, n and U .

Theorem C.8. (Morrey’s inequality) Assume n < p ≤ ∞. Then there exists a constant C, de-

pending only on p and n, such that

‖u‖C0,γ(Rn) ≤ C‖u‖W 1,p(Rn) (C.10)

for all u ∈ C1(Rn), where

γ := 1− n

p
.

Theorem C.9. ( General Sobolev inequalities). Let U be a bounded open subset of Rn, with a

C1 boundary. Assume u ∈W k,p(U).

i) If

k <
n

p
,

then u ∈ Lq(U), where
1

q
=

1

p
− k

n
.

We have in addition the estimate

‖u‖Lq(U) ≤ C‖u‖Wk,p(U), (C.11)

the constant C depending only on k, p, n and U .

ii) If

k >
n

p
,

then u ∈ Ck−[np−1,γ](U), where

γ =


[
n
p

]
+ 1− n

p , if np is not an integer

any positive number < 1, if np is an integer.

We have in addition the estimate

‖u‖
C
k−[np ]−1,γ

(U)
≤ C‖u‖Wk,p(U), (C.12)
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the constant C depending only on k, p, n, γ and U .
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