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Abstract

Generalized autoregressive moving average (GARMA) models are
a class of models that was developed for extending the univariate
Gaussian ARMA time series model to a flexible observation-driven
model for non-Gaussian time series data. This work presents
the GARMA model with discrete distributions and application of
resampling techniques to this class of models. We also proposed The
Bayesian approach on GARMA models. The TGARMA (Transformed
Generalized Autoregressive Moving Average) models was proposed,
using the Box-Cox power transformation. Last but not least we
proposed the Bayesian approach for the TGARMA (Transformed
Generalized Autoregressive Moving Average).

Keywords: Transformed Generalized ARMA model, Generalized
ARMA model, Bayesian approach, discrete distributions, Continuous
distributions.

v





Resumo

Modelos Autoregressivos e de médias móveis generalizados
(GARMA) são uma classe de modelos que foi desenvolvida para
extender os conhecidos modelos ARMA com distribuição Gaussiana
para um cenário de series temporais não Gaussianas. Este trabalho
apresenta os modelos GARMA aplicados a distribuições discretas,
e alguns métodos de reamostragem aplicados neste contexto. É
proposto neste trabalho uma abordagem Bayesiana para os modelos
GARMA. O trabalho da continuidade apresentando os modelos
GARMA transformados, utilizando a transformação de Box-Cox. E por
último porém não menos importante uma abordagem Bayesiana para
os modelos GARMA transformados.

Palavras-chave: ARMA Transformado Generalizado, ARMA Gener-
alizado, abordagem Bayesiana, distribuições discretas, distribuições
contínuas.
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CHAPTER

1

Introduction

Counts as observations have attracted significant attention from time series
specialists recently. Different contexts present such kind of data: the number of
incidences of a certain disease (Poliomyelitis in U.S. Zeger (1988) and Asthma
cases in a hospital in Campbelltown, Davis et al. (1999)). Integer financial data
sets, like the number of transaction price movements were also discussed (see for
example, Liesenfeld et al. (2006) and Rydberg and Shephard (2003)). There are
important data sets coming from Brazil like the number of automobile production
in Brazil, the number of hospitalizations caused by Dengue Fever and number of
death in Brazil that will be analyzed.

Parameter and observation driven models provide a flexible framework for
modelling time series of counts. So far, a wide variety of models for count time
series have been discussed in literature usually embedded in the framework of
integer valued ARMA type models (see for example Biswas and Song (2009)). An
overview of these kind of models can be found in Davis et al. (1999) while Zeger
(1988) and Chan and Ledolter (1995) explicitly discuss and develop estimation
techniques for Poisson generalized linear models with an autoregressive latent
process in the mean.

Significant progress has been made in modelling such data. Parameter
and observation driven models described by Cox (1981) allow a discrete value
approach. Well known extensions of ARMA models to count data are: DARMA
and INARMA models of Jacobs and Lewis (1978) and techniques for Poisson
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GLM with an autoregressive latent process in the mean in Davis et al. (1999)
and Zeger (1988). Jung et al. (2006) compares various models for time series of
counts which can account for discreetness, overdispersion and serial correlation.
Zhu (2010) proposed a negative binomial INGARCH model applied to polio data.
Modelling polio data was also discussed in Zeger (1988).

The focus of this research are GARMA models, Bayesian methods,
transformations and applications. The motivation for our work comes from
the observation-driven model developed by Benjamin et al. (2003). The real
advantage of GARMA models is in providing an exact parametrization of
conditional distributions with the help of exponential family. Therefore, in GARMA
models, the likelihood can be explicitly expressed for any fixed set of parameter
values. Such models can also be used with a variety of time-dependent response
variables.

Important aspect of the Chapter 2 is the application of resampling techniques
to GARMA models. One of the advantages of the resampling procedures is to
improve the evaluation of the confidence intervals and coverage probabilities.
Resampling methods in time series context have significant advantage over the
classical methods based on asymptotic distributions. In resampling approach
confidence intervals are created directly from the sampling distributions of the
estimators. The role of resampling is to approximate such sampling distributions.
GARMA models are no exception to this rule and we provide both theoretical and
real data evidence for that.

The idea of resampling is based on approximating the sampling distribution
of an estimator θ̂ via an empirical counterpart based on replicates. In the
case of dependent data, one has to carefully introduce resampling techniques
while approximating a sampling distribution of θ̂. For a more elaborate study of
resampling techniques for nonstationary time series the reader is refereed e.g. to
Les̀kow and Synowiecki (2010).

There is an extensive research dedicated to resampling for independent data
structures. Efron (1979) introduced the method and presented fundamental
results using resampling techniques. Resampling methods for times series have
been discussed in the mongraph of in Lahiri (2003). In this context one has to
mention pioneering work of Bühlmann (2002), Politis (2003) and Härdle et al.
(2003) who have published significant results on resampling for dependent
data. More recently, results on seasonal and periodic time series resampling
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has been developed by Les̀kow and Synowiecki (2010), Dehay et al. (2014) and
Dudek et al. (2014a).

The Chapter 3 extends the work of Benjamin et al. (2003), giving rise to the
Bayesian approach on the generalized autoregressive moving average (GARMA)
model. This approach presents some gain in terms of estimation, that could be
more adequate using different loss functions. The use of Bayesian selection
criteria is also an import contribution from this article. Last but not least the
application of discrete models on important Brazilian real data providing a new
perspective on this field.

In the Chapter 4 we propose using Box-Cox transformations in order to be able
to describe our data with GARMA model. Therefore, de Andrade et al. (2016b)
proposed model is TGARMA (Transformed Generalized Autoregressive Moving
Average). The use of transformations have been shown a good alternative to
reduce these kind of problems. Hamasaki and Kim (2007) described a Box and
Cox power-transformation to confined and censored nonnormal responses in
regression. da Silva et al. (2011) proposed the use of Box-Cox transformation
and regression models to deal with fecal egg count data. Gillard (2012) presented
a study using Box-Cox family of transformations, the paper comments about
problems with asymmetry in the transformed data. Castillo and F.G. (2013)
commented about many fields where the Box-Cox transformation can be used,
and also proposed a method to improve the forecasting models. Ahmad et al.
(2015) combined Box-Cox and bootstrapping idea in one algorithm, the Box-Cox
is to ensure the data is normally distributed and bootstrap to deal with small and
limited sample size data.

The transformation parameter λ is estimated using the profile likelihood (PL).
Moreover, we assess the correctness of the choice of λ using bootstrap method.
This method provides confidence intervals for λ. The partial likelihood method was
introduced by Cox (1975) and is based entirely on the conditional distribution of
the current response, given past responses, and past covariates information and
functions thereof can be used for inference. Zhu and Ghodsi (2006) presented
a procedure to dimensionality selection maximizing a profile likelihood function.
Huang et al. (2013) proposed an efficient equation for estimating the index
parameter and unknown link function using adaptive profile-empirical-likelihood
inferences. Cole et al. (2014) provide a primer on maximum likelihood, Profile
Likelihood and Penalized Likelihood which have proven useful in epidemiologic
research.
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Bayesian computational methods based on Markov chain Monte Carlo
(MCMC) can be utilized to address the complexity of the profile likelihood. Thus,
our main contribution concerns inference under the Bayesian framework providing
MCMC procedures to evaluate the joint posterior distribution of model parameters.
de Andrade et al. (2016a) presented a Bayesian approach for GARMA models,
indicating advantages of using the Bayesian methods.

The Chapter 5 extends the TGARMA models, giving rise to the Bayesian
approach on the transformed generalized autoregressive moving average
(TGARMA) model. This approach presents some gain on the estimate, that
could be more adequate using different loss functions. A prior distribution on
the parameter λ add information of this parameter, also the posterior density
guarantee properties on the transformation parameter. The using of Bayesian
selection criterion is also an import gain on this article. Properties of MCMC
were used to improve the predictions and construct confidence intervals. Last
but certainly not least the application of Swedish fertility rates.

The remainder of this work is organized as follows. Chapter 2 defines
the GARMA model with discrete distributions and application of resampling
techniques to this class of models. The Bayesian approach on GARMA
models are presented in Chapter 3. The Chapter 4 the TGARMA (Transformed
Generalized Autoregressive Moving Average) is proposed. The Chapter 5
defines the Bayesian approach for the TGARMA (Transformed Generalized
Autoregressive Moving Average). Finally, Chapter 6 gives some concluding
remarks.
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CHAPTER

2

GARMA models and moving block
bootstrap

Abstract

Generalized autoregressive moving average (GARMA) models were devel-
oped to extend the univariate Gaussian ARMA time series. In particular, such
models can be applied to describe discrete time series. Our paper discusses the
Moving Block Bootstrap (MBB) to improve the inference for the parameters of the
GARMA model. We provide consistency theorem for MBB applied to GARMA
models. Real data related to morbidity caused by external causes considering
children younger than 1 year in São Paulo and hospitalizations caused by dengue
disease in Ribeirão Preto state of São Paulo in Brazil are analyzed using our
approach.

2.1 Generalized Autoregressive Moving Average (GARMA)

model

2.1.1 Model Definition

The GARMA model, introduced by Benjamin et al. (2003), specifies the
conditional distribution of each observation yt, for t = 1, . . . , n given the previous

5



2.1 Generalized Autoregressive Moving Average (GARMA) model

information set Ft−1 = (y1, . . . , yt−1, µ1, . . . , µt−1). The conditional density belongs
to exponential family and is given by

f(yt|Ft−1) = exp

(
ytαt − b(αt)

ϕ
+ d(yt, ϕ)

)
, (2.1)

where αt and ϕ are canonical and scale parameters, respectively. Moreover b(·)
and d(·) are specific functions that define the particular exponential family. The
conditional mean and conditional variance of yt given Ft−1 are represented as:

µt = b′(αt) = E(yt|Ft−1) (2.2)
V ar(yt|Ft−1) = ϕb′′(αt),

with t = 1, . . . , n and y1, . . ., yn are observed.

Following the Generalized Linear Models (GLM) approach the parameter µt is
related to the predictor ηt by a twice differentiable one-to-one monotonic function
g, called link function. In general, we can also include the set of covariates
x into our model. Moreover, we can we add an additional component allowing
autoregressive moving average terms to be included. In such a case our model
will have a form:

g(µt) = ηt = x′tβ +

p∑
j=1

φj{g(yt−j)− x′t−jβ}+

q∑
j=1

θj{g(yt−j)− ηt−j}. (2.3)

The parameters p and q are identified using the classical BIC or AIC criteria.
For more information the reader is refereed to Kedem and Fokianos (2002) and Li
(1994).

The GARMA(p,q) model is defined by the equations (2.1) and (2.3). For certain
functions g, it may be necessary to replace yt with ynew in (2.3) to avoid the
non-existence of g(yt) for certain values of yt. The form ynew depends on the
particular function g and is defined for specific cases later.

In our approach we will not include covariates. We will consider three important
discrete GARMA models: Poisson, binomial and negative binomial. We will
present each one with a density and a respective predictor. The equations (2.2)
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2.1 Generalized Autoregressive Moving Average (GARMA) model

are important to relate the interest exponential family distribution to the predictor.

2.1.2 Poisson GARMA model

Suppose that yt|Ft−1 follow Poisson distribution with mean µt, thus

f(yt|Ft−1) = exp {yt log(µt)− µt − log(yt!)} . (2.4)

Here, Yt|Ft−1 has a distribution in the exponential family with ϕ = 1 , αt =
log(µt) , b(αt) = exp(αt), c(yt, ϕ) = − log(yt!) and ν(µt) = µt.

The canonical link function for this model is the logarithmic function, thus the
linear predictor is given by

log(µt) = β0 +

p∑
j=1

φj{log ynewt−j }+

q∑
j=1

θj{log(ynewt−j )− log(µt−j)}. (2.5)

In the equation above ynewt−j = max(yt−j, c), 0 < c < 1. In sequel we will drop the
superscript ′′new′′ understanding that we truncate yt from below we needed. The
Poisson GARMA model is defined by the equations (2.4) and (2.5).

2.1.3 Binomial GARMA model

Suppose that yt|Ft−1 follows a binomial distribution with the mean µt, thus

f(yt|Ft−1) = exp

{
yt log

(
µt

m− µt

)
+m log

(
m− µt

m

)
+ log

(
Γ(m+ 1)

Γ(yt + 1)Γ(m− yt + 1)

)}
. (2.6)

The canonical link function for this model is the logarithmic function. The linear
predictor is given by

log

(
µt

m− µt

)
= β0 +

p∑
j=1

φj{log yt−j}+

q∑
j=1

θj{log(yt−j)− log(µt−j)}, (2.7)

where m known.
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2.1 Generalized Autoregressive Moving Average (GARMA) model

2.1.4 Negative Binomial

Let yt a time series such that, yt|Ft−1 ∼ NB(k, µt), thus

f(yt|Ft−1) = exp

(
yt log

{
µt

µt + k

}
+ k log

{
k

µt + k

}
+ log

{
Γ(k + yt)

Γ(yt + 1)Γ(k)

})
,

(2.8)
that belongs to exponential family with k known

The link function for this model is the logarithmic function

log

(
µt

µt + k

)
= β0 +

p∑
j=1

φj{log yt−j}+

q∑
j=1

θj{log(yt−j)− log(µt−j)}, (2.9)

2.1.5 Seasonal Component

The seasonal components of the model will be represented as βS1 and βS2,
using functions cos and sin respectively. These two terms will be included in the
predictor, thus

log(µt) = β0 + βS1 cos

(
2πt

12

)
+ βS2 sin

(
2πt

12

)
+

+

p∑
j=1

φj{log yt−j}+

q∑
j=1

θj{log(yt−j)− log(µt−j)}. (2.10)

The next subsection contains the Maximum Likelihood Estimation MLE for the
GARMA models.

2.1.6 Maximum Likelihood Estimation and Inference

The GARMA model-fitting procedure described herein performs the maximum
likelihood estimation (see Benjamin et al. (2003)). The estimation method is
based on the standard GLM.
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2.1 Generalized Autoregressive Moving Average (GARMA) model

Let {yt} be a time series where the equations (2.1) and (2.3) are satisfied.
The parameter vector is γ′ = (β′, φ′, θ′), where β = (β0 . . . βm)′, φ = (φ1 . . . φp)

′

and also θ = (θ1 . . . θq)
′. For the estimation procedure the approximated likelihood

function in the r first observations is used. F r = {y1 . . . yr}, where r = max(p, q).
The partial likelihood function can be constructed considering that yt−1 and yt are
conditionally independent. Thus

L(β, φ, θ|Fn) ∝
n∏

t=r+1

f(yt|Ft)

∝
n∏

t=r+1

exp

{
ytg(µt)− b(g−1(µt))

ϕ
+ c(yt, ϕ)

}
, (2.11)

where g(µt) is the link function given by

g(µt) = x′tβ +

p∑
j=1

φj{g(yt−j)− x′t−j}+

q∑
j=1

θj{g(yt−j)− g(µt−j)}. (2.12)

In the above equations t = r+ 1, . . . , n. The equations (2.11) and (2.12) do not
have a closed form solution therefore a numerical optimization routine will be used.

The GARMA models present interesting asymptotic characteristics, see
Benjamin et al. (2003). This theory works well to big data sets, however in discrete
real data is common deal with small data sets. The resampling methods can be a
solution to asymptotic problems.

2.1.7 Predictions with GARMA models

Prediction plays a key role in time series analysis. The estimate η̂t, for t =
r + 1, . . . , n are obtained by

η̂t = xtβ̂ +

p∑
j=1

φ̂j{g(yt−j)− xt−jβ̂}+

q∑
j=1

θ̂j{g(yt−j)− η̂t−j} (2.13)

Using this equation (2.13), the mean of the process is given by µ̂t = g−1(η̂t),
for t = r + 1, . . . , n.

The prediction of futures values yt+h, for h > 0 is given by ŷn+h = E(Yn+h|Fn+1),

9



2.1 Generalized Autoregressive Moving Average (GARMA) model

where the information until n were known. And also

Fn+1 = {xn+1, xn, . . . , x1, yn, yn−1, . . . , y1, µn, µn−1, . . . , µ1}.

ŷt+h is called prediction with origin n and horizon h. The prediction for GARMA
models is made recursively by the linear predictor of each model. Using the MLE
estimate can be obtained

η̂n+1 = xn+1β̂ +

p∑
j=1

φ̂j{g(ŷn−j+1)− xn−j+1β̂}+

q∑
j=1

θ̂j{g(ŷn−j+1)− η̂n−j+1}. (2.14)

Thus the prediction 1 step ahead (h = 1) is calculated by ŷn+1 = g−1(η̂n+1) =
µn+1, where {

ŷt−j+h = yt−j+h, h ≤ j
ŷt−j+h = g−1(η̂t−j+h), h > j

For h > 1

η̂n+h = xn+hβ̂ +

p∑
j=1

φ̂j{g(ŷn−j+h)− xn−j+hβ̂}+

q∑
j=1

θ̂j{g(ŷn−j+h)− η̂n−j+h}, (2.15)

Confidence intervals for predictions present the idea of more information about
the forecast values. In GARMA models, the predictive distribution does not follow
a Gaussian density, thus, the usual method based on the asymptotic confidence
intervals, evaluated with the unconditional variance, are not the most appropriate.
Therefore, the confidence intervals for predictions will be evaluated using quantiles
of the estimated distribution. The Algorithm used to calculate the CI(1−δ) for
predictions is the follow:

Confidence Interval Algorithm

STEP 1 Let a sequence of forecast values ŷt+h for h = 1, . . . , H.

STEP 2 Take h = 1, k = 0, y(0)
t+h = 0, S(0)

t+h = 0 and also initiate LB = 0, UB=0.

STEP 3 Using the initial values evaluate the equation:

10



2.1 Generalized Autoregressive Moving Average (GARMA) model

f(y
(k)
t+h|β

(j),Φ(j),Θ(j), F̂t+h) = exp

(
y

(k)
t+hα

(j)
t+h − b(α

(j)
t+h)

ϕ
+ d(y

(k)
t+h, ϕ)

)
,

(2.16)
and also,

p̂(y
(k)
t+h|F̂t+h) =

1

Q

Q∑
j=1

f(y
(k)
t+h|β

(j),Φ(j),Θ(j), F̂t+h). (2.17)

STEP 4 Using p̂(y(k)
t+h|F̂t+h) compute S(k+1)

t+h with

S
(k+1)
t+h = S

(k)
t+h + p̂(y

(k)
t+h|F̂t+h) (2.18)

STEP 5 If LB = 0 and S(k+1)
t+h ≥ δ,→ yt+h,δ = y

(k)
t+h and LB = 1.

STEP 6 If UB = 0 and S(k+1)
t+h ≤ (1− δ),→ yt+h,(1−δ) = y

(k)
t+h and UB = 1.

STEP 7 If LB = 0 or UB = 0, take k = k + 1 and y
(k)
t+h = y

(k−1)
t+h + 1, repeat steps 3

and 4 until LB = 1 and UB = 1 .

The percentiles 100δ% and 100(1− δ)% are represented by yt+h,δ and yt+h,(1−δ)
respectively, and given by:

yt+h,δ = max

{
y

(r)
t+h

∣∣ r∑
k=1

p̂(y
(k)
t+h

∣∣F̂t+h) ≤ δ

}
. (2.19)

yt+h,(1−δ) = min

{
y

(r)
t+h

∣∣ r∑
k=1

p̂(y
(k)
t+h

∣∣F̂t+h) ≥ (1− δ)

}
. (2.20)

The confidence interval 100(1− δ)% for the predictions is given by:

CI(1−δ) =
[
yt+h,δ; yt+h,(1−δ)

]
Due to the results of Benjamin et al. (2003) the asymptotic distribution of the

partial likelihood estimator is known. However, the information matrix of the
corresponding asymptotic normal law is quite difficult to estimate. This gives us
a strong motivation to consider resampling techniques in the GARMA models.
As it also known, resampling techniques provide a better alternative to construct

11



2.1 Generalized Autoregressive Moving Average (GARMA) model

confidence intervals in the time series field. The next section introduces the
concept of bootstrap applied in GARMA models.

2.2 Resampling methods

Resampling methods are based on recalculating the value of the estimator on
samples that are drawn from the initial sample in a special way. In such a way
we obtain an approximation of the distribution of the investigated estimator. This
technique in the time series context is computationally intense as one has to many
times recalculate complicated algorithms. Therefore, fast computing is a key.

Since Efron (1979) seminal paper, bootstrap algorithms have generated
considerable attention. Two main characteristics explain their popularity. Due
to bootstrap approach we are able to approximate the sampling distribution of an
estimator more effectively than using asymptotic counterparts. This is especially
true in time series context, where frequently the asymptotic distribution may
have parameters that are not estimable in practice. Resampling methods also
allow computing valid asymptotic quantiles of the limiting distribution in different
situations, even when the limiting distribution is unknown. One has to bear in
mind, however, that before using a given resampling routine we have to prove its
consistency. Consistency of resampling means that for increasing sample size
the quantiles produced by resampling converge to quantiles of the corresponding
asymptotic distribution.

2.2.1 Moving Block Bootstrap

The MBB algorithm was intensively studied, the algorithm and many examples
can be found in the mongraph of Lahiri (2003). We will present the assumptions
to guarantee the consistency of the MBB applied on the GARMA models.

Theorem 4.1 Let the following assumptions be fulfilled:

A1 {yt} time series that follows GARMA model (2.1) and (2.3) with parameters
γ = (β, φ, θ)

A2 {yt} fulfills the α-mixing condition with
∑∞

τ=1 α(τ) < ∞. Moreover the
following moment continuity condition is fulfilled

(2 + δ moment condition): There exist δ > 0, r ∈ [0, 1 + δ) and nonnegative
constants d1 and d2 such that considering (2.3):

12



2.2 Resampling methods

E
[
|Yt − µt|2+δ

∣∣∣µt] ≤ d1|µt|r + d2

Under assumptions (A1) and (A2) the MBB resampling method is consistent.
This means that

sup
x
|Pr∗{

√
n(γ̂∗n − γ̂n) ≤ x} − Pr{

√
n(γ̂n − γn) ≤ x| P−→ 0 (2.21)

In the formula above the inequalities are understood coordinatewise.

Remark: Due to the assumptions of GARMA models we have the existence of
all moments. Therefore, the requirement on the rate of convergence of mixing
function is weaker than in a general stationary case. The conditional second
moment continuity condition is fulfilled e.g. for Poisson GARMA models and
binomial GARMA models with fixed m. For general discussion of consistency
of conditions for time series the reader is refereed to Dudek et al. (2014b) or to
mongraph of Lahiri (2003).

Proof of the Theorem: We start our proof by noting that any time series {yt}
fulfilling the conditions (A1) and (A2) of GARMA model is stationary in the strict
sense. See Woodard et al. (2011) Theorem 14, page 815. Strict stationary of
{yt} together with mixing condition

∑∞
τ=1 α(τ) < ∞ provides for consistency of

MBQRB procedure: see Lahiri (2003) and also Dudek et al. (2014b) for detailed
arguments.

2.3 Simulation Study

The aim of this section is to validate the bootstrap confidence intervals using
simulation methods. We present one figure and one table for each model,
the figure presents the estimated densities with a Monte Carlo simulation and
bootstrap replication.

The objective of this comparison in to show that the bootstrap replicates,
present similar densities than the Monte Carlo study. In other words, the Figures
2.1, 2.2 and 2.3 show that in our results the bootstrap densities clearly replicate
the original density of the estimates. This result motivate the use of the bootstrap
method to withdraw more information about the parameter of interest.
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2.3 Simulation Study

Our study also presents the Tables 2.1, 2.2 and 2.3 where we get the results
about the performance of the coverage using Moving Block Bootstrap (MBB) and
asymptotic methods. We used 1000 bootstraps replications, 1000 different series.
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Figure 2.1: Estimated densities with Monte Carlo and bootstrap negative binomial

Table 2.1: Negative Binomial GARMA(1,1) Confidence intervals n=100

Parameter Bootstrap Inferior Rejection Bootstrap Coverage Bootstrap Superior Rejection
β0 01.20% 98.80% 00.00%
φ1 00.00% 99.20% 00.80%
θ1 00.40% 99.60% 00.00%

Parameter Asymptotic Inferior Rejection Asymptotic Coverage Asymptotic Superior Rejection
β0 06.40% 89.70% 03.90%
φ1 03.80% 89.80% 06.40%
θ1 06.70% 88.10% 05.20%
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Figure 2.2: Estimated densities with Monte Carlo and bootstrap binomial

Table 2.2: Binomial GARMA(1,1) Confidence intervals n=100

Parameter Bootstrap Inferior Rejection Bootstrap Coverage Bootstrap Superior Rejection
β0 05.30% 94.70% 00.00%
φ1 00.00% 95.40% 04.60%
θ1 00.10% 99.90% 00.00%

Parameter Asymptotic Inferior Rejection Asymptotic Coverage Asymptotic Superior Rejection
β0 09.10% 90.00% 00.90%
φ1 00.90% 90.10% 09.00%
θ1 04.40% 90.60% 05.00%
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Figure 2.3: Estimated densities with Monte Carlo and bootstrap Poisson

The Tables 2.1, 2.2 and 2.3 present the 95% coverage obtained using two
methods. The bootstrap coverage represents the 2.5% and 97.5% values of
the bootstrap replicates considering each parameter. The asymptotic coverage
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2.3 Simulation Study

present the values of 95% coverage using the Gaussian confidence intervals, we
used the inverse of Fisher matrix to obtain the variances of the estimates and
multiplied by −1.96 and 1.96 that represent the respective Gaussian value for 95%.

The results of Tables 2.1, 2.2 and 2.3 clearly show the coverage obtained
using the bootstrap confidence interval is higher than the coverage obtained
using asymptotic confidence intervals. The results were verified for the binomial,
negative binomial and Poisson GARMA models, which motivate the using of
bootstrap methods to improve the confidence intervals.

We also present the Figures 2.1, 2.2 and 2.3 showing that the bootstrap
replicates densities, in our results, are close than the Monte Carlo densities. In
other words, the bootstrap method replicate the origina density of the parameters
in the GARMA models, thus the bootstrap confidence intervals should represent
a better option than the asymptotic ones.

Table 2.3: Poisson GARMA(1,1) Confidence intervals n=100

Parameter Bootstrap Inferior Rejection Bootstrap Coverage Bootstrap Superior Rejection
β0 00.10% 99.30% 00.60%
φ1 00.60% 99.40% 00.00%
θ1 00.00% 99.60% 00.40%

Parameter Asymptotic Inferior Rejection Asymptotic Coverage Asymptotic Superior Rejection
β0 05.00% 87.40% 07.60%
φ1 09.70% 82.00% 08.30%
θ1 10.20% 80.80% 09.00%

We can observe the clear improvement of the coverage using the MBB method.
The strong asymmetry present on GARMA parameters impairs the quality of the
asymptotic coverage. However, the MBB calibrates the confidence intervals to the
asymmetric behavior, providing better estimates. There is a extensively discussion
about the length of the block. We carried on different sizes of block, and also the
random size using the geometric function. In our results we obtained better results
following the Lahiri (2003) assumptions about the block length to be between n

1
4 ≤

b ≤ n
1
2 .

2.4 Application to Real Data Sets

We analyze 2 different real data sets. One considering the number of
hospitalizations and the second considering the Morbidity.
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2.4 Application to Real Data Sets

2.4.1 Dengue Fever Real Data Analysis

We analyze the number of hospitalizations caused by dengue in Ribeirão Preto
(São Paulo state) between January 2005 to December 2015.

Dengue disease is transmitted by several species of mosquito within the genus
Aedes, especially A.aegypti. The Aedes mosquito is easily identifiable by the
distinctive black and white stripes on its body. It prefers to breed in a clean and
stagnant water. The summer months have higher volumes of rain, thus more
clean and stagnant water is avaible. For Brazil this disease poses a significant
public health problem. Therefore, analyzing this data helps healthcare institutions
to prepare for possible outbreaks of dengue fever.
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Figure 2.4: Graph of Number of Hospitalizations caused by dengue
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Figure 2.5: ACF and PACF for number of hospitalizations caused by dengue
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From Figure 2.4 and Figure 2.5 one clearly sees the seasonal component in the
data. Therefore, we will add to the model two seasonal components, considering
the period of 12 months. These components improve the model, linking the
seasonal behavior to the number of hospitalizations caused by dengue.

The Table 2.4 presented the values of BIC and AIC from different models and
orders.

Table 2.4: Model Selection Criteria using Number of Hospitalizations caused by dengue

Poisson GARMA(1,1) GARMA(1,2) GARMA(2,1) GARMA(2,2)
BIC 65263.46 68860.81 65784.61 55854.89
AIC 65254.81 68849.27 65773.08 55840.47

Binomial GARMA(1,1) GARMA(1,2) GARMA(2,1) GARMA(2,2)
BIC 94143.41 96430.65 96460.43 80731.63
AIC 94134.76 96419.12 96448.87 80717.21

Negative Binomial GARMA(1,1) GARMA(1,2) GARMA(2,1) GARMA(2,2)
BIC 3127.27 4260.31 4107.65 3135.64
AIC 3118.62 4248.78 4096.12 3121.22

The extra parameter k was selected trying different values and analyzing
the likelihood value, 15 was the chosen value. The Moving Average parameter
θ1 present the 0 inside the confidence intervals, thus we go forward with the
GARMA(1,0) model with negative binomial. The Table 2.5 present the MLE
estimate and the bootstrap confidence intervals in the GARMA model with the
seasonality correction.

Table 2.5: Estimates of Hospitalizations caused by dengue series with GARMA(1,0) Negative
Binomial

Parameter MLE estimate Lower Bootstrap Bound Upper Bootstrap Bound
β0 0.5517 0.5071 2.7321
βS1 0.6369 0.4288 0.9836
βS2

0.5763 0.4952 1.2413
φ1 0.9269 0.5787 0.9423

We evaluated the MLE results: CIβ0 = (0.3492, 2.7543), CIβS1 =
(0.3547, 0.9192), CIβS2 = (0.5055, 1.6471) and CIφ1 = (0.4911, 0.9628). Comparing
with Table 2.5 we can clearly observe that the proposed methodology improved
considerably the length of the confidence intervals. The Figure 2.6 presents the
graph of estimated densities of the bootstrap samples. All the normality test reject
the normality assumption of the samples.
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Figure 2.6: Graph of bootstrap densities of each parameter

The Figure 2.7 presents a quantile plot with the true values on x axis and the
estimated values on y axis. The line represents the perfect model with real values
on axis x and y.
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Figure 2.7: Adjusted values versus real values of Number of Hospitalizations caused by dengue

The residual analysis is presented on Figure 2.8 and indicates that the
residuals are Non-correlated and Gaussian distributed with Mean=-0.1718 and
Sd=1.8947. The Shapiro-Francia test present a p-value of 0.2325 and the
Anderson-Darling test present a value 0.3424 which confirm the Gaussian
supposition, see Conover (1971).
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Figure 2.8: Residual Analysis of Hospitalizations caused by dengue

The 8 last values of the series were removed and fitted the model without them.
Prediction one step ahead for 8 values was evaluated, thus the predicted value be
compared with the true value.
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Figure 2.9: Predictions with GARMA(1,0) Negative Binomial model with Hospitalizations caused
by dengue series

The predictions are close to the real values, in some cases bigger than the
real ones, in other lower than the real one, which indicates good predictions as
we can see on Figure 2.9. The confidence intervals for the predictions contain all
the real values. The criterion MAPE, see Chen and Yang (2004), was calculated
using the predictions given on Figure 2.9. The value was 30.17% which confirmed
good predictions.
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2.4 Application to Real Data Sets

2.4.2 Monthly Morbidity in São Paulo

We analyze the morbidity caused by external causes considering children
younger than 1 year in São Paulo - Brazil. Morbidity represents the incidence or
prevalence of a disease or of all diseases, we took observations between January
of 1998 to December of 2015, containing 216 observations as we can see in
Figure 2.10.
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Figure 2.10: Graph of Morbidity in São Paulo

Figure 2.11 presents the autocorrelation function and the partial autocorrela-
tion function of Morbidity in São Paulo.
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Figure 2.11: ACF and PACF for Morbidity in São Paulo

The morbidity represents considerable part of public spending in Brazil.
The main causes of morbidity are aggressions and transportation accidents,
considering children younger than 1 year in São Paulo we can analyze this issue
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2.4 Application to Real Data Sets

focussed in one of the most important states in Brazil.

We presented in this section three real data sets that will be adjusted in this
work. We selected the first and the third one without seasonal component, that
allows the using of the traditional moving block bootstrap. While, the second real
data about dengue fever, presented seasonal component, requiring the use of
periodic moving block bootstrap Les̀kow and Synowiecki (2010).

The Table 2.6 presented the values of BIC and AIC from different models and
orders.

Table 2.6: Model Selection Criteria using Monthly Morbidity in São Paulo

Poisson GARMA(1,1) GARMA(1,2) GARMA(2,1) GARMA(2,2)
BIC 3953.91 4425.47 4391.69 4384.94
AIC 3943.79 4411.97 4378.19 4368.07

Binomial GARMA(1,1) GARMA(1,2) GARMA(2,1) GARMA(2,2)
BIC 4997.76 5095.27 5212.33 5075.65
AIC 4987.64 5081.77 5198.83 5058.77

Negative Binomial GARMA(1,1) GARMA(1,2) GARMA(2,1) GARMA(2,2)
BIC 3822.07 3790.88 3784.90 3791.30
AIC 3811.95 3777.38 3771.40 3777.91

The extra parameter k was selected trying different values and analyzing
the likelihood value, 50 was the chosen value. The Moving Average parameter
θ1 also present the 0 inside the confidence intervals, thus we go forward
with the GARMA(2,0) model with negative binomial. Table 2.7 present the
MLE estimates of the model GARMA(2,0) negative binomial with the respective
bootstrap confidence intervals for each parameter.

Table 2.7: Estimates of Monthly Morbidity in São Paulo series with GARMA(2,0) negative binomial

Parameter MLE estimate Lower Bootstrap Bound Upper Bootstrap Bound
β0 0.8150 0.6958 2.5216
φ1 0.5620 0.3489 0.6764
φ2 0.2743 0.0271 0.4110

We evaluated the MLE confidence intervals: CIβ0 = (−0.0561, 1.6863), CIφ1 =
(0.3803, 0.7437) and CIφ2 = (0.0909, 0.4578) Comparing with Table 2.7 we can
clearly observe that the proposed methodology improved considerably the length
of the confidence intervals. The Figure 2.12 presents the graph of estimated
densities of the bootstrap samples. All the normality test reject the normality
assumption of the samples.
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Figure 2.12: Graph of bootstrap densities of each parameter

The Figure 2.13 presents a quantile plot with the true values on x axis and the
estimated values on y axis. The line represents the perfect model with real values
on axis x and y.
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Figure 2.13: Adjusted values versus real values of Monthly Morbidity in São Paulo

The residual analysis presented on Figure 2.14 indicates that the residuals are
Non-correlated and Gaussian distributed with Mean=0.0480 and Sd=0.7473. The
Kolmogorov-Smirnov test present a p-value of 0.7329 which confirm the Gaussian
supposition, see Conover (1971).
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Figure 2.14: Residual Analysis of Monthly Morbidity in São Paulo

The 8 last values of the series were removed and fitted the model without them.
Prediction one step ahead for 8 values was evaluated, thus the predicted value be
compared with the true value.
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Figure 2.15: Predictions with GARMA(2,0) negative binomial model with Monthly Morbidity in
São Paulo

The predictions are close to the real values, in some cases bigger than the real
ones, in other lower than the real one, which indicates good predictions as we can
see on Figure 2.15. The confidence intervals for the predictions contain all the real
values. The criterion MAPE, see Chen and Yang (2004), was calculated using the
predictions given on Figure 2.15. The value was 10.20% which confirmed good
predictions.
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CHAPTER

3

Bayesian GARMA Models for Count
Data

Abstract

Generalized autoregressive moving average (GARMA) models are a class of
models that were developed for extending the univariate Gaussian ARMA time
series model to a flexible observation-driven model for non-Gaussian time series
data. This work presents Bayesian approach for GARMA models with Poisson,
binomial and negative binomial distributions. A simulation study was carried out to
investigate the performance of Bayesian estimation and Bayesian model selection
criteria. Also three real datasets were analysed using the Bayesian approach on
GARMA models.

3.1 Generalized Autoregressive Moving Average Model

The GARMA model, introduced by Benjamin et al. (2003), assumes that
the conditional distribution of each observation yt, for t = 1, . . . , n given the
previous information set Ft−1 = (x1, . . . , xt−1, y1, . . . , yt−1, µ1, . . . , µt−1) belongs to
the exponential family. The conditional density is given by,

f(yt|Ft−1) = exp

(
ytαt − b(αt)

ϕ
+ d(yt, ϕ)

)
, (3.1)
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3.1 Generalized Autoregressive Moving Average Model

where αt e ϕ are conical and scale parameter respectively, with b(·) e d(·) being
specific functions that define the particular exponential family. The conditional
mean and conditional variance of yt given Ft−1 is represented by the terms µt =
E(yt|Ft−1) = b′(αt) and V ar(yt|Ft−1) = ϕb′′(αt), with t = 1, . . . , n.

Just as in Generalized Linear Models (GLM, McCullagh and Nelder (1989)), µt,
is related to the linear predictor, ηt, by a twice-differentiable one-to-one monotonic
link function g(·). The linear predictor for the GARMA model is given by,

g(µt) = ηt = x′tβ +

p∑
j=1

φj{g(yt−j)− x′t−jβ}+

q∑
j=1

θj{g(yt−j)− ηt−j}. (3.2)

The GARMA(p,q) model is defined by equations (3.1) and (3.2). For certain
functions g, it may be necessary to replace yt with y∗t in (3.2) to avoid the non-
existence of g(yt) for certain values of yt. The form y∗t depends on the particular
function g(.) and is defined for specific cases later.

The definition of GARMA model allows to consider the adjust of exogenous
variables x′t however in this work the term x′tβ will be considered as a constant β0.
For count data time series we will consider the following distributions.

3.1.1 Poisson GARMA model

Suppose that yt|Ft−1 follows a Poisson distribution with mean µt. Then,

f(yt|Ft−1) = exp {yt log(µt)− µt − log(yt!)} . (3.3)

and Yt|Ft−1 has distribution in the exponential family with ϕ = 1, αt = log(µt),
b(αt) = exp(αt), c(yt, ϕ) = − log(yt!) and ν(µt) = µt. The canonical link function for
this model is the logarithmic function, so that the linear predictor is given by,

log(µt) = β0 +

p∑
j=1

φj{log y∗t−j}+

q∑
j=1

θj{log(y∗t−j)− log(µt−j)}, (3.4)

Where y∗t−j = max(yt−j, c), 0 < c < 1. The Poisson GARMA model is defined by
equations (3.3) and (3.5).

3.1.2 Binomial GARMA model

Suppose that yt|Ft−1 follows a binomial distribution with mean µt. Then,

f(yt|Ft−1) = exp

{
yt log

(
µt

m− µt

)
+m log

(
m− µt

m

)
+ log

(
Γ(m+ 1)

Γ(yt + 1)Γ(m− yt + 1)

)}
.
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3.1 Generalized Autoregressive Moving Average Model

The canonical link function for this model is the logarithmic function. The linear
predictor is given by,

log

(
µt

m− µt

)
= β0 +

p∑
j=1

φj{log y∗t−j}+

q∑
j=1

θj{log(y∗t−j)− log(µt−j)}, (3.5)

with y∗t−j = max(yt−j, c), 0 < c < 1, and m is known.

3.1.3 Negative Binomial

Let yt a time series such that yt|Ft−1 ∼ NB(k, µt). Then,

f(yt|Ft−1) = exp

(
k log

{
k

µt + k

}
+ yt log

{
µt

µt + k

}
+ log

{
Γ(k + yt)

Γ(yt + 1)Γ(k)

})
,

which belongs to the exponential family with k known. The link function for this
model is the logarithmic function

log

(
k

µt + k

)
= β0 +

p∑
j=1

φj{log y∗t−j}+

q∑
j=1

θj{log(y∗t−j)− log(µt−j)},

with y∗t−j = max(yt−j, c), 0 < c < 1.

3.2 Bayesian Approach on GARMA Models

3.2.1 Defining the Prior Densities

Using the logarithmic in link function to guarantee positive values for any values
of the vectors β = (β1, . . . , βm), Φ = (φ1, . . . , φp) and Θ = (θ1, . . . , θq).β, φi. Thus,
a multivariate Gaussian prior will be proposed for each parameter.

β ∼ N(µ0, σ
2
0I0),

Φ ∼ N(µ1, σ
2
1I1)

Θ ∼ N(µ2, σ
2
2I2)

where µ0,µ1,µ1 are vectors with length m, p and q respectively, σ2
0, σ2

1 and σ2
1

represent the prior variance and I0, I1 and I2 are m×m, p× p and q × q identity
matrices respectively. The construction of the multivariate Gaussian depends on
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3.2 Bayesian Approach on GARMA Models

hyper parameters, when there is no prior knowledge on these parameters it can
be considered a vary large variance making the prior densities flats. The partial
likelihood function for GARMA models can be constructed as follows

L(β,Φ,Θ|Y ) ∝
n∏

t=r+1

f(yt|Ft−1)

∝
n∏

t=r+1

exp

(
ytαt − b(αt)

ϕ
+ d(yt, ϕ)

)
,

where αt = g(µt), which represent the link function given by

g(µt) = x′tβ +

p∑
j=1

φj{g(y∗t−j)− x′t−j}+

q∑
j=1

θj{g(y∗t−j)− g(µt−j)},

for all t = r + 1, . . . , n.

The posterior density is obtained combining the likelihood function with the
prior densities. Let the vector Y = (yt, yt−1, . . . , y1, xt, xt−1, . . . , x1, . . . ) represent
the necessary information to construct the likelihood function. The posterior
density is then given by,

π(β,Φ,Θ|Y) ∝ L(β,Φ,Θ|Y)π0(β,Φ,Θ). (3.6)

However, the joint posterior density of parameters in the GARMA models can
not be obtained in closed form. Therefore, Markov chain Monte Carlo (MCMC)
sampling strategies will be employed for obtaining samples from this joint posterior
distribution. In particular, we use a Metropolis-Hastings algorithm to yield the
required realisations. We adopt a sampling scheme where the parameters are
updated as o single block and at each iteration we generate new values from a
multivariate normal distribution centred around the maximum likelihood estimates
with a variance-covariance proposal matrix given by the inverse Hessian evaluated
at the posterior mode.

3.2.2 Bayesian prediction for GARMA models

Important aspect of our work is the Bayesian approach on GARMA models,
furthermore forecasting futures values. The Bayesian model defined by the
equation (3.6) present posterior information obtained via combination of the
likelihood function and the prior densities. The goal of forecasting is predict futures
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3.2 Bayesian Approach on GARMA Models

values of the information yt+h, h ≥ 1, when all the information available is until time
t. To evaluate this forecasting is necessary to find the predictive density function
p(yt+h|Y ).

Denoting the information set F̂t+h = (x̂t+h, . . . , xt, xt−1, . . . , ŷt+h−1, . . . , yt,
yt−1, . . . µ̂t+h−1,. . . , µt, µt−1, . . . ), where ŷt+h−i = yt+h−i, if h ≤ i, else ŷt+h−i =

E{yt+h−i|F̂t+h−i}, i = 1, 2, . . . h + 1. The general idea is that F̂t+h contains all the
data observed until the time t, for the future time t + h, h ≥ 1, the set F̂t+h is
completed with forecasts of necessary information to estimate yt+h. Starting with,

f(yt+h|β,Φ,Θ, F̂t+h) = exp

(
yt+hαt+h − b(αt+h)

ϕ
+ d(yt+h, ϕ)

)
, (3.7)

The conditional mean and variance of yt+h given F̂t+h is represented by the
terms µ̂t+h = E(yt+h|F̂t+h) = b′(αt+h) and V ar(yt+h|Ft+h) = ϕb′′(αt+h). The µt+h,
is related to the predictor, ηt+h, by a twice-differentiable one-to-one monotonic link
function g(·). The linear predictor for the GARMA model is given by,

g(µt+h) = ηt+h = x̂′t+hβ +

p∑
j=1

φj{g(ŷt+h−j)− x̂′t+h−jβ}+

q∑
j=1

θj{g(ŷt+h−j)− η̂t+h−j}.

(3.8)

With the equation (3.7) and posterior density (3.6), the predictive density for
yt+h can be written as,

p(yt+h|F̂t+h) =

∫
{β,Φ,Θ}∈Ω

f(yt+h|β,Φ,Θ, F̂t+h)π(β,Φ,Θ|Y )dβdΦdΘ.

The aim is determine the predictive density using the MCMC algorithm, thus

p̂(yt+h|F̂t+h) =
1

Q

Q∑
j=1

f(yt+h|β(j),Φ(j),Θ(j), F̂t+h). (3.9)

Given the predictive density, the next step is to evaluate the prediction
E(yt+h|F̂t+h) = ŷt+h.

E(yt+h|F̂t+h) =

∫
yt+h∈R

yt+hp(yt+h|F̂t+h)dyt+h. (3.10)
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3.2 Bayesian Approach on GARMA Models

Substituting the equation (3.9) the equation (3.10) can be rewritten by,

E(yt+h|F̂t+h) =∫
yt+h∈R

yt+h

[∫
{β,Φ,Θ}∈Ω

f(yt+h|β,Φ,Θ, F̂t+h)π(β,Φ,Θ|Y )dβdΦdΘ

]
dyt+h.

Using properties of integer, we can rewrite (3.11) as,

E(yt+h|F̂t+h) =∫
{β,Φ,Θ}∈Ω

[∫
yt+h∈R

yt+hf(yt+h|β,Φ,Θ, F̂t+h)dyt+h

]
π(β,Φ,Θ|Y )dβdΦdΘ.

The equation (3.11) represent

E(yt+h|F̂t+h) =

∫
{β,Φ,Θ}∈Ω

[
E(yt+h|β,Φ,Θ, F̂t+h)

]
π(β,Φ,Θ|Y )dβdΦdΘ. (3.11)

Denoting by µt+h(β,Φ,Θ, F̂t+h) = E(yt+h|β,Φ,Θ, F̂t+h). Hence, using the
MCMC vector (β(j),Φ(j),Θ(j)), j = 1, 2, . . . , Q, the E(yt+h|F̂t+h) can be estimated
by

ŷt+h =
1

Q

Q∑
k=1

µt+h(β
(k),Φ(k),Θ(k), F̂t+h), (3.12)

where

g(µ
(k)
t+h) = x̂′t+hβ

(k) +

p∑
j=1

φ
(k)
j {g(ŷt+h−j)− x̂′t+h−jβ(k)}+

q∑
j=1

θ
(k)
j {g(ŷt+h−j)− η̂(k)

t+h−j}.

(3.13)

Credible intervals for ŷt+h can be calculated using the 100α%, and 100(1 −
α)% quantiles of the MCMC sample µ

(k)
t+h, with k = 1, . . . , Q. An approach to

estimate the credible interval of ŷt+h is the Highest Posterior Density (HPD), see
Chen and Shao (1998).
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3.2 Bayesian Approach on GARMA Models

A 100(1− α)% HPD region for ŷt+h are a subset C ∈ R defined by C = {yt+h :

p(yt+h|F̂t+h) ≥ κ}, where κ is the largest number such that∫
yt+h≥κ

p(yt+h|F̂t+h)dyt+h = 1− α. (3.14)

We can use the p̂(yt+h|F̂t+h) MCMC estimates, given by the equation (3.9), to
estimate the 100(1− α)% HPD region. The next section contains all the Bayesian
simulation study. Metrics were used to verify the quality and performance of the
adjust.

3.2.3 Algorithm used to calculate the CI(1−δ) for predictions

1. Let a sequence of forecast values ŷt+h for h = 1, . . . , H.

2. Take h = 1, k = 0, y(0)
t+h = 0, S(0)

t+h = 0 and also initiate LB = 0, UB=0.

3. Using the initial values evaluate the equation:

f(y
(k)
t+h|β

(j),Φ(j),Θ(j), F̂t+h) = exp

(
y

(k)
t+hα

(j)
t+h − b(α

(j)
t+h)

ϕ
+ d(y

(k)
t+h, ϕ)

)
,

and also,

p̂(y
(k)
t+h|F̂t+h) =

1

Q

Q∑
j=1

f(y
(k)
t+h|β

(j),Φ(j),Θ(j), F̂t+h).

4. Using p̂(y(k)
t+h|F̂t+h) compute S(k+1)

t+h with

S
(k+1)
t+h = S

(k)
t+h + p̂(y

(k)
t+h|F̂t+h)

5. If LB = 0 and S(k+1)
t+h ≥ δ,→ yt+h,δ = y

(k)
t+h and LB = 1.

6. If UB = 0 and S(k+1)
t+h ≤ (1− δ),→ yt+h,(1−δ) = y

(k)
t+h and UB = 1.

7. If LB = 0 or UB = 0, take k = k + 1 and y
(k)
t+h = y

(k−1)
t+h + 1, repeat steps 3

and 4 until LB = 1 and UB = 1.

The percentiles 100δ% and 100(1− δ)% are represented by yt+h,δ and yt+h,(1−δ)
respectively, and given by:
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3.2 Bayesian Approach on GARMA Models

yt+h,δ = max

{
y

(r)
t+h

∣∣ r∑
k=1

p̂(y
(k)
t+h

∣∣F̂t+h) ≤ δ

}
.

yt+h,(1−δ) = min

{
y

(r)
t+h

∣∣ r∑
k=1

p̂(y
(k)
t+h

∣∣F̂t+h) ≥ (1− δ)

}
.

The confidence interval 100(1− δ)% for the predictions is given by:

CI(1−δ) =
[
yt+h,δ; yt+h,(1−δ)

]
The next section contains all the Bayesian simulation study. Metrics were used

to verify the quality and performance of the adjust.

3.3 Simulation Study

In this section we conduct a simulation study for negative binomial
GARMA(p, q) models with different orders p and q. The actual parameter values
used to simulate the artificial series are shown in Table 3.1 and the parameter
k of the negative binomial was fixed at k = 15. These values were chosen
taking into account that a GARMA model can be nonstationary since they are
in the exponencial family and the variance function depends on the mean. So, we
opted to chose parameter values that would generate moderate values for the
time series. The experiment was replicated m = 1000 times for each model.
For each dataset we used the prior distributions as described in Section 5.2
with mean zero and variance 200. We then drew samples from the posterior
distribution discarding the first 1000 draws as burn-in and keeping every 3rd
sampled value resulting in a final sample of 5000 values. All the computations
were implemented using the open-source statistical software language and
environment R R Development Core Team (2010).

Table 3.1: Parameters values to simulate from Negative Binomial GARMA(p,q).

Order β0 φ1 φ2 θ1 θ2
(1,1) 0.80 0.50 - 0.30 -
(1,2) 1.00 0.30 - 0.40 0.25
(2,1) 0.55 0.30 0.40 0.20 -
(2,2) 0.65 0.30 0.40 0.25 0.35

The performance of the Bayesian estimation was evaluated using three
metrics: the corrected bias (CB), the corrected error (CE) and the mean
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acceptance rates in the MCMC algorithm called Acceptance Probabilities (AP).
These metrics are defined as,

CB =
1

m

m∑
i=1

∣∣∣∣∣θ − θ̂(i)

θ

∣∣∣∣∣ ,
CE2 =

1

V ar

1

m

m∑
i=1

(θ̂(i) − θ)2

AP =
1

m

m∑
i=1

r̂(i),

where θ̂(i) and r̂(i) are the estimate of parameter θ and the computed acceptance
rate respectively for the i-th replication, i = 1, . . . ,m. In this paper we take
the posterior means of θ as point estimates. Also, the variance term (V ar) that
appears in the definition of CE is the sample variance of θ̂(1), . . . , θ̂(m).

The estimation results appear in Table 3.2 where the posterior mean and
variance (in brackets) as well as the aforementioned metrics are shown for each
model and parameter. These results indicate good properties with relatively small
values of the corrected bias (CB), values of the corrected error (CE) around 1 and
acceptance probabilities between 0.20 and 0.70.

We also include Table 3.3 with the proportions of correct model choice
using three popular Bayesian model selection criteria. Specifically, we adopt
the expected Bayesian information criterion (EBIC, Carlin and Louis (2001)),
the Deviance information criterion (DIC, Spiegelhalter et al. (2002)) and the
conditional predictive ordinate (CPO, Gelfand et al. (1992)) to select the order of
the GARMA models. Each column in this table contains the model order and the
associated proportions of correct model choice according to EBIC, DIC and CPO
criteria. Higher proportions of correct model choices are observed as the sample
sizes increase for all models and criteria. Also, EBIC and CPO tend to perform
better for GARMA(1,1) and GARMA(1,2) models but none performed particularly
well with GARMA(2,2) models.

Finally, this simulation study was carried out also for the Poisson and binomial
distributions with results similar to the ones shown. These results are not included
to save space.

3.4 Bayesian Real Data Analysis

In this section, we apply the methodology described so far to three real time
series of count data. For each series we estimated GARMA(p, q) models with
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3.4 Bayesian Real Data Analysis

Table 3.2: Monte Carlo experiments. Corrected bias, corrected errors and mean acceptance rates
for the Bayesian estimation of Negative Binomial GARMA(p,q) model.

Parameter Mean(Var)(1,1) CB(1,1) CE(1,1) AP(1,1) Mean(Var)(1,2) CB(1,2) CE(1,2) AP(1,2)
β0 0.8571(0.0065) 0.0984 1.2247 0.3746 1.0823(0.0196) 0.1276 1.1592 0.3182
φ1 0.4695(0.0026) 0.0947 1.1637 0.3511 0.2554(0.0097) 0.2820 1.0965 0.2702
φ2 - - - - - - - -
θ1 0.2927(0.0033) 0.1531 1.0071 0.6480 0.4099(0.0091) 0.1900 1.0048 0.4327
θ2 - - - - 0.2478(0.0037) 0.1929 1.0001 0.5882

Parameter Mean(Var)(2,1) CB(2,1) CE(2,1) AP(2,1) Mean(Var)(2,2) CB(2,2) CE(2,2) AP(2,2)
β0 0.6198(0.0097) 0.1740 1.2240 0.2786 0.7344(0.0079) 0.1497 1.3171 0.3397
φ1 0.2798(0.0152) 0.3295 1.0127 0.1422 0.2887(0.0054) 0.1959 1.0111 0.2282
φ2 0.3794(0.0066) 0.1661 1.0307 0.2091 0.3414(0.0049) 0.1485 1.0787 0.2348
θ1 0.2012(0.0182) 0.5334 0.9995 0.3214 0.2430(0.0052) 0.2307 1.0040 0.5237
θ2 - - - - 0.3464(0.0027) 0.1193 1.0017 0.6614

Table 3.3: Proportions of correct model chosen via Bayesian criteria with Negative Binomial
GARMA(p,q) models.

EBIC
Size GARMA(1,1) GARMA(1,2) GARMA(2,1) GARMA(2,2)
200 0.9379 0.3042 0.5626 0.4450
500 0.9799 0.6156 0.8048 0.5825
1000 0.9852 0.9039 0.8471 0.6772

DIC
Size GARMA(1,1) GARMA(1,2) GARMA(2,1) GARMA(2,2)
200 0.6316 0.4804 0.5445 0.4437
500 0.6876 0.6476 0.6221 0.4925
1000 0.7155 0.7364 0.6469 0.7154

CPO
Size GARMA(1,1) GARMA(1,2) GARMA(2,1) GARMA(2,2)
200 0.8078 0.3493 0.5575 0.4112
500 0.8188 0.5925 0.5993 0.4625
1000 0.8325 0.7266 0.6152 0.7317

varying orders and computed the Bayesian selection criteria EBIC, DIC and CPO
for model comparison. In all cases we used the diagnostic proposed by Geweke
(1992) to assess convergence of the chains. This is based on a test for equality
of the means of the first and last part of the chain (by default the first 10% and the
last 50%). If the samples are drawn from the stationary distribution, the two means
are equal and the statistic has an asymptotically standard normal distribution.
The calculed values of Geweke statistics were all between -2 and 2 which is an
indication of convergence of the Markov chains.
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3.4 Bayesian Real Data Analysis

3.4.1 Automobile data set

The first real data set analysed is the number of automobile production
in Brazil between January 1993 and December 2013. The data is available
from http://www.anfavea.com.br/tabelas.html. The original observations were
divided by 1000 to reduce the magnitude of the data.
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Figure 3.1: Graph of number of automobile production in Brazil.

The automotive industry is extremely important as it can influence other
industries activities. For example, 50% of the world rubber production, 25% of
the world glass production and 15% of the world iron production are destined to
the automotive industry. The behaviour of the data along time depicted in Figure
3.1 seems to indicate that an extra term should be included to take into account a
(possibly nonlinear) trend. The term βexp = log(t) was then included in the model
equation to account for this long-term increase.

The results regarding selection criteria are summarized in Table 3.4. We
note that the three criteria indicate that the most appropriate model was the
GARMA(1,1) Negative Binomial. Also, Table 3.5 presents the estimation results
for the selected GARMA(1,1) Negative Binomial model with the extra parameter
fixed at k = 150.

We also performed a residual analysis based on the so called quantile
residuals which are the common choice for generalized linear models. In fact,
quantile residuals are the only useful residuals for binomial, negative binomial
or Poisson data when the response takes on only a small number of distinct
values (Dunn and Smyth (1996)). These are given by rt = Φ−1(Fyt(yt|Ft−1))
where Fyt represent the cumulative distribution function of the associated discrete
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3.4 Bayesian Real Data Analysis

Table 3.4: Bayesian selection criteria for the number of automobile production in Brazil.

Poisson GARMA(1,0) GARMA(2,0) GARMA(1,1) GARMA(1,2) GARMA(2,1) GARMA(2,2)
EBIC 3046.61 3074.24 3045.70 3074.45 3071.21 3067.97
DIC 3032.06 3064.97 3030.38 3064.55 3046.02 3065.89
CPO -1519.88 -1536.12 -1519.65 -1535.15 -1536.76 -1540.29

Binomial GARMA(1,0) GARMA(2,0) GARMA(1,1) GARMA(1,2) GARMA(2,1) GARMA(2,2)
EBIC 3559.79 3814.33 3559.11 3813.91 3759.32 3738.38
DIC 3545.12 3736.57 3544.19 3794.01 3738.90 3713.19
CPO -1782.36 -1930.30 -1780.67 -1949.77 -1929.13 -1909.67

Negative Binomial GARMA(1,0) GARMA(2,0) GARMA(1,1) GARMA(1,2) GARMA(2,1) GARMA(2,2)
EBIC 2547.67 2792.38 2546.76 2799.21 2787.56 2785.10
DIC 2537.71 2777.16 2531.85 2779.28 2767.32 2760.13
CPO -1269.48 -1427.72 -1267.34 -1430.66 -1426.47 -1423.09

Table 3.5: Estimation results. GARMA(1,1) Negative Binomial model for number of automobile
production in Brazil.

Parameter Mean Variance HPD Credible Interval AP
β0 0.3834 0.0006 (0.3543; 0.4159) 0.3710
βexp 0.0850 0.0002 (0.0814; 0.0884) 0.3163
φ1 0.8447 0.0005 (0.8379; 0.8521) 0.3038
θ1 0.1149 0.0005 (0.1064; 0.1244) 0.6323

distribution. In practice, when dealing with discrete distributions we need to
introduce some randomization to produce continuous normal residuals. The
residual analysis summarized in Figure 3.2 which indicates that the residuals are
non-correlated and Gaussian distributed with mean 0.0767 and standard deviation
1.2295. Kolmogorov-Smirnov and Lilliefors normality tests returned p-values of
0.4502 and 0.0743 respectively which provides evidence for Gaussian assumption
(Conover (1999)).

Finally, we performed a prediction exercise using the last 9 observations of
the original series as follows. For each k = 1, . . . , 9 the GARMA(1,1) negative
binomial model was fitted to the series y1, . . . , yn−k and an out-of-sample one-step
ahead prediction ŷn−k+1 was produced. These predictions can then be compared
with the true values. The results are illustrated in Figure 3.3 from which we can
see that the prediction errors are overall small. A formal comparison was made
by calculating the mean absolute percentage error (MAPE, Hyndman (2006)) and
we obtained the value 6.07%.
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Figure 3.2: Residual Analysis for the number of automobile production in Brazil under a
GARMA(1,1) negative binomial model.

3.4.2 Epidemiology data set

This real data set comprises the number of hospitalizations caused by Dengue
Fever in Campina Grande city (Brazil) between January 1998 and October
2003. Dengue Fever is transmitted by several species of mosquito within the
genusAedes, principally A. aegypti. The Aedes mosquito is easily identifiable
by the distinctive black and white stripes on its body. It prefers to lay eggs on
clean and stagnant water. Analysing the autocorrelation function of this data, a
seasonal behaviour is characterised. This is because the Summer months in this
region present higher volume of rain, thus leading to more clean and stagnant
water. Figure 3.4 clearly sees the seasonal component in the data, therefore we
included two seasonal components in the model, βS1 and βS2, using cosine and
sine functions respectively, and also considering the period of 12 months. These
components are expected to improve model estimation.

The results regarding the selection criteria are summarized in Table 3.6 from
which we can conclude that the most appropriate model was the GARMA(1,2)
Negative Binomial. Note that the three criteria gave the same indication. Table
3.7 shows the estimation results for the selected GARMA(1,2) Negative Binomial
model with the extra parameter fixed at k = 30.

Again we performed a residual analysis based on quantile residuals. This is
summarized in Figure 3.5 which indicates that the residuals are non-correlated
and Gaussian distributed with mean 0.0258 and standard deviation 1.5571.
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Figure 3.3: Predictions for the number of automobile production in Brazil with a GARMA(1,1)
Negative Binomial model.
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Figure 3.4: Number of hospitalizations caused by Dengue Fever.

The Kolmogorov-Smirnov and Shapiro-Wilk normality tests returned p-values of
0.4856 and 0.1176 respectively thus giving evidence for the Gaussian assumption.

A similar prediction exercise was performed for this data. So, we fitted a
GARMA(1,2) negative binomial model to y1, . . . , yn−k and computed an out-of-
sample one-step ahead prediction ŷn−k+1 for k = 1, . . . , 9. Figure 3.6 shows the
predictions, prediction intervals and the real observations for comparison. It can
be seen that, although relatively close to the actual values, predictions for May,
June, July and August 2003 are consistently below the observations. The MAPE
criterion was calculated as 47.81%.
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3.4 Bayesian Real Data Analysis

Table 3.6: Bayesian selection criteria for the number of hospitalizations caused by Dengue Fever.

Poisson GARMA(1,0) GARMA(2,0) GARMA(1,1) GARMA(1,2) GARMA(2,1) GARMA(2,2)
EBIC 632.82 633.13 633.73 632.48 632.65 628.20
DIC 580.66 581.04 581.86 581.25 580.32 578.31
CPO -794.03 -794.87 -794.69 -794.11 -793.83 -792.34

Binomial GARMA(1,0) GARMA(2,0) GARMA(1,1) GARMA(1,2) GARMA(2,1) GARMA(2,2)
EBIC 690.62 689.28 690.34 656.56 688.82 655.30
DIC 679.14 679.92 679.42 642.12 674.83 637.19
CPO -345.89 -346.16 -345.76 -327.13 -348.04 -324.83

Negative Binomial GARMA(1,0) GARMA(2,0) GARMA(1,1) GARMA(1,2) GARMA(2,1) GARMA(2,2)
EBIC 507.89 508.97 509.36 504.12 509.09 505.89
DIC 519.66 520.93 520.22 518.30 523.11 523.19
CPO -256.35 -255.88 -256.10 -254.24 -257.64 -256.26

Table 3.7: Estimation results. GARMA(1,2) negative binomial model for the number of
hospitalizations caused by Dengue Fever.

Parameter Mean Variance HPD Credible Interval AP
β0 1.1916 0.0566 ( 0.7443; 1.6068) 0.1090
βS1

-0.2571 0.0035 (-0.3753;-0.1407) 0.6196
βS2 0.1424 0.0040 ( 0.0156; 0.2649) 0.5858
φ1 0.5796 0.0078 ( 0.4230; 0.7456) 0.0968
θ1 0.1214 0.0112 (-0.0853; 0.3273) 0.3391
θ2 0.0987 0.0053 (-0.0470; 0.2358) 0.3978
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Figure 3.5: Residual Analysis of Hospitalizations caused by Dengue.
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Figure 3.6: Predictions with GARMA(1,2) Negative Binomial model with Hospitalizations caused
by Dengue series.

3.4.3 Mortality data set

Our last real data set is the number of deaths in Brazil between January 1984
and December 2007. This data is available from the Brazilian Health Ministry at
http://www2.datasus.gov.br/DATASUS and is depicted in Figure 3.7. Likewise
the first example, the original series was divided by 1000 to reduce the magnitude
of the data. As in the first example, we think there is a point for the inclusion of
an extra term here too since the series exhibits a long-term (possibly nonlinear)
increase. So, a new component βexp = log(t) was added to the model equation as
this is expected to improve model estimation.
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Figure 3.7: Number of deaths in Brazil.
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Table 3.8: Bayesian selection criteria using the number of deaths in Brazil.

Poisson GARMA(1,0) GARMA(2,0) GARMA(1,1) GARMA(1,2) GARMA(2,1) GARMA(2,2)
EBIC 1549.55 1560.41 1546.60 1566.37 1565.79 1566.80
DIC 1531.53 1566.68 1531.10 1570.34 1571.11 1573.77
CPO -766.42 -773.35 -765.49 -784.20 -784.99 -785.48

Binomial GARMA(1,0) GARMA(2,0) GARMA(1,1) GARMA(1,2) GARMA(2,1) GARMA(2,2)
EBIC 1351.42 1412.95 1357.52 1391.79 1399.13 1404.81
DIC 1341.42 1391.56 1342.28 1371.54 1378.10 1379.88
CPO -670.73 -705.64 -671.10 -695.29 -716.72 -708.52

Negative Binomial GARMA(1,0) GARMA(2,0) GARMA(1,1) GARMA(1,2) GARMA(2,1) GARMA(2,2)
EBIC 1705.33 1709.12 1700.61 1735.23 1734.39 1738.30
DIC 1693.59 1696.61 1685.18 1714.76 1713.51 1712.47
CPO -851.35 -855.13 -842.01 -866.51 -866.45 -866.47

Looking at the Bayesian selection criteria given in Table 3.8 we can conclude
that the best model for this particular data is the GARMA(1,0) Binomial model.
There are only three parameters in this model and the estimation results are
shown in Table 3.9. Here the extra parameter was fixed at m = 45.

Table 3.9: Estimates of the number of deaths in Brazil series with GARMA(1,0) Binomial.

Parameter Mean Variance HPD Credible Interval AP
β0 0.4154 0.0006 (0.3739; 0.4724) 0.2272
βexp 0.0713 0.0004 (0.0651; 0.0774) 0.3503
φ1 0.7637 0.0007 (0.7462; 0.7788) 0.1885
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Figure 3.8: Residual analysis of the number of deaths in Brazil.

The residual analysis summarized in Figure 3.8 indicates that the residuals
are non-correlated and Gaussian distributed with mean 0.1850 and standard
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deviation 0.4894. The Kolmogorov-Smirnov and Anderson-Darling normality tests
returned p-values of 0.6736 and 0.1304 respectively thus indicating evidence for
the Gaussian assumption.

Likewise the previous examples we repeated the prediction exercise here.
This time we used the 10 last observations as the series is longer. So, the
GARMA(1,0) binomial model was fitted to the series y1, . . . , yn−k and a one-step
ahead prediction ŷn−k+1 was produced for k = 1, . . . , 10. The results are illustrated
in Figure ?? from which we can see that the prediction errors are again overall
small. Using these prediction errors the calculated value for the MAPE criterion
was 3.63%.
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Figure 3.9: Predictions with GARMA(1,0) Binomial model with Number of death in Brazil series.
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CHAPTER

4

Transformed GARMA model

Abstract

Real time series can present anomalies, like non-additivity, non-normality and
heteroscedasticity which makes using GARMA models impossible. Our paper
introduces a new class of models called Transformed Generalized Autoregressive
Moving Average (TGARMA) models, that allow using transformations to guarantee
the GARMA assumptions. We present an extensive simulation study of the
influence of the transformation on GARMA estimation. We also propose
using bootstrap methods to get more information about the distribution of the
transformation parameter. We apply the methodology to data related to Annual
Swedish fertility rates.

4.1 TGARMA model

Box and Cox (1964) commented that many important results in statistical
analysis follow from the assumption that the population being sampled or
investigated is normally distributed with a common variance and additive error
structure. For this reason, these authors presented a transformation called
Box-Cox power transformation that has generated a great deal of interests, both
in theoretical work and in practical applications.

This family has been modified Cox (1981) to take account of the discontinuity
at λ = 0, such that
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y
(λ)
t =

{
(Y λt −1)

λ
;λ 6= 0

log(Yt);λ = 0

Sakia (1992), Manly (1976) and Draper and Cox (1969) discuss others
transformations which have the same goal: reduce anomalies in the data. The
literature recommends the use of Box-Cox power transformation as a general
transformation. The next section presents the TGARMA approach using the
Box-Cox power transformation.

4.1.1 Model definition

The TGARMA model specifies the conditional distribution of each transformed
observation y

(λ)
t , for t = 1, . . . , n given the previous information set, defined by

F
(λ)
t−1 = (y

(λ)
1 , . . . , y

(λ)
t−1, µ1, . . . , µt−1). The conditional density belongs to exponential

family and is given by

f(y
(λ)
t |F

(λ)
t−1) = exp

(
y

(λ)
t αt − b(αt)

ϕ
+ d(y

(λ)
t , ϕ)

)
, (4.1)

where αt and ϕ are canonical and scale parameters, respectively. Moreover b(·)
and d(·) are specific functions that define the particular exponential family. The
conditional mean and conditional variance of yt given F (λ)

t−1 are represented as:

µt = b′(αt) = E(y
(λ)
t |F

(λ)
t−1) (4.2)

V ar(y
(λ)
t |F

(λ)
t−1) = ϕb′′(αt),

with t = 1, . . . , n.

Following the Generalized Linear Models (GLM) approach the parameter µt is
related to the predictor ηt by a twice differentiable one-to-one monotonic function
g, called link function. In general, we can also include set of covariates x
into our model. Moreover, we can we add an additional component allowing
autoregressive moving average terms to be included. In such a case our model
will have a form:
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g(µt) = ηt = x′tβ +

p∑
j=1

φj{g(y
(λ)
t−j)− x′t−jβ}+

q∑
j=1

θj{g(y
(λ)
t−j)− ηt−j}. (4.3)

The parameters p and q are identified using the classical BIC or AIC criteria.
For more information the reader is refereed to Kedem and Fokianos (2002) and Li
(1994).

The TGARMA(p,q) model is defined by the equations (4.1) and (4.3). For
certain functions g, it may be necessary to replace y(λ)

t with y(λnew)
t in (4.3) to avoid

the non-existence of g(y
(λ)
t ) for certain values of yt. The form y

(λnew)
t depends on

the particular function g and is defined for specific cases later.

We will consider two important continuos GARMA models: gamma and inverse
Gaussian. We will present each one with a density and a respective predictor. The
simulation study and real data analysis were done for each of the distributions.

4.1.2 Examples

Gamma TGARMA model

Suppose that y(λ)
t |F

(λ)
t−1 follows gamma distribution with the mean µt, thus

f(y
(λ)
t |F

(λ)
t−1) =

1

Γ(ν)

(
ν

µt

)ν
y

(λ)
t

(ν−1)
exp

(
−y

(λ)
t ν

µt

)
. (4.4)

Here, y(λ)
t |F

(λ)
t−1 has a distribution in the exponential family with αt = − 1

µt
,

b(αt) = − log
(
ν
µt

)
, c(y(λ)

t , ϕ) = 1
Γ(ν)

+ν log(ν)+(ν−1) log(y
(λ)
t ) and ϕ = ν. Moreover

y
(λ)
t > 0, µt > 0 and ν > 0. And E(Y

(λ)
t |Ft−1) = µt where V ar(Y (λ)

t |Ft−1) = µtν.

The canonical link function for this model is the logarithmic function, thus the
linear predictor is given by
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log(µt) = β0 +

p∑
j=1

φj{log y
(λnew)
t−j }+

q∑
j=1

θj{log(y
(λnew)
t−j )− log(µt−j)}. (4.5)

In the equation above y
(λnew)
t−j = max(yt−j, c), 0 < c < 1. In sequel we will drop

the superscript ′′new′′ understanding that we truncate y
(λ)
t from below if needed.

The gamma TGARMA model is defined by the equations (4.4) and (4.5).

Inverse Gaussian TGARMA model

Suppose that y(λ)
t |F

(λ)
t−1 follows an inverse Gaussian distribution with the mean

µt, thus

f(y
(λ)
t |F

(λ)
t−1) = exp

{
1

σ2

[
−2y

(λ)
t

µ2
t

+
1

µt

]
− 1

2
log(2πσ2y

(λ)
t

3
)− 1

2σ2y
(λ)
t

}
. (4.6)

The canonical link function for this model is the logarithmic function. The linear
predictor is given by

log(µt) = β0 +

p∑
j=1

φj

{
log(y

(λ)
t−j)
}

+

q∑
j=1

θj(log(y
(λ)
t−j)− log(µt−j)). (4.7)

The inverse Gaussian TGARMA model is defined by the equations (4.6) and
(4.7).

4.1.3 Model Fitting

The TGARMA model-fitting procedure described herein performs the
maximum likelihood estimation (see Benjamin et al. (2003)). The estimation
method is based on the standard GLM.

Let {y(λ)
t } be a time series where the equations (4.1) and (4.3) are satisfied.

The parameter vector is γ′ = (β′, φ′, θ′), where β = (β0 . . . βm)′, φ = (φ1 . . . φp)
′

and also θ = (θ1 . . . θq)
′. For the estimation procedure the conditional likelihood
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function is used where the F
(λ)
r = {y(λ)

1 . . . y
(λ)
r }, for r = max(p, q). The

partial likelihood function can be constructed considering that y(λ)
t−1 and y

(λ)
t are

conditionally independent. Thus

L(β, φ, θ|F (λ)
n ) ∝

n∏
t=r+1

f(y
(λ)
t |F

(λ)
t )

∝
n∏

t=r+1

exp

{
y

(λ)
t g(µt)− b(g−1(µt))

ϕ
+ d(y

(λ)
t , ϕ)

}
, (4.8)

where g(µt) is the link function given by

g(µt) = x′tβ +

p∑
j=1

φj{g(y
(λ)
t−j)− x′t−j}+

q∑
j=1

θj{g(y
(λ)
t−j)− g(µt−j)}. (4.9)

In the above equations t = r + 1, . . . , n. The equations (4.8) and (4.9) do
not have a closed form solution therefore a numerical optimization routine will
be used. Due to the results of Benjamin et al. (2003) the asymptotic distribution
of the partial likelihood estimator is known. However, the information matrix of
the corresponding asymptotic normal law is quite difficult to estimate. This gives
us a strong motivation to consider resampling techniques in the GARMA models.
As it also known, resampling techniques provide a better alternative to construct
confidence intervals in the time series field de Andrade et al. (2016c).

The profile likelihood for the parameter vector γ and scalars φ and λ is
expressed in terms of the transformed series y(λ) = (y

(λ)
r+1, . . . , y

(λ)
n )T conditioned

on the first r transformed observations, where r = max{p, q}, is

PL(β, φ, θ, λ) =
n∏

t=r+1

L(β, φ, θ|F (λ)
t )J(λ, yt), (4.10)

where J(λ, yt) is the Jacobian of the transformation from yt to y
(λ)
t . The

inference method is made selecting a range λ(1), . . . , λ(k), and evaluating the
profile likelihood on each λ(i), i = 1, . . . , k.

λ̂ = max
(
PL(γ̂(λi), φ̂(λi), λi)

)
, i = 1, . . . , k (4.11)

The profile likelihood depends on the Jacobian of the transformation, so
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4.1 TGARMA model

different transformation provide different profiles likelihood. The Box-Cox power
transformation was used, thus

J(λ, yt) =

{ ∑n
i=1 {(λ− 1) log(yi)} ;λ 6= 0∑n
i=1 {− log(yi)} ;λ = 0

4.2 Moving Block Bootstrap on TGARMA models

The estimation of λ, the transformation parameter, is done using the profile
likelihood (PL). The PL provides a single value λ̂ that corresponds to the maximum
of the selected interval. The information about λ is very scarce, therefore,
resampling methods can be used to approximate the empirical distribution of λ̂
enabling the construction of confidence intervals for λ.

The Moving Block Bootstrap (MBB) will be used to generate B replicates time
series, enabling the use of PL to select the best value of the transformation
parameter. We use the following

Resampling Algorithm

STEP 1 Apply the Moving Block Bootstrap approach to yt that comes from TGARMA.
Select randomly the block starting point. Select the size of the block that
should be between n

1
4 and n

1
2 , where n represent the length of the original

time series.

STEP 2 If the initial point plus the size of the block is smaller than n, take the block
Bl(yt). The chosen block is now the first piece of the resampled time series
y∗t .

STEP 3 Repeat [STEP 1] and [STEP 2] until the length of y∗t equals n.

In the sequel we provide a complete simulation study, checking computation-
ally the properties of the algorithm above. Firstly, however, we will briefly show the
usefulness of our approach to the prediction problem.

4.2.1 Forecasting for TGARMA

Below we provide final formula for conditional expectation and conditional
variance. The lengthy technical calculations are omitted due to the space
constraints.
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When λ 6= 0 the inverse Box-Cox gets

Yt = (1 + λµt)
1/λ {1 + νt (Y

(λ)
t − µt)}1/λ, (4.12)

where νt = λ/(1 + λµt). Applying the binomial expansion, we obtain

E(Yt|Ft−1) = (1 + λµt)
1/λ

{
1 +

∞∑
i=2

ai µti
i! (1 + λµt)i

}
, (4.13)

where ai =
∏i−1

j=0(1−jλ) and µti = E((Y
(λ)
t −µt)i|Ft−1) is the ith contidional central

moment of Y (λ)
t .

Equation (4.13) generalizes the expansion given by Pankratz and Dudley
(1987).

We also obtain that conditional variance of Yt can approximated by

(1 + λµt)
2/λ

{
µt2

(1 + λµt)2
+

(1− λ)µt3
(1 + λµt)3

+
(1− λ){(7− 11λ)µt4 − 3(1− λ)µ2

t2}
12 (1 + λµt)4

}
.

4.3 Simulation Study

The performance of the Maximum Likelihood estimation was evaluated using
two measures: the corrected bias (CB), the corrected error (CE). These measures
are defined as,

CB =
1

m

m∑
i=1

∣∣∣∣∣θ − θ̂(i)

θ

∣∣∣∣∣ ,
CE2 =

1

V ar

1

m

m∑
i=1

(θ̂(i) − θ)2

where θ̂(i) are the estimates of parameter θ for the i-th replication, i = 1, . . . ,m.
The variance term (V ar) that appears in the definition of CE is the sample variance
of θ̂(1), . . . , θ̂(m). We have also calculated the coverage representing the proportion
of simulated cases when the confidence intervals contain the true simulated value.

The estimation results appear in Tables 4.2 and 4.4 where the aforementioned
metrics are shown for each model and parameter. These results indicate good
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properties with relatively small values of the corrected bias (CB), values of the
corrected error (CE) around 1 and also coverage around 95%.

In Table 4.3 we present results of the simulation experiment that was checking
proportion of times when the correct model was selected. The BIC criterion was
used to select the best model, the criterion was used also with different sizes of
series. Figures 4.1 and 4.2 represent results of a Monte Carlo study, the densities
of the estimates are presented, showing approximately a Gaussian behavior.

The experiment was repeated 5000 times for each value of λ, with 500
observations in each of artificial time series. The simulation study for TGARMA
models was conducted with Gamma with the orders (1,1),(2,1),(1,2) and (2,2).
The results of the orders (1,2) and (2,1) was omitted, but is very similar of the
results of orders (1,1) and (2,2) that follow.

Table 4.1: Gamma GARMA(p,q) real values

Order β0 φ1 φ2 θ1 θ2 ν
(1,1) 0.70 0.50 - -0.30 - 2
(1,2) -0.10 0.50 - -0.30 0.30 2
(2,1) 0.10 0.50 0.30 -0.40 - 2
(2,2) -0.10 0.30 0.20 0.25 -0.35 2

The real values used to simulated the artificial series are presented in Table 1,
each line corresponds to the order of the model.
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Figure 4.1: Densities of parameters with λ = 0.3

Table 4.2: TGARMA(1,1) with gamma distribution and Box-Cox power transformation

Parameter(λ= 0.3) CB CE Coverage
ν 0.0398 0.9724 0.9614
β0 0.2217 1.0900 0.9252
φ1 0.0488 1.0942 0.9218
θ1 0.0593 0.9574 0.9624

Parameter(λ= 0.5) CB CE Coverage
ν 0.0410 1.0000 0.9578
β0 0.2255 1.1034 0.9232
φ1 0.0482 1.0746 0.9250
θ1 0.0576 0.9398 0.9632

Parameter(λ= 0.7) CB CE Coverage
ν 0.0438 1.0613 0.9444
β0 0.2207 1.0790 0.9286
φ1 0.0480 1.0681 0.9370
θ1 0.0553 0.9072 0.9714

Parameter(λ= 0.9) CB CE Coverage
ν 0.0458 1.1036 0.9366
β0 0.2228 1.0896 0.9372
φ1 0.0476 1.0436 0.9438
θ1 0.0526 0.8629 0.9734
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Figure 4.2: Densities of parameters with λ = 0.5

Table 4.3: Proportions of correct model using BIC with gamma TGARMA(p,q) model

λ = 0.3
Size TGARMA(1,1) TGARMA(1,2) TGARMA(2,1) TGARMA(2,2)
200 0.8284 0.4976 0.4866 0.2896
500 0.8980 0.5646 0.5075 0.3062
1000 0.9455 0.6102 0.5432 0.3445

λ = 0.5
Size TGARMA(1,1) TGARMA(1,2) TGARMA(2,1) TGARMA(2,2)
200 0.7980 0.4198 0.03410 0.2858
500 0.8965 0.4728 0.3625 0.3003
1000 0.9360 0.4910 0.4454 0.3252

λ = 0.7
Size TGARMA(1,1) TGARMA(1,2) TGARMA(2,1) TGARMA(2,2)
200 0.7855 0.4290 0.4859 0.2884
500 0.8693 0.4474 0.5422 0.3042
1000 0.9280 0.4763 0.5810 0.3312

λ = 0.9
Size TGARMA(1,1) TGARMA(1,2) TGARMA(2,1) TGARMA(2,2)
200 0.7645 0.5250 0.5434 0.3038
500 0.8630 0.5334 0.5542 0.3102
1000 0.9294 0.5503 0.6110 0.3365
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Table 4.4: TGARMA(2,2) with Gamma distribution and Box-Cox Power transformation

Parameter(λ= 0.3) CB CE Coverage
ν 0.0104 1.0094 0.9542
β0 1.3310 1.0992 0.9308
φ1 0.2486 1.0264 0.9323
φ2 0.2620 1.0183 0.9342
θ1 0.2908 1.0160 0.9313
θ2 0.1108 1.0366 0.9527

Parameter(λ= 0.5) CB CE Coverage
ν 0.0105 1.0166 0.9569
β0 1.3510 1.0781 0.9398
φ1 0.2490 1.0235 0.9398
φ2 0.2645 1.0297 0.9379
θ1 0.2932 1.0137 0.9365
θ2 0.1080 1.0081 0.9469

Parameter(λ= 0.7) CB CE Coverage
ν 0.0114 1.0795 0.9419
β0 1.3380 1.0649 0.9527
φ1 0.2450 1.0068 0.9340
φ2 0.2580 1.0113 0.9321
θ1 0.2860 0.9930 0.9404
θ2 0.1091 1.0119 0.9503

Parameter(λ= 0.9) CB CE Coverage
ν 0.0116 1.1176 0.9304
β0 1.4260 1.1256 0.9533
φ1 0.2553 1.0453 0.9297
φ2 0.2625 1.0189 0.9373
θ1 0.3012 1.0353 0.9304
θ2 0.1148 1.0449 0.9505

The simulation study was carried out to verify the influence of selecting the
value of λ on the TGARMA model estimates. Figure 4.1 presents the estimate
densities for each parameter of the TGARMA(1,1) model with λ = 0.3, we
observed a Gaussian behavior in the parameters. Table 4.2 presents results for
the TGARMA model with one autoregressive and one moving average terms, the
metrics proposed above showed that for different values of λ, the CB, CE and
coverage still indicating good properties. Figure 2 presents the estimate densities
for each parameter of the TGARMA(1,1) model with λ = 0.5, we also observed
a Gaussian behavior in the parameters. Table 4.3 presents the proportions of
correct model selected by using the BIC criterion, four different models were
proposed, (1,1), (2,1), (1,2) and (2,2). The results presented on Table 4.2 shows
that the higher proportions indicate the corrected model, unrelated to the λ value.
The Table 4.4 presents results for the TGARMA model with two autoregressive
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and two moving average terms, the results follow the same aspect of the Table
4.1. The next subsection contains all the results related to bootstrap on TGARMA
models.

4.3.1 Bootstrap Simulation Study

We carried out two important analyses of the bootstrap simulation study. The
Figure 4.3 presents the estimated density of the bootstrap replicates, the vertical
lines represent true value, the PL estimate, the bootstrap mean and the confidence
intervals.
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Figure 4.3: Bootstrap densities for TGARMA models

Table 4.5: Bootstrap TGARMA(1,1) Gamma

True Value PL Estimate Bootstrap Mean Bootstrap Median
0.30 0.36 0.3132 0.32
0.50 0.58 0.4947 0.50
0.70 0.80 0.6670 0.68
0.90 0.98 0.7761 0.80

We also conducted a simulation study testing the coverage of the PL using
the bootstrap replicates. We carried out a coverage simulation study with 500
bootstrapped replicates, 500 times, both studies were conducted with artificial
series of the length 200.
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Careful reading of Table 4.3 is leading us to conclude that the mean and
the median of bootstrap distribution λ̂ provide better estimates of the true value
λ compared with the PL estimate. Table 4.6 presents the coverage of the
transformation parameter via bootstrap quantiles, also compares maximum partial
likelihood bias with the bootstrap mean bias. The results presented on Table 4.6
indicate that the coverage is close to 95% and the bias calculated via bootstrap
mean lower that the MPLE bias for λ < 0.5

Table 4.6: Coverage Bootstrap TGARMA(1,1) Gamma

True Value Coverage MPLE Bias Bootstrap Bias
0.30 95.80% 0.2417 0.2166
0.50 94.40% 0.2001 0.1978
0.70 95.20% 0.1717 0.1816
0.90 83.40% 0.1437 0.2691

4.4 Real data analysis

The demography of Sweden is monitored by Statistics Sweden (SCB). As of
31 December 2013, Sweden’s population was estimated to be 9.64 million people,
making it the 90th most populous country in the world. The three biggest cities
are Stockholm, Gothenburg and Malmö. Approximately 85% of the country’s
population resides in urban areas.

The real data set represents the Annual Swedish fertility rates (1000’s) 1750-
1849. We obtained the data set on https : //datamarket.com/data/set/22s2/annual−
swedish− fertility − rates− 1000s− 1750− 1849− thomas− 1940.

Figure 4.4 present the graph of Annual Swedish fertility rates and Figure 4.5
the Auto Correlation Function and Partial Auto Correlation Function of Annual
Swedish fertility rates.

55



4.4 Real data analysis

0 20 40 60 80 100

24
0

26
0

28
0

30
0

32
0

34
0

Years

A
nn

ua
l S

w
ed

is
h 

fe
rti

lit
y 

ra
te

s

Figure 4.4: Graph of Annual Swedish fertility rates
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Figure 4.5: Auto Correlation Function and Partial Auto Correlation Function of Annual Swedish
fertility rates

The selection criterion AIC and BIC was used to select between the gamma
and inverse Gaussian and also to select the order of the model. Bellow we provide
the Table 4.7 with the results.
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Table 4.7: Criterion selection using Annual Swedish fertility rates

Gamma TGARMA(1,0) TGARMA(1,1) TGARMA(1,2) TGARMA(2,1) TGARMA(2,2)
AIC 582.56 582.85 655.41 655.40 658.12
BIC 592.98 593.17 665.83 665.85 667.71

Inverse Gaussian TGARMA(1,0) TGARMA(1,1) TGARMA(1,2) TGARMA(2,1) TGARMA(2,2)
AIC 765.87 766.59 785.46 785.45 786.22
BIC 775.12 777.01 795.88 795.87 796.14

The range of the transformation parameter λ was selected from 0 ≤ λ < 1, with
step 0.001. The Partial Likelihood selected the value λ̂ = 0.202. With bootstrap
replicates we obtained the confidence intervals for λ. The inferior bound was 0.196
and the superior bound 0.23. We also we evaluate the mean of the bootstrap
replicates, which was 0.2093.
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Figure 4.6: λ empirical bootstraped density Annual Swedish fertility rates

Just like the simulation study showed, the mean of bootstrapped replicates
represent a better estimate of λ. Therefore, we used the Box Cox Power
transformation with this value and adjusted the model GARMA(1,0) with gamma
distribution. Figure 4.6 present the empirical density of the transformation
parameter, the lines represent the Partial Likelihood selected the value and the
mean of the bootstrap replicates.

Below on Table 4.8 we provide the Moving Block Bootstrap to evaluate the
confidence intervals of the parameters (de Andrade et al. (2016c)).
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Table 4.8: Estimates of Annual Swedish fertility rates series with TGARMA(1,0) Gamma

Parameter Estimate Inferior Bootstrap Bound Superior Bootstrap Bound
β0 1.2234 1.2226 1.2287
φ1 0.4916 0.4890 0.4923
ν 6.5041 6.4872 6.7019

The goodness of fit can be checked using the graph of true values versus the
estimated values.
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Figure 4.7: Graph of true values versus the estimated values of the residuals of Annual Swedish
fertility rates series

The Figure 4.7 presents a quantile plot with the true values on x axis and the
estimated values on y axis. The line represents the perfect model with real values
on axis x and y.
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Figure 4.8: Autocorrelation function and partial autocorrelation function of the residuals of rate of
Annual Swedish fertility rates series

Quantile residuals are based on the idea of inverting the estimated distribution
function for each observation to obtain exactly standard normal residuals. In
the case of discrete distributions, such as the binomial, negative binomial
and Poisson, some randomization is introduced to produce continuous normal
residuals. The residuals is given by rt = Φ−1(Fyt(yt|Ft−1)) where Fyt represent the
cumulative distribution function for the respective density. Figure 4.8 present the
residual analysis.
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Figure 4.9: Original Predictions with GARMA(1,0) Gamma model with Rate of Annual Swedish
fertility rates series
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The prediction were made by the median. Only the first term of Taylor
expansion was used. Using the estimate, predictions of 6 steps ahead of the
original series can be made. The 6 last values of the series were removed and
fitted the model without them. Prediction one step ahead for 6 years values,
thus the predicted value be compared with the true value. Figure 4.9 present
the predictions, the MAPE was calculated to quantify the quality of predictions.

The MAPE was calculated to assess the quality of predictions, the value was
03.70% which indicated good predictions.
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CHAPTER

5

Bayesian Transformed GARMA Models

Abstract

The Transformed Generalized Autoregressive Moving Average (TGARMA)
models were proposed to deal with non-additivity, non-normality and het-
eroscedasticity in real data. This work presents a Bayesian approach for
TGARMA models, extending the original model. The Bayesian methodology
brings some advantages as prior densities and Bayesian model selection criteria.
We conduced a simulation study to investigate the performance of Bayesian
estimation and Bayesian model selection criteria. In addition, a real dataset was
analysed using the proposed approach.

5.1 Transformed Generalized Autoregressive Moving Average

(TGARMA) Model

Box and Cox (1964) commented that many important results in statistical
analysis follow from the assumption that the population being sampled or
investigated is normally distributed with a common variance and additive error
structure. For this reason, these authors presented a transformation called
Box-Cox power transformation that has generated a great deal of interests, both
in theoretical work and in practical applications.
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5.1 Transformed Generalized Autoregressive Moving Average (TGARMA) Model

This family has been modified Cox (1981) to take account of the discontinuity
at λ = 0, such that

y
(λ)
t =

{
(Y λt −1)

λ
;λ 6= 0

log(Yt);λ = 0

Sakia (1992), Manly (1976) and Draper and Cox (1969) discuss others
transformations which have the same goal: reduce anomalies in the data. The
literature recommends the use of Box-Cox power transformation as a general
transformation. The next section presents the TGARMA approach using the
Box-Cox power transformation.

5.1.1 Model definition

The TGARMA model specifies the conditional distribution of each transformed
observation y

(λ)
t , for t = 1, . . . , n given the previous information set, defined by

F
(λ)
t−1 = (y

(λ)
1 , . . . , y

(λ)
t−1, µ1, . . . , µt−1). The conditional density belongs to exponential

family and is given by

f(y
(λ)
t |F

(λ)
t−1) = exp

(
y

(λ)
t αt − b(αt)

ϕ
+ d(y

(λ)
t , ϕ)

)
, (5.1)

where αt and ϕ are canonical and scale parameters, respectively. Moreover b(·)
and d(·) are specific functions that define the particular exponential family. The
conditional mean and conditional variance of yt given F (λ)

t−1 are represented as:

µt = b′(αt) = E(y
(λ)
t |F

(λ)
t−1) (5.2)

V ar(y
(λ)
t |F

(λ)
t−1) = ϕb′′(αt),

with t = 1, . . . , n.

Following the Generalized Linear Models (GLM) approach the parameter µt is
related to the predictor ηt by a twice differentiable one-to-one monotonic function
g, called link function. In general, we can also include set of covariates x
into our model. Moreover, we can we add an additional component allowing
autoregressive moving average terms to be included. In such a case our model
will have a form:
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5.1 Transformed Generalized Autoregressive Moving Average (TGARMA) Model

g(µt) = ηt = x′tβ +

p∑
j=1

φj{g(y
(λ)
t−j)− x′t−jβ}+

q∑
j=1

θj{g(y
(λ)
t−j)− ηt−j}. (5.3)

The parameters p and q are identified using the classical BIC or AIC criteria.
For more information the reader is refereed to Kedem and Fokianos (2002) and Li
(1994).

The TGARMA(p,q) model is defined by the equations (5.1) and (5.3). For
certain functions g, it may be necessary to replace y(λ)

t with y(λnew)
t in (5.3) to avoid

the non-existence of g(y
(λ)
t ) for certain values of yt. The form y

(λnew)
t depends on

the particular function g and is defined for specific cases later.

We will consider two important continuos GARMA models: gamma and inverse
Gaussian. We will present each one with a density and a respective predictor. The
simulation study and real data analysis were done for each of the distributions.

5.1.2 Examples

Gamma TGARMA model

Suppose that y(λ)
t |F

(λ)
t−1 follows gamma distribution with the mean µt, thus

f(y
(λ)
t |F

(λ)
t−1) =

1

Γ(ν)

(
ν

µt

)ν
y

(λ)
t

(ν−1)
exp

(
−y

(λ)
t ν

µt

)
. (5.4)

Here, y(λ)
t |F

(λ)
t−1 has a distribution in the exponential family with αt = − 1

µt
,

b(αt) = − log
(
ν
µt

)
, c(y(λ)

t , ϕ) = 1
Γ(ν)

+ν log(ν)+(ν−1) log(y
(λ)
t ) and ϕ = ν. Moreover

y
(λ)
t > 0, µt > 0 and ν > 0. And E(Y

(λ)
t |Ft−1) = µt where V ar(Y (λ)

t |Ft−1) = µtν.

The canonical link function for this model given by inverse function, however
we choose to use the logarithmic function, thus the linear predictor is given by
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5.1 Transformed Generalized Autoregressive Moving Average (TGARMA) Model

log(µt) = β0 +

p∑
j=1

φj{log y
(λnew)
t−j }+

q∑
j=1

θj{log(y
(λnew)
t−j )− log(µt−j)}. (5.5)

In the equation above y
(λnew)
t−j = max(yt−j, c), 0 < c < 1. In sequel we will drop

the superscript ′′new′′ understanding that we truncate y
(λ)
t from below if needed.

The gamma TGARMA model is defined by the equations (5.4) and (5.5).

Inverse Gaussian TGARMA model

Suppose that y(λ)
t |F

(λ)
t−1 follows an inverse Gaussian distribution with the mean

µt, thus

f(y
(λ)
t |F

(λ)
t−1) = exp

{
1

σ2

[
−2y

(λ)
t

µ2
t

+
1

µt

]
− 1

2
log(2πσ2y

(λ)
t

3
)− 1

2σ2y
(λ)
t

}
. (5.6)

The canonical link function for this model is the inverse of square function,
however we choose to use the logarithmic function The linear predictor is given by

log(µt) = β0 +

p∑
j=1

φj

{
log(y

(λ)
t−j)
}

+

q∑
j=1

θj(log(y
(λ)
t−j)− log(µt−j)). (5.7)

The inverse Gaussian TGARMA model is defined by the equations (5.6) and
(5.7).

5.2 Bayesian Approach on TGARMA Models

The MLE approach present the profile likelihood Cox (1975) to select the
transformed value. Using a Bayesian approach, the λ value can be actualized,
may providing better estimate than the MLE method.
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5.2 Bayesian Approach on TGARMA Models

5.2.1 Defining the Prior densities

Box and Cox (1964) shown that the transformation parameter present good
properties when its belong to [-1,1] interval. Hence a prior density will respect this
assumption.

λ ∈ [−1, 1]

The prior density for the transformation parameter λ is a uniform defined in [-1,
1], given by

π(λ) =
1

2
(5.8)

We added to the model prior information for the transformation parameter π(λ).
Using the logarithmic link function to guarantee positive values for any values of
the vectors β = (β1, . . . , βm), Φ = (φ1, . . . , φp) and Θ = (θ1, . . . , θq). Thus, a
multivariate Gaussian prior will be proposed for each parameter, i.e.

β ∼ N(µ0, σ
2
0I0)

Φ ∼ N(µ1, σ
2
1I1)

Θ ∼ N(µ2, σ
2
2I2),

where µ0,µ1 and µ2 are vectors with lengthsm, p and q respectively; σ2
0, σ2

1 and σ2
2

represent the prior variance, and I0, I1 and I2 are m×m, p× p and q × q identity
matrices, respectively. The construction of the multivariate Gaussian depends
on hyper-parameters, when there is no prior knowledge on these parameters, it
can be considered a very large variance, making the prior densities flat. The
parameters ν and σ2 for the gamma and inverse Gaussian distribution respectively,
must be positive. Thus we propose for these parameters a lognormal distribution,
guaranteeing positive values as prior information.

ν ∼ LN(µ3, σ
2
3)

σ2 ∼ LN(µ4, σ
2
4)

The hyper-parameters µ3 and µ4 represent the mean of the lognormal
distribution and the σ2

3 and σ2
3 representing the variance, can also be considered
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5.2 Bayesian Approach on TGARMA Models

a very large variance, making the prior densities flat.The partial likelihood function
for GARMA models can be constructed as follows:

L(β,Φ,Θ, u|Y ) ∝
n∏

t=r+1

f(yt|Ft−1)

∝
n∏

t=r+1

exp

(
ytαt − b(αt)

ϕ
+ d(yt, ϕ)

)
,

where u = ν if we have the TGARMA with gamma distribution, and u = σ2 if we
have the TGARMA with Inverse Gaussian distribution and also αt = g(µt), which
represents the link function given by

g(µt) = x′tβ +

p∑
j=1

φj{g(y∗t−j)− x′t−jβ}+

q∑
j=1

θj{g(y∗t−j)− g(µt−j)},

for all t = r + 1, . . . , n.

The posterior density is obtained combining the likelihood function with
the prior densities. Let the vector Y = (y

(λ)
t , y

(λ)
t−1, . . . , y

(λ)
1 , xt, xt−1, . . . , x1, . . . )

represent the necessary information to construct the likelihood function. The
posterior density is then given by,

π(β,Φ,Θ, u, λ|Y ) ∝ L(β,Φ,Θ, u|Y )π0(β,Φ,Θ, u, λ). (5.9)

Where π0(·) denotes a joint prior distribution. However, the joint posterior
density of parameters in the GARMA models can not be obtained in closed
form. Therefore, Markov chain Monte Carlo (MCMC) sampling strategies will be
employed for obtaining samples from this joint posterior distribution. We used
a Metropolis-Hastings algorithm to yield the required realizations and adopted a
sampling scheme where the parameters are updated as a single block, and at
each iteration we generated new values from a multivariate normal distribution
centred around the maximum likelihood estimates with a variance-covariance
proposal matrix given by the inverse Hessian evaluated at the posterior mode.

5.2.2 Bayesian prediction for GARMA models

The Bayesian model is defined by the equation (5.9). This equation present
information of present values considering the likelihood function and the prior
densities. However, the interest is in futures values which represent the model
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5.2 Bayesian Approach on TGARMA Models

for the information yt+h.

fΘ(yt+h|Ft) (5.10)

The model of yt+h provide the equation

π(yt+h,Θ|Ft) = fΘ(yt+h|Ft)π(Θ|Ft). (5.11)

Thus, the predictive density is established and given by

P (yt+h|Ft) =

∫
θ∈Θ

π(yt+h,Θ|Ft)dθ. (5.12)

The predictive density (5.12) is rewritten by

P (yt+h|Ft) =

∫
θ∈Θ

fΘ(yt+h|Ft)π(Θ|Ft)dθ. (5.13)

The aim is determine the predictive density using the MCMC algorithm, thus

P̂ (yt+h|Ft) =
1

Q

Q∑
j=1

f(yt+h|θ(j), Ft). (5.14)

The MCMC vector provide a vector of predictive densities of yt+h, thus

P̂ (yt+h|Ft) =
1

Q

Q∑
j=1

fΘ(j)(yt+h|Ft). (5.15)

Given the predictive density, the next step is evaluate the prediction
E(tt+h|Ft) = ŷt+h

E(yt+h|Ft) =

∫
yt+h∈Yt+h

yt+hP (yt+h|Ft)dyt+h. (5.16)

The equation (5.16) can be rewritten by

E(yt+h|Ft) =

∫
yt+h∈Yt+h

yt+h

[∫
θ∈Θ

fΘ(yt+h|Ft)π(Θ|Ft)dθ
]
dyt+h. (5.17)
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5.2 Bayesian Approach on TGARMA Models

Using properties of integer, the limits of the equation (5.17) can be replaced,
thus

E(yt+h|Ft) =

∫
θ∈Θ

[∫
yt+h∈Yt+h

yt+hfΘ(yt+h|Ft)dyt+h

]
π(Θ|Ft)dθ. (5.18)

The equation (5.18) represent∫
θ∈Θ

[E(yt+h|Ft,Θ)]π(Θ|Ft)dθ = µt+h(Θ). (5.19)

Hence, using the MCMC vector the E(yt+h|Ft) is evaluated by

Ê(yt+h|Ft) = ŷt+h =
1

Q

Q∑
j=1

µt+h(θ
(j)), (5.20)

where

g(µ
(k)
t+h) = β

(k)
0 +

p∑
i=1

φ
(k)
i g(yt+h−i) +

q∑
j=1

θ
(k)
j [g(yt+h−j)− g(µt+h−j)] (5.21)

Note that,

E(yt+h−j|Ft) =

{
yt+h−j, h ≤ j
ŷt+h−j, h > j

µ̂t+h−j =

{
µ̂t+h−j, h ≤ j
ŷt+h−j, h > j

These predictions represent the transformed series, however the real interest
is forecasting the original series.

E[yt|Ft] = E[λ(y
(λ)
t + 1)

1
λ |Ft], (5.22)

The properties of MCMC will be used to evaluate the original predictions. Using
the estimate mean is possible apply the inverse transformation, thus obtaining the
original prediction.
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5.2 Bayesian Approach on TGARMA Models

µ
(k)
t = [λµ

(k)
t + 1]

1
λ

µ
(k)
t+h = [λµ̂

(k)
t+h + 1]

1
λ (5.23)

These predictions are an important contribution of this work. Note that the
original predictions are obtained without any supposition or expansion, a crucial
gain of the Bayesian approach.

The confidence intervals for µ̂t+h can be evaluated using the MCMC sample to
calculate {µ(j)

t+h = g−1
(
ηt+h(γ

(j))
)
, with j = 1, . . . ,M . Once calculated M values of

the prediction µ̂t+h, the percentile 100σ% and 100(1− σ)% are selected, and using
5.23 we obtained the confidence interval for µ̂t+h. The next section contains all
the Bayesian simulation study. We use the Bayesian selection criterion to verify
the quality of choice for each TGARMA model.

5.3 Simulation Study

In this section we present a simulation study for GARMA(1,1) with gamma and
inverse Gaussian. Tables 5.1 and 5.3 show these results.

The performance of the Bayesian estimation was evaluated using three
metrics: the corrected bias (CB), the corrected error (CE) and the mean
acceptance rates in the MCMC algorithm called Acceptance Probabilities (AP).
These metrics are defined as,

CB =
1

m

m∑
i=1

∣∣∣∣∣θ − θ̂(i)

θ

∣∣∣∣∣ ,
CE2 =

1

τ 2

1

m

m∑
i=1

(θ̂(i) − θ)2

AP =
1

m

m∑
i=1

r̂(i),

where θ̂(i) and r̂(i) are the estimate of parameter θ and the computed acceptance
rate, respectively, for the i-th replication, i = 1, . . . ,m. In this paper we take the
posterior means of θ as point estimates. Furthermore, the variance term (τ 2) that
appears in the definition of CE is the sample variance of θ̂(1), . . . , θ̂(m).
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5.3 Simulation Study

Therefore, we opted to chose parameter values that would generate moderate
values for the time series. The Table 5.2 present the proportions of correct model
chosen using Bayesian criterion with Gamma GARMA(p,q) model. We conduced
the study with different values of λ.

The experiment was replicated m = 1000 times for each model. For
each dataset, we used the prior distributions as described in Section 3 with
mean zero and variance 200. We then drew samples from the posterior
distribution discarding the first 1000 draws as burn-in and keeping every 3rd
sampled value, resulting in a final sample of 5000 values. All the computations
were implemented using the open-source statistical software language and
environment R (R Development Core Team (2010)).

Table 5.1: TGARMA(1,1) with gamma distribution and Box-Cox power transformation

Parameter Real value Mean Variance CB CE AP
λ 0.30 0.3025 0.0039 0.1504 0.9982 0.5939
ν 0.50 0.5032 0.0011 0.0528 1.0023 0.7414
α0 0.70 0.6970 0.0277 0.1793 0.9976 0.6302
α1 0.50 0.4970 0.0019 0.0718 0.9996 0.5553
φ1 0.30 0.3008 0.0016 0.1036 0.9976 0.5863

Parameter Real value Mean Variance CB CE AP
λ 0.50 0.5052 0.0068 0.1266 1.0015 0.6771
ν 0.50 0.5030 0.0010 0.0511 1.0040 0.7455
α0 0.70 0.7027 0.0281 0.1882 0.9996 0.6370
α1 0.50 0.4997 0.0018 0.0689 0.9995 0.5574
φ1 0.30 0.3008 0.0016 0.1069 1.0015 0.5854

Parameter Real value Mean Variance CB CE AP
λ 0.70 0.7095 0.0110 0.1208 1.0006 0.7276
ν 0.50 0.5076 0.0013 0.0598 1.0182 0.7450
α0 0.70 0.7011 0.0316 0.2019 0.9964 0.6384
α1 0.50 0.4978 0.0019 0.0722 0.9976 0.5611
φ1 0.30 0.3008 0.0015 0.1096 0.9966 0.5873

Parameter Real value Mean Variance CB CE AP
λ 0.90 0.8783 0.0107 0.0969 1.0203 0.7634
ν 0.50 0.5114 0.0010 0.0550 1.0581 0.7401
α0 0.70 0.6581 0.0217 0.1778 1.0382 0.6270
α1 0.50 0.4925 0.0018 0.0685 1.0140 0.5553
φ1 0.30 0.3020 0.0019 0.1147 0.9991 0.5831
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Table 5.2: Proportions of correct model chosen using Bayesian criterion with Gamma GARMA(p,q)
model

λ = 0.3 λ = 0.5
Model GARMA(1,1) GARMA(2,2) GARMA(1,1) GARMA(2,2)
EBIC 0.9820 0.4640 0.9920 0.4220
DIC 0.7900 0.7660 0.7940 0.7760
CPO 0.4260 0.7860 0.4300 0.8040

λ = 0.7 λ = 0.9
Model GARMA(1,1) GARMA(2,2) GARMA(1,1) GARMA(2,2)
EBIC 0.9880 0.4900 0.9890 0.4540
DIC 0.8080 0.7860 0.7800 0.7510
CPO 0.4800 0.7800 0.4860 0.7950

Table 5.3: TGARMA(2,2) with gamma distribution and Box-Cox power transformation

Parameter Real value Mean Variance CB CE AP
λ 0.30 0.3013 0.0010 0.0762 0.9971 0.3535
ν 0.50 0.5060 0.0008 0.0474 1.0170 0.7407
α0 0.50 0.5332 0.0398 0.3074 1.0100 0.4085
α1 0.30 0.2790 0.0178 0.3406 1.0084 0.2771
α2 -0.20 -0.2064 0.0020 0.1810 1.0062 0.5685
φ1 0.40 0.4184 0.0182 0.2566 1.0055 0.2478
φ2 -0.30 -0.2788 0.0140 0.2956 1.0121 0.2421

Parameter Real value Mean Variance CB CE AP
λ 0.50 0.5031 0.0020 0.0654 0.9989 0.4252
ν 0.50 0.5043 0.0009 0.0498 1.0063 0.7521
α0 0.50 0.5289 0.0380 0.3019 1.0076 0.4871
α1 0.30 0.2841 0.0169 0.3319 1.0040 0.3257
α2 -0.20 -0.2055 0.0020 0.1814 1.0042 0.5764
φ1 0.40 0.4139 0.0171 0.2461 1.0023 0.3301
φ2 -0.30 -0.2838 0.0133 0.2903 1.0064 0.3457

Parameter Real value Mean Variance CB CE AP
λ 0.70 0.7015 0.0036 0.0660 0.9961 0.5057
ν 0.50 0.5064 0.0009 0.0501 1.0174 0.7378
α0 0.50 0.5321 0.0406 0.3102 1.0085 0.4414
α1 0.30 0.2822 0.0175 0.3347 1.0048 0.3271
α2 -0.20 -0.2076 0.0018 0.1732 1.0118 0.6342
φ1 0.40 0.4153 0.0173 0.2483 1.0026 0.2621
φ2 -0.30 -0.2813 0.0133 0.2905 1.0089 0.2928

Parameter Real value Mean Variance CB CE AP
λ 0.90 0.9025 0.0055 0.0642 0.9948 0.5932
ν 0.50 0.5068 0.0009 0.0520 1.0177 0.7285
α0 0.50 0.5347 0.0442 0.3131 1.0079 0.5121
α1 0.30 0.2793 0.0156 0.3093 1.0075 0.2318
α2 -0.20 -0.2069 0.0016 0.1654 1.0087 0.5478
φ1 0.40 0.4191 0.0157 0.2304 1.0060 0.2114
φ2 -0.30 -0.2807 0.0126 0.2741 1.0089 0.2407

This section confirms the good performance of the Bayesian methods. The
Tables 5.1 and 5.3 presented acceptable values for CB, CE and AP, that should
be near 0, 1 and between 0.30 and 0.80, respectively. The Table 5.2 present
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5.3 Simulation Study

higher proportions indicating the corrected model, with different values of λ. We
presented the results of GARMA(1,1) and GARMA(2,2) but similar results were
obtained with the orders (1,2),(2,1). We also conduced the same study using the
inverse Gaussian distribution, similar results were obtained.

In all cases we used the diagnostic proposed by Geweke (1992) to assess
convergence of the chains. This is based on a test for equality of the means of
the first and last parts of the chain (by default the first 10% and the last 50 ). If the
samples are drawn from the stationary distribution, the two means are equal and
the statistic has an asymptotically standard normal distribution. The calculated
values of Geweke statistics were all between -2 and 2, which is an indication of
convergence of the Markov chains.

5.4 Real data analysis

The demography of Sweden is monitored by Statistics Sweden (SCB). As of
31 December 2013, Sweden’s population was estimated to be 9.64 million people,
making it the 90th most populous country in the world. The three biggest cities
are Stockholm, Gothenburg and Malmö. Approximately 85% of the country’s
population resides in urban areas.

The real data set represents the Annual Swedish fertility rates (1000’s) 1750-
1849. We obtained the data set on https://datamarket.com/data/set/22s2.
Figures 5.1 and 5.2 present the graph and Auto Correlation Function and Partial
Auto Correlation Function of Annual Swedish fertility rates respectively.
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Figure 5.1: Graph of Annual Swedish fertility rates
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Figure 5.2: Auto Correlation Function and Partial Auto Correlation Function of Annual Swedish
fertility rates

The Bayesian selection criterion were used to select between the gamma and
inverse Gaussian and also to select the order of the model. Table 5.4 we present
the results.
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5.4 Real data analysis

Table 5.4: Criterion selection using Annual Swedish fertility rates

Gamma TGARMA(1,0) TGARMA(1,1) TGARMA(1,2) TGARMA(2,1) TGARMA(2,2)
EBIC 1506.72 1507.51 1579.31 1544.57 1606.73
DIC 1496.66 1497.32 1570.84 1530.09 1596.48
CPO -299.91 -300.76 -409.56 -306.09 -435.69

Inverse Gaussian TGARMA(1,0) TGARMA(1,1) TGARMA(1,2) TGARMA(2,1) TGARMA(2,2)
EBIC 1664.14 1664.89 1683.51 1681.97 1686.55
DIC 1651.29 1652.56 1667.54 1665.44 1665.82
CPO -336.96 -337.35 -381.22 -374.79 -392.01

The selected model was GARMA(1,0) with gamma distribution as we can see
in Table 5.4. Table 5.5 presents the Bayesian estimates of the model with posterior
mean and standard deviation in brackets, the 95% HPD intervals and acceptance
probability.

Table 5.5: Estimates of Annual Swedish fertility rates series with TGARMA(1,0) Gamma

Parameter Posterior Mean(Sd) Inferior HPD Bound Superior HDP Bound AP
β0 0.7888(0.0537) 0.6497 0.9269 0.4928
φ1 0.7157(0.0224) 0.6657 0.7650 0.4961
ν 3.4782(0.3516) 2.8195 4.1212 0.6701
λ 0.3145(0.0326) 0.2513 0.3754 0.7382

Quantile residuals are based on the idea of inverting the estimated distribution
function for each observation to obtain exactly standard normal residuals. The
residuals is given by rt = Φ−1(Fyt(yt|Ft−1)) where Fyt represent the cumulative
distribution function for the respective density.
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Figure 5.3: Autocorrelation function and partial autocorrelation function of the residuals of rate of
Annual Swedish fertility rates series

The residual analysis is an important part to check the adequability of the
model. The Figure 5.3 confirms residuals following Gaussian distribution and non-
correlated.
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Figure 5.4: Original Predictions with GARMA(1,0) Gamma model with Rate of Annual Swedish
fertility rates series

The prediction were made by the median. Only the first term of Taylor
expansion was used. Using the estimate, predictions of 6 steps ahead of the
original series can be made. The 6 last values of the series were removed and
fitted the model without them. Figure 5.4 presents predictions one step ahead for
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5.4 Real data analysis

6 years values, thus the predicted value be compared with the true value.

The MAPE was calculated to assess the quality of predictions, the value was
03.70% which indicated good predictions. The predictions using the Gaussian
distribution was evaluated, and presented higher values of MAPE.
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CHAPTER

6

Discussion

In the Second Chapter we have shown that the MBB algorithm is consistent,
that is the quantiles derived by MBB method are equivalent with the quantiles
derived from the asymptotic distribution. For GARMA models considered in this
paper obtaining asymptotic distributions of the ML estimates is very complicated
as it entails calculating complicated asymptotic Fisher information matrix. Thus,
MBB method provides a clear advantage over the classical approach. Additionally,
in Section 5 we have performed an extensive Monte Carlo study to check the
coverage of MBB confidence intervals and compare it with the coverage of
classical asymptotic confidence intervals. Our results clearly show the superiority
of MBB method, the coverage rates are consistently better throughout our
experiments.

In the Third Chapter we discuss a Bayesian approach for estimation,
comparison and prediction of GARMA time series models. We analysed
three different discrete models: Poisson, binomial and negative binomial. We
implemented MCMC algorithms to carry out the simulation study and the
methodology was also applied on three real discrete time series data.

Properties of the Bayesian estimation and the performance of Bayesian
selection criteria were assessed with our simulation study. The analysis with real
data also provided good estimates and predictions via parsimonious models. All
in all our results suggest that, as indicated in the original GARMA paper, this class
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of models have potential uses for modelling overdispersed time series count data.

In the Forth Chapter the model under study is a GARMA model that was
recently introduced by Benjamin et al. (2003). There are many potential uses of
GARMA model in time series analysis. For example, while analyzing discrete time
series, GARMA structures allow embedding continuous type ARMA model in the
parametrization of the discrete distribution (see de Andrade et al. (2016c)). Due
to increased popularity of GARMA models, there is a need to find transformations
letting the model correspond to data more flexibly. We propose Box-Cox
transformation. Our research shows that the Partial Likelihood method can be
successfully applied in finding optimal value of λ for the Box-Cox transformation.
Such value, say λ̂, can then be used to transform the data and use the GARMA
model for statistical inference. Additionally, the moving block bootstrap technique
is used to get confidence intervals for the true unknown value of λ in the Box-Cox
transformation. Having confidence intervals for λ is an additional bonus as it
indicates preferred subintervals of [0,1] for λ.

In the Fifth Chapter we discussed a Bayesian approach for estimation,
comparison and prediction of TGARMA time series models. We analyzed two
different continuous models: gamma and inverse Gaussian. We implemented
MCMC algorithms to carry out the simulation study and the methodology was
also applied on a real time series dataset. Properties of the Bayesian estimation
and the performance of Bayesian selection criteria also were assessed with our
simulation study. The analysis with real data also provided good estimates and
predictions via parsimonious models. Our results suggest that, as indicated in the
original TGARMA paper, this class of models have potential uses for modelling
non-additivity, non-normality and heteroscedasticity continuous time series.
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