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ABSTRACT

PAZ, R. F. Alternative regression models to Beta distribution under Bayesian approach.
2017. 120 p. Tese (Doutorado em Estatística – Interinstitucional de Pós-Graduação em Esta-
tística) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São
Carlos – SP, 2017.

The Beta distribution is a bounded domain distribution which has dominated the modeling the
distribution of random variable that assume value between 0 and 1. Bounded domain distributions
arising in various situations such as rates, proportions and index. Motivated by an analysis of
electoral votes percentages (where a distribution with support on the positive real numbers was
used, although a distribution with limited support could be more suitable) we focus on alternative
distributions to Beta distribution with emphasis in regression models. In this work, initially we
present the Simplex mixture model as a flexible model to modeling the distribution of bounded
random variable then we extend the model to the context of regression models with the inclusion
of covariates. The parameters estimation is discussed for both models considering Bayesian
inference. We apply these models to simulated data sets in order to investigate the performance
of the estimators. The results obtained were satisfactory for all the cases investigated. Finally, we
introduce a parameterization of the L-Logistic distribution to be used in the context of regression
models and we extend it to a mixture of mixed models.

Keywords: L-Logistic distribution, Bounded response, Mixture model, Simplex distribu-
tion, Bayesian inference, Beta distribution, Human development index, Regression model.





RESUMO

PAZ, R. F. Modelos de regressão alternativos à distribuição Beta sob abordagem bayesi-
ana. 2017. 120 p. Tese (Doutorado em Estatística – Interinstitucional de Pós-Graduação em
Estatística) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos – SP, 2017.

A distribuição beta é uma distribuição com suporte limitado que tem dominado a modelagem
de variáveis aleatórias que assumem valores entre 0 e 1. Distribuições com suporte limitado
surgem em várias situações como em taxas, proporções e índices. Motivados por uma análise
de porcentagens de votos eleitorais, em que foi assumida uma distribuição com suporte nos
números reais positivos quando uma distribuição com suporte limitado seira mais apropriada,
focamos em modelos alternativos a distribuição beta com enfase em modelos de regressão.
Neste trabalho, apresentamos, inicialmente, um modelo de mistura de distribuições Simplex
como um modelo flexível para modelar a distribuição de variáveis aleatórias que assumem
valores em um intervalo limitado, em seguida estendemos o modelo para o contexto de modelos
de regressão com a inclusão de covariáveis. A estimação dos parâmetros foi discutida para
ambos os modelos, considerando o método bayesiano. Aplicamos os dois modelos a dados
simulados para investigarmos a performance dos estimadores usados. Os resultados obtidos
foram satisfatórios para todos os casos investigados. Finalmente, introduzimos a distribuição
L-Logistica no contexto de modelos de regressão e posteriormente estendemos este modelo para
o contexto de misturas de modelos de regressão mista.

Palavras-chave: Distribuição L-Logistica, Resposta limitada, Modelo de mistura, Distribuição
Simplex, Inferência bayesiana, Distribuição Beta, Índice de desenvolvimento humano, Modelo
de regressão.
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CHAPTER

1
INTRODUÇÃO

Random variables with support on a bounded subset of the real line are common in
practical problems and are frequently analyzed by researchers, for instance, Impartial Anony-
mous Culture (STENSHOLT, 1999) and the Human Development Index (HDI) (MCDONALD;
RANSOM, 2008; CIFUENTES et al., 2008). Examples of bounded variables which are often
analyzed are rates and proportions bounded in (0,1) interval. In these case, we usually transform
the variables by the logit transformation in order to deal with an unbounded variables However,
some problems arise with this approach. One problem is that rates and proportions display more
variation around the mean and this variation decrease in the neighborhood of the lower and
upper limits of the standard unit interval. In addition an antisymmetric distributions can be more
appropriate for modeling this kind of data. For modeling this kind of data, different models have
been proposed in the past. For example, among others, Buckley (2003), Ferrari and Cribari-Neto
(2004), Lemonte and Bazán (2016), Gómez-Déniz, Sordo and Calderín-Ojeda (2014), Bayes,
Bazán and Castro (2017) and Jones (2009). However, there are still continuous distributions with
bounded support that need further study.

In the mixture model context, there are some studies which consider mixtures of Beta
distributions (BOUGUILA; ZIOU; MONGA, 2006; BOUGUILA; ELGUEBALY, 2012), but
other probability distributions with support in the (0,1) interval, the Simplex distribution for
an example, have not yet been completely analyzed or studied. The Simplex distribution was
proposed by Barndorff-Nielsen and Jorgensen (1991) and has recently been considered as a
complementary and alternative regression model to the beta regression model (LÓPEZ, 2013;
SONG; TAN, 2000). A simple advantage of the Simplex distribution is that both, mean and
dispersion parameter, are shown explicitly in its probability density function. The distribution
can have one or two modes, and cannot emulates a flat distribution as the uniform distribution on
the interval (0, 1).

In the context of regression model, a distribution not studied yet is the Logit-Logistic
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(called here L-Logistic), originally proposed by Tadikamalla and Johnson (1982). This dis-
tribution was studied by, among others, Tadikamalla and Johnson (1990) and Johnson and
Tadikamalla (1991), who proposed the method of moments and the percentile points method to
fit this distribution. However, regression models were not studied by considering this distribution.

In this thesis, we consider the Simplex distribution and the L-Logistic distribution as
alternatives to the Beta distribution in some different situations as: mixture model, regression
model, among others to model data bounded in (0,1) interval. The work was motivated by the
data of percentages of votes obtained by a political party in elections in different cities of an
region of the Brazil seen in Paz, Bazán and Elher (2015), and described here in the Chapter 2.
These data sets have some characteristics of Benford’s Law (see for exemple Berdufi (2014) and
Cuff, Lewis and Miller (2014b)) and recently Cuff, Lewis and Miller (2014a) have established
the relation between the Weibull distribution and Benford’s Law. Thus, the percentages of votes
to each city are assumed here to follow a Weibull distribution. In this work, mixture models
are also used in the analysis of the percentages of votes in order to give more flexibility for the
model. These data sets are an example of data which need a more flexible distribution to be
suitable modeled

The Chapters 3, 4, 5 e 6 of this thesis are based on manuscripts written to present models
alternatives to Beta distribution. In the third chapter a mixture of Simplex distributions for
modeling proportional data is presented. The Simplex distribution is a distribution recently
studied as alternative to Beta distribution (LÓPEZ, 2013; SONG; TAN, 2000). However, since
the data present multimodality we propose a mixture of Simplex distributions for the modeling
process. A full Bayesian approach is considered in the inference process in mixture of Simplex
distributions and the method adopted is the Reversible-jump Markov Chain Monte Carlo. The
usefulness of the proposed approach is confirmed by use of the simulated mixture data from
several different scenarios and through an application of the methodology to analyze municipal
Human Development Index data of the cities of the Northeast region and São Paulo state in
Brazil. The work presented in this chapter is a manuscript published in the Journal of Applied
Statistics (PAZ; BAZÁN; MILAN, 2015).

The fourth chapter is dedicated to the analysis of the Municipal Human Development
Index as a function of proportion of poor people per municipality. We propose a regression model
where the response follow a mixture of Simplex distribution. Estimation is performed also by
a Bayesian approach making use of Gibbs sampling algorithm. For the choice of the number
of component in the mixture, we make a comparison of the models with different components.
This chapter present a work published as a expanded abstract for 60a Reunião Anual da Região
Brasileira da Sociedade Internacional de Biometria (RBras), 2015, conference.

The fifth chapter deal with features of the L-Logistic distribution. As said before, this
distribution was originally proposed by Tadikamalla and Johnson (1982) through a transformation
of the standard logistic distribution. In the considered parametrization of L-Logistic distribution,
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the median is an explicit parameter and we can easily write it as a function of covariates in a
regression structure. If the data are highly skewed, where the median is a natural robust measure
of the center, the conditional median modeling can be more useful than conditional mean
modeling adopted in Beta regression models. For the model without covariate, simulation studies,
considering prior sensitivity analysis and comparison with Beta distribution, give evidence that
the L-logistic distribution is more robust then Beta distribution to modeling data with outliers.
Applications to real and simulated data are also performed. The work presented in this chapter is
under review for publication.

Finally, a mixture of L-Logistic mixed-effect models for modeling longitudinal proportion
data is proposed and discussed in Chapter 6. These models are applied to simulated data providing
good estimates for the parameters of the proposed models. Application to real data was also
performed. In this chapter, we present a manuscripts under review for submission to an journal.
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CHAPTER

2
A MOTIVATION: STUDY OF THE VOTES OF

A BRAZILIAN POLITICAL PARTY

This chapter shows an application of a mixture model to analyze data of the percentage
of votes under Bayesian approach. We give a description of the mixture model considering each
component of the mixture as a Weibull distribution. In order to decide about the number of
components of the mixture model, a model comparison was conducted using the Bayes factor.



28 Chapter 2. A Motivation: Study of the Votes of a Brazilian Political Party

Abstract

Statistical modeling in Political Analysis has ben used to describe electoral behavior of political
party. In this paper we propose a Weibull mixture model to describe the votes obtained by a
political party in Brazilian presidential elections. We considered the votes obtained by the Partido
dos Trabalhadores in five presidential elections from 1994 to 2010. A Bayesian approach was
considered and a random walk Metropolis algorithm within Gibbs sampling was implemented.
Next, Bayes factor was considered to the choice of the number of components in the mixture. In
addition the probability of obtain 50 percent of the votes in the first round was estimated. The
results show that only few components are needed to describe the votes obtained in this election.
Finally, we found that the probability of obtaining 50 percent of the votes in the first ballot is
increasing along time. Future developments are discussed.

2.1 Introduction

Statistical modeling in Political Analysis has been used recently to describe the electoral
behavior of a political party and examples of study of voting behavior are Jones and Johnston
(1992). In Brazil the electoral behavior underwent a process of change since 1994 to the recent
days. In 1994, Brazilians voted in one of the most important elections held since 1945. This
was the second election held since the end of military rule from 1964 to 1985. In terms of the
presidential vote, in 1994 the candidate of The Brazilian Social Democracy Party (in Portuguese:
Partido da Social Democracia Brasileira, PSDB) won the majority of votes on the first ballot
(54.3 per cent) and the candidate of Partido dos trabalhadores (PT) obtained 38.4 per cent of the
total of votes. For more information about this election see for example Meneguello (1995) or
the Superior Electoral Court (TSE) website <http://english.tse.jus.br>. However the PT elected
its candidates for president in the last 3 elections occurring in 2002, 2006 and 2010. Results on
the presidential elections in Brazil are available on the TSE website.

In order to investigate the probabilistic behavior of votes obtained by a political party in
Brazilian general elections we propose a Weibull mixture model. In particular, we considered the
presidential votes obtained by PT in the five elections from 1994 to 2010 using data obtained from
TSE website. As seen in Bohn (2011), analysts have argued that the social policies that President
Luis Inacio Lula da Silva implemented enabled the number of voters of the PT to expand from
middle-class and highly educated people to low-income and poorly educated individuals from the
Northeast of Brazil. From the 9 states in the Northeast region we chose to analyze the data from
Sergipe State (SE) for illustration purposes because this is the state with the smallest number of
electoral districts, being 75 municipalities.

For estimation purposes, a Bayesian approach was considered and a random walk
Metropolis-Hasting algorithm within Gibbs sampling was implemented. Next, a Bayes factor

 http://english.tse.jus.br
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approach was considered to the choice of the number of components in the mixture. Finally
the probability of obtaining 50 percent of the votes in the first ballot was estimated. The results
show that only a few components are needed in the mixture to describe the votes obtained in this
election. In addition we found that the probability of obtaining 50 percent of the votes in the first
ballot is increasing along time.

The rest of the work is organized as follows. In Section 2.2 we give a description of
the data. In Section 2.3, we describe the finite mixture model and a finite mixture of Weibull
distributions is proposed to model the data of votes of a Brazilian political party. In Section 2.4
we present the main results and the future developments are discussed in Section 2.5 .

2.2 The votes of a political party

Percentages of votes obtained by a political party in an election in different cities of a
region or country can be assumed as a random variable X > 0 due to because, as suggested by
Cuff, Lewis and Miller (2014b), these are some characteristics of Benford’s Law which has
been invoked as evidence of elections data for example by Berdufi (2014). Benford’s law, also
called the first-digit law, is an observation about the frequency distribution of leading digits
in many real-life sets of numerical data. This law of Leading Digits proposes a distribution
for the significands (or significant digits) which holds for many data sets, and states that the
proportion of values beginning with digit d, d ∈ 1, ..,9, is approximately Prob(d)=log10

(d+1
d

)
.

There have been numerous attempts to pass from observing the prevalence of Benford’s law to
explaining its occurrence in different and diverse systems. Such knowledge gives us a deeper
understanding of which natural data sets should follow Benford’s law. A good recent description
of this approach is given in Fewster (2009). Moreover, Cuff, Lewis and Miller (2014a) have
established the relation between the Weibull distribution which the support is positive real line
and Benford’s Law. Thus, the Weibull distribution is used here for model data of percentage of
votes. Note that, since percentage data are in bounded interval, a distribution with support in
bounded interval would also be suitable for modeling such data. However in this work we use
the Weibull model following the literature of the area.

As usually observed in the Histogram of the percentage data, they present a positive
asymmetric distribution, that is, the votes are concentrated in lower percents and occasionally
are observed higher values and the mean is greater than the median. The percentages of votes to
each city are assumed here to follow a Weibull distribution which is governed by two parameters,
that is X ∼Weibull(δ ,η). Being zero the lower end of its support. The parameter δ is a shape
parameter and η is a scale parameter. The parameter η determines the scale along its support
of votes and the parameter δ , determines the concentration of the distribution of votes. High
values of η correspond to a high degree of concentration (low dispersion) of votes. The Weibull
distribution can be seen as a generalization of the Exponential distribution and commonly descri-
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bes the time we have to wait for one event to occur, if that event becomes more or less likely
with time. Here the η parameter describes how quickly the probability ramps up (proportional
to xη−1). For 0 < η < 1, the density function tends to +∞ if x approaches zero from above and
is strictly decreasing. For η = 1, the density function of votes tends to 1/δ to lower votes x

approaches zero from above and is strictly decreasing. For η > 1, the density function of votes

tends to zero as the votes x approaches zero from above, increases until its mode δ

(
η−1

η

)1/η

and decreases after it.

Additionally by observing the histogram of percent of votes by cities in Figure 1, we can
see multimodality in the data. Thus, may be it is possible to identify different populations (clusters
of votes), probably because there are different electoral behaviors between cities. Consequently a
Weibull mixture distribution can be assumed in order to identify these sub populations. In Tsionas
(2002) this type of distribution has been considered in different areas but similar situations.

2.3 The general mixture model

Finite mixture of distributions is a flexible method of data modeling. Its more direct role
in data analysis and inference is to provide a convenient and flexible family of distributions to
estimate or approximate distributions which are not well modeled by any standard parametric
family. This type of model is useful in the modeling of data from a heterogeneous population, that
is, a population which can be divided in clusters or components. In this sense, the components
in the data can be modeled for uni-modal distributions. For more details about modeling and
applications of finite mixture models, see for example McLachlan and Peel (2004).

By observation of the data in Figure 1 we propose to model these data as a k-component
mixture of distributions. This approach is flexible enough to model the data that is shown in such
situation in Figure 1, where we can see the multimodality phenomenon.

A random variable X is said to follow a mixture of distributions with k components if its
probability density function (pdf) is given by

f (x|θθθ ,ωωω,k) =
k

∑
j=1

ω j f j(x|θθθ j) (2.1)

where each f j(x|θθθ j) is a pdf called component density of the mixture, indexed by a parameter
vector θθθ j (here we write f (x|θθθ j) without the index j because the component density belong
to the same parametric family), θθθ = (θ1, ...,θk) is a vector containing all the parameters of
the components in the mixture and the components of the vector ωωω = (ω1, . . . ,ωk) are called
weights of the mixture where 0 < ω j < 1 with ∑

k
j=1 ω j = 1. In the equation (2.1) k is the number

of components in the mixture. We call the model defined by the pdf in (2.1) mixture model
which the distribution is called mixtures of distributions. For a review on existing techniques for
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Bayesian modeling and inference on mixtures of distributions, see for example Marin, Mengersen
and Robert (2005).

In order to make inference about the parameters of the mixture model, suppose X =

(X1, ...,Xn) a random sample from the distribution defined by equation (2.1). The likelihood
related to a sample x = (x1, ...,xn), where each xi is a observation of Xi for i = 1, ...,n, is given
by

L(θθθ ,ωωω|x,k) =
n

∏
i=1

k

∑
j=1

ω j f (xi|θ j).

A way to simplify the inference process of mixture model is to consider a unobserved random
vector Zi = (Zi1, ...,Zik) such that Zi j = 1 if the ith observation is from the jth mixture component
and Zi j = 0 otherwise, i = 1, . . . ,n. Note that ∑

k
j=1 Zi j = 1 then we suppose each random

vector Z1, ..,Zn is distributed according to the multinomial distribution with parameters 1 and
ωωω = (ω1, ...,ωk) = (P(Zi1 = 1|ω,k), ...,P(Zik = 1|ω,k)), for i = 1, ...,n. Then

P(Zi j = 1|xi,θθθ ,ω,k) ∝ P(Zi j = 1|ωωω,k) f (xi|Zi j = 1,θθθ ,ωωω,k),

j = 1, ...,k, i = 1, . . . ,n. To simplify the notation we consider Z = (Z1, ...,Zn) a vector nk

containing all the unobserved indicator vectors Zi. Note that the distribution of each Xi given Zi

has pdf given by

f (xi|Zi,θθθ ,k) =
k

∏
j=1

[
f (xi|θ j)

]Zi j (2.2)

then the joint distribution of (Xi,Zi) can be written as

f (xi,Zi|θθθ ,ωωω,k) = P(Zi|ωωω,k) f (xi|Zi,θθθ ,k) =
k

∏
j=1

[
ω j f (xi|θ j)

]Zi j . (2.3)

Note that, the vector Zi have just one component equal to 1 and the others equal to zero then

k

∏
j=1

[
ω j f (xi|θ j)

]Zi j=


ω1 f (xi|θ1) if Zi = (1,0, ...,0)
ω2 f (xi|θ2) if Zi = (0,1, ...,0)

...
...

ωk f (xi|θk) if Zi = (0,0, ...,1)

thus,

f (xi|θθθ ,ωωω,k) = ∑
Zi

f (xi,Zi|θθθ ,ωωω,k) =
k

∑
j=1

ω j f (xi|θ j). (2.4)

After the inclusion of the indicator vectors in the model, the augmented data likelihood
to (x, Z) can be written as

L(θθθ ,ωωω|x,Z,k) =
n

∏
i=1

k

∏
j=1

[
ω j f (xi|θ j)

]Zi j . (2.5)
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Finally, the joint distribution of all variables of the model including the augmented
version an the prior specifications is

P(x,θθθ ,Z,ωωω|k) = f (x|θθθ , Z,ωωω,k)P(θθθ | Z,ωωω,k)P( Z|ωωω,k)P(ωωω|k).

A common approach is to impose conditional independence (BOUGUILA; ELGUEBALY,
2012) such that P(θθθ |Z,ωωω,k) = P(θθθ | Z,k), f (x|θθθ ,Z,ωωω,k) = f (x|θθθ , Z,k) leading to the joint
distribution

f (x,θθθ , Z,ωωω|k) = f (x|θθθ , Z,k)P(θθθ | Z,k)P( Z|ωωω,k)P(ωωω|k), (2.6)

where P( Z|ωωω,k) = ∏
n
i=1

(
∏

k
j=1 ω

Zi j
j

)
and f (x|θθθ , Z,k) = ∏

n
i=1 ∏

k
j=1
[

f (xi|θ j)
]Zi j . This hierar-

chical representation of the model facilitates the Bayesian analysis because it allows the use of
Markov chain Monte Carlo (MCMC) technique. Here, we consider the number of component k

as a known constant however the value of k can be considered as unknown, and in this case the
number of component is also a parameter to be estimated.

2.4 The Weibull mixture model

Here, we assume a finite mixture of Weibull distributions for each Xi, i = 1, ...,n, where
the jth component has scale and shape parameters η j and δ j respectively. We prefer Weibull
distribution since that gives a distribution for which the failure rate is proportional to a power of
time and the parameters of the model are easily interpretable. Consequently other distributions
were discarded.

Considering Weibull distributions as components in the mixture model, the augmented
data likelihood function is given by

L(θθθ ,ωωω|x,k) =
n

∏
i=1

k

∏
j=1

[
ω j

δ j

η j
exp

(
−
(

xi

η j

)δ j
)(

xi

η j

)δ j−1
]Zi j

(2.7)

where θθθ = (θ1, ...,θk) with θ j = (δ j,η j) for j = 1, ...,k.

Following the Bayesian paradigm, we need to complete the model specification by assig-
ning prior distributions to the parameters. Then, by applying the Bayes theorem the posterior
density is proportional to the product the likelihood function (2.7) by the prior density.

We shall assume that all the parameters are a priori independent. Then, within each
component, Gamma prior distributions are assigned to the Weibull parameters, i.e. η j ∼
Gamma(a j,b j) and δ j ∼ Gamma(c j,d j), j = 1, . . . ,k, here the notation Y ∼ Gamma(c j,d j)

means that the random variable Y follows a Gamma distribution with parameters c j and d j.
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Also, since the vector of weights ωωω is defined on the Simplex {ωωω ∈ Rk : 0 < ω j < 1, j =

1, ...,k,∑k
j=1 ω j = 1} we consider a Dirichlet prior distribution for ωωω which pdf is given by

p(ωωω|ν1, . . . ,νk,k) =
Γ(ν1 + · · ·+νk)

Γ(ν1) · · ·Γ(νk)

k

∏
j=1

ω
ν j−1
j (2.8)

where ν1 > 0, . . . ,νk > 0 are the hyperparameters. In this manuscript, the hyperparameters
a j,b j,c j,d j and ν j, j = 1, . . . ,k are held fixed.

Finally, we need to impose identifiability constraints since the labelling of the mixing
components is arbitrary and we need some rule to discriminate among the components (see for
example Holmes, Jasra and Stephens (2005)). A typical solution, also adopted here, is to impose
an ordering constraint µ1 ≤ µ2 ≤ ·· · ≤ µk where µ j is the mean of the jth component in the
mixture.

Since the posterior density cannot be fully obtained in closed form we use MCMC
approach to simulate parameter values and obtain parameter estimates. Details of MCMC
methods can be found for example in Robert and Casella (2005). In order to obtain a sample
from the joint posterior distribution of the parameters we first obtain the complete conditional
distributions. First note that

P(Zi j = 1|xi,θθθ ,ωωω,k) =
P(Zi j = 1|θθθ ,ωωω,k) f (xi|Zi j = 1,θθθ ,k)

f (xi|θθθ ,ωωω,k)

=

ω j
δ j
η j

exp
(
−
(

xi
η j

)δ j
)(

xi
η j

)δ j−1

∑
k
j=1

[
ω j

δ j
η j

exp
(
−
(

xi
η j

)δ j
)(

xi
η j

)δ j−1
] (2.9)

for i = 1, . . . ,n. for i = 1, . . . ,n. So, for each observation we just need to sample j ∈ {1, . . . ,k}
with probability given by (2.9). Now, combining the likelihood function (2.7) with the prior
densities of δ j and η j it follows that,

P(η j|x,Z,θθθ−η j) ∝ η
a j−n jδ−1
j exp

{
− ∑

i:Zi j=1

(
xi

η

)δ j

−η jb j

}

P(δ j|x,Z,θθθ−δ j) ∝ δ
n j+c j−1
j η

−n jδ exp

{
− ∑

i:Zi j=1

(
xi

η

)δ j

−d jδ j

}
∏

i:Zi j=1
xδ j−1

i

where n j = ∑
n
i=1 Zi j denotes the number of observations in the jth mixture component and θθθ−δ j

denote the vector of all the parameters of the components of the mixture except δ j.

The complete conditional density of each δ j and η j is not of any standard form and
we use a Metropolis-Hastings algorithm. We adopt a random walk Metropolis algorithm by
proposing values of log(δ j) and log(η j) from o Normal distribution centred about its current
value and fixing the variance to tune the acceptance rates between 0.4 and 0.6.
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Finally, the complete conditional density of ωωω is given by

P(ωωω|x,Z,θθθ) ∝

k

∏
j=1

ω
ν j+n j−1
j

which represents a Dirichlet distribution with parameters ν1 +n1, . . . ,νk +nk. Sampling from
this complete conditional distribution is then accomplished by drawing independent Gamma
variables and scaling them to sum to 1.

Here, the Gibbs sampling method is used combined with Metropolis-Hastings algorithm
for obtain sample from the posterior distribution of parameters δ1, ...,δk,η1, ...,ηk, ωωω and Zi, for
i = 1, ...,n, see Marin, Mengersen and Robert (2005). The Gibbs sampling algorithm can be
written as follows.

Algorithm 1 – Algorithm for simulating samples from the posterior distribution of the parameters
of the mixture of Weibull

1. Initialize choosing ωωω(0), δ
(0)
j and η

(0)
j , for j = 1, ...,k.

2. For t = 1,2, . . . repeat

a) For i = 1, ...,n generate Z(t+1)
i ∼ Multinomial(1, π̂(t)

i1 , ..., π̂
(t)
ik ) wherein

π̂
(t)
i j = P

(
Z(t)

i j = 1|xi,δ
(t−1)
j ,η

(t−1)
j

)
=

f
(
xi|δ (t−1)

j ,η
(t−1)
j ,k

)
ω

(t−1)
j

∑
k
j=1 ω

(t−1)
j f

(
xi|δ (t−1)

j ,η
(t−1)
j ,k

) . (2.10)

b) Generate ωωω(t) from the P(ωωω|Z(t)).

c) For j = 1, ...,k do

i. Generate
(

δ
′
j,η

′
j

)
∼ Lognormal

((
log(δ (t−1)

j ), log(η(t−1)
j )

)
,σ2

j I
)

with σ2
j = 0.05.

ii. Generate u ∼Uni f orm(0,1)
iii. Compute

α

((
δ
(t−1)
j ,η

(t−1)
j

)
,
(

δ
′
j,η

′
j

))
=

min

{
1,

P
((

δ
′
j ,η

′
j

)
|x,Z

)
P
((

δ
(t−1)
j ,η

(t−1)
j

)
|x,Z

) LN
((

δ
(t−1)
j ,η

(t−1)
j

)
|
(

log(δ
′
j ),log(η

′
j)
)
,σ2

j I
)

LN
((

δ
′
j ,η

′
j

)
|
(

log(δ (t−1)
j ),log(η(t−1)

j )
)
,σ2

j I
)
}

where LN(y|.) is the density of Log-Normal distribution evaluate at y.

iv. If α

((
δ
(t−1)
j ,η

(t−1)
j

)
,
(

δ
′
j,η

′
j

))
< u then

(
δ
(t)
j ,η

(t)
j

)
=
(

δ
′
j,η

′
j

)
else(

δ
(t)
j ,η

(t)
j

)
=
(

δ
(t−1)
j ,η

(t−1)
s

)
.

2.5 Choosing the number of components in the mixture
model

The specification of a mixture model involves the determination of the number of
components k. Here, instead of endeavouring to apply more complex methods as in Richardson
and Green (1997) and Stephens (2000) for example, we compare models by means of Bayes factor
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and marginal likelihood (BERKHOF; MECHELEN; GELMAN, 2003). In order to describe de
Bayes factor suppose two models Ms and Mr with equal prior probabilities P(Ms) and P(Mr).
The Bayes factor is obtained as the ratio of marginal likelihood ms(x) and mr(x), such that

Bsr =
f (x|Ms)

f (x|Mr)
=

P(Ms|x)
P(Mr|x)

P(Mr)

P(Ms)
=

ms(x)
mr(x)

(2.11)

where P(Ms|x)/P(Mr|x) is the posterior odds and P(Ms)/P(Mr) is the prior odds. Since the
Bayes factor is higher than 1 then Ms has a higher posterior probability.

In particular, the marginal likelihood for the k-component mixture model is given by,

f (x|k) =
∫

f (x|ΘΘΘ,k)P(ΘΘΘ|k)dΘΘΘ,

where ΘΘΘ = (θθθ ,ωωω) is a vector containing all the parameters of the model. Computation of the
marginal likelihood requires proper prior distributions and the analytic evaluation of this integral
is not possible in the context treated here (see for example Chen, Shao and Ibrahim (2000) for
an extensive description and comparison of available numerical strategies). In this paper, we
compute an approximation to the marginal likelihood based on the MCMC output using the
methods described in Chib and Jeliazkov (2001). The estimator is based on the identity

m(x) =
f (x|ΘΘΘ,k)P(ΘΘΘ|k)

P(ΘΘΘ|x,k)
(2.12)

where the numerator can be directly computed. Thus the calculation of the marginal likelihood is
reduced to finding an estimate of the posterior density at a point ΘΘΘ

*. For estimation efficiency
we take the point ΘΘΘ

* = (θθθ *,ωωω*) as the posterior mean of ΘΘΘ in the k-component model. We now
drop the dependence on k to simplify the notation. Note that the posterior density ordinate can
be rewritten as,

P(ΘΘΘ*|x) = P(θθθ *|x)P(ωωω*|x,θθθ *) = P(θ *
1 |x)...P(θ *

k |x)P(ωωω*|x,θθθ *)

where θ *
j = (δ *

j ,η
*
j ), for j = 1, ...,k. Our approach is based on an additional G iterations

sampling values of Z from its complete conditional distributions evaluated at (δ *
j ,η

*
j ) and

sampling values of (δ j,η j) from its proposal distribution in the Metropolis-Hastings step also
evaluated at (δ *

j ,η
*
j ).

Chib and Jeliazkov (2001) introduce a way to proximate a pdf of the distribution when
it is intractable in the context of MCMC chains produced by Metropolis-Hastings. Here, we
applied this method over each component of the mixture to approximate each density P(θ *

j |x).
In this context, each density can be written in terms of the expectancy as

P(θ *
j |x) =

E
[
α

(
(δ j,η j),(δ

*
j ,η

*
j )|x,Z

)
q
(
(δ j,η j),(δ

*
j ,η

*
j )|x,Z

)]
E
[
α

(
(δ *

j ,η
*
j ),(δ j,η j)|x,Z

)] (2.13)

where q((δ j,η j),(δ
′
j,η

′
j)) denote the proposal density of (δ j,η j) in the random walk Metropolis

update and α(·, ·) are the acceptance probabilities in the Metropolis-Hastings step of the
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algorithm. The expectancy in the numerator of equation in (2.13) is related to the distribution
defined by P(θ j,Z|x) and the expectancy in the denominator the expectancy is with respect
to the distribution defined by P(Z|x,θ *

j )q
(

θ *
j ,θ j)|x,Z

)
. Thus, the marginal density of each

θ *
j = (δ *

j ,η
*
j ) can be estimated as

P̂(θ *
j |x) =

L−1
∑

L
l=1 α

(
(δ

(l)
j ,η

(l)
j ),(δ *

j ,η
*
j )|x,Z(l)

)
q
(
(δ

(l)
j ,η

(l)
j ),(δ *

j ,η
*
j )|x,Z(l)

)
G−1 ∑

G
g=1 α

(
(δ *

j ,η
*
j ),(δ

(g)
j ,η

(g)
j )|x,Z(g)

) (2.14)

where {(δ (1)
j ,η

(1)
j ,Z(1)), ...,(δ

(L)
j ,η

(L)
j ,Z(L))}, in the numerator of equation (2.14), are sam-

pled values from the full run of Algorithm (1). For the denominator we need to sample
{(δ (1)

j ,η
(1)
j ,Z(1)), ...,(δ

(G)
j ,η

(G)
j ,Z(G))} from the distribution defined by the pdf

P(Z|x,θ *
j )q
(

θ *
j ,θ j)|x,Z

)
. For this purpose we continue the MCMC simulation for additio-

nal G iterations keeping θ *
j fixed and at each iteration of this reduced run we generate

θ
g
j ∼ q(θ *

j ,θ j|x,Zg)

The process of obtainment of the samples to estimate each P(θ *
j |x), for j = 1, ..,k, can be made

simultaneously and after this process we can estimate P(θθθ *|x) as

P̂(θθθ *|x) =
k

∏
j=1

P̂(θ *
j |x)

The conditional density ordinates of ωωω is estimated by averaging with respect to the sampled
values Z(g), for g = 1, ...,G, i.e.

P̂(ωωω*|x,θθθ *) = G−1
G

∑
g=1

P(ωωω*|x,Z(g),θθθ *).

Finally, the posterior density ordinate is estimated as

P̂(ΘΘΘ*|x) =
k

∏
j=1

P̂(θ *
j |x)P̂(ωωω*|x,θθθ *),

which is in turn used in (2.12) to obtain an estimate of the marginal likelihood.

Predictive distribution

A posterior feature of interest is the predictive distribution for a future observation. As
discussed by Escobar and West (1995), a density estimation can be obtained by summarizing the
unconditional predictive distribution

h(x) = p(xN+1|x) =
∫

p(xN+1|ΘΘΘ)d p(ΘΘΘ|x) = Eθ |x [ f (x|ΘΘΘ)] . (2.15)

Thus, the Monte Carlo approximation for h(x) is obtained as

ĥ(x) =
1
L

L

∑
l=1

f (x|Θ(l)) (2.16)
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where
{

Θ(l)
}L

l=1
are draws from the joint posterior distribution. In this work, the posterior

predictive distribution is used to calculate cumulative probabilities by use of numerical integration
such as the Simpson rule, see details of numerical integration methods in Atkinson (2008).

2.6 Results
As mentioned in the Section 3.1, we consider the percentage of votes of each municipality

in the Sergipe which has 75 municipalities. The distribution of the percentage of votes is presented
in the Figure 1. For each data set of vote percentage, obtained considering elections of 1994, 1998,
2002, 2006 and 2010, as seen above, we have implemented the lgorithm 1 to mixtures of Weibull
distributions in R language (R Development Core Team, 2016). In terms of MCMC, we report
results corresponding to 10000 iterations following a burn-in period also of 10000 iterations.
The convergence of MCMC chain is assessed using separated partial means test proposed by
Geweke (1992) and all indicate that the chains have converged. The values of hyperparameters
in the prior distributions were specified to produce approximately vague prior. Thus, for the
five elections and each number of components in the mixture we specified a j = (4,5,5,7,7),
c j = (49,49,45,10,10) and d j = (7,7,5,1,1/2). Also, for all elections we set b j = 1/10, and
ν j = 1. The main variation chosen was in the hyper parameter for shape parameter of Weibull
distribution as discussed in section 2.2. Thus for elections in 2006 and 2010 smaller values of
these hyperparameters were chosen in order to reflect the greater dispersion of the distribution
of the data. The acceptance rate in the Metropolis-Hastings algorithm for sampling δ j and η j

was controlled to lie within the interval 0.20–0.50 which is usually recommended in the MCMC
literature.

Table 1 – Twice the natural logarithm of the Bayes factor of the data of voting percentage under one model resulting
of mixture of Weibull distribution relative to another.

Election 2× log
(

p(x|2-component )

p(x|1-component )

)
2× log

(
p(x|2-component)
p(x|3-component )

)
2× log

(
p(x|3-component )

p(x|1-component )

)
1994 560.0 133.3 426.8
1998 753.7 -7.9 761.6
2002 607.9 -3.1 610.9
2006 625.6 -9.4 635.1
2010 562.2 18.3 543.8

We choose a model as the final model among the models with 1, 2 and 3 Weibull
components. This model was selected considering twice the natural logarithm of the Bayes factor
presented in Table 1, which interpretation can be seen in Kass and Raftery (1995). The results
in this Table show that, for all election, models with two or three components are better than a
model with one component. However, when comparing models with two or three components the
results may vary. For the 1994 and 2010 elections two components in the mixture are sufficient
to fit the distribution of the votes. On the other hand, for the 1998, 2002 and 2006 elections three
components are needed in the mixture.
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Figure 1 – Histograms of the data of voting percentage obtained by PT in presidential elections, in the cities of
Sergipe State, from year 1994 and 1998, when the PT lost the presidential election, to 2002, 2006 and
2010, when the PT candidate was Presidential winner, and its estimated densities based on the posterior
predictive distribution for 1, 2 and 3 components.

In addition, considering the posterior mean of the parameters for each model we estimate
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the density for each Model and compare with the histogram of votes as showed in Figure 1. We
can see that the chosen model, that is the one for which density estimate is closest to the data,
coincides with the choice according to Bayes factor.

Table 2 provides posterior means and 95% HPD credible intervals for the parameters in
the model chosen according to Bayes factor for each year. The credible intervals were constructed
using the package MCMCpack of Martin, Quinn and Park (2011).

Using these parameters we can give some interpretations to the results. For example
in 1994 we identified two groups of cities in Sergipe. For the first group, formed by 38 cities
and with weight 0.45, we found an expected percentage of votes of 14.4 (posterior mean) with
variability of 2.9 (posterior standard deviation), whereas in the second group, formed by 37 cities
and with weight 0.55, the corresponding values are higher, 26.2 and 5.8 respectively. Likewise,
in 2010, two populations were also identified. For the first population, formed by 67 cities with
weight 0.84, we found an expected percentage of votes of 47.8 (posterior mean) with variability
of 5.7 (posterior standard deviation), whereas in the second group, formed by 8 cities and with
weight 0.16, the corresponding values are higher, 60.7 and 4.1 respectively. Note the significant
increment of the percent of votes in both populations between 1994 and 2010. In addition, the
first population in 2010 has 33 of the cities in the first group in 1994 indicating specifically that
this group of cities had a significant increment over time.

Finally, from the best model for each election, the probability that PT obtains more than
50 percent of the votes in the first round was calculated, because if the presidential candidate
won the majority of votes in the first ballot the candidate is declared winner of presidential
election and the second ballot is not necessary. The probabilities were estimated considering the
predictive distribution by numerical integration using the Simpson rule combined with Monte
Carlo method as seen in Section 2.5. These corresponding probabilities of winning in the first
ballot for PT party considering the Sergipe state for elections in 1994, 1998, 2002, 2006 and
2010 were 3.15×10−6, 9.76×10−5, 0.0175, 0.273 and 0.459 respectively, it indicate that this
probability increased over time.

We should note that as suggested by a referee a Mixture Normal model was also imple-
mented considering an algorithm similar to the one defined in Section 2.3 without Metropolis-

Hastings step. The results showed, that there is a strong evidence in favour of the Weibull mixture
model. Additionally as discussed in Section 2.1 this model can lead to inferences which can be
misleading since the Normal is a symmetric distribution and can lead to over-fit when additional
component need to be included to capture the asymmetry in the data.

2.7 Discussion and further development

This paper proposed a Weibull mixture model to describe the electoral behavior of a
Brazilian political party in different elections. The number of votes obtained by PT in the five
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Table 2 – Posterior mean and HPD interval of parameters of the best Weibull mixture model chosen by Bayes
factor evaluation. Data of voting percentage obtained by PT in presidential elections in the Sergipe State
from year 1994 to 2010 was considered for fitting of the models.

Posterior mean and HPD Interval (95%)
Election k1 w(weight) δ (shape) η(scale)

1994 2 0.45(0.27, 0.61) 5.81 (4.42,7.21) 15.57
(14.09,17.04)

0.55 (0.39,0.73) 5.18 (4.00,6.50) 28.45
(26.97,31.00)

1998 3
0.47 (0.26,0.67) 5.38 (3.99,6.81) 13.91

(12.05,16.35)
0.28 (0.09,0.47) 6.66 (4.72,8.67) 22.56

(18.13,29.50)
0.25 (0.11,0.42) 6.69 (4.86,8.52) 34.49

(30.94,37.92)

2002 3
0.28 (0.05,0.69) 7.18 (4.70,9.64) 21.01

(16.52,29.36)
0.42 (0.07,0.66) 8.19

(5.63,10.88)
31.65
(26.84,41.88)

0.30 (0.09,0.50) 8.57
(6.12,11.07)

44.01
(40.20,47.45)

2006 3
0.36 (0.08,0.72) 11.04

(6.29,16.50)
39.64
3(5.77,45.15)

0.42 (0.06,0.72) 9.65
(5.36,14.97)

48.69
(43.40,55.09)

0.22 (0.02,0.48) 8.72
(4.93,13.65)

58.96
(50.89,67.03)

2010 2 0.84 (0.63,0.97) 10.10
(6.16,12.80)

50.17
(48.39,52.28)

0.16 (0.03,0.37) 18.12
(6.27,29.01)

62.48
(51.91,66.81)

1Number of components in the mixture.

Brazilian presidential elections from 1994 to 2010 were considered for analysis. A fully Bayesian
approach was undertaken using MCMC methods.

We note that the results shown in this paper are purely descriptive. They illustrate how
the votes of a particular political party in different elections in Brazil in a given geographic area
may exhibit multimodality and how the distribution of votes changes over time. Also, we found
that the probability of obtaining 50 percent of the votes in the first ballot is increasing over time.

In future developments, the extension of the analysis for all states of Brazil can be
considered as well as regression models for explain the electoral conduct. Since the percentage
of votes are limited variables, that is, votes is between a minimum and maximum value, models
for limited distributions as Beta distributions also can be explored.

The following chapter present a alternative model to data in the unit interval. This model
is applied to the percentage of the votes, analyzed here, in the Chapter 6 where we use a mixture
of mixed models.
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CHAPTER

3
MIXTURE OF SIMPLEX DISTRIBUTIONS

WITH UNKNOWN NUMBER OF
COMPONENTS

This chapter addresses the issues that involve Bayesian inference in mixture of Simplex
distributions. Unlike what is assumed in the last chapter, here the number of components in the
mixture is assumed unknown. In this chapter we develop a mixture model for data on the unit
interval.
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Abstract

Variables taking values in (0,1), such as rates or proportions, are frequently analyzed by resear-
chers, for instance, political and social data, as well as the Human Development Index. However,
sometimes this type of data cannot be modeled adequately using a unique distribution. In this
case, we can use mixture of distributions, which is a powerful and flexible probabilistic tool.
This manuscript deals with a mixture of Simplex distributions to model proportional data. A
fully Bayesian approach is proposed for inference which includes a reversible-jump Markov
Chain Monte Carlo procedure. The usefulness of the proposed approach is confirmed by using
simulated mixture data from several different scenarios and by using the methodology to analyze
municipal Human Development Index data of cities (or towns) in the Northeast region and São
Paulo state in Brazil. The analysis shows that among the cities in the Northeast, some appear to
have a similar HDI to other cities in São Paulo state.

3.1 Introduction

Variable taking values in (0, 1), such as index and proportions, are frequently analyzed
by researchers, for instance Impartial Anonymous Culture (STENSHOLT, 1999) and the Human
Development Index (HDI) (MCDONALD; RANSOM, 2008; CIFUENTES et al., 2008). Someti-
mes, the data cannot be modeled adequately using a unique distribution as is the case for the
proportion of votes obtained by a political party in the Presidential Elections in each city of a
country analyzed in the study conducted by Paz, Bazán and Elher (2015). In addition, different
components can be identified in the HDI data of several regions in Brazil, see index in PNUD,
IPEA and FJP. (2013).

The mixture models can be a powerful and flexible probabilistic tool for modeling
many kinds of data, see for example McLachlan and Peel (2004). In financial data, Faria and
Gonçalves (2013), can be cited. In addition, a mixture of distributions has been widely analyzed
for Normal data, see for example Tanner and Wong (1987), Gelfand and Smith (1990), Diebolt
and Robert (1994), Richardson and Green (1997). For data in (0,1), there are some studies
which consider a finite mixture of Beta distributions (BOUGUILA; ZIOU; MONGA, 2006;
BOUGUILA; ELGUEBALY, 2012). However, other probability distributions with support in
the interval (0,1) can be found in the statistics literature, which have not yet been completely
analyzed in the context of mixture models, for example the Simplex distribution. The Simplex
distribution is a dispersion model proposed by Barndorff-Nielsen and Jorgensen (1991) and has
recently been considered as a complementary and alternative regression model when compared
to the beta regression model (LÓPEZ, 2013; SONG; TAN, 2000).

This manuscript deals with a new framework for modeling the bounded variables with
multimodality as a complementary model to the corresponding beta model. The model proposed
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considers a mixture of Simplex distributions with the number of components unknown (Simplex
mixture model). This work is motivated by the municipal HDI data in Brazil. Thus, the aim is to
identify the number of components and the characteristics of each population identified by the
model considering the HDI of the cities of São Paulo state and the Northeast region of Brazil. In
order to deal with the problem of estimating the number of components of the mixture model,
a reversible-jump Markov chain Monte Carlo (RJMCMC) approach was adopted (see Green
(1995) and Richardson and Green (1997)). A RJMCMC procedure is adopted for the mixture of
Simplex distributions with a convenient transition function. The results obtained, considering the
proposal, are promising since the performance of the method is tested by applying it to simulated
data sets from mixtures of Simplex distributions by considering several different scenarios.

In future developments, it can be considered that the phenomenon can be explained by
sociological and economic factors which should be included. In addition, the response variable
might be associated to geospatial information as potential covariates.

The remainder of the chapter is organized as follows: In Section 2, the mixture of Simplex
distributions is presented. Section 3 addresses the Bayesian inference approach by considering a
new estimation RJMCMC method for the mixture of Simplex distributions. Section 4 is dedicated
to investigating if our algorithm is able to estimate the mixture parameters and select the number
of components considering several scenarios of generated data. In Section 5, an analysis of the
municipal HDI data is presented. Finally, some conclusions are drawn in Section 6 and in the
Apendice A we present a summary of the algorithm used for simulating samples of the jointly
posterior distributions of parameters model.

3.2 Simplex Mixture Distribution
Consider initially a sequence of k continuous random variables all taking values in (0,1),

each following a distribution with probability density function (pdf) P(.|θ j), j = 1, . . . ,k. The
parameter values in θ1, ...,θk can be different leading to a mixture in the sequence of random
variables (r.v.). Then, the pdf of a new r.v Y is defined as

P(y|θθθ ,ωωω,k) =
k

∑
j=1

ω jP(y|θ j), 0 < y < 1, (3.1)

where (θθθ ,ωωω,k) denotes a vector containing all unknown parameters in the model with θθθ =

(θ1, ...,θk), ωωω = (ω1, ...,ωk), ω j is called the mixing proportion satisfying ω j > 0 and ∑
k
j=1 ω j =

1, and k is the number of components in the mixture, which is assumed unknown.The densities
P(.|θ j) shall be referred to as the jth component density in the mixture and k as the number of
components of the mixture.
The density (3.1) is called a mixture density; its corresponding distribution function is called a
mixture of distributions. Details about formulation, interpretation and properties of finite mixture
models can be seen in McLachlan and Peel (2004).
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In this work, the component densities P(.|θ j) are taken to belong to the Simplex distribu-
tion (JØRGENSEN, 1997) whose pdf is given by

S(y|µ,σ2) =
(

2πσ
2 (y(1− y))3

)−1/2
exp
{
−
(

1
2σ2

)(
(y−µ)2

y(1− y)µ2(1−µ)2

)}
I(0,1)(y), (3.2)

where 0 < µ < 1 is the location parameter and σ2 > 0 is the dispersion parameter. The mean
of the Simplex distribution is given by E(Y ) = µ . Since the component densities P(.|θ j) are
assumed to belong to the Simplex distribution family, we shall refer to the component densities
in the mixture as Simplex components and the model given by (3.1) as a Simplex Mixture (SM).
We shall also rewrite the pdf of this model as

P(y|θθθ ,ωωω,k) =
k

∑
j=1

ω jS(y|θ j), 0 < y < 1, (3.3)

where θ j = (µ j,σ
2
j ), j = 1, ...,k.

3.3 Inference
Consider n independent r.v. Y = (Y1, ..,Yn) of SM model and y = (y1, ..,yn) a realization

of Y where yi is the observed value of the Yi, for i = 1, ...,n, then the likelihood corresponding to
a SM model with k-component is:

L(θθθ ,ωωω,k|y) =
n

∏
i=1

k

∑
j=1

w jS(yi|θ j).

A way to simplify the inference process of a mixture model is to consider an unobserved
random vector Zi = (Zi1, ...,Zik) such that Zi j = 1 if the ith observation belongs to the jth mixture
component and Zi j = 0 otherwise, i = 1, . . . ,n. Note that ∑

k
j=1 Zi j = 1, and we suppose each

random vector Z1, ..,Zn to be independently distributed according to a multinomial distribution
with parameters 1 and ωωω = (ω1, ...,ωk) = (P(Zi1 = 1|ω,k), ...,P(Zik = 1|ω,k)), for i = 1, ...,n.
Then

P(Zi j = 1|yi,θ j,ω,k) ∝ P(Zi j = 1|ω,k)P(yi|Zi j = 1,θ j,ω,k) = ω jS(yi|θ j),

j = 1, ...,k, i = 1, . . . ,n. To simplify the notation, we consider Z = (Z1, ...,Zn) the vector of
dimension nk containing all unobserved indicator vectors Zi.

The conditional pdf of Yi given Zi and all parameters can be written as

P(yi|Zi,θθθ ,ωωω,k) = P(yi|Zi j = 1,θ j,ω j,k) = S(yi|θ j), for j such that Zi j = 1.

Then the pdf of each Yi given Zi is given by

P(yi|θθθ ,Zi,ωωω,k) = S(yi|θ j) =
k

∏
j=1

[
S(yi|θ j)

]Zi j . (3.4)
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Finally, the joint distribution of (Yi,Zi) has the pdf given by

P(yi,Zi|θθθ ,ωωω,k) = P(Zi|θθθ ,ωωω,k)P(yi|Zi,θθθ ,ωωω,k) =
k

∏
j=1

[
ω jS(yi|θ j)

]Zi j , i = 1, ...,n.

Therefore, after the inclusion of the indicator vectors in the model, the augmented data likelihood
to (y,Z) can be written as

L(θθθ ,ωωω,k|y,Z) =
n

∏
i=1

k

∏
j=1

[
ω jS(yi|θ j)

]Zi j . (3.5)

The joint distribution of all variables of the model including the augmented version of
the data and the prior specifications is

P(y,θθθ ,Z,ωωω,k) = P(y|θθθ ,Z,ωωω,k)P(Z|ωωω,k)P(θθθ |Z,ωωω,k)P(ωωω|k)P(k).

A common approach is to impose conditional independence (BOUGUILA; ELGUEBALY, 2012)
such that P(θθθ |Z,ωωω,k) = P(θθθ |k), P(y|θθθ ,Z,ωωω,k) = P(y|θθθ ,Z) leading to the joint distribution

P(y,θθθ ,Z,ωωω,k) = P(y|θθθ ,Z)P(Z|ωωω,k)P(θθθ |k)P(ωωω|k)P(k), (3.6)

where P(Z|ωωω,k) = ∏
n
i=1 P(Zi|ωωω,k) = ∏

n
i=1

(
∏

k
j=1 ω

Zi j
j

)
and

P(y|θθθ ,Z) = ∏
n
i=1 P(yi|θθθ ,Zi,ωωω,k) with P(yi|θθθ ,Zi,ωωω,k) given by (3.4).

The mixture model presented here precludes the use of an improper prior. This is because
an improper prior leads to an improper posterior, when some of the component become empty.
Thus, for the component parameters θ j = (µ j,σ

2
j ) with φ j = σ

−2
j ,

j = 1....k, we choose independent priors, that is, P(θθθ |Z,ωωω,k) = P(µ/k)P(φ/k) such that

µ j|k ∼Uni f orm(0,1) and φ j|k ∼ Gamma(a,b), j = 1, . . . ,k, (3.7)

where the hyperparameters a and b are fixed. The scale parameters, µ ′
js, are unknown and assume

values in the interval (0,1), therefore the unit Uniform seems a good choice for a vague prior. The
Gamma distribution with parameters a = b = ε , ε being a small value, is often chosen as a prior
distribution for the precision parameter. In the simulations and the application, we consider a = 2
and b = 1/2 then it is expected E(φ) = 4 and V (φ) = 8. Alternative values for hyper-parameters
a and b are also used. Considering empirical results, we recommend that the mean and variance of
the Gamma prior is in the interval (0,10). For P(ωωω|k), since the vector of weights ωωω is defined on
the Simplex
{ωωω ∈ Rk : 0 < ω j < 1, j = 1, ...,k,∑k

j=1 ω j = 1}, it is natural to consider a Dirichlet prior distri-
bution for ωωω given k, then ωωω|k ∼ Dirichlet(ν1, ...,νk). Some values for the hyper-parameters ν j

were tested for the simulated data sets. We found good results for ν1 = ν2 = ...= νk = 1 that is
noninfomative in the sense of the equiprobability. Finally, for K we adopted a Uniform discrete
distribution between 1 and kmax. The application of the model for several simulated data sets
showed a good performance of the model for the values of hyper-parameter used in this work.
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Hence, the full conditional posterior distributions can be obtained, and consequently a
Markov chain Monte Carlo method (MCMC) (ROSS, 2006, pages, 245 - 271) can be used to
sample from the joint probability distribution of the parameters (θθθ ,ωωω,k), given the observed
data y, Z. Then the sample of the joint posterior distribution produced by MCMC is used for
Bayesian inference.

The full conditional distributions of the parameters for jth components are given by

P(φ j|y,Z,µ j) ∝ φ
n j/2+a−1
j exp

−φ j

 ∑
i∈{i:Zi j=1}

(yi −µ j)
2

2yi(1− yi)µ2
j (1−µ j)2 +b

 (3.8)

P(µ j|y,Z,φ j), ∝ exp

−
φ j

2µ2
j (1−µ j)2 ∑

i∈{i:Zi j=1}

(
(yi −µ j)

2

yi(1− yi)

) , (3.9)

where n j = ∑
n
i=1 Zi j denotes the number of observations drawn from a jth component of the

mixture. Note that (φ j|y,Z,µ j)∼Gamma

n j/2+a, ∑
i∈{i:Zi j=1}

(yi −µ j)
2

2yi(1− yi)µ2
j (1−µ j)2 +b

. In

addition, the full conditional density of ωωω is

P(ωωω|y,Z) ∝

k

∏
j=1

ω
ν j+n j−1
j , (3.10)

that is the pdf of a Dirichlet distribution, that is, (ωωω|y,Z)∼ Dirichlet (ν1 +n1, ...,νk +nk) where
ν1, ...,νk are the parameters of the Dirichlet prior. A description of the whole algorithm to
simulate from the joint posterior distribution is given in Appendix A in the end of the thesis.
A reversible-jump to estimate the number of components in the mixture is described in the
following subsection.

Reversible-jump

Reversible-jump (RJ) MCMC was introduced by Green (1995) as an extension to MCMC
in which the dimension of the model is uncertain. Richardson and Green (1997) extends this
method for mixtures of Normal distributions. For the limited data, Bouguila and Elguebaly
(2012) develop a procedure to deal with mixtures of beta distributions. However, for mixtures of
Simplex distributions, the RJMCMC is not available. In this subsection, we describe a RJMCMC
for mixtures of Simplex distributions.

The move in the RJ step, called split-combine moves, allows the increase or reduction
of the number of components by one in each step. In each move, the reversible-jump compares
two models with different numbers of Simplex components. The split-combine moves form a
reversible pair. For this pair, we choose the proposal distribution Tk→k* according to informal
considerations in order to obtain a reasonable probability of acceptance. The notation Tk→k*

means the proposal transition function for the move from a model with k Simplex components
to a model with k* Simplex components. This move is chosen with probability pk*|k. Since the
parametric space of parameters (θθθ ,ωωω,k) is different from (θθθ *,ωωω*,k*), the smaller parameter
space should be increased. We generate a three-dimensional random vector u from a g(u) to
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complete the parameter space. Green (1995) shows that the balance condition is determined by
the acceptance probability to this move given by α((θθθ *,ωωω*,k*)|(θθθ ,ωωω,k)) = min{1,A} where

A =
L((θθθ *,ωωω*,k*)|y,Z)P((θθθ *,ωωω*)|k*)P(k*)pk|k*

L((θθθ ,ωωω,k)|y,Z)P((θθθ ,ωωω)|k)P(k)pk*|kg(u)
|J| , (3.11)

where J is the Jacobian of the transformation. The probability of the inverse move is given by
α((θθθ ,ωωω,k)|(θθθ *,ωωω*,k*)) = min{1,A−1}.

The choice between whether to split or combine is made randomly with probability bk and
dk = 1−bk respectively, depending on k. Note that d1 = 0 and bkmax = 0 with kmax representing
the maximum value assumed for k, as seen in the previous subsection. If 2 < k < kmax we adopt
bk = dk = 0.5.

If the split move is chosen, we select randomly one component j* to break into two
new components ( j1, j2) and create a new state with k* = k+1 components. In order to specify
the new values of parameters for the two components, Richardson and Green (1997) propose
generating a vector u = (u1,u2,u3) from beta distributions, and set these parameters using a
deterministic transformation called proposal transition function. This function must be bijective
and provide adequate values of parameters. Then, we generate u1 ∼ Beta(2,2), u2 ∼ Beta(1,1)
and u3 ∼ Beta(2,2), and in order to set the parameters we propose the proposal transition
function such that

ω j1 = ω j*u1, ω j2 = ω j*(1−u1),

µ j1 = µ j* −u2u1(µ j* −µ2
j*), µ j2 = µ j* +u2(1−u1)(µ j* −µ2

j*),

φ
−1
j1

= σ2
j1 = σ2

j*u3(1−u2
2)/u1, φ

−1
j2

= σ2
j2 = σ2

j*(1−u3)(1−u2
2)/(1−u1).

(3.12)

All observations previously allocated to j* are reallocated doing zi = j1 or zi = j2 following the
same criteria used in the step (2a) of the Algorithm 4.

The combine proposal begins by choosing a pair of components ( j1, j2), where the
first is chosen through a discrete Uniform distribution and the second is chosen by making
j2 = j1 + 1, the kth component cannot be chosen in the first place. These two components
are merged, reducing k by 1. The new component is labelled j* and contains all observations
previously allocated to j1 and j2 doing zi = j*. The parameters for the component j* are set as

ω j* = ω j1 +ω j2 , µ j* =
µ j1ω j2+µ j2ω j1

ω j*
and σ2

j* =
σ2

j2

(
ω j2
ω j*

)
1−

(
µ j2

−µ j1
µ j*−µ2

j*

)2
( σ2

j2
ω j2

σ2
j1

ω j1
+σ2

j2
ω j2

) . This process is

reversible, i.e., if we first split one component into two and then combine the components j1 and
j2, we can recover the previous state. We can also compute the corresponding values of ui’s in

the merge move as u1 =
ω j1
ω j*

, u2 =
µ j2−µ j1
µ j*−µ2

j*
and u3 =

ω j1σ2
j1

ω j1σ2
j1
+ω j2σ2

j2

.

The acceptance probabilities for split and combine are min{1,A} and min{1,A−1} respectively,
according to (3.11), with

A =

(k+1)

 ∏
i∈{i:Zi j1=1}

S(yi|µ j1σ
2
j1)

 ∏
i∈{i:Zi j2=1}

S(yi|µ j2σ
2
j2)


 ∏

i∈{i:Zi j*=1}
S(yi|µ j*σ

2
j*)
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×P(k+1)
P(k)

ω
ν−1+n1
j1

ω
ν−1+n2
j2

ω
ν−1+n1+n2
j*

P(σ2
j2)P(σ

2
j2)

P(σ2
j*)

P(µ j2)P(µ j2)

P(µ j*)

× dk+1

bkPallocg(u)
1
2
(
σ

2
j1 +σ

2
j2

)
(ω j1 +ω j2)

[
2(µ j1 +µ j2)− (µ j1 +µ j2)

2
]
,

where dk+1 is the probability of choosing the merge movement between components j1 and j2,
bk is the probability of choosing the split movement of the component j*, Palloc is the probability
of a specific allocation defined as the product of conditional posterior probabilities used to
allocate the observations, g(u) is the joint distribution of u = (u1,u2,u3) given by the product
of densities of beta distributions with parameters (2,2), (k+1) is the ratio (k+1)!

k! from the order
statistics densities for the parameters (µ,σ2) and the last term of the equation is the Jacobian of
the transformations. The second term in (3.13) is the rate of the densities of a prior distributions.

3.4 Analysis of simulated data sets

The aim of this section is to investigate the performance of the proposed algorithm to
estimate the mixture parameters and the number of components of the mixture model. For this
purpose, we implemented the Algorithm 4, shown in Appendix A, in R Development Core Team
(2016). The analysis was conducted considering six scenarios for Simplex distribution mixture
models, i.e. six different mixtures were considered to generate data. The data was generated
independently from the Simplex distribution mixtures, i.e. Y ∼ SM(µ,σ2,ωωω,k) with k ∈ {2,3}.
The parameters of the six models are shown in the first column of Table 3 and are denoted as
M1, ...,M6. For each model, we simulated three data sets. The first had a size of n = 1000 and
the other two had a size of n < 1000, as seen in the second column of Table 3. The value of kmax

was fixed to 5 and the hyper-parameters for the Gamma prior were fixed at a = 2 and b = 1/2.
After discarding the first 100000 iterations, we used 100000 iterations with thinning equal to 10
for the inference process.

The posterior relative frequency of k, shown in Table 3, gives evidence that the reversible-
jump MCMC correctly estimated the number of components. In this table, we can see that, even
when the component averages are closer (model M1), the method chooses the correct model in
most instances. In addition, Table 4 shows the estimated values of the parameters for the six
models. Posterior mean and empirical standard deviation (SD) are shown in this table. It can
be observed that the SD decreases as n increases and the estimated values of the parameters are
always close to the true values. Finally, the real histogram and estimated densities are shown in
Figure 2 which confirm the adequate performance of the estimation method. The results related
to the posterior relative frequency for the number of components obtained from simulated data,
shown in Table 3, are in concordance with the results presented in Bouguila and Elguebaly
(2012), for mixtures of Beta distributions with unknown number of component.

It can be observed in the simulation process that the convergence speed is improved if the
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Table 3 – Parameters used to simulate the data sets and the posterior relative frequency for the number of
components obtained from each simulated data set of size n.

Model n Posterior relative frequency
k=1 k=2 k=3 k=4 k=5

M1


µ = (0.34,0.72)
σ2 = (0.8,1.5)
w = (0.5,0.5)

1000 0 0.9874 0.0125 0.0001 0
500 0 0.9804 0.0194 0.0002 0
100 0.2790 0.6866 0.0333 0.0010 0.

M2


µ = (0.08,0.40)
σ2 = (2,1)
w = (0.65,0.35)

1000 0 0.9941 0.0059 0 0
500 0 0.9852 0.0145 0.0003 0
100 0.1060 0.8532 0.0389 0.002 0.0001

M3


µ = (0.23,0.58)
σ2 = (1.8,0.8)
w = (0.30,0.70)

1000 0 0.9876 0.0123 0.0001 0
500 0 0.9843 0.0154 0.0002 0.0001
100 0.1648 0.7711 0.0591 0.005 0

M4


µ = (0.30,0.55,0.80)
σ2 = (0.20,0.10,0.20)
w = (0.20,0.30,0.50)

1000 0.01 0.051 0.9370 0.0024 0
500 0.0062 0.0523 0.9387 0.0028 0
300 0.0199 0.3393 0.6316 0.009 0.0003

M5


µ = (0.15,0.47,0.75)
σ2 = (5.0,0.2,0.8)
w = (0.25,0.45,0.30)

1000 0.0001 0.1140 0.8667 0.0189 0.0003
500 0.0005 0.1660 0.8157 0.0177 0.0001
400 0.0023 0.3831 0.5906 0.0240 0

M6


µ = (0.10,0.50,0.90)
σ2 = (6.0,0.5,8.0)
w = (0.3,0.50,0.20)

1000 0.0047 0.0208 0.9518 0.0224 0.0003
500 0.0126 0.0583 0.8984 0.0388 0.001
400 0.0106 0.1409 0.7929 0.0536 0.0020
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Figure 2 – Histograms and posterior density function.
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Table 4 – Posterior mean of the parameters and empirical standard deviation (SD) for simulated data sets
considering six models with k = 2 and k = 3 described in Table 3.

Model n Estimative to µ Estimative to σ2 Estimative to ω

M1

1000
Mean
SD’s

(0.33, 0.71) (0.69, 1.57) (0.46, 0.54)
(0.005, 0.006) (0.061, 0.134) (0.019, 0.016)

500
Mean
SD’s

(0.33, 0.72) (0.77, 1.43) (0.47, 0.53)
(0.010, 0.011) (0.1225, 0.1990) (0.031, 0.031)

100
Mean
SD’s

(0.35, 0.69) (0.61, 1.83) (0.41, 0.59)
(0.041,0.047) (0.556, 0.741) (0.123,0.123)

M2

1000
Mean
SD’s

(0.082,0.40) (1.99, 0.98) (0.70, 0.3)
(0.001, 0.006) (0.1178, 0.0915) (0.015,0.015)

500
Mean
SD’s

(0.079, 0.40) (2.00, 0.89) (0.68, 0.32)
(0.002, 0.008) (0.3417, 0.1115) (0.021, 0.021)

100
Mean
SD’s

(0.091,0.40) (2.96, 0.77) (0.72,0.28)
(0.008, 0.026) (0.811, 0.661) (0.058,0.058)

M3

1000
Mean
SD’s

(0.21,0.61) (1.86,0.91) (0.29, 0.71)
(0.009, 0.005) (0.2386, 0.0659) (0.018, 0.018)

500
Mean
SD’s

(0.19,0.60) (2.03, 1.08) (0.27, 0.73)
(0.012, 0.003) (0.970, 0.1327) (0.028, 0.028)

100
Mean
SD’s

(0.24, 0.58) (2.00, 1.11) (0.23, 0.77)
(0.078, 0.028) (2.085, 0.706) (0.111, 0.111 )

M4

1000
Mean
SD’s

(0.30, 0.55, 0.80) (0.20, 0.12, 0.18) (0.18, 0.31, 0.51)
(0.007, 0.004, 0.03) (0.07, 0.08, 0.05) (0.01, 0.02, 0.02)

500
Mean
SD’s

(0.30 0.55 0.80) (0.23,0.10,0.20) (0.17 0.31 0.52)
(0.009 0.007 0.007) (0.10, 0.10 0.06) (0.02 0.02 0.02)

300
Mean
SD’s

(0.30, 0.55, 0.80) (0.27, 0.13, 0.22) (0.17, 0.32, 0.52)
(0.025, 0.016, 0.014) (0.32, 0.25, 0.13) (0.034, 0.042, 0.041)

M5

1000
Mean
SD’s

(0.16, 0.47, 0.76) (5.25, 0.21, 0.77) (0.24, 0.45, 0.31)
(0.01, 0.01, 0.01) (0.7, 0.1, 0.1) (0.02, 0.02, 0.02)

500
Mean
SD’s

(0.14, 0.46, 0.75) (3.19, 0.26, 0.76) (0.20 0.47 0.33)
(0.02, 0.01, 0.01) (0.65, 0.26, 0.19) (0.02, 0.03, 0.03)

400
Mean
SD’s

(0.15, 0.48, 0.76) (4.41, 0.37, 0.83) (0.20, 0.45, 0.35)
(0.031, 0.038, 0.028) (2.9, 1.8, 0.35) (0.04, 0.06, 0.07)

M6

1000
Mean
SD’s

(0.10, 0.50, 0.89) (7.34, 0.58, 7.50) (0.31, 0.51, 0.18)
(0.012, 0.009, 0.026) (0.9, 0.9, 1.9) (0.02, 0.02, 0.02)

500
Mean
SD’s

(0.098, 0.49, 0.88) (6.05, 0.73, 9.25) (0.31, 0.51, 0.18)
(0.02, 0.01, 0.06) (6,3,4) (0.03, 0.04, 0.06)

400
Mean
SD’s

(0.097, 0.49, 0.87) (4.843, 1.00, 10.45) (0.31, 0.49, 0.20)
(0.02, 0.03, 0.08) (1, 5, 6) (0.05, 0.05, 0.06)

(0.078, 0.028) (2.085, 0.706) (0.111, 0.111 )
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Table 5 – Relative frequency of k to the MHDI data set considering alternative SM models.

k 1 2 3 4 5
0.073 0.923 0.005 0.0004 0

Table 6 – Posterior estimates of the parameters and the empirical standard deviation for the MHDI data
set.

µ̂ σ̂2 ŵ
means SD’s means SD’s means SD’s

( 0.59, 0.73) (0.004, 0.010) (0.09, 0.21) (0.03, 0.076) (0.69, 0.31 ) (0.03, 0.031)

initial value of the number of component is set as k(0) = kmax. The convergence is also affected
by the acceptance of the MR step in the Gibbs sampling algorithm. A strategy to avoid low rate
of acceptance in the MR step is presented in Appendix A. These results also provide evidence
that the choice of hyper-parameters discussed in Section 3.3 and the proposal transition function
were appropriate.

3.5 Analysis of a municipal HDI data set in Brazil

The Human Development Index (HDI) is a summary measure of long-term progress in
three basic dimensions of human development that takes into account education, income and
longevity indexes. The HDI is the geometric mean of normalized indexes for each of the three
dimensions of human development. In this work, we analyze a municipal HDI (MHDI) data set,
i.e., the MHDI of the cities (or towns) of São Paulo state and the Northeast region of Brazil. The
Northeast was chosen because it is the third largest region of Brazil and the largest in number of
states and considered a region with poor distribution of resources, see index in PNUD, IPEA
and FJP. (2013). This region includes the states of Alagoas, Bahia, Ceará, Maranhão, Paraíba,
Pernambuco, Piauí, Rio Grande do Norte and Sergipe. There are 1,794 cities in the Northeastern
region and 645 in São Paulo state leading to a sample of size n = 2439. The histogram of the data
is shown in Figure 3, where the multimodality phenomenon can be observed. This phenomenon
is already expected because the MHDI depends on characteristics that can be similar to some
cities or towns.

The MHDI data set was analyzed with the SD model where we set a = 2 and b = 1/2 in
the Gamma prior distribution for σ

−2
j , for j = 1, ...,k. In order to reduce prior information, we

set ν1 = ν2 = ...= νk = 1 for the Dirichlet prior distribution and kmax = 5 for prior distribution
of k. Table 5 shows the posterior distribution of parameter k with high posterior probability to
k = 2. There is evidence for two components in the data. The mean and empirical SD of the
parameter estimate are shown in Table 6.

The results of the analysis show that there is strong evidence for two components
with similar characteristics. The first component has, in mean, smaller MHDI than the second
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Figure 3 – Real histogram and Estimated density function for the MHDI data set.

component. The component with less MHDI has larger mixing proportions than the second
component, as expected. Figure 4(A) shows in black the cities classified as belonging to the first
component. It can be observed that there are some cities in the Northeastern region classified in
the first component. These cities have better MHDI than those which are classified in the second
component, shown in Figure 4(B), cities in black.

3.6 Final comments

A flexible model for proportions considering a mixture of Simplex distributions with
an unknown number of components was proposed. The main advantage of this model is its
flexibility for working with bounded data with multimodalities identified in the components or
populations of the data. A Fully Bayesian approach considering MCMC with the reversible-jump
algorithm for a mixture of Simplex distributions was developed, as seen in Section 3.3. In this
approach, the prior distribution and the hyper-parameters were chosen conveniently, motivated
by applying the methodology to real data sets and by the simulation study. In addition, a proposal
transition function was adopted in the RJ step that seems adequate in view of the results found
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Figure 4 – Classification of HDI of cities in the states São Paulo and Northeastern region of Brazil where
the cities classified in the second component are in black in (A) and cities classified in the first
component are in black in (B).

in the simulation study. The algorithms have been coded and implemented in R software (R
Development Core Team, 2009) and are available from the corresponding author upon request.

An application to generated data sets from a mixture of Simplex distributions with 2 and
3 components were conducted. For these applications, we found that the method provides a good
estimation of the number of components, as well as of the other parameters of the model since
the estimated values lie close to the real values of the parameters. Results from the simulated
data sets also show that the empirical standard deviation decreases as the size of the sample
increases. Another application was conducted with a real data set and we found small empirical
standard deviations for the sample of the estimates of the parameters of the components and
mixing proportions, as can be shown in Table 6, providing evidence that the parameters are well
estimated.

The proposed model can be extended to other problems, for instance, for modeling the
response variable Y as a function of covariates. In this case, the mixing proportions may or may
not be modelled as functions of a vector of predictor variables, not necessarily having elements
in common with the covariates. An example of a link function that can be used for mixing
proportions is presented in McLachlan and Peel (2004, p. 145). In addition, as it was observed
that the acceptance of RJ decreases when the size of the sample increases, a strategy to avoid
persistent rejection of proposed moves in a RJ algorithm can be added to improve the Gibbs

sampling algorithm (GREEN; MIRA, 2001; AL-AWADHI; HURN; JENNISON, 2004).

Here, we proposed an flexible model to proportions considering a mixture of Simplex
distribution with an unknown number of components. In the next Chapter we investigate the use
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of covariates to explain a response variable considering a mixture of Simplex regression models.
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CHAPTER

4
MODELING MHDI WITH A FINITE

MIXTURE OF SIMPLEX REGRESSION
MODELS

In the Chapters 2 and 3 we describe mixture models without covariates and apply it
in percentage and proportion data, respectively. This chapter presents a mixture of Simplex
regression model which is applied to the real data analyzed in the Chapter 3.
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Abstract

This manuscript deals with an analysis of the municipal human development index as a function
of the municipal human poverty index. We propose a regression model where the response follow
a mixture of Simplex distribution. Estimation is performed by a Bayesian approach making use
of Gibbs sampling algorithm.

4.1 Introduction

The finite mixtures of distributions are the simplest mixture models which are used for
model based on clustering. In this case the model is given by a convex combination of a known
number of different distributions where each of them is referred to as component. Goldfeld and
Quandt (1973) introduced the finite mixture of linear regression models which have been applied
in various fields in the literature as a useful class of finite mixture models. Many efforts have
been made to these models and their extensions such as finite mixture of generalized linear
models, see Hurn, Justel and Robert (2003). This is because finite mixtures of regression models
allow to relax the assumption that the regression coefficients and dispersion parameters are the
same for all observations. This work presents the mixture of Simplex regression model as an
extension of mixture of linear regression and apply it to MHDI data presented in the previous
chapter.

The remainder of the manuscript is organized as follows: In Section 4.2 we present the
Mixture of Simplex regression model. The Section 4.3 is dedicate to Models specification and
some criteria of comparison. Finally, the results are drawn in Section 4.3.

4.2 Model specification

Let (xi,yi) be observations where yi represents the observed value of random variable Yi

taken value in (0,1) and xi =
(

x(M)T
i ,x(D)T

i

)T
a vector of explanatory variables with dimensions

q and d, respectively, both with 1 in the first component. In addition, let’s assume that Yi are
independent with density

fi(yi|xi, βββ ,δδδ ,ωωω) =
k

∑
j=1

ω jS(yi|xi, βββ j,δδδ j), (4.1)

where

S(yi|xi, βββ j,δδδ j) =
(

2πσ
2
i j (yi(1− yi))

3
)−1/2

exp

{
−

(
1

2σ2
i j

)(
(yi −µi j)

2

yi(1− yi)µ2
i j(1−µi j)2

)}
I(0,1)(yi)

is the jth component density of the mixture model with k component given by (4.1). Additionally,
µi j and σi j are the mean and dispersion parameters for the ith observation in the jth component,
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for i = 1, ...,n and j = 1, ...,k. In order to formulate the regression model, consider

h1(µi j) = x(M)T
i βββ j and h2(σi j) = x(D)T

i δδδ j, (4.2)

(4.3)

where h1 and h2 are link functions to mean and dispersion and the components of the vectors
βββ = ( βββ 1, ..., βββ k) and δδδ = (δδδ 1, ...,δδδ k) are q and d-dimensional vectors of unknown regression
parameters, and x(D)T

i is a vector of covariates that can be the same or part of the covariates in
x(M)T

i .

Since the component density of the mixture model in (4.1) is a pdf of Simplex distribution
the model specified relates to a mixture of Simplex regression model with k components were
ωωω = (ω1, ..,ωk) are the weights of the mixture model.

4.3 Bayesian inference
Let’s consider a unobserved random vector Zi = (Zi1, ...,Zik) such that Zi j = 1 if the

ith observation belongs to the jth mixture component and Zi j = 0 otherwise, i = 1, . . . ,n. The
augmented data likelihood to (y,x,Z) can be written as

L( βββ ,δδδ ,ωωω|y,x,Z) =
n

∏
i=1

k

∏
j=1

[
ω jS(yi|xi, βββ j,δδδ j)

]Zi j , (4.4)

where Z = (Z1, ...Zn), and x = (x1, ...,xn) represent all covariates in the model.

Assuming that yi is assigned to component j, Zi j = 1, and taking into account the conditio-
nal independence such that P( βββ ,δδδ |Z,ωωω) = P( βββ ,δδδ |Z) and P(y| βββ ,δδδ ,x,Z,ωωω) = P(y| βββ ,δδδ ,x,Z)
(BOUGUILA; ELGUEBALY, 2012) , the likelihood to βββ and δδδ , given Z, can be write as

L( βββ ,δδδ |x,y,Z,k) =
n

∏
i=1

k

∏
j=1

[
S(yi|xi, βββ j,δδδ j)

]Zi j (4.5)

=
k

∏
j=1


exp

− ∑
i∈{i:Zi j=1}

(
(yi −µi j)

2

2σ2
i jyi(1− yi)µ2

i j(1−µi j)2

)
∏

i∈{i:Zi j=1}

(
2πσ

2
i j (yi(1− yi))

3
)1/2

 . (4.6)

(4.7)

In order to formulate a Bayesian estimate of the parameters of proposed model, each of the
k factors in (4.7) can be combined with a prior distribution leading to the its full conditional
posterior distribution. We specify proper prior distributions as the following

βββ l j ∼ Normal(0,100), for l = 0, ..,q−1 and j = 1, ...,k,



58 Chapter 4. Modeling MHDI with a Finite Mixture of Simplex Regression Models

δδδ l j ∼ Normal(0,100), for l = 0, ..,d −1 and j = 1, ...,k,

ωωω ∼ Dirichlet(ν1, ...,νk). (4.8)

(4.9)

These proper priors are a common choice in the literature, see, for example, Viele and Tong
(2002). Here, we assume that the priors distribution of parameters are independent to each other.
With this information, it is possible to use several Bayesian mechanisms in order to estimate the
parameters. Here, we have chosen a Gibbs sampling approach due to because the relative ease to
be implemented. The algorithm used in this chapter is similar to that used in the Chapter 3, and
summary of this algorithm is shown in Algorithm 2.

Algorithm 2 – Algorithm for simulate samples from the jointly posterior distribution of the
parameters of the mixture of L-logistic regression models

1. Initialize choosing ωωω j
(t) = ωωω(0), βββ

(t)
j = βββ

(0)
j , δδδ

(t)
j = δδδ

(0)
j and Z(t)

i = Z(0)
i , for j = 1, ...,k and i = 1, ...,n.

2. For t = 0,1,2, . . . repeat

a) For i = 1, ...,n draw Z(t+1)
i ∼ Multinomial(1,π(t)

i1 , ...,π
(t)
ik ), wherein

π
(t)
i j ∝ ω j f (yi|xi, βββ

(t)
j ,δδδ

(t)
j )

3. Generate ωωω(t+1) from the its full conditional posterior distribution.

4. For j = 1, ...,k

a) Generate βββ
(t+1)
j from the its full conditional posterior distribution using a Metropolis-Hasting step.

b) Generate δδδ
(t+1)
j from the its full conditional posterior distribution using a Metropolis-Hasting step.

4.4 Data analysis
In the Chapter 3 we model the municipal human development index (MHDI), considering

some cities of Brazil. As already described, the HDI is a summary measure of long-term progress
in three basic dimensions of human development that takes into account education, income and
longevity indexes. The HDI is the geometric mean of normalized indexes for each of the three
dimensions of human development, as seen in previously Chapter.

The analysis of the MHDI data set as a function of the proportion of poor people per
municipality (PPPM) is presented here where the data is modeled by a mixture of two Simplex
distribution. The PPPM is defined as the proportion of individuals in each city with household
income equal or less than half minimum wage (R$ 255,00), August 2010 (ESTATÍSTICA, 2014).
We consider MIDH and PPPM of the cities of Northeast region and São Paulo state in Brazil. In
this region are the states of Alagoas, Bahia, Ceará, Maranhão, Paraíba, Pernambuco, Piauí, Rio
Grande do Norte and Sergipe. There are 1794 cities in the Northeastern region and 645 in São
Paulo state leading to a sample of size n = 2439.
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Sub-models related comparisons

We consider four mixture of Simplex distributions to model the MHDI data.

null model (M0) : logit(µi j) = β0 j and log(σi j) = δ0 j,

mean-model (M1) : logit(µi j) = xT
i βββ j and log(σi j) = δ0 j,

dispersion model (M2) : logit(µi j) = β0 j and log(σi j) = xT
i δδδ j,

full model (M3) : logit(µi j) = xT
1i βββ j and log(σi j) = xT

i δδδ j, j = 1,2,

where βββ j = (β0 j,β1 j), δδδ j = (δ0 j,δ1 j) and logit(x) = log
( x

1−x

)
. Here, we assume that xT

i is a
vector of explanatory variables with 1 in the first component and in the second component the
ith value of covariate PPPM, for i = 1, ...,2439.

The sub-models (M0,M1,M2 and M3) were compared by estimating the marginal like-
lihood and deviance information as expected Akaike information criteria (EAIC), expected
Bayesian information criteria (EBIC) and deviance information criteria (DIC) introduced by
Spiegelhalter et al. (2002). The MCMC output was used to approximate these criteria. The
estimate of marginal likelihood was obtained based on the identity

m(y) = ∏
n
i=1 f (yi|xi, βββ ,δδδ ,ωωω,M)p( βββ ,δδδ ,ωωω|M)

p( βββ ,δδδ ,ωωω|y,x,M)
(4.10)

where f (yi|xi, βββ ,δδδ ,ωωω,M) is the density of ith observation to current sub-model, M, p( βββ ,δδδ ,ωωω|M)

is the prior to the parameters and p( βββ ,δδδ ,ωωω|y,x,M) is the density of posterior distribution. The
approximate p( βββ ,δδδ ,ωωω|y,x,M) is obtained as described in Chapter 2 (PAZ; BAZÁN; ELHER,
2015) where is used an approach introduced by Chib and Jeliazkov (2001) to approximate the
marginal densities in the mixture models when its do not have know form. The estimate of DIC
is obtained as

DIC = D̄+PD (4.11)

where PD = D̄− D̂ with

D̄ = G−1
G

∑
g=1

(
−2

n

∑
i=1

log
(

fi(yi|xi, βββ
(g),δδδ (g),ωωω(g))

))
(4.12)

and

D̂ =−2
n

∑
i=1

log
(

fi(yi|xi, β̄ββ , δ̄δδ , ω̄ωω)
)
, (4.13)

where the notation θ̄ main the posterior mean of the parameter θ and θ (g) represent the gth
estimate of the parameter θ , all estimates are obtained from MCMC output. The EAIC and EBIC
are estimated by

EAIC = D̄+2×P,

EBIC = D̄+10× logn,

(4.14)

where P is the number of model parameters.
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Results

For the MHDI data set analyzed previously in the Chapter 3, we observe in Figure 5 that
still there are some evidence of heterogeneity in the data, even though inclusion of the covariate.
Then, we assume that the data can be modeling by a mixture of Simplex distribution with two
components, that is, we assume k = 2.

Figure 5 – Scatter plot with marginal histograms of the data.

From specified initial values, we first iterate the sampling procedure to "burn-in” phase
of 5000 interactions, already considered thinning of 10 iterations, and the 5000 remaining were
used in the analysis. The acceptance rate for update moves, in the Metropolis-Hastings step, is
kept around 0.3, this rate was choosen based on the convergence of the algorithm, i.e., we choose
the acceptance rate for which the algorithm had convergence.

Table 7 shows the criteria used to compare the four sub-models, including the sub-model
without covariate (M0). In this table we can observe that the selected model by the criteria used
here, is the sub-model M3, which have the covariate in the mean and dispersion. However, taking
into account the parsimonious criteria, we can observe that the model M1 is more plausible then
M3. Thus, we choose the model M1 as a final model among those compared. That is, the final
model is such that

 component 1 : logit(µi1) = 1.301−1.396MPi and log(σi1) =−3.045,

component 2 : logit(µi2) = 1.598−1.827MPi and log(σi2) =−3.189.



4.4. Data analysis 61

Table 7 – Model comparison criteria to the models proposed to MHDI data.

Criteria Model
M0 M1 M2 M3

DIC -6521.251 -11122.33 -6537.52 -11146.01
EAIC -6505.701 -11112.94 -6523.045 -11133.90
EBIC -6447.707 -11066.55 -6465.052 -11075.91

Log marginal likelihood 3627.944 5544.9343 3769.03 5553.879

Table 8 – Number of observations classified across the models and components.

Model M0 M1
Component 1 2 1 2

M0
1 1703 0 1703 0
2 0 736 622 114

M1
1 1703 622 2325 0
2 0 114 0 114

For the choosen model and the model without covariate, we build the contingency Table
8 to show the classifications of observations in the model M0 and M1 and across these models. In
addition, the classification of observations can be seen in the scatter-plot presented in Figure 6.
In the contingency table and in the scatter plot, we can observe that the second component, the
component with less weight, decrease in number of observations if the covariates are included
in the model. This fact is because more information about the poverty is included in the model
changing the distribution of the weights. The distribution of the weights, or probability of the
mixture, to model M0 and M1 can be seen in the Table 9.

Figure 6 – Scatter plot of the classified data.

Finally, table 9 shows the posterior mean of the parameters of the modes M0 and M1 and
95% HPD credible intervals (MARTIN; QUINN; PARK, 2011). We can observe that the zero is
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out of range of the HPD interval to β11 and β12 given evidence that the covariate is positively
significant in the model M1. The empirical standard deviation is also presented in Table 9 where
we can observe that its values are all close to zero given evidence that the all parameters are well
estimated.

Table 9 – Posterior mean, credibility intervals and standard empirical deviation of the estimated parameters
for sub-model M0 and M1.

Model Parameter β01 β02 β11 β12 δ01 δ02 δ11 δ12 ω1 ω2

M0

Mean 0.585 0.732 - - -2.336 -1.603 - - 0.693 0.307
Lower limit 0.583 0.728 - - -2.418 -1.740 - - 0.672 0.287
Uper limit 0.587 0.735 - - -2.255 -1.471 - - 0.713 0.328

SD 0.001 0.002 - - 0.004 0.014 - - 0.011 0.011

M1

Mean 1.301 1.598 -1.396 -1.827 -3.045 -3.189 - - 0.810 0.190
Lower limit 1.279 1.537 -1.426 -1.924 -3.092 -3.473 - - 0.714 0.123
Uper limit 1.318 1.653 -1.360 -1.734 -2.993 -2.948 - - 0.877 0.286

SD 0.011 0.031 0.019 0.050 0.027 0.132 - - 0.043 0.043

4.5 Conclusion

In this chapter, we present a mixture of Simplex regression model with known number
of components. Our interest lies in the relationship between the MHDI and the municipal human
poverty index, where the MHDI is take as a response and the PPPM is take as a covariate. For
this purpose, we consider four mixtures of Simplex regression with fixed and known number of
components, which are sub-models of mixture of Simplex regression model seen in the Section
4.2. The four sub-models are compared using some criteria of comparisson and the sub-model
with the covariate in the mean and dispersion and the sub-model with convariate just in the mean
had the best fit. Since the diference between these sub-models is not significant, the sub-model
with covariate just in the mean was chouse as the final model for the MHDI data. Based on the
results, we found that the municipal human poverty index is significant to explain the MHDI, as
expected.

In this analysis, based on the results from the previous chapter and the Figure 5, we
assume k = 2 components in the mixture. However, additional analysis have to made to confirm
if the real number of components in the mixture is in fact k = 2. Because, with the inclusion
of the covariate, the number of components can increase or decrease. One way to check if the
number of components was changed is to proceed the same analysis for mixture with some
others number of components. For example, we can consider additionally mixture of Simplex
regression models with k = 1,3,4. Finally, we can compare the choosen sub-models for each
mixture using the criteria presented in Section 4.4.

In this chapter was presented a mixture of regression model for data in the unit interval.
The distribution considered here was already proposed in the literature however it was not
analyzed in the mixture context. Here, we apply a mixture of regression model to MHDI data
without considering the effect of the stats. In the next chapter we propose a new regression model
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which will be considered again in the Chapter 6 in the context of the mixed models. This model
is apply to MHDI data without mixture, but the effect of the states is considered.
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CHAPTER

5
L-LOGISTIC REGRESSION MODELS: PRIOR
SENSITIVITY ANALYSIS, ROBUSTNESS TO

OUTLIERS AND APPLICATIONS

This chapter is addressed to the L-Logistic distribution introduced by Tadikamalla and
Johnson (1982). In this work, a convenient parameterization of this distribution is proposed in
order to develop regression models.
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Abstract

(TADIKAMALLA; JOHNSON, 1982) developed the LB distribution to variables with bounded
support by considering a transformation of the standard logistic distribution. In this manuscript,
a convenient parameterization of this distribution is proposed in order to develop regression
models. This distribution, called here L-logistic distribution, provides great flexibility and
includes the uniform distribution as a particular case. Several properties of this distribution are
studied, and a Bayesian approach is adopted for the parameters estimation. Simulation studies,
considering prior sensitivity analysis, and comparison with Beta distribution show the robustness
to outliers of the proposed estimation method and the efficiency of the algorithm MCMC adopted.
Applications to estimate the vulnerability to poverty and to explain the anxiety are performed.
The results to applications show that the L-logistic regression models provides a better fit than
the correspondent Beta regression models.

5.1 Introduction
Modeling data that are restricted to the interval (0,1), as for example the proportion of

children vulnerable to poverty or anxiety as function of the stress, are frequently considered
by researchers. It is noteworthy that different regression models for modeling this type of data
have been proposed in the past few years. For example, Buckley (2003), Ferrari and Cribari-
Neto (2004), Paz, Bazán and Milan (2015), Lemonte and Bazán (2016), Gómez-Déniz, Sordo
and Calderín-Ojeda (2014) and Bayes, Bazán and Castro (2017), regression models have been
proposed among others. However, there are still continuous distributions with bounded support
that need further study. This is the case for the L-logistic distribution, which was originally
proposed by Tadikamalla and Johnson (1982) through a transformation of the standard logistic
distribution. This construction is similar to the SB system proposed by Johnson (1949). This
distribution was studied by, among others, Tadikamalla and Johnson (1990) and Johnson and
Tadikamalla (1991), which proposed the method of moments and the percentile points method
to fit this distribution. Additionally, Wang and Rennolls (2005) use a Maximum Likelihood
estimation. However, regression models were not studied by considering this distribution.

In this manuscript, we discuss properties of this distribution by considering some para-
meterizations. Specifically, we present a new parameterization of the L-logistic that consider the
median as a parameter. Therefore, we propose a new regression model considering this distribu-
tion in the context of quantile regression (QR) models, which were introduced by Koenker and
Bassett (1978). Thus, we propose a median regression model so as to represent the relationship
between the median (central location) of the response and a set of covariates considering a conve-
nient link function. If the data are highly skewed, since the median is a natural robust measure of
the center, the conditional median modeling can be more useful than conditional mean modeling
adopted in Beta regression models (BUCKLEY, 2003; FERRARI; CRIBARI-NETO, 2004).
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Different from previous studies of L-logistic distribution, we proposed a Bayesian approach using
a Markov chain Monte Carlo (MCMC) method for the modeling framework. The issues of model
fitting are addressed by means of a hybrid algorithm that combines Metropolis-Hasting with
Gibbs sampling algorithms. Initially, we report studies with simulated data sets to investigate the
performance of the proposed estimation method concerning influence of the prior distributions
and a comparison with Beta distribution for data with outliers. The results obtained from the
simulation studies give evidence that the proposed estimation method works well, and that the
model proposed is more robust than the Beta model when data with outliers are considered.
Also, real applications of social and psychological data are considered to show that there are
advantages of our approach in some situations. Firstly, we found that there are evidence that the
proportion of children vulnerable to poverty of the municipalities of the state of Alagoas in Brazil,
for the 2010 season, is best analyzed considering the L-logistic distribution in comparison with
Beta distribution. Additionally, the application of the Beta and L-Logistic regression models to
data of anxiety (SMITHSON; VERKUILEN, 2006) give evidence that the L-logistic regression
model has a better fit than the correspondent Beta regression model for the modeling this data
set.

The rest of the manuscript is organized as follows. In Section 5.2, we present the pdf, the
cdf, the quantile function, and also describe the computer generation of the L-Logistic distribution.
In Section 5.3, we study some characteristics of the distribution, other parametrizations, some
related distributions, moments, and the skewness and kurtosis measures of the L-Logistic
distribution. Section 5.4 is dedicated to the Bayesian estimation of the distribution parameters.
Some methods for model comparison and diagnosis are also discussed in this section. Section
5.5 presents the results of three simulations studies that examines a prior sensitivity analysis, the
estimation of the parameters, and the comparison with Beta distribution to contaminated data.
Section 5.6 discusses applications of the proposed distribution, including the proposal of several
types of regression models to real data sets. Finals remarks are made in Section 5.7.

5.2 The L-Logistic Distribution

We say that the r.v. Y follows a L-Logistic distribution if its probability density function
(pdf) is given by

f (y|m,b) =
b(1−m)bmbyb−1(1− y)b−1[
(1−m)byb +mb(1− y)b

]2 , 0 < y < 1,0 < m < 1, b > 0. (5.1)

The parameters m and b allow L-Logistic distribution, denoted by Y ∼ LL(m,b), to take on a
variety of density shapes (see Figures 7 and 8). Note that when we set m = 0.5 and b = 1 in
(5.1), then the pdf of the L-Logistic distribution simply becomes the pdf of the standard Uniform
distribution. Here, m is the median of the distribution, which scales the graph to the left or
right on the horizontal axis. On the other hand, b is a parameter that governs the shape of the
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distribution. The L-Logistic density is uni-modal (or “uni-antimodal"), increasing, decreasing, or
constant, depending on the values of its parameters. More details on this issue are presented with
another parametrization of the L-Logistic model is presented in Section 5.3.

æ

æ

æ

æ æ

à

à

à

à
à

ì

ì

ì

ì
ì

ò

ò
ò ò

ò

ô ô ô ô ô

0.0 0.2 0.4 0.6 0.8 1.0
y

1

2

3

4

5

f HyL

ô b = 0.1

ò b = 0.5

ì b = 1

à b = 2

æ b = 3

m = 0.2

æ

æ

æ

æ

æ

à

à

à

à

à

ì ì ì ì ì

ò

ò
ò

ò

ò

ô
ô ô ô

ô

0.0 0.2 0.4 0.6 0.8 1.0
y

0.5

1.0

1.5

2.0

2.5

3.0

f HyL

ô b = 0.1

ò b = 0.5

ì b = 1

à b = 2

æ b = 3

m = 0.5

æ æ
æ

æ

æ

à
à

à

à

à

ì
ì

ì

ì

ì

ò
ò ò

ò

ò

ô ô ô ô ô

0.0 0.2 0.4 0.6 0.8 1.0
y

1

2

3

4

5

f HyL

ô b = 0.1

ò b = 0.5

ì b = 1

à b = 2

æ b = 3

m = 0.8

Figure 7 – L-Logistic probability density function for scale parameter m = 0.1,0.5 and 0.7 and some
values of parameter b.
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Figure 8 – L-Logistic probability density function for shape parameter b = 0.1,1 and 4 and some values
of scale parameter m.

The cumulative distribution function (cdf) of the L-Logistic distribution is given by

FY (y|m,b) =

(
1+
(

m(1− y)
y(1−m)

)b
)−1

, 0 < y < 1, (5.2)

which can be readily inverted to yield the quantile function

QY (p) = F−1
Y (p) =

mp1/b

(1− p)1/b(1−m)+ p1/bm
, 0 ≤ p ≤ 1. (5.3)

This would readily enable a quantile-based analysis of this model. Note that if p = 1− p = 0.5,
then Q(p) = m, which means that the parameter m is indeed the 50th percentile or the median of
the L-Logistic distribution.
Equation (5.3) facilitates simple random variate generation. If U ∼Uni f orm(0,1), then

X = Q(U) =
mU1/b

(1−U)1/b(1−m)+U1/bm
∼ LL(m,b). (5.4)

We can also express the inter-quartile range (IQR) as

IQR = Q(0.75)−Q(0.25) =
m31/b

(1−m)+31/bm
− m

31/b(1−m)+m
. (5.5)
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The IQR has a breakdown point of 50%, and is often preferred over range. When the distribution
is symmetric, half IQR equals the median absolute deviation (MAD), and is often used to detect
outliers in data.

The functions that provide the probability density function, cumulative density function,
quantile function and random generation for the L-Logistic distribution with parameters m and b

are available in the CRAN of R program, see Paz and Bazan (2017) for details.

5.3 Properties of the L-Logistic distribution
This section discuses some properties of the L-Logistic distribution such as related

distributions, measures of skewness and kurtosis, mode and the moments. Some pertinent
derivations are presented in Appendix B, given in the end of this thesis.

Related Distributions

The following property shows the relation between L-Logistic distribution and logistic
distribution.

Propriety 5.3.1. If Y ∼ LL(m,b), then Z = b log
(

Y (1−m)
m(1−Y )

)
has the standard logistic distribution.

Next, we present two alternative parametrizations to the L-Logistic distribution.

Propriety 5.3.2. If Y ∼ LL(m,b), then, with m= e−
δ
b

1+e−
δ
b

(δ > 0), the pdf and cdf of the alternative

parametrization of L-Logistic distribution, denoted by Y ∼ LL(δ ,b), is given by

f (y|δ ,b) = beδ yb−1(1− y)b−1[
ybeδ +(1− y)b

]2 , 0 < y < 1, (5.6)

and

FY (y|δ ,b) =

(
1+ e−δ

(
1− y

y

)b
)−1

, 0 < y < 1, (5.7)

respectively, where b and δ ,b,δ > 0, are both shape parameters.

The pdf of Y ∼ LL(δ ,b) was introduced by Tadikamalla and Johnson (1982) and Wang
and Rennolls (2005), which extended this pdf for LB system on any bounded interval by in-
troducing two extra parameters. These authors referred to this distribution as logit-logistic
distribution.

Propriety 5.3.3. If Y ∼ LL(m,b), then, with α = 1
1+( m

1−m)
b (α ∈ (0,1)), the pdf and cdf of the

alternative parametrization of L-Logistic distribution, denoted by Y ∼ LL(α,b), is given by

f (y|α,b) =
bα(1−α)yb−1(1− y)b−1[
ybα +(1− y)b(1−α)

]2 , 0 < y < 1, (5.8)
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and

FY (y|α,b) =

(
1+
(

1−α

α

)(
1− y

y

)b
)−1

, 0 < y < 1, (5.9)

where b > 0 and α ∈ (0,1) are both shape parameters.

Note that, although the expressions of the alternative parametrizations of the L-Logistic
distribution above have simple expressions for the pdf and cdf, they do not have the median
as a natural parameter. In addition, an advantage of the parametrization in (5.1) and (5.2) in
comparison with the alternatives parameterizations is that the parameter m is the median of the
distribution and, consequently, the interpretation of this parametrization becomes easier.

Propriety 5.3.4. If Y ∼ LL(δ ,b), then Z
′
= δ +b log

( Y
1−Y

)
has the standard logistic distribu-

tion.

The reciprocal property was first introduced by Tadikamalla and Johnson (1982), based
on an equivalent transformation described by (JOHNSON; KOTZ; BALAKRISHNAN, 1994, pg.
34-49) and first investigated by Johnson (1949), for the case of the standard Normal distribution.

Propriety 5.3.5. A extension of the L-Logistic distribution to a variable with support on bounded
interval (c,d) is given by

f (y|m,b,c,d) =
(d − c)b(1−m)bmb(y− c)b−1(d − y)b−1[

(1−m)b(y− c)b +mb(d − y)b
]2 , (5.10)

c < y < d, with c,d ∈ R.

Mode

Propriety 5.3.6. For b > 1, the mode y0 of the L-Logistic distribution is the solution of the
equation (

1−m
m

)b

=

(
1− y0

y0

)b b+2y0 −1
b−2y0 +1

. (5.11)

Note that, upon taking δ =−b log
( m

1−m

)
, the mode y0 can be obtained by solving the

equation

δ = log

((
1− y0

y0

)b b+2y0 −1
b−2y0 +1

)
. (5.12)

In addition, from (5.11) and (5.12), if y0 = m = 0.5, then δ = 0 for all values of b. Thus,
we can study the behavior of the mode by studying the function given in (5.12). For this purpose,
we take the derivative of the right-hand side of (5.12) with respect to y0 to obtain the equation

∂δ

∂y0
=

b
(
b2 −1

)
(y0 −1)y0 {(b2 −1)+4y0 −4y02} . (5.13)
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(5.11) is negative for b > 1, the situation where δ decreases as y0 (mode) increases (first
derivative test), then the mode lies in (0,1/2) if δ > 0 (or m < 1/2) and for δ < 0 (or m > 1/2)
the mode is in (1/2,1). If b < 1, (5.13) is positive whenever (b2 −1)+4y0 −4y2

0 > 0, that is,
whenever 1−b

2 < y < 1+b
2 , the situation where δ increases as y increases. Thus, from (5.12) and

(5.13), the minimum of the pdf lies in (1−b
2 ,1/2) for δ < 0 or m > 1/2, and in (1/2, 1+b

2 ) for
δ > 0 or m < 1/2.

Skewness and Kurtosis Measures

First, we have the following symmetry property.

Propriety 5.3.7. The L-Logistic density is symmetric when m = 0.5 for all values of the b.

For the case when the L-Logistic density is asymmetric, the degree of skewness can
be quantified by some measures of skewness. Since the L-Logistic distribution is related to
the logistic distribution, the skewness measure introduced by Arnold and Groeneveld (1995),
denoted by γM, seems to be an appropriate skewness measure. The measure γM is based on the
mode of distribution and is given by

γM = 1−2F(M), (5.14)

where M is the mode of the distribution and F(.) is the distribution function. The value of γM

lies in (−1,1), and if γM is near 1, it indicates extreme right skewness. On the other hand, if γM

is near -1, it indicates extreme left skewness.

We also consider another measure of skewness called octile skewness (denoted here by
γp), first proposed. This skewness measure is given by

γp =
Q(1− p)+Q(p)−2m

Q(1− p)−Q(p)
, (5.15)

which is a function of high and low percentiles defined by p ∈ (0,0.5) with Q(.) being as in
(5.3). The maximum value of γp is 1, representing extreme right skewness, while the minimum is
-1 representing extreme left skewness. This measure is also zero for any symmetric distribution.
However, the function in (5.15) depends on the value of p. We can remove this dependence by
integrating over p or to decide which value of p is appropriate for use. In Brys, Hubert and Struyf
(2003), there is a comparison between several robust skewness measures in which accuracy,
robustness, and computational complexity are considered. The most interesting skewness measure
of all the measures investigated is octile skewness. Octile skewness takes p = 0.125 in (5.15),
that is, it is given by

γ125 =
Q(0.875)+Q(0.125)−2m

Q(0.875)−Q(0.125)
. (5.16)

For the L-Logistic distribution, we made use of this particular skewness measure instead of
removing the dependence over p through integration.
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Moreover, the kurtosis of the L-Logistic distribution can also be derived easily by using
the quantiles. The kurtosis measure introduced by Moors (1988) is given by

kQ =
Q(0.875)−Q(0.625)−Q(0.375)+Q(0.125)

Q(0.75)−Q(0.25)
, (5.17)

with kQ ∈ (0,∞).

Figure 9 presents the results of the measures of skewness and kurtosis described here for
some values of the parameter m as a function of the shape parameter b, b > 1. In this figure, we
can see that the two measures of skewness become close as b increases, as intuition suggests.
Moors (1988) justified the use of the kurtosis measure in (5.17) by the interpretation that the
two terms in the numerator of (5.17) are large (small) if relatively little (much) probability
mass is concentrated in the neighborhood of Q(0.75) and Q(0.25). This corresponds to large
(small) dispersion around (roughly) EY [Y ]±VarY [Y ] where EY [Y ] and VarY [Y ] are the mean and
variance of Y , respectively.

2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

m = 0.1

b

D
es

cr
ip

tiv
e 

M
ea

su
re

Mode
γ0.125

γM

kQ

2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

m = 0.3

b

D
es

cr
ip

tiv
e 

M
ea

su
re

Mode
γ0.125

γM

kQ

2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

m = 0.5

b

D
es

cr
ip

tiv
e 

M
ea

su
re

Mode
γ0.125

γM

kQ

2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

m = 0.9

b

D
es

cr
ip

tiv
e 

M
ea

su
re

Mode
γ0.125

γM

kQ

Figure 9 – The mode, skewness (γM and γ0.125) and kurtosis (kQ) of the L-Logistic distribution for some
values of the parameters.

Moments

The following proposition gives an expression for the moments of the L-Logistic distri-
bution.

Propriety 5.3.8. If Y ∼ LL(m,b), then the higher moments of Y about zero is given by

E[Y t ] =
∫ 1

0

[
1+
(

1− v
v

)1/b(1−m
m

)]−t

dv. (5.18)
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The integral in (5.18) cannot be expressed in an analytical form. However, we can use
numerical integration to evaluate some moments as EY (Y ), EY (Y 2) and VarY (Y ) = EY (Y 2)−
EY (Y )2. Table 10 shows some values of the first and second moments and the variance of the
L-Logistic distribution. In addition, Figure 10 shows the graphs of the mean and variance as
functions of the shape parameter b, for some values of the parameter m. For this purpose, the
integral in (5.18) was evaluated by the Gauss quadrature.
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Figure 10 – Descriptive measures of the L-Logistic distributions for some values of the parameters

Table 10 – EY [Y ], EY [Y 2], and VarY (X) of the L-Logistic distribution for some values of b and m.

m 0.2 0.5 0.8 0.2 0.5 0.8
b 1 1 1 3 3 3

EY [Y ] 0.283 0.5 0.717 0.216 0.5 0.784
EY [Y 2] 0.145 0.333 0.579 0.056 0.269 0.625

VarY [Y ] 0.065 0.083 0.065 0.010 0.019 0.01

5.4 Bayesian inference
In this section, we describe the Bayesian approach for the estimation of parameters of

the L-Logistic model. If we consider a random sample Y = (Y1, ...,Yn) from the distribution in
(5.2), then the likelihood function is given by

L(θ |y) =
n

∏
i=1

b(1−m)bmbyb−1
i (1− yi)

b−1[
(1−m)byb

i +mb(1− yi)b
]2 . (5.19)
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Prior specification

To complete the Bayesian specification of the model, since parameters m and b have
different behavior, we assume independence between them, and the following structure is then
considered:

π(m,b) = π(m)π(b), (5.20)

where π(m) and π(b) are the prior densities for m and b, respectively.

Assuming that m ∼Uni f om(0,1), where Uni f orm(0,1) represents the Uniform distri-
bution on the unit interval, and prior π(b) for the parameter b, the joint posterior distribution for
(m,b) is given by

π(m,b|y) ∝ ∏
i=1

b(1−m)bmbyb−1
i (1− yi)

b−1[
(1−m)byb

i +mb(1− yi)b
]2 π(b). (5.21)

The prior π(b) can be, for example, the pdf of the Gamma distribution with parameter vector
(ε,ε), ε being a small value. Some priors for parameter b are compared and discussed in Section
5.7.

Since the posterior distribution is not available in a closed-form, the Markov Chain
Monte Carlo (MCMC) approach (GELMAN et al., 2013, pp. 259 – 349) is used to estimate
the model parameters. Initially, we consider the full conditional posterior distributions for the
parameters (m,b) given by

π(m|b,y) = K−1
1

(1−m)nbmnb

∏
n
i=1
[
(1−m)byb

i +mb(1− yi)b
]2 , (5.22)

π(b|m,y) = K−1
2

n

∏
i=1

(
b(1−m)bmbyb−1

i (1− yi)
b−1[

(1−m)byb
i +mb(1− yi)b

]2
)

π(b), (5.23)

(5.24)

where K1 and K2 are normalizing constants.

Thus, a hybrid algorithm that combines Metropolis-Hastings and Gibbs sampling was
implemented in R language (R Development Core Team, 2016) to obtain a sample from the
posterior distribution of model parameters (m,b). These codes are available upon request.

Model comparison criteria

In order to compare different models, we made use of some model comparison criteria.
Specifically, we consider the Expected Akaike information criterion (EAIC), the expected Baye-
sian information criterion (EBIC), the deviance information criterion (DIC), and the Watanabe-
Akaike information criterion. For a review of these criteria, one may refer to Gelman et al. (2013).
The EAIC, EBIC and DIC can be estimated as

EAIC = D̄+2× p, (5.25)

EBIC = D̄+10× logn, (5.26)
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DIC = D̄+ pD, (5.27)

where

D̄ = G−1
G

∑
g=1

(
−2

n

∑
i=1

log( f (yi|bg,mg))

)
,

D̂ =−2
n

∑
i=1

log
(

f (yi|m̄, b̄
)
,

pD = D̄− D̂, and p represents the number of model parameters. Here, the notation θ̄ means the
posterior mean of θ and θ (g) represents the gth parameters of vector θ of a sequence of size G

generated from the posterior distribution by MCMC method.

WAIC is a Bayesian approach for estimating the expected pointwise log predictive
density (elppd) for a new dataset, and is given by

el ppd =
n

∑
i=1

Ey [log(P(ỹ))] , (5.28)

where the expectancy Ey[.] and the pdf P(.) are related to the predictive distribution (pd) induced
by the posterior distribution P(m,b|y) and ỹ is a future data. To estimate the elppd, we start by
computing the pointwise log predictive density (lppd) as

l ppd =
n

∑
i=1

logP(yi)

=
n

∑
i=1

log
∫

f (yi|m,b)dP(m,b|y)

≈
n

∑
i=1

log

(
G−1

G

∑
g=1

f (yi|mg,bg)

)
= ˆl ppd. (5.29)

Thus, we can use a factor of correction for the effective number of parameters to adjust for over-
fitting. In the literature, there are two factors of correction that can be viewed as approximations
to cross-validation (GELMAN et al., 2013, pp. 169-174). The factor of correction used here
makes use of the variance in each term of the log predictive density and is used here to obtain
the WAIC. This factor is given by

pWAIC =
n

∑
i=1

Var(m,b)|y [log( f (yi|(m,b))]

≈
n

∑
i=1

 1
G−1

G

∑
g=1

[
log( f (yi|mg,bg))−G−1

G

∑
g=1

log( f (yi|mg,bg))

]2
= p̂WAIC2 . (5.30)

Finally, we can compute the WAIC as an approximation to the elppd as

WAIC = ˆl ppd − p̂WAIC. (5.31)
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Posterior predictive checking

One point that will be of interest is the predictive distribution for a future observation.
The density estimation of the posterior predictive distribution is obtained by integrating the
unconditional predictive distribution P(ỹ|y) =

∫
P(ỹ|θθθ)dP(θθθ |y), where P(θθθ |y) is the density

of the posterior distribution of the parameters of the assumed model. In practice, we will be
interested in simulating draws from the posterior predictive distribution of unknown observables
ỹ. Thus, the predictive distribution can be used to compare the predicted value under the assumed
model yrep with the actual data y, where yrep can be thought as an estimate of ỹ, or as an attempt
to replicate the observed data based on the parameters. If the model fits well, then this predicted
value should be similar to the observed data.

Using MCMC techniques, we could simulate values of the posterior predictive distribu-
tion by generating yrep from the distribution assumed by its model structure with the parameters.
generated from the posterior distribution. Let us consider y1, ...,yn as observations generated
independently from the L-Logistic distribution. Then, we can generate yrep from the L-Logistic
distribution with appropriate parameters, that is,

yrep,(s)
i ∼ LL(ms,bs),

s = 1, ...,S, where (m1,b1), ...,(mS,bS) is a sample generated from the posterior distribution. Af-
ter generating

(
yrep,(s)

1 , ...,yrep,(s)
n

)
, we order the sample to achieve(

yrep,(s)
(1) , ...,yrep,(s)

(n)

)
, the ordered generated value. We can then compare the distribution of

the ordered generated values yrep,(s)
(i) with the ordered observed values y(i). Finally, error bar can

be constructed or posterior predictive values can be obtained by making use of the discrepancy
measure, allowing for an evaluation of the model fit. Details about the predictive model checking
are discussed by Gelman et al. (2013).

5.5 Simulation studies

This section presents three simulation studies, one that examines a prior sensitivity
analysis, another investigates the recovery of the parameters of the model by the proposed
estimation method and, finally, we present a comparison between our approach and a existing
approaches to model data with outliers. For this purpose, the Bayesian method is applied on
simulated data sets from the L-Logistic distribution, considering different scenarios. For the
estimation of parameters, we generated 20,000 samples from the posterior distribution given
in (5.21), then the first 10,000 samples were discarded and sequences of 10 observations were
eliminated, and finally the resulting samples of size 1,000 were used for inference.
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Prior sensitivity analysis

Prior sensitivity analysis plays an important role in applied Bayesian analyses. This is
especially true for Bayesian models used for new distribution, where the interpretability of the
corresponding parameters becomes important. In this section, we consider a simulation study
to evaluate the sensitivity of different choices of prior distributions for parameter b since this
is different from parameter m, which is clearer in its interpretation. Specifically, we assume
prior independence between parameters b and m, considering a unit Uniform distribution for
parameter m.

The models estimated with different prior distributions were compared by using WAIC,
EAIC, EBIC and DIC. We considered five different prior distributions for b, considering simula-
ted data sets from the L-Logistic distribution for some pairs of parameters m and b. The values
for m and b used are as follows: b ∈ {0.5,1,5} and m ∈ {0.2,0.5,0.9}, leading to nine scenarios
or pairs of parameters, corresponding to nine models simulated. We simulated samples of size
n = 100, y1, ...yn, from the L-Logistic distribution upon considering these pairs of parameters,
then nine distinct simulated datasets were considered for the analysis.

Based on the works of Figueroa-Zúñiga, Arellano-Valle and Ferrari (2013), we consider
for the parameter b three relatively non-informative and two informative prior distributions.
The non-informative prior distributions are the Gamma distribution with parameter vector
(0.001,0.001) (b ∼ Gamma(0.001,0.001)), denoted by prior A, the Uniform distribution with
parameter vector (1,100) for U (U ∼Uni f orm(0,100)) with b =U2, denoted by prior B, and
the central Student t distribution with parameters vector (10,0,2) (L ∼ St(0,100)) for L with
log(b) = L, denoted by prior C. The prior B is chosen because it is less informative than the
usual Gamma with parameter vector (ε,ε). For the informative prior distributions, we consider
b ∼ Gamma(2.5,1), denoted by prior D, and b ∼ Gamma(50,1), denoted by prior E. Note that
prior E provides incorrect information about parameter b, while prior D provides almost correct
information. For all cases, the prior distribution for parameter m is the Uniform distribution with
parameters 0 and 1, that is, m ∼Uni f orm(0,1). For all simulated datasets in the nine scenarios,
we found that with prior E the estimated model achieves the worst fit among all models fitted with
the other priors. However, for the models using all other prior distributions, the values of WAIC,
EAIC, EBIC, and DIC are quite close, showing no significant difference, giving evidence that the
estimated models provide almost the same quality of fit for the analyzed samples. Thus, for these
cases, the posterior distribution does not seen to be sensitive with respect to the specification
of these prior distributions. The values of WAIC, EAIC, EBIC, and DIC for the fitted models,
considering these different prior distributions, was shown in Table T of the Appendix B.

For a more detailed analysis, additionally, we chose two non-informative priors, A and
C, and the worst informative prior E to present HPD intervals and point estimates. Prior A
was chosen for this second analysis because it is simplest among the non-informative priors
considered before, while prior C is chosen because it presents lower values for EAIC, EBIC and
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DIC than prior B in most of the studied cases. Table 11 reports the posterior mean and the 95%
HPD interval (obtained by the package of Martin, Quinn and Park (2011)), considering these
priors. We observe that when prior E is used, the HPD interval does not contain the true value of
b. On the other hand, the non-informative A and C priors provide intervals containing the true
value of the parameters for all cases analyzed. However, prior A provides the estimated values
for the parameter b (posterior mean) closer to the true value than prior C in most cases.

Considering the results discussed before, we conclude that prior A is the best choice
among the priors analyzed for the parameter b of L-Logistic distribution, for these data sets. Mo-
reover, Gamma distribution is commonly used in the literature for shape parameters (specifically,
for precision parameters) and, based on the analysis presented here, the posterior distribution
seems to be not sensitive with respect to the specification of this prior distribution.

Table 11 – Posterior mean with 95% HPD interval, prior distributions for parameter b and true values of
the parameters of L-Logistic distribution used to simulate the data sets.

Real Prior A Prior C Prior E
Value Mean HPD (95%) Mean HPD (95%) Mean HPD (95%)

m = 0.20 0.24 (0.14, 0.35) 0.24 (0.14, 0.35) 0.24 (0.16, 0.33)
b = 0.50 0.58 (0.49, 0.67) 0.59 (0.50, 0.68) 0.78 (0.68, 0.90)
m = 0.20 0.21 (0.17, 0.26) 0.21 (0.17, 0.26) 0.22 (0.18, 0.26)
b = 1.00 1.15 (0.98, 1.34) 1.17 (0.98, 1.35) 1.55 (1.34, 1.77)
m = 0.20 0.20 (0.19, 0.21) 0.20 (0.19, 0.21) 0.20 (0.19, 0.21)
b = 5.00 5.77 (4.89, 6.76) 5.77 (4.83, 6.77) 7.51 (6.49, 8.55)
m = 0.50 0.54 (0.40, 0.68) 0.54 (0.39, 0.68) 0.54 (0.43, 0.66)
b = 0.50 0.58 (0.48, 0.67) 0.59 (0.49, 0.68) 0.78 (0.67, 0.88)
m = 0.50 0.52 (0.44, 0.58) 0.52 (0.45, 0.59) 0.52 (0.47, 0.58)
b = 1.00 1.16 (0.97, 1.33) 1.17 (0.98, 1.36) 1.55 (1.33, 1.76)
m = 0.50 0.50 (0.49, 0.52) 0.50 (0.49, 0.52) 0.50 (0.49, 0.52)
b = 5.00 5.78 (4.79, 6.77) 5.79 (4.83, 6.68) 7.52 (6.51, 8.68)
m = 0.90 0.90 (0.85, 0.95) 0.90 (0.86, 0.95) 0.91 (0.87, 0.94)
b = 0.50 0.58 (0.49, 0.68) 0.59 (0.49, 0.69) 0.78 (0.68, 0.89)
m = 0.90 0.90 (0.88, 0.93) 0.90 (0.88, 0.93) 0.91 (0.89, 0.93)
b = 1.00 1.15 (0.98, 1.34) 1.17 (0.98, 1.36) 1.55 (1.34, 1.77)
m = 0.90 0.90 (0.90, 0.91) 0.90 (0.90, 0.91) 0.90 (0.90, 0.91)
b = 5.00 5.78 (4.96, 6.78) 5.79 (4.80, 6.72) 7.51 (6.60, 8.76)

Parameter recovery

Here, we present a study of parameter recovery for the parameters of the L-Logistic
distribution using prior A for the shape parameter b, and the unit Uniform prior for the parameter
m. This evaluation was made based on the

√
MSE and bias, for simulated data sets from

this distribution. The mean and variance of an estimator θ̂ can be computed by Monte Carlo
simulations using the approximations

E
θ̂

[
θ̂
]
≈G−1

G

∑
g=1

θ̂
g, (5.32)

Var
θ̂
[θ̂ ]≈G−1

G

∑
g=1

(
θ̂

g −E
θ̂

[
θ̂
])2

, (5.33)
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where θ̂ 1, ..., θ̂ G are obtained from G different simulated samples. Thus, the MSE of θ̂ is the
function of θ defined by

E
θ̂

[
(θ̂ −θ)2]=Var

θ̂
[θ̂ ]+

(
E

θ̂
[θ̂ ]−θ

)2 ≈ G−1
G

∑
g=1

(
θ̂

g −θ
)2
, (5.34)

where E[θ̂ ]−θ is the bias of θ̂ . Of course, a good estimator should produce mean, standard
deviation (square root of variance), and bias close to zero.

For the analysis presented here, we generated samples of size n = 50, n = 100, and
n = 500. The values of the parameters were set as m ∈ {0.2,0.5,0.9} and b ∈ {0.3,0.5,1,2,4}.
For these data sets, we estimated the parameters of the L-Logistic model by using the Bayesian
method under the assumption of independent priors for m and b. Bayes estimator used here is
the mean of the posterior distribution (estimator with respect to squared error loss function).

Table 12 shows the values of the
√

MSE and bias from the simulated data sets. The
estimates for these quantities were obtained from G = 1,000 Monte Carlo replications. We can
see that the

√
MSE and bias are close to zero even when the sample size is n = 50. For these

samples, the estimator performs well as both
√

MSE and bias are very small, for all the analyzed
cases. Therefore, we can conclude that the proposed estimation method for the parameters of the
L-Logistic distribution works well.

Robustness to outliers in L-Logistic

Now, a simulation study is presented to investigate the robustness to outliers in the
L-Logistic distribution, i.e we study the relative performance of the procedure for estimating
the Beta and L-Logistic models, considering data generated from Beta and contaminated with
outliers.

The contaminated Beta data were generated following Bayes, Bazán and García (2012)
in two steps. First, the datasets are generated from a Beta distribution with location parameter
µ = 0.2, considering two values for the dispersion parameter, φ = 10,30, and three sample sizes,
n = 50,100,200. Second, these data were contaminated with outliers generated from a Uniform
distribution with parameters 0.999 and 1. The proportions of outliers considered were 0.02,
0.05 and 0.08 for each dataset, i.e., r = 2%,5%,8% of the data in each dataset were randomly
replaced by outliers. This gave r×n/100 total outliers in each dataset containing n values. The
combination of values of φ , n and r provides 2×3×3 = 18 scenarios to be analyzed.

In order to compare the fit of Beta and L-Logistic models to the each contaminated data,
WAIC, EAIC, EBIC and DIC were obtained for Beta and L-Logistic models for 100 replications
in each scenario. Thus, the percentage of cases was computed in which the L-Logistic model
achieved a lower value for WAIC, EAIC, EBIC and DIC than the Beta model. The results are
presented in Table 13 where we can see no significant difference between the two analyzed
models when the DIC is used to select the model. However, the L-Logistic model performed
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Table 12 – Bias and root mean square error (
√

MSE) of the Bayesian estimator of the parameters m and b.

Real value m=0.2 m=0.5 m=0.9
n parameter Bias

√
MSE Bias

√
MSE Bias

√
MSE

b=0.3

50 m -1.5e-02 1.5e-02 -1.7e-01 1.7e-01 -2.2e-01 2.2e-01
b 1.9e-02 1.9e-02 1.9e-02 1.9e-02 1.8e-02 1.8e-02

100 m -5.3e-02 5.3e-02 -2.4e-01 2.4e-01 -2.8e-01 2.8e-01
b -7.0e-03 7.0e-03 -7.1e-03 7.1e-03 -5.6e-03 5.6e-03

500 m -1.8e-02 1.8e-02 -9.8e-02 9.8e-02 -1.0e-01 1.0e-01
b -1.2e-02 1.2e-02 -1.1e-02 1.1e-02 -1.1e-02 1.1e-02

b=0.5

50 m -2.4e-02 2.4e-02 -1.3e-01 1.3e-01 -1.3e-01 1.3e-01
b 2.8e-02 2.8e-02 3.2e-02 3.2e-02 3.2e-02 3.2e-02

100 m -4.3e-02 4.3e-02 -1.7e-01 1.7e-01 -1.6e-01 1.6e-01
b -8.8e-03 8.8e-03 -9.5e-03 9.5e-03 -8.1e-03 8.1e-03

500 m -1.6e-02 1.6e-02 -6.1e-02 6.1e-02 -5.5e-02 5.5e-02
b -1.9e-02 1.9e-02 -1.8e-02 1.8e-02 -1.9e-02 1.9e-02

b=1

50 m -1.9e-02 1.9e-02 -7.1e-02 7.1e-02 -6.0e-02 6.0e-02
b 5.7e-02 5.7e-02 5.6e-02 5.6e-02 5.2e-02 5.2e-02

100 m - -2.7e-02 2.7e-02 -9.3e-02 9.3e-02 -7.3e-02 7.3e-02
b -1.7e-02 1.7e-02 -1.6e-02 1.6e-02 -2.2e-02 2.2e-02

500 m -9.9e-03 9.9e-03 -3.3e-02 3.3e-02 -2.4e-02 2.4e-02
b -3.4e-02 3.4e-02 -3.5e-02 3.5e-02 -3.5e-02 3.5e-02

b=2

50 m -1.2e-02 1.2e-02 -3.7e-02 3.7e-02 -2.7e-02 2.7e-02
b 1.2e-01 1.2e-01 1.2e-01 1.2e-01 1.3e-01 1.3e-01

100 m -1.5e-02 1.5e-02 -4.9e-02 4.9e-02 -3.3e-02 3.3e-02
b -3.4e-02 3.4e-02 -4.3e-02 4.3e-02 -3.4e-02 3.4e-02

500 m -6.5e-03 6.5e-03 -1.7e-02 1.7e-02 -1.1e-02 1.1e-02
b -7.2e-02 7.2e-02 -6.9e-02 6.9e-02 -7.2e-02 7.2e-02

b=4

50 m -7.2e-03 7.2e-03 -1.8e-02 1.8e-02 -1.2e-02 1.2e-02
b 2.6e-01 2.6e-01 2.4e-01 2.4e-01 2.6e-01 2.6e-01

100 m -8.7e-03 8.7e-03 -2.4e-02 2.4e-02 -1.6e-02 1.6e-02
b -7.0e-02 7.0e-02 -6.9e-02 6.9e-02 -6.2e-02 6.2e-02

500 m -2.7e-03 2.7e-03 -7.6e-03 7.6e-03 -4.9e-03 4.9e-03
b -1.6e-01 1.6e-01 -1.4e-01 1.4e-01 -1.4e-01 1.4e-01

better than Beta models in all analyzed cases by considering WAIC, EAIC and EBIC. In this
table, we also present the bias and MSE for the estimators of m and µ obtained by replication in
each scenario, considering 0.2 as the real value for the parameters m and µ . The bias and MSE
are always smaller for the m than the µ estimator showing that for any scenario with outliers,
there was an improvement in the accuracy (bias and MSE decrease) for the estimation of the
model’s parameters when using an L-Logistic rather than the Beta model for a contaminated
dataset. In order to illustrate the results, the estimated densities for the scenario in which n = 100,
r = 5% and φ = 10 is shown in Figure 11 where the L-Logistic model seems to fit the data better
than the Beta model. From theses results, we conclude that the L-logistic distribution is more
robust than Beta distribution for the cases analyzed here given evidence that the L-Logistic is
more robust than Beta for the modeling these kind of the data.
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Figure 11 – Estimated densities for Beta and L-Logistic models for de scenarios with n = 100, φ = 10
and r = 5%.

Table 13 – Comparison of Bias, MSE and percentage of selection of the model L-Logistic versus Beta
considering WAIC, EAIC, EBIC and DIC for different scenarios of contaminated Beta data
(two values of φ 3% of outliers and three sample sizes) by considering 100 dataset replications
in each scenario.

Beta L-Logistic Comparison

φ % of outlier n Bias
√

MSE Bias
√

MSE WAIC EAIC EBIC DIC

10

2
50 8.0e-02 8.2e-02 -1.8e-02 2.5e-02 1.0e+00 1.0e+00 1.0e+00 4.6e+00
100 7.9e-02 8.0e-02 -1.8e-02 2.3e-02 1.0e+00 1.0e+00 1.0e+00 4.7e+00
200 7.8e-02 7.8e-02 -1.9e-02 2.1e-02 1.0e+00 1.0e+00 1.0e+00 4.4e+00

5
50 1.3e-01 1.3e-01 -1.5e-02 2.3e-02 1.0e+00 1.0e+00 1.0e+00 5.2e+00
100 1.5e-01 1.5e-01 -9.1e-03 1.6e-02 1.0e+00 1.0e+00 1.0e+00 4.4e+00
200 1.5e-01 1.5e-01 -1.2e-02 1.4e-02 1.0e+00 1.0e+00 1.0e+00 5.4e+00

8
50 2.1e-01 2.1e-01 1.4e-02 2.3e-02 1.0e+00 1.0e+00 1.0e+00 3.9e+00
100 2.1e-01 2.1e-01 1.2e-02 2.0e-02 1.0e+00 1.0e+00 1.0e+00 5.0e+00
200 2.0e-01 2.0e-01 5.5e-03 1.1e-02 1.0e+00 1.0e+00 1.0e+00 5.4e+00

30

2
50 8.3e-02 8.4e-02 -5.0e-03 1.2e-02 1.0e+00 1.0e+00 1.0e+00 5.3e+00
100 8.2e-02 8.2e-02 -5.2e-03 9.0e-03 1.0e+00 1.0e+00 1.0e+00 4.2e+00
200 8.0e-02 8.1e-02 -5.9e-03 8.0e-03 1.0e+00 1.0e+00 1.0e+00 5.3e+00

5
50 1.4e-01 1.4e-01 2.6e-03 1.2e-02 1.0e+00 1.0e+00 1.0e+00 4.8e+00
100 1.6e-01 1.6e-01 5.4e-03 8.9e-03 1.0e+00 1.0e+00 1.0e+00 5.0e+00
200 1.6e-01 1.6e-01 3.1e-03 6.1e-03 1.0e+00 1.0e+00 1.0e+00 5.5e+00

8
50 2.1e-01 2.2e-01 2.4e-02 2.6e-02 1.0e+00 1.0e+00 1.0e+00 4.6e+00
100 2.1e-01 2.1e-01 1.8e-02 2.1e-02 1.0e+00 1.0e+00 1.0e+00 4.8e+00
200 2.1e-01 2.1e-01 1.8e-02 1.9e-02 1.0e+00 1.0e+00 1.0e+00 4.3e+00

5.6 Applications to a real data set

In order to illustrate the advantages of the use of the L-Logistic distribution in comparison
to Beta distribution, in sub-section 6.1 we estimate the distribution of the vulnerability to poverty.
Later in sub-section 6.2, we consider initially different regression models to explain the anxiety
as function of stress.
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Estimating the distribution of the vulnerability to poverty

In this section, we consider a real dataset, which contains the proportion of children (0-14
years olds) vulnerable to poverty. The data came from the municipalities of the state of Alagoas
in Brazil, and was collected in 2010. The state of Alagoas is located in the eastern part of the
Northeastern Region of Brazil and is made up of 102 municipalities. This state is one of the
poorest states of Brazil and its HDI (Human Development Index) is the country’s worst, based
on information available in PNUD, IPEA and FJP. (2013). Thus, we are interested in modeling
the proportion of children vulnerable to poverty (PPOBC). Here, a child is considered vulnerable
to poverty if the per capita household income is at most BRL 255, in 2010. The PPOBC data
set comprises 102 observations and is modeled here using the L-Logistic distribution and the
Beta distribution that is often used to model data when a distribution over some finite interval is
needed; see Gupta and Nadarajah (2004). Here, we use the re-parametrized Beta distribution
discussed by Ferrari and Cribari-Neto (2004) in the context of regression analysis.

The Bayesian methodology was used to estimate the parameters of both models. For
the L-Logistic distribution with parameters m and b, we considered prior A discussed early in
Section 5.5. Since the Beta distribution have parameters 0 < µ < 1 and φ > 0, we considered
the same prior A for this model as well.

Table 14 – Estimates and 95% HPD intervals for the parameters of the L-Logistic and Beta models, and
statistics for model comparison.

Model Criteria
Parameter WAIC EAIC EBIC DIC

L-Logistic m 0.86(0.85, 0.87) 155.1322 -304.2996 -299.0496 -306.3422
b 4.04(3.42, 4.72)

Beta µ 0.85(0.84, 0.86) 150.8993 -295.3312 -290.0813 -297.3437
φ 37.81(27.55, 47.83)

The final result on the estimation is presented in Table 14. This table also shows the
values of statistics for model comparison in order to evaluate the ability of L-Logistic and Beta
models to fit the data. According to this table, it is clear that the L-Logistic model is better for
modeling the PPOBC data than the Beta model. In addition, Figure 12 shows two graphs with
the mean values and errors bars with 95% credibility intervals plotted against the corresponding
observed value of the data. The errors bars were constructed from 1000 samples (ordered, and
of size 102) generated from the L-Logistic and Beta distributions, respectively, for each graph,
with the estimated parameters. In the case of the L-Logistic model, the bars crossed by the
diagonal line y = x indicate that the model is quite suitable for the data. On the other hand, in the
case of the Beta model, we observe high deviations between the predicted and observed data,
mainly in the tail of the distribution. In this case, an observation is flagged as an outlier, since the
corresponding posterior interval does not contain the observed value. Thus, Figure 12 provides
evidence that the Beta model is unsuitable for these data. Finally, the estimated and the observed
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histogram of the PPOBC data are presented in Figure 5.6, which confirms that the L-Logistic
model provides a better fit for these data than the Beta model.

●

●

●

●
●

●
●

●
● ● ●● ●●●

● ●● ●●●
●●●

●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●
●●●●
●●●●

●●●●●●
●●

●
●

●

0.6 0.7 0.8 0.9

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

y

yre
p

L−logistic Model

●

●

●
●
●

●
●

● ● ● ●● ●●●
● ●● ●●●

●●●
●●●●●

●●●
●●●●●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
●●●●●

●●●●●
●●● ●●●●

●●●●
●●●●
●●●●

●●●
●●●●●

●●
●

●
●

0.6 0.7 0.8 0.9

0.
5

0.
6

0.
7

0.
8

0.
9

y
yre

p

Beta Model

Figure 12 – Posterior predictive error bars with 95% confidence intervals of the generated values yrep
(i)

versus ordered observed data y(i) for the PPOBC data, using L-Logistic and Beta models.

Figure 13 – Estimated density of PPOBC data.

Regression analysis with L-Logistic distribution

Regression analysis estimates the potential differential effect of a covariate on mean or
quantiles on the conditional distribution (HAO; NAIMAN, 2007). Here, we are interested in
studying the conditional (or regression) median as a function of the covariates, when the response
variable takes values in a bounded interval. In the analysis with the L-Logistic distribution,
we assume that conditional on the explanatory variables (covariates), the random variable Yi,
i = 1, ...,n, are mutually independent with L-Logistic distribution, Yi ∼ LL(mi,bi). Thus, given
xT

1i and xT
2i (q and d-dimensional vectors, respectively, containing the explanatory variables both
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with 1 as the first component), the likelihood of the observed sample y = (y1, ..,yn) can be written
as

L( βββ ,δδδ |y,X =
n

∏
i=1

bi(1−mi)
bimbi

i ybi−1
i (1− yi)

bi−1[
(1−mi)biyb

i +mbi(1− yi)bi
]2 , (5.35)

where X is the matrix containing all explanatory variables, and

h1(mi) = xT
1i βββ and h2(bi) = xT

2iδδδ , (5.36)

with βββ =(β0, ...,βq−1) and δδδ =(δ0, ...,δd−1) representing, respectively, the q and d-dimensional
vectors of unknown regression parameters. In (5.36), h1 and h2 are strictly monotone and twice
differentiable real link functions. This method allows to fit the model adequately with a variety
of link functions, which ensures parameter m is in the interval (0, 1) and the shape parameter b

is in the interval (0,∞). Some link functions for a scale parameter is discussed in Ferrari and
Cribari-Neto (2004). A common link function for the parameter m is the logit function,

logit(mi) = xT
1i βββ . (5.37)

For the shape parameter, a common link function is the log-linear link function. For easy
interpretation, here we follow Smithson and Verkuilen (2006) and consider h2 =−log(bi), that
is,

log(bi) =−xT
2iδδδ . (5.38)

In addition, we adopt the following proper prior distributions with large variance as is
frequently considered in the literature:

β j ∼ Normal(0,100), for j = 0, ..,q−1,
δl ∼ Normal(0,100), for l = 0, ..,d −1.

(5.39)

Thus, samples of the joint posterior distribution of βββ and δδδ can be obtained by considering the
MCMC method to simulate from the posterior distribution, with pdf given by

π(β ,δ |y) ∝ L( βββ ,δδδ |y,x)π( βββ )π(δδδ ). (5.40)

In order to illustrate the regression analysis with L-Logistic distribution, we analyzed a
know data set in the literature previously analyzed using Beta distribution. This real data come
from a sample of nonclinical women in Townsville, Queensland, Australia. The data contain 166
observations on two variables, namely the stress score and the anxiety score. Both variables were
assessed on the depression anxiety stress Scales, ranging from 0 to 42, but linearly transformed
to the open unit interval by Smithson and Verkuilen (2006). The scatterplot of the anxiety versus
stress variable, and the histograms of the data, are presented in Figure 15. The histogram given
in this figure suggest that the anxiety is strongly skewed.
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Figure 14 – Scatterplot and histograms of the real data.

Considering the data, we propose four possible regression sub-models using L-Logistic
distribution. We consider a null regression model without any covariate, a scale regression model
considering only covariate effects in parameter m, a shape regression model considering only
covariate effects in the shape parameter b, and full regression model considering both effects, as
follows:

Yi ∼ LL(mi,bi) and



null model (L0) : logit(mi) = β0 and log(bi) =−δ0,

median-model (L1) : logit(mi) = xT
1i βββ and log(bi) =−δ0,

shape model (L2) : logit(mi) = β0 and log(bi) =−xT
1iδδδ ,

full model (L3) : logit(mi) = xT
1i βββ and log(bi) =−xT

2iδδδ ,

for i = 1, ...,166. In addition, we also consider equivalent regression models using the Beta
distribution, as follows:

Yi ∼ Beta(µi,φi) and



null model (B0) : logit(µi) = β0 and log(φi) =−δ0,

mean-model (B1) : logit(µi) = xT
1i βββ and log(bi) =−δ0,

dispersion model (B2) : logit(µi) = β0 and log(φi) =−xT
1iδδδ ,

full model (B3) : logit(µi) = xT
1i βββ and log(φi) =−xT

2iδδδ ,

for i = 1, ...,166.

Here, the Bayesian approach is considered for the inference process with prior distribution
for the unknown regression parameters as given in (5.39). All algorithms were prepared in R
language and we report the results corresponding to 10,000 iterations following a burn-in period
also of 10,000 iterations. The convergence of MCMC chain was assessed by using the separated
partial means test of Geweke (1992), which provided evidence for the chains to have converged.
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Table 15 – Model comparison criteria for model comparison.

L-Logistic model Beta model
Sub model WAIC EAIC EBIC DIC WAIC EAIC EBIC DIC

0 259.34 -512.94 -506.72 -514.92 239.45 -472.90 -466.67 -474.90
1 277.67 -545.51 -536.17 -548.56 243.28 -478.06 -468.72 -481.07
2 316.57 -624.78 -615.44 -627.83 283.41 -556.95 -547.62 -559.92
3 319.65 -627.47 -615.02 -631.48 301.91 -591.85 -579.41 -595.82

The regression models investigated were compared by the use of EAIC, EBIC, DIC and
WAIC criteria, which result are shown in Table 15. The parameter estimates for these models are
shown in Table 16. Considering Table 15, we can observe that the regression models considering
L-Logistic distribution provide better fit than the corresponding Beta regression models, for all
criteria considered. These results also give evidence that the L3 and L2 are the best models among
the ones using the L-Logistic distribution. Though there is no significant difference between
the L2 and L3 regressions, we consider the L3 regression model to be a reasonable choice for
this data set, due to is expected influence on covariates in the shape parameter (SMITHSON;
VERKUILEN, 2006). Additional diagnostic analysis could show further evidence that the M3
model is an appropriate model for the data.

Moreover, a posterior distribution of residuals was obtained and a posterior mean of
this distribution was computed (GELMAN et al., 2013). That is, for i = 1, ...,166, we have
r̂i = G−1

∑
G
g=1

yi−ŷg

SD(Yi| βββ
g
)
, where βββ

1, ..., βββ
G are obtained from the posterior distribution, ŷ is the

estimated value for a data point yi, and SD(Y | βββ
g) is the standard deviation of posterior values of

Y , both obtained given a single random draw βββ
g of the posterior distribution. Figure 15 shows

the standard residual versus the estimated values in which we can see that the L3 regression
model provides better fit than the B3 model, which confirms that L3 model are better than the
corresponding B3 model.

Figure 15 – Standard residual versus adjusted values for the L-Logistic and Beta models.
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Table 16 – Parameter estimates and 95% HPD intervals for the L-Logistic and Beta models.

Model Coefficient
β̂0(HPD) β̂1(HPD) δ̂0(HPD) δ̂1(HPD)

L-Logistic

L0 -3.354 (-3.615, -3.106) - -0.08(-0.20, 0.04) -
L1 -4.78(-5.04, -4.52) 5.78(4.99, 6.58) -0.44( - 0.57,-0.31) -
L2 -4.03(-4.27, -3.78) - -0.87(-1.14,-0.58) 2.56( 1.62,3.42)
L3 -4.77(-5.00, -4.53) 5.64(4.68, 6.61) -0.76(-1.03, -0.48) 1.14( 0.19, 2.05)

Beta

B0 -2.239(-2.430, -2.04) - -1.78( -2.02,-1.54) -
B1 -3.47(-3.75, -3.18) 3.74(3.11, 4.37) -2.44(-2.7,-2.20) -
B2 -2.54(-2.80, -2.27) - -2.49(-2.98,-1.95) 1.53(0.42,2.55)
B3 -4.02 (-4.30, -3.72) 4.95( 4.09, 5.83) -3.94(-4.45,-3.44) 4.28 ( 2.78,5.79)

Finally, in Table 16, by considering the 95% HPD intervals for all coefficients of the
models under analysis, we can see that the estimatives are very precise. For the model chosen,
that is, L3 model, we observe that the HPD intervals for the estimates of the parameters β1 and δ1

do not contain zero given evidence that is parameters are significant in the model. That is, stress
is important in both parameters of the distribution of anxiety. Then, the final model is given by

Yi ∼ LL(m̂i, b̂i) with

 m̂i =
exp{−4.765+5.642×stressi}

1+exp{−4.765+5.642×stressi} ,

b̂i = exp{0.755−1.137× stressi} ,

for i = 1, ...,166. Considering this estimated model, we can conclude that the stress, positively,
influence the anxiety. Considering bi a dispersion parameter , see Lemonte and Bazán (2016),
the stress influence also the dispersion, i.e., higher values of stress are associated with increased
variability in anxiety.

5.7 Final remarks
The L-Logistic distribution, introduced by Tadikamalla and Johnson (1982), is a bounded

continuous distribution that possesses some nice properties, as discussed in Section 5.3. Con-
sidering the parameterization introduced in this manuscript, we propose a Bayesian estimator
by considering MCMC method as an alternative to the moments and maximum likelihood
methods developed previously in the literature. In the Bayesian context, a non-informative
prior distribution can be adopted for the parameter m since it lies in the unit interval, enabling
the use of unit Uniform distribution as a non-informative prior distribution. Two simulation
studies are presented in Section 5.6 for evaluating the posterior distribution with respect to the
specification of the prior distribution for the shape parameter b and to evaluate the performance
of the Bayesian estimator chosen. In the first study, for the studied cases, we observe that the
non-informative prior distributions provide correct information about parameter b, based on the
results of WAIC, EAIC, EBIC, and DIC. Thus, the posterior distribution is not sensitive with
respect to the specification of these prior distributions. Some characteristics of the posterior
distribution are also calculated using two non-informative and one informative prior distributions
for the parameter b. In this study, we observe that the prior information is dominated by the
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sample information. In the second study, we evaluate the estimates of the parameters of the
L-Logistic distribution obtained by using Bayesian method upon considering the prior Gamma
distribution with parameters vector (0.001,0.001). We observe that the

√
MSE and bias lie both

close to zero even when the sample size is small. Hence, for the samples analyzed, the estimator
seems to provide reasonable estimates.

The main motivation of the parameterization introduced was the development of regres-
sion models considering the L-Logistic distribution. Thus, we also introduce conditional median
regression models, which is a special case of quantile regression wherein the conditional 0.5th
quantile is modeled as a function of covariates. By considering as application to a known data
set (anxiety explained by stress), we show that the L-Logistic regression models can be a good
alternative to Beta model. An advantage of this approach is the possibility of modeling other
quantiles in order to describe a non-central position of a distribution. So, one may choose a
specific position for his/her needs. For example, it is possible to consider a regression model
to explain other quantiles the anxiety considering the influence of the stress in our application.
Thus, conditional quantile models offer the flexibility to focus on these population segments,
whereas conditional mean models do not. However, since quantile regression curves are estimated
individually, the quantile curves can cross, leading to an invalid distribution for the response.
Thus, this problem, referred to as crossing in the literature, needs to be studied carefully. Some
authors have proposed methods to deal with this problem; see, for example, Cai and Jiang (2015).

Two application was considered in this work. Firstly, we consider an application to social
data wherein the proportion of children vulnerable to poverty of the municipalities of the state
of Alagoas in Brazil, for the 2010 season, is modeled. Second, we analyze a known data set,
previously analyzed using Beta distribution by Smithson and Verkuilen (2006), which contain
the stress score and the anxiety score. Here, the anxiety variable is modeled as a function of the
stress. For the case of the L-Logistic distribution, we use a regression model proposed in this
work. In these applications, we observe that the L-Logistic distribution seems to fit better then
the Beta model for both of the case.

For future, we aim to develop techniques for mixed quantile regression for the L-Logistic
distribution. Moreover, we intend to explore mixtures of L-Logistic distributions in a Bayesian
framework as well as a multivariate version of this distribution.

In the next chapter we extend the model treated here for a mixture of distributions in the
mixed model context.
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CHAPTER

6
FINITE MIXTURE OF MIXED L-LOGISTIC

REGRESSION: A BAYESIAN APPROACH

In this chapter, we extend the proposed model of the previous chapter to a finite mixture
of mixed L-Logistic regression models. We apply this model to a simulated data set and to the
real data shown in the Chapter 2.

Abstract

A median regression model can be used to investigate the relationship between the central location
of the response and a set of covariates, as similar in the conditional mean regression modeling.
Here, we consider an alternative quantile regression approach to model data of proportions, using
the L-Logistic distribution. Specifically, we consider a mixture of mixed-effects regression for
model the median of proportion data. For this model, a Bayesian estimation considering a Gibbs

sampling algorithm with Metropolis-Hasting inside is developed. Thus, the model is applied to
a simulated data providing good estimates for the parameters. Applications to real data are also
performed for mixed L-Logistic models with and without mixture.

6.1 Introduction

Studies where the response variables is a proportion or rates are very common in social
area. If the response variable is observed over time a correlation among observations might
occur and it should be taken into account in the analysis. A way to deal of this correlation is
the inclusion of a random effect in the linear predictor to explain variability not considered
in the model that can influence the result. Figueroa-Zúñiga, Arellano-Valle and Ferrari (2013)



90 Chapter 6. Finite mixture of mixed L-Logistic Regression: A Bayesian Approach

and Bonat, Ribeiro and Zeviani (2015) adopt the mixed Beta regression model for independent
response variable taking values in the interval (0,10), where the mean is conveniently linked with
a mixed-effects regression structure by a convenient link function. However, if the distribution of
the data is highly skewed, then the median can be more informative than the mean, as shown in
the Chapter 5. In this case, the conditional median modeling has the potential to be more useful
than conditional mean modeling, and can be used to investigate the relationship between the
central location of the response and a set of covariate. In this work, we focus on the conditional
quantiles of the response variable, which take value in the unit interval. Specifically, the median
is linked with a mixed-effects regression structure by a link function, instead of the mean. The
mixed quantile regression model considered here consider the L-Logistic distribution, which
was originally proposed by Tadikamalla and Johnson (1982) and investigated more fully in
the Chapter 5. We focus on extension of the median regression model considering L-Logistic
distribution from a Bayesian point of view, and a mixed quantile regression model. The specific
model considered here take into account the correlation that can arise when, for example, the
response variable is observed over the time, i.e., when we have longitudinal data. These models
are applied to simulated and real data set. In addition, we propose a finite mixture of mixed-effects
regression.

The rest of the work is organized as follows. In Section 6.2, we present the pdf of
L-Logistic distribution with the new parametrization. Section 6.3 is dedicated to describe the
median regression model for this distribution. The mixed quantile regression model considering
the L-Logistic distribution is presented in Section 6.4 with a Bayesian estimate and application
to simulated and real data sets. In the section 6.5, the finite mixture of mixed-effects regression
is developed, which is applied to longitudinal data. Finally, remarks are shown in Section 6.6.

6.2 L-Logistic distribution
By considering the notation used in Chapter 5, the random variable (r.v.) Y follows a

L-Logistic distribution parameterized in terms of its median m (0 < m < 1) and shape parameter
ϕ (ϕ > 0) if its probability density function (pdf) is given by

f (y|m,ϕ) =
ϕ(1−m)ϕmϕyϕ−1(1− y)ϕ−1

[(1−m)ϕyϕ +mϕ(1− y)ϕ ]2
, 0 < y < 1 (6.1)

We denote by Y ∼ LL(m,ϕ) a r.v. Y following the L-Logistic distribution with parameters m and
ϕ .

The L-Logistic distribution is very flexible in term of the variety of density shapes that its
two parameters allow to accommodate (see Figures 16 and 17). Note that when we set m = 0.5
and b = 1 in (6.1), then the pdf of the L-Logistic distribution simply becomes the pdf of the
standard uniform distribution. Here, m is the median of the distribution, which scales the graph
to the left or right on the horizontal axis. On the other hand, b is a parameter that governs the
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shape of the distribution. The L-Logistic density is uni-modal (or “uni-antimodal"), increasing,
decreasing, or constant, depending on the values of its parameters. More details on this issue are
presented with another parametrization of the L-Logistic model is presented in Section 5.3.
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Figure 16 – L-Logistic probability density function for scale parameter m = 0.2,0.5 and 0.8 and some
values of parameter b.
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Figure 17 – L-Logistic probability density function for shape parameter b = 0.5,1 and 2 and some values
of scale parameter m.

As mentioned in the Chapter 5, the functions that provide the probability density function,
cumulative density function, quantile function and random generation for the L-Logistic distribu-
tion with parameters m and b are available in the CRAN of R program, details can be see in Paz
and Bazan (2017).

6.3 L-Logistic median regression model
In the regression analysis with the L-Logistic distribution, we assume that conditional

on the explanatory variables (covariates), the random variable Yi, i = 1, ...,n, are mutually
independent with L-Logistic distribution, i.e.,

Yi ∼ LL(mi,ϕi), (6.2)

where

mi = g−1 (xT
i βββ
)
= g−1 (ηi) . (6.3)

In (6.3), βββ = (β0, ...,βq−1) represent the q-dimensional vector of unknown regression parame-
ters, and g(.) is the link function that relates the median of the response to the linear predictors
(ηi) in the model. Let’s call this model L-Logistic regression (LLR).
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Given xi(p×1) (q-dimensional vector contain the explanatory variables with 1 in the
first component), the likelihood of the observed sample y = (y1, ..,yn) can be written as

L( βββ ,ϕ|y,X) =
n

∏
i=1

ϕ(1−mi)
ϕmϕ

i yϕ−1
i (1− yi)

ϕ−1[
(1−mi)ϕyϕ

i +mϕ(1− yi)ϕ
]2 , (6.4)

where X = (x1,x2, ...,xn) is the matrix containing all explanatory variables.

Bayesian estimation for LLR model

For the development of the Bayesian estimation, it is necessary to consider prior distribu-
tions for all unknown model parameters. The priors distribution of parameters is choose here
under the assumption that they are independent to each other. Then, following the Chapter 5, for
the parameter ϕ we consider the transformation log(ϕ) =−δ , δ ∈ R, and the normal prior for
δ such that δ ∼ N(0,100). For the regression coefficients βββ we adopt the multivariate normal
distribution as a prior, i.e., βββ ∼ Nq (000,Σ)). All hyperparameters is assumed known. Assuming
prior distributions for the parameters, the posterior density has the form

π(b, βββ ,δ |y) ∝ L( βββ ,ϕ|y,X)π( βββ )π(δ ) = ∏
n
i=1 f (yi|xi, βββ ,δ )π( βββ )π(δ ), (6.5)

where δ =− log{ϕ}. Therefore, the full conditional posterior distributions for βββ and δ can be
written as

π( βββ |xi,δ ) ∝ ∏
n
i=1 f (yi|xi, βββ ,δ )π( βββ ),

π(δ |xi j, βββ ) ∝ ∏
n
i=1 f (yi|xi, βββ ,δ )π(δ ).

(6.6)

Using the posterior distribution given in (6.6), we can use several Bayesian mechanisms
in order to estimate the parameters. A Gibbs-sampling algorithm with Metropolis-Hasting step
inside is useful in this case due to because the conditional posterior for βββ and δ do not have
closed form.

6.4 L-Logistic mixed median regression (LLMR) model
The model described in previous section does not incorporates intra-cluster correlations.

Thus, in order to extend the regression models based on L-Logistic distribution to model
correlated proportional data, we specify the L-Logistic mixed-effects model, LLMR model.
Thus, to specify the model, consider a sequence Yi = (Yi1,Yi2, ...,Yini), Yi j ∈ (0,1), on the ith

sample unit taken at ni subject. Considering a vector xi j of explanatory variable on the ith sample
unit at the jth subject, j ≤ ni, the main issue can be about a model for Yi that incorporates
intra-cluster correlation. A way to deal with this issue is via random effects formulation, in which
a d-dimensional vector bi of random effects is considered for subject i. Let’s assume that, given
bi, the Yi j’s are conditionally independent with median mi j = med

(
yi j|bi

)
, and

(Yi j|bi)∼ LL
(
mi j,ϕ

)
, (6.7)
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in which the conditional median is related to the linear predictor

ηi j = g
(
mi j
)
= xT

i j βββ +vT
i jbi, (6.8)

where vi j is a set of explanatory variables associated with the random effect, βββ is a q-
dimensional vector of fixed effects, and g(.) is a link function. The model specification is
completed by assuming

bi ∼ Nd ( 0, D) , (6.9)

for i = 1, ...,m. The parameters βββ and the matrix D are unknown.

Bayesian estimation for LLMR model

Under assumption of conditional independence among the components of b=(bT
1 , ...,b

T
m)

T

(given its parameters), the joint density function of Y = (YT
1 , ...,Y

T
m)

T and b is given by

f (y,b|X,V, βββ ,ϕ,D) = ∏
m
i=1 ∏

ni
j=1 f (yi j|xi j,vi j, βββ ,ϕ,bi) f (bi| 0,D), (6.10)

where X=(x1, ...,xm) and V=(v1, ...,vm) contain the explanatory variables, f (yi j|xi j,vi j, βββ ,ϕ,bi)

is the density of the L-Logistic distribution with parameters mi j = g−1
(

xT
i j βββ +vT

i jbi

)
and ϕ ,

and f (bi| 0,D) is the density of the normal distribution.

As in previous section, for the parameter ϕ we consider the transformation log(ϕ) =−δ ,
δ ∈ R, and the normal prior for δ such that δ ∼ N(0,100). For the fixed effect, we adopt the
multivariate normal distribution as a prior, βββ ∼ Nq( 0,Σ). Finally, the inverse Wishart distributi-
ons is adopted as prior for the covariance matrices of the random effects, D ∼ IWq (γ/2,W/2).
Thus, the augmented jointly posterior density for b, βββ and δ is given by

π(b, βββ ,δ |y,X,V,D) ∝

[
∏

m
i=1 ∏

ni
j=1 f (yi j|xi j,vi j, βββ ,δ ,bi)π( βββ )π(δ )

]
∏

m
i=1 f (bi| 0,D)π(D),

(6.11)
where δ = − log(ϕ). Therefore, the full conditional posterior distributions for βββ , δ , and bi,
i = 1, ...,m, can be written as

π( βββ |y,X,V,δ ,b) ∝ ∏
m
i=1 ∏

ni
j=1 f (yi j|xi j,vi j, βββ ,δ ,bi)π( βββ ),

π(δ |y,X,V, βββ ,b) ∝ ∏
m
i=1 ∏

ni
j=1 f (yi j|xi j,vi j, βββ ,δ ,bi)π(δ ),

π(bi|y,X,V, βββ ,δ ) ∝ ∏
ni
j=1 f (yi j|xi j,vi j, βββ ,δ ,bi) f (bi| 0,D)π(D), for i = 1, ..,m,

(6.12)
where π( βββ ) and π(δ ) are the prior distributions for βββ and δ , respectively. The full conditional
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posterior distribution of D is given by

π(D|y,X,V, βββ ,δ ,b) ∝ ∏
m
i=1 f (bi| 0,D)π(D)

∝ D−m/2 exp
{
−1

2
∑

m
i=1 bT

i D−1bi

}
×

|D−1|
γ−r−1

2 exp
{
−1

2
tr
[
WD−1]}

∝ D−m/2 exp
{
−1

2
tr
[(

∑
m
i=1 bibT

i
)

D−1]}×

|D−1|
γ−r−1

2 exp
{
−1

2
tr
[
WD−1]}

∝ |D−1|
m+ γ − r−1

2 exp
{
−1

2
tr
[(

W+∑
m
i=1 bibT

i
)

D−1]} ,

(6.13)
where r = dim(D). It follows from Equation (6.13) that the full conditional posterior of D must
be a inverse Wishart distribution.

With this information, as said before, it is possible to use several Bayesian mechanisms
in order to estimate the parameters. Here, we adopt a Gibbs-sampling algorithm with Metropolis-

Hasting step due to because the conditional posterior for βββ and δ does not have closed form.

Application of the models LLR and LLMR to real data

In this section, the MCMC algorithm for estimating parameters in L-Logistic mixed-
effects model is applied to real data analyzed in Chapter 4. There, we consider the Human
Development Index of municipalities, MHDI, of Northeast region and São Paulo state in Brasil,
2010 year. The model considered was a regression model where the response variable follows
a mixture of Simplex distributions. The variable MHDI (described in Chapter 3) was taken as
response and the PPPM ( proportion of poor people per municipality, described in Chapter 4)
was taken as the covariate. Here, we analyze these data sets using quantile regression models
with and without random effect. Our interest lies in the relationship between the MHDI variable
and the PPPM variable. Since in Northeast region in Brazil the municipalities are grouped in 9
states and we considered, additionally, the São Paulo state, we have 10 State to be analyzed. The
model with random effect, LLMR, for the median of the MHDI was formulated as follows:

(Yi j|bi) ∼ LL
(
mi j,ϕ

)
,

logit
(
mi j
)

= β0 +β1xi j +b0i,

log(ϕ) = −δ ,

(6.14)

for j = 1, ...,ni municipalities and i = 1, ...,10 states, where xi j is a proportion of poor people in
the ith municipality of jth state. In this case, we introduce a random intercept associate with the
state. A L-Logistic regression model, as described in the previous section, was considered for
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the same data. That is, we also considered the LLR model as follows:

Yi ∼ LL(mi,ϕ) ,

logit(mi) = β0 +β1xi,

log(ϕ) = −δ ,

(6.15)

for all i = 1, ...,2439 municipalities.

Here, we consider prior independence between the parameters such that βr ∼ N(0,100),
for r = 0,1, δ ∼ N(0,100) and D ∼ gamma(1/20,1/20) with b0i ∼ N(0,D), for i = 1, ...,10.

The estimates and 95% HDP intervals to the parameter of the LLRM and LLR models,
applied to MHDI data, are shown in Table 17 where we can see that the amplitudes of the 95%
HDP intervals are small. Based on the results shown in this table, we can conclude that, for both
models, the MHPI has negative effect on the median of the MHDI, as expected. Additionally, the
variance of random intercept in the LLMR model is quite close to zero, that is, the effect of the
state seems low when compared with the effect of the covariate. It is due to we have just one full
region where the states have similar characteristics. For the same reason, the estimated values
for the random effect are all close to zero. Table 17, also shown the model comparison using
the criteria presented in Chapter 5.4. Based on this criteria, we can conclude that there is no
significant difference between the considered models, for more information about the obtaining
of this critérias for the LLMR model see, for example, Bayes, Bazán and Castro (2017). Thus,
after a selection based on parsimonious criteria we can conclude that the LLR model is better
than LLMR model for this application, and then a random intercept is not necessary in the model.

Table 17 – Posterior mean and credibility intervals of the estimated parameters for the MHDI data, and
model comparison between the LLR and LLMR models.

L-Logistic Regression Model L-Logistic Mixed Regression Model
Parameter Estimate (95% HPD) Estimate (95% HPD)

β0 1.35 (1.34,1.36) 1.35,(1.33, 1.37)
β1 -1.47 (-1.49, -1.45) -1.47 (-1.50, -1.44)
-δ -2.77 (-2.73, -2.80) -2.76(-2.72,-2.80)
D - 0.012 (0.003, 0.025)

Estimated values for the ramdon effect for each State
São Paulo - 1.2e-04 ( -2.6e-02,2.4e-02)
Alagoas - -1.8e-04 (-2.5e-02, 2.3e-02)
Bahia - -8.0e-05 ( -2.6e-02, 2.5e-02)
Ceará - -3.9e-04 ( -2.7e-02, 2.3e-02)
Maranhão - -1.7e-04 ( -2.5e-02, 2.2e-02)
Paraíba - 6.7e-05 (-2.4e-02, 2.5e-02)
Pernambuco - -3.6e-04 ( -2.5e-02, 2.4e-02)
Piauí - -5.0e-05 ( -2.5e-02, 2.5e-02)
Rio Grande do Norte - 9.2e-05 ( -2.5e-02, 2.4e-02)
Sergipe - 3.6e-04 ( -2.3e-02, 2.4e-02)

Criteria for model comparison
WAIC 5530.481 5530.27
EAIC -11051.836 -11020.86
EBIC -11034.438 -10997.66
DIC -11054.814 -11040.41
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6.5 Mixture of L-Logistic mixed-effect models

Now, we present a new model based on a mixture of the LLMR model presented in
the previous section to longitudinal data. We call this model of mixture of L-Logistic mixed
median regression (MLLMR) model. For the model formulation, consider a sequence Yi =

(Yi1,Yi2, ...,Yini), Yi j ∈ (0,1), on the ith sample unit taken at ni points et the time (assumed
equally spaced) and a vector xi j of explanatory variable on the ith sample unit at the jth time
point, here we suppose n1 = ... = nm = n. For the model formulation, suppose that, given bi,
each Yi j follows a finite mixture of L-Logistic distribution, i.e.,

(Yi j|bi)∼ ∑
k j
c=1 ω jcLL

(
mi jc,ϕc

)
, (6.16)

in which the conditional median is related to the linear predictor such that

ηi jc = g
(
mi jc

)
= xT

i j βββ c +vT
i jbi,

log(ϕc) = −δ .
(6.17)

for c = 1, ...,k j, 1 ≤ k j ≤ kmax for j = 1, ...,m with δc ∈ R. The density function of Y =

(YT
1 , ...,Y

T
m)

T given b can be written as

f (y| βββ
*,ϕϕϕ*,ωωω*,b) = ∏

m
i=1 ∏

n
j=1 ∑

k j
c=1 ω jc f (yi j|xi j,vi j, βββ c,δc,bi), (6.18)

where βββ
* = ( βββ 1, ..., βββ k), δδδ

* = (δ1, ...,δk), ωωω* = (ωωω1, ...,ωωωn), with ωωω j = (ω1, ...,ωk j), and
f (.|.) is the pdf of L-Logistic distribution. Note that, the random effect b = (b1, ...,bn) is the
same for all components of the model. That is, the mixture is conditioned on b.

Bayesian inference to MLLMR model

In order to simplify the inference process, consider a unobserved random vector Zi j =(
Zi j1, ...,Zi jk j

)
such that Zi jc = 1 if yi j belongs to the cth mixture component and Zi jc =

0 otherwise, i = 1, . . . ,m, j = 1, . . . ,n. Thus, the augmented data likelihood, (Y,Z,b), Z =

(Z11, ...,Z1m,Z21, ...,Z2m, ...,Zn1, ...,Znm), is given by

L( βββ
*,δδδ *,ωωω*,b|y,X,V,Z,D) = ∏

m
i=1 ∏

n
j=1 ∏

k j
c=1 [ω jc f (yi j|xi j,vi j, βββ c,δc,bi)]

Zi jc f (bi|0,D). (6.19)

Let’s assume that yi j is assigned to component c of the ith cluster, Zi jc = 1, then, given
b, we have

L( βββ
*,δδδ *|y,X,V,Z,D,b) = ∏

i, j∈{i, j:Zi jc=1}
f (yi j|xi j,vi j, βββ c,δc,bi), (6.20)

for c = 1, ...,kmax.
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The kmax fators given by (6.20) can be combined with the priors for the parameters βββ c

and δc, for c = 1, ...,kmax, leading to the its full conditional posterior distribution as follow:

π( βββ c|y,X,V,Z,δδδ *,b,D) ∝ ∏
i, j,c∈{i, j,c:Zi jc=1}

f (yi j|xi j,vi j, βββ c,δc,bi)π( βββ c) (6.21)

π(δc|y,X,V,Z,δδδ *,b,D) ∝ ∏
i, j,c∈{i, j,c:Zi jc=1}

f (yi j|xi j,vi j, βββ c,δc,bi)π(δc) (6.22)

for c = 1, ...,kmax.

The full conditional posterior distribution for bi is given by

π(bi|y,X,V,Z, βββ
*,δδδ *,D) ∝ ∏

j,c∈{ j,c:Zi jc=1}
f (yi j|xi j,vi j, βββ c,δc,bi) f (bi|0,D)π(D). (6.23)

Here, we also consider a Dirichlet prior with parameter vector ννν = (ν1, ...,νk j) for each vector of
the weights ωωω j = (ω j1, ...,ω jk j), and Multinomial distribution for the vectors Zi j , for j = 1, ...,n
and i = 1, ...,m. Thus, the full conditional posterior for ωωω j is given by

π(ωωω j|y,X,V,Z,b, βββ
*,δδδ *,D) ∝ ∏

k j
c=1 ω

η jc+νc−1
jc , (6.24)

where η jc =
m

∑
i=1

Zi jc. Note that, for each j = 1, ...,n,
k j

∑
c=1

Zi jc = 1 then we suppose each random

vector Zi j = (Zi j1, ...,Zi jk j) independently distributed according to a multinomial distribution
with parameters 1 and ωωω j =

(
P(Zi j1 = 1|ωωω j,k j)...P(Zi jc = 1|ωωω j,k j)

)
, for i = 1, ...,m. Then

P(Zi jc = 1|y,X,V,b,D, βββ
*,δδδ *,ωωω*) ∝ P(Zi jc = 1|ωωω j,k j) f (yi j|Zi jc = 1,xi j,vi j, βββ c,δc,bi,D,ωωω j)

= ω jc f (yi j|xi j,vi j, βββ c,δc,bi,D),
(6.25)

for c = 1, ...,k j and i = 1, ...,m.

A summary of the Gibbs sampling algorithm for simulate samples from the posterior
distribution is given in Algorithm 3. For updating the parameters in βββ

*,δδδ * and b we can use a
Metropolis-Hastings step in the algorithm.
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Algorithm 3 – Algorithm for simulate samples from the posterior distribution of the parameters
of the mixture of mixed L-Logistic regression models

1. Initialize choosing ωωω j
(t) = ωωω j

(0), βββ
(t)
c = βββ

(0)
c , δ

(t)
c = δ

(0)
c , b(t)

i = b(0)
i , D(t) = D(0) and Z(t)

i jc = Z(0)
i jc , for

j = 1, ...,n, i = 1, ...,m and c = 1, ...,k j.

2. For t = 0,1,2, . . . repeat

a) For j = 1, ...,n do.

i. For i = 1, ...,m draw Z(t+1)
i j ∼ Multinomial(1,π(t)

i j1, ...,π
(t)
i jk j

), wherein

π
(t)
i jc ∝ ω jc f (yi j|xi j,vi j, βββ

(t)
c ,δ

(t)
c ,bi,D)

b) For j = 1, ...,n generate ωωω
(t+1)
j from the distribution given by (6.24).

c) For i = 1, ...,m do.

i. Generate b(t+1)
i from the distribution given by (6.23).

d) For c = 1, ...,kmax

i. Generate βββ
(t+1)
c from the distribution given by (6.21).

ii. Generate δδδ
(t+1)
c from the distribution given by (6.22)

Application of MLLMR model to simulated data

In this section we present an application to simulated data. Here, we also consider
prior independence between the parameters in which βcr ∼ N(0,100), δc ∼ N(0,100) and D ∼
gamma(1/20,1/20) with b0i ∼ N(0,D), for r = 0,1, ...,q,c = 1, ..,k j, j = 1, ...,n and i = 1, ...,m.
For the weight of the mixture we consider ωωω j ∼ Dirichlet(1, ...,1), for j = 1, ...,n.

The simulated data were generated from a mixture of L-Logistic distribution with
random-effect, such that

(Yi j|b0i)∼ ∑
k j
c=1 ω jcLL

(
mi jc,ϕc

)
, (6.26)

for i = 1, ...,100, j = 1, ...,6 and c = 1, ..,k j, in which

logit
(
mi jc

)
= βc0 +βc1xi j +βc2t j +bi0,

log(ϕc) = −δc.
(6.27)

The fixed values for k j, for j = 1, ...,6, were 2,3,3,3,2,2, respectively. The xi j were generated
independently from N(0,1), for j = 1, ...,5 and i = 1, ...,100, and the random effects b0i were
generated independently from N(0,D) with the true D = 1. Table 18 shows the true values of the
regression coefficients and the parameters δc. Finally, the random vectors of indicators variables
in Z were generated from a multinomial distribution with probabilities given by true values of
ωωω j, also shown in Table 18. In this table, we can see the posterior mean and 95% HPD intervals
for the parameters of the MLLMR model from the fitting to the simulated data. The results of the
application to simulated data were satisfactory. Figure 18 shows the samples from the posterior
distribution of the parameters of the MLLMR model, considering the simulated data, where we



6.5. Mixture of L-Logistic mixed-effect models 99

can observe the fast convergence of the algorithm to the real values of the parameters, which are
represented for the black line.

Table 18 – Posterior mean and 95% HPD intervals for the parameters of MLLMR model applied to
simulated data.

Real value Posterior mean and 95% HPD intervals
Component 1 Component 2 Component 3

β0 = (−1.0,−2.5,−1.8) -0.89(-1.19, -0.60) -2.47(-2.91, -2.10) -1.90(-2.47,-1.29)
β1 = (2.3,1.0,1.6) 2.34(2.21, 2.49) 1.03(0.85, 1.21) 1.59(1.43, 1.74)
β2 = (1.0,0.5,1.9) 0.94(0.87, 1.01) 0.50(0.41, 0.60) 1.95(1.76, 2.12)
δ = (0.7,0.2,1.0) 0.62(0.47, 0.76) 0.13(0.02, 0.24) 0.96(0.74, 1.16)
ωωω1 = (0.40,0.60) 0.47 (0.31, 0.62) 0.53(0.38, 0.69) -
ωωω2 = (0.45,0.25,0.30) 0.54 (0.34, 0.75) 0.21 (0.12, 0.33) 0.24 (0.06, 0.42)
ωωω3 = (0.35,0.32,0.33) 0.25 (0.11, 0.40) 0.32 (0.21, 0.42) 0.43 (0.28, 0.57)
ωωω4 = (0.40,0.20,0.40) 0.44 (0.32, 0.56) 0.22 (0.13, 0.32) 0.34 (0.23, 0.44)
ωωω5 = (0.50,0.50) 0.57 (0.45, 0.68) 0.43 (0.32, 0.55) -
ωωω6 = (0.30,0.70) 0.29 (0.19, 0.39) 0.71 (0.61, 0.81) -
D = 1 0.91(0.59, 1.26)

Figure 18 – Chais values for the parameters of MLLMR model considering the simulated data where the
values of the parameters of componente 1 are in green, values of the parameters of component
2 are in black and the values of parameters of component 3 are in red.

Application of MLLMR model to real data

The MLLMR model was applied to real data presented in the Chapter 2, where we
consider the votes obtained by the Workers’ Party in five presidential elections from 1994 to
2010 in Brazil. In the Chapter 2, these data sets were analyzed individually. Here, we consider
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that this data can be modeled as a longitudinal data. Thus, we fit the MLLMR model to all data
set presented in the Chapter 2, considering the proportion of the votes as a response. The model
considered was:

(Yi j|b0i) ∼ ∑
k j
c=1 ω jcLL

(
mi jc,ϕc

)
,

logit
(
mi jc

)
= βc0 +βc1t j +bi0 ,

log(ϕc) = −δc,

(6.28)

for i = 1, ...,75, j = 1, ...,5 and c = 1, ..,k j with k j ∈ {1,2,2,2,1}. The time t is relate to the
year of election, being the time 1 the first election considered, year 1994, and so on.

The posterior mean and 95% HPD intervals for the parameters of the model are presented
in Table 19. For this analysis, we consider 1,2,2,2 and 1 components for the data of the years
1994, 1998, 2002, 2006 and 2010, respectively. However, Table 19 shows the estimated values
for the parameters vector ω1,2 ω1,3 and ω1,4 very close to zero, giving evidence that the mixture
may has disappeared with the inclusion of the time covariate. Figure 19 shows the samples of
posterior distribution for data of percentage of votes.

Table 19 – Posterior mean and 95% HPD intervals for the parameters of MLLMR model applied to data
of votes percentage.

Parameters Posterior mean and 95% HPD intervals
Component 1 Component 2

β0 -1.79 (-1.92, -1.66) -2.81(-2.99, -2.60)
β1 0.35 (0.32, 0.38) 0.65 (0.59, 0.71)
δ 1.48 (1.33, 1.61) 1.43 (1.32, 1.52)
ωωω1 - -
ωωω2 0.026(0.001,0.060) 0.974 (0.940, 0.999)
ωωω3 0.026 (0.001 0.060) 0.974 (0.940, 0.100)
ωωω4 0.026 (0.001, 0.061) 0.974(0.940, 0.100)
ωωω5 - -
D 0.043 (0.018, 0.072)

6.6 Remarks
In this chapter we develop a extension of the L-Logistic regression (LLR) model in order

to include random effect by considering L-Logistic mixed regression (LLMR) and Mixture of L-
Logistic mixed regression (MLLMR) models. Applications of the models are still in development,
however we can see that this type of models can be promissory.
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Figure 19 – Chais values for the parameters of MLLMR model considering the data of percentage of
votes, where the values of the parameters of componente 1 are in black and values of the
parameters of component 2 are in red.
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CHAPTER

7
CONTRIBUTIONS AND FUTURE

DEVELOPMENTS

This Chapter is dedicated to give a description of the contributions of the thesis, and
future development.

7.1 Contributions

In this thesis, we investigate two bounded continuous distributions addressing some
features in regression analysis that not were studied in the literature, which are particularly
important in the statistical analysis. These development were motivated by the data analysis
presented in the Chapter 2. The Chapter 3 presents the first bounded distribution investigated
called mixture of Simplex distributions that can be seen as a generalization of the Simplex
distribution. If the mixture of Simplex distributions have just one component then we have a
single Simplex distribution. We present the inference in the mixture of Simplex distribution under
Bayesian approach for the general case where the number of component in the mixture model is
unknown. An analysis to simulated data sets from a mixture of Simplex distributions with 2 and
3 components were conducted. For these applications, we found that the method provides a good
estimation of the number of components, as well as of the other parameters of the model since
the estimated values lie close to the real values of the parameters. In the Chapter 4 we generalize
this model introducing covariates obtained a mixture of Simplex regression model, and then we
apply it to data where the response variable is a proportion. The second bounded continuous
distribution investigated in Chapter 5 and 6 is the L-Logistic distribution. The parameterization of
this distribution presented in this work has interesting properties that can be useful to model data
in the unit interval since covariates can be included in the model as a function of median, which
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is a parameter of this distribution. A R package was included in the Specifically in the Chapter 6,
we explore a mixture of L-Logistic distribution with mixed-effect for the longitudinal data. For
inference, for all models treated in this thesis, we adopt a Bayesian approach using a Markov
chain Monte Carlo (MCMC) method for the modeling framework. The issues of model fitting
are addressed by means of a hybrid algorithm that combines Metropolis-Hasting with Gibbs
sampling algorithms implemented in R language. The functions that provide the probability
density function, cumulative density function, quantile function and random generation for the
L-Logistic distribution with parameters m and b are available in the CRAN of R program.

Based on description given before, we can cite the following contributions:

∙ development of mixture models for bounded response,

∙ development of regression models for limited response, i.e., a mixture of Simplex re-
gression models, the L-Logistic regression model, the L-Logistic regression model with
random effect, and the mixture of L-Logistic regression model with random effect.

∙ Bayesian inference for the models proposed in the different chapters of this thesis, including
estimation, model comparison criteria and residual analysis,

∙ R codes to estimation, convergence analysis, posterior analysis and inference which must
be available online, and provision of the "llogistic" package.

7.2 Future development
For future, the maximum likelihood estimation for the models presented in this thesis can

be developed. In addition, a Reversible-jump algorithm can be implemented to estimate a number
of component for a mixture of L-Logistic distribution when the number of component in the
mixture is unknown. Additionally, some other extensions for this work can include diagnostics
and residual analysis for all regression models treated here. The Package in R of the L-Logistic
distribution contain just basic functions and can be improved. Relate to the Chapter 2, we
intend to develop a distribution from the Weibull distribution to bounded data through some
transformation. Specifically, we intend to apply the resulting distribution from this transformation
to political data analyzed in the Chapter 2.
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APPENDIX

A
PROCEDURE FOR SIMULATE SAMPLE

FROM A MIXTURE OF SIMPLEX
DISTRIBUTIONS WITH UNKNOWN

NUMBER OF COMPONENT

This appendix address the summarize the MCMC technique mentioned in the Chapter 3
by giving a description of the Gibbs sampling algorithm used to sample from the joint probability
distribution. The Gibbs sampling algorithm is used combined with Metropolis-Hastings (MR
and reversible-jump) algorithm for obtain the sample of the posterior distribution of parameters
(θθθ ,ωωω,k) and Zi, for i = 1, ...,N. The Algorithm 4 show a scheme of the procedure.
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APPENDIX A. Procedure for simulate sample from a mixture of simplex distributions with unknown

number of component

Algorithm 4 – Algorithm for simulate samples from the posterior joint probability distribution
of the parameters of mixture of simplex

1. Initialize choosing k(t) = k(0), ωωω(t) = ωωω(0), µ
(t)
j = µ

(0)
j , (σ2

j )
(t) = (σ2

j )
(0) and Z(t)

i j = Z(0)
i j ,

for i = 1, ...,n j = 1, ...,k(t).

2. For t = 0,1,2, . . . repeat

a) For i = 1, ...,n draw Z(t+1)
i ∼ Multinomial(1,π(t)

i1 , ...,π
(t)
ik(t)

), wherein

π
(t)
i j = P

(
Z(t)

i j = 1|yi,µ
(t)
j ,(σ2

j )
(t))

∝ ω jS(yi|µ(t)
j ,(σ2

j )
(t))

b) Generate ωωω(t+1) from the distribution given by (3.10).

c) For j = 1, ...,k(t) do

i. Generate φ
(t+1)
j from the distribution given by (3.8) and do (σ2

j )
(t+1) = 1/φ

(t+1)
j .

ii. For updating µ j a Metroplis-hastings step is done, then

∙ generate µ
′
j ∼ Beta

(
δ (t),η(t)

)
where (δ (t),η(t)) is computed in A.

∙ Compute

α

(
µ
(t)
j ,µ

′
j

)
= min

{
1,

P
(

µ
′
j|y,Z,(σ2

j )
(t+1)

)
P
(

µ
(t)
j |y,Z,(σ2

j )
(t+1)

) Be
(

µ
(t)
j |δ (t+1),η(t+1)

)
Be
(

µ
′
j|δ (t),η(t)

)
}

where Be(x|.) is the density of beta distribution evaluated at x.
∙ Generate u ∼Uni f orm(0,1)

∙ If α

(
µ
(t)
j ,µ

′
j

)
< u then µ

(t+1)
j = µ

′
j else µ

(t+1)
j = µ

(t)
j .

d) For updating k(t), merge two component of the mixture into one or splinting one into
two by using reversible-jump step.

Proposal distribution

We observed in the simulation process that the convergence of algorithm Gibbs sampling

is affected by the acceptance of MR step in (2(c)ii). In order to improve the acceptance rate of
µ

′
j ( j = 1, ...,k(t) and t = 0,1,2, ...), in the Metropolis-Hastings step (2(c)ii) of the algorithm,

we adopt a beta distribution as the proposal distribution where the parameters δ (t) and η(t) are
obtained by solving  µ

(t)
j = δ (t)

δ (t)+η(t)

ψ(t) = δ (t)η(t)

(δ (t)+η(t))2(δ (t)+η(t)+1)

(A.1)
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where µ
(t)
j and ψ(t) is the mean and variance of beta distribution with parameters δ (t) > 0 and

δ (t) > 0. Then we have 
η(t) = δ (t)

(
1

µ
(t)
j

−1
)

δ (t) = (µ
(t)
j )2

(
1−µ

(t)
j

ψ(t) − 1
µ
(t)
j

) (A.2)

The positivity of δ (t) and δ (t) is secured by making ψ(t) < µ(t)(1− µ(t)) leading to ψ(t) =

µ
(t)
j (1−µ

(t)
j )× τ , with 0 < τ < 1.





115

APPENDIX

B
PROOFS OF PROPERTIES OF THE

L-LOGISTIC AND RESULTS FOR PRIOR
SENSITIVITY ANALYSIS

This chapter provide proofs of the properties of L-logistic distribution presented in
Chapter 5.3. Moreover, results of the preliminary study of the prior sensitivity analysis in Chapter
5.5 are presented and commented.

Proofs of properties of the L-logistic in Section 5.3

For all cases, let Y ∼ LL(m,b), with pdf and cdf give by

f (y|m,b) =
b(1−m)bmbyb−1(1− y)b−1[
(1−m)byb +mb(1− y)b

]2 , 0 < y < 1,0 < m < 1, b > 0. (B.1)

and

FY (y|m,b) =

(
1+
(

m(1− y)
y(1−m)

)b
)−1

, 0 < y < 1, (B.2)
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Proof of Property 5.3.1

Consider the following transformation Z = b log
(

Y (1−m)
m(1−Y )

)
. Then the pdf of Z is given by

fZ(z) = fY

((
1+ e−z/b (1−m

m

))−1
)∣∣∣∣∂(1+e−z/b(1−m

m ))
−1

∂ z

∣∣∣∣
=

b(1−m)bmb
(

1
1+(1−m

m )e−z/b

)b−1(
(1−m

m )e−z/b

1+(1−m
m )e−z/b

)b−1

[
(1−m)b

(
1

1+(1−m
m )e−z/b

)b

+mb

(
(1−m

m )e−z/b

1+(1−m
m )e−z/b

)b
]2

(
(1−m

m )e−z/b

b[1+(1−m
m )e−z/b]

2

)

=
(1−m)bmb((1−m

m )e−z/b)
b−1

[(1−m)b+mb(1−m
m )be−z]

2

(
(1−m

m )e−z/b
)

=
(1−m)bmb(1−m)b−1e−z(b−1)/b

mb−1[(1−m)b+(1−m)be−z]
2 (1−m

m )e−z/b = e−z

[1+e−z]2

⇒ fZ(z) =
ez

[1+ ez]2
IR(z),

which is the corresponding pdf of the standard logistic distribution.

Proof of Property 5.3.2

Consider the reparameterization m = e−
δ
b

1+e−
δ
b

with δ > 0. Then the pdf and cdf of the L-logistic

distribution with parameter vector (δ ,b) is obtained as

f (y|δ ,b) =
b

(
1− e

− δ
b

1+e
− δ

b

)b(
e
− δ

b

1+e
− δ

b

)b

yb−1(1−y)b−1

(1− e
− δ

b

1+e
− δ

b

)b

yb+

(
e
− δ

b

1+e
− δ

b

)b

(1−y)b

2

=
b

(
1

1+e
− δ

b

)b(
e
− δ

b

1+e
− δ

b

)b

yb−1(1−y)b−1

( 1

1+e
− δ

b

)b

yb+

(
e
− δ

b

1+e
− δ

b

)b

(1−y)b

2

= be−δ yb−1(1−y)b−1

[yb+e−δ (1−y)b]
2 = beδ yb−1(1−y)b−1

[ybeδ+(1−y)b]
2

and

FY (y|δ ,b) =

1+


e
− δ

b

1+e
− δ

b
(1−y)

y( 1

1+e
− δ

b
)


b


−1

=

(
1+
(

e−
δ
b (1−y)

y

)b
)−1

=

(
1+ e−δ

(
1−y

y

)b
)−1

.
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Proof of Property 5.3.3

Consider the reparameterization α = 1
1+( m

1−m)
b , α ∈ (0,1). After a few simple algebraic manipu-

lations we obtain the corresponding pdf and cdf of L-logistic distribution with parameter vector
(α,b) given by

f (y|α,b) =
bα(1−α)yb−1(1− y)b−1[
ybα +(1− y)b(1−α)

]2 , 0 < y < 1,

and

FY (y|α,b) =

(
1+
(

1−α

α

)(
1− y

y

)b
)−1

, 0 < y < 1.

Proof of Property 5.3.4

Give Y ∼ LL(δ ,b), using the inverse of the transformation give in Property 3.2 and next the
Property 3.1, we can easily obtain the pdf of the distribution of Z

′
= δ +b log

( Y
1−Y

)
as being

the pdf of the standard logistic distribution.

Proof of Property 5.3.5

Defining the transformation Y = X(d−c)+c, c,d ∈R, with X ∼ LL(m,b), we obtain easily the
correspondent pdf of Y .

Proof of Property 5.3.6

In order to find the mode y0 of the L-logistic distribution, we can take the derivative of the pdf
given in (B.1), with respect to y as

∂ f (y|m,b)
∂y

=
b((1−m)m)b((1− y)y)−2+b{mb(1− y)b(−1+b+2y)− (1−m)b(1+b−2y)yb}(

mb(1− y)b +(1−m)byb
)3 .

Thus, making ∂ f (y0|m,b)
∂y = 0 we obtain ⇔

{
mb(1− y)b(−1+b+2y)− (1−m)b(1+b−2y)yb}=

0. Therefore, the mode y0 when b > 1 is a solution of the equation(
1−m

m

)b

=

(
1− y0

y0

)b b+2y0 −1
b−2y0 +1

.

For b 6 1, the pdf is convex and does not have mode.

Proof of Property 5.3.7

To show that the pdf of L-logistic distribution is symmetric when m = 0.5 whatever the value of
parameter b, is sufficient to show that f (0.5− y) = f (0.5+ y). Using the pdf given in (B.1) is
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easy to show that
f (0.5− y) = b(1−0.5)b0.5b(0.5−y)b−1(1−0.5+y)b−1

[(1−0.5)b(0.5−y)b+0.5b(1−0.5+y)b]
2

= 0.52b

0.52b
b(0.5−y)b−1(0.5+y)b−1

[(0.5−y)b+(0.5+y)b]
2

= b(0.52−y2)b−1

[(0.5−y)b+(0.5+y)b]
2

= f (0.5+ y).

Proof of Property 5.3.8

Using the definition of the moments to (B.1) we have

E[Y t ] =
∫ 1

0
yt b(1−m)bmbyb−1(1− y)b−1[

(1−m)byb +mb(1− y)b
]2 dy. (B.3)

By the transformation proposed in the Property 5.3.1, we have

E[Y t ] =
∫

∞

−∞

(
1

1+( 1−m
m )e−

z
b

)t
ez

[1+ez]2
dz.

Now, considering the transformation v = ez

1+ez (then z = log
( v

1−v

)
and dv = ez

(1+ez)2 dz.) and after
a few simple algebraic manipulations, we obtain the expected result

E[Y t ] =
∫ 1

0

[
1+
(

1− v
v

)1/b(1−m
m

)]−t

dv.

Preliminary prior sensitivity analysis in Chapter 5.5
Here, we present a simulation study made to evaluate the sensitivity of different choices

of prior distributions for parameter b of the L-logistic distribution. The five different prior
distributions shown in Table T were considered for this study, which are assumed independent
of the parameter m (with a unit uniform prior for m). For simulate the data sets from the
L-logistic distribution, we considered the values for m and b as follows: b ∈ {0.5,1,5} and
m ∈ {0.2,0.5,0.9}, leading to nine scenarios or pairs of parameters, corresponding to nine
models simulated. The size of the each data set was n = 100. Table T shows the values of WAIC,
EAIC, EBIC, and DIC for the fitted models, considering the different prior distributions under
study.

Table T – Statistics for model comparison, prior distributions for parameter b and the true value of the

parameters of the L-logistic distribution used to simulate the data sets.

Parameter Prior Criteria
(m,b) WAIC EAIC EBIC DIC

. . .
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Table T – Continued

Parameter Prior Criteria
(m,b) WAIC EAIC EBIC DIC

(0.2,0.5)

A, b ∼ Gamma(0.001,0.001) 41.76 -77.48 10.62 -82.68
B, b =U2, U ∼Uni f orm(0,100) 41.76 -77.48 10.62 -82.69
C, log(b) = L, L ∼ St(10,0,2) 41.78 -77.52 10.59 -82.75
D, b ∼ Gamma(2.5,1) 41.79 -77.46 10.64 -82.65
E, b ∼ Gamma(50,1) 35.83 -64.60 23.51 -56.91

(0.2,1)

A, b ∼ Gamma(0.001,0.001) 31.95 -58.06 30.05 -63.48
B, b =U2, U ∼Uni f orm(0,100) 31.96 -58.00 30.11 -63.35
C, log(b) = L, L ∼ St(10,2) 31.97 -58.07 30.04 -63.50
D, b ∼ Gamma(2.5,1) 31.97 -58.03 30.08 -63.42
E, b ∼ Gamma(50,1) 26.13 -45.28 42.83 -37.92

(0.2,5)

A, b ∼ Gamma(0.001,0.001) 160.48 -314.94 -226.83 -320.15
B, b =U2, U ∼Uni f orm(0,100) 160.48 -315.03 -226.93 -320.34
C, log(b) = L, L ∼ St(10,2) 160.49 -315.01 -226.90 -320.29
D, b ∼ Gamma(2.5,1) 160.37 -314.85 -226.74 -319.97
E, b ∼ Gamma(50,1) 156.06 -305.21 -217.11 -300.70

(0.5,0.5)

A, b ∼ G(0.001,0.001) 25.89 -45.84 42.26 -51.16
B, b =U2, U ∼Uni f orm(0,100) 25.91 -45.85 42.26 -51.18
C, log(b) = L, L ∼ St(10,2) 25.92 -45.85 42.26 -51.17
D, b ∼ Gamma(2.5,1) 25.92 -45.86 42.24 -51.21
E, b ∼ Gamma(50,1) 19.93 -32.76 55.34 -25.00

(0.5,1)

A, b ∼ Gamma(0.001,0.001) 1.63 2.63 90.74 -2.73
B, b =U2, U ∼Uni f orm(0,100) 1.65 2.67 90.77 -2.67
C, log(b) = L, L ∼ St(10,2) 1.66 2.62 90.73 -2.75
D, b ∼ Gamma(2.5,1) 1.66 2.63 90.73 -2.74
E, b ∼ Gamma(50,1) -4.10 15.13 103.24 22.27

(0.5,5)

A, b ∼ Gamma(0.001,0.001) 117.12 -228.30 -140.19 -233.62
B, b =U2, U ∼Uni f orm(0,100) 117.12 -228.28 -140.17 -233.58
C, log(b) = L, L ∼ St(10,2) 117.13 -228.28 -140.18 -233.59
D, b ∼ Gamma(2.5,1) 116.99 -228.09 -139.98 -233.20
E, b ∼ Gamma(50,1) 112.63 -218.35 -130.25 -213.73

(0.9,0.5)

A, b ∼ Gamma(0.001,0.001) 91.03 -176.01 -87.90 -181.16
B, b =U2, U ∼Uni f orm(0,100) 91.05 -176.08 -87.98 -181.31
C, log(b) = L, L ∼ St(10,2) 91.07 -176.14 -88.03 -181.42
D, b ∼ Gamma(2.5,1) 91.06 -176.04 -87.94 -181.23
E, b ∼ Gamma(50,1) 84.98 -162.96 -74.85 -155.07

(0.9,1)

A, b ∼ Gamma(0.001,0.001) 84.18 -162.36 -74.25 -167.55
B, b =U2, U ∼Uni f orm(0,100) 84.20 -162.38 -74.28 -167.61
C, log(b) = L, L ∼ St(10,2) 84.24 -162.42 -74.32 -167.68
D, b ∼ Gamma(2.5,1) 84.20 -162.33 -74.23 -167.501
E, b ∼ Gamma(50,1) 78.54 -150.04 -61.94 -142.923

. . .
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Table T – Continued

Parameter Prior Criteria
(m,b) WAIC EAIC EBIC DIC

(0.9,5)

A, b ∼ Gamma(0.001,0.001) 9 218.35 -430.82 -342.71 -436.20
B, b =U2, U ∼Uni f orm(0,100) 218.36 -430.84 -342.74 -436.24
C, log(b) = L, L ∼ St(10,2) 218.36 -430.67 -342.56 -435.90
D, b ∼ Gamma(2.5,1) 218.25 -430.70 -342.59 -435.96
E, b ∼ Gamma(50,1) 213.94 -421.05 -332.95 -416.66

As we can see in Table T, for all the simulated datasets in the nine scenarios, the values
of WAIC, EAIC, EBIC, and DIC are quite close, showing no significant difference, giving
evidence that the estimated models provide almost the same fit. Thus, for these cases, the
posterior distribution does not seen to be sensitive with respect to the specification of these prior
distributions. Additionally, when the prior E is used the estimated model achieves the worst fit
among all models fitted with the other priors.
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