Mostrar registro simples

dc.contributor.authorPezzini, Alessandra
dc.date.accessioned2023-04-24T14:01:38Z
dc.date.available2023-04-24T14:01:38Z
dc.date.issued2023-02-27
dc.identifier.citationPEZZINI, Alessandra. Modelagem matemática de células a combustível alcalinas a glicerol direto. 2023. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17850.*
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/17850
dc.description.abstractIn the environmental and energy context, fuel cells are promising devices for the conversion of clean energy, with hydrogen being the most used fuel. However, its storage and distribution impose some difficulties, in addition to having high reactivity. Based on this, the use of liquid fuels, such as light polyols, is a viable and promising alternative, mainly due to their low toxicity and the possibility of oxidation at low temperatures. The solid alkaline membrane fuel cell (SAMFC - Solid Alkaline Membrane Fuel Cell) is an advantageous option in the use of these alcohols, as they exhibit higher reaction rates in alkaline medium. In this context, glycerol demonstrates potential attractiveness, as its theoretical energy density is similar to that of other alcohols that are already well established in fuel cells (methanol and ethanol), it is highly available on the market, and its oxidation produces compounds with high added value, in addition to energy. Despite this, direct glycerol fuel cells (DGFC - Direct Glycerol Fuel Cell) still need to improve their electrical performance, which is affected by the catalytic activity of the catalysts and also by the fuel cell's operational parameters. When considering an alkaline DGFC with a polymeric membrane, it is a SAMFC fed with glycerol. In this context, mathematical modeling and computer simulation are tools of great importance for the development of fuel cells. Thus, the objective of this master's work is to carry out the kinetic modeling of glycerol oxidation in a DGFC, considering two different approaches: 1) realistic phenomenological models for the partial oxidation of glycerol in Pt/C, considering its adsorbed intermediates; 2) model of artificial neural networks (ANN – Artificial Neural Networks) for oxidation mainly in PtAg/C and PtAg/MnOx/C. The models were fitted to experimental data already available for validation and determination of their parameters, both using Matlab software. The adjustments of the parameters of the phenomenological model were obtained by minimizing the sum of squared errors (SSE – Sum of Squared Errors) between the real and experimental current density of the fuel cell. For this, the fmincon function of the Matlab software was used. Also, the estimation of the standard deviation of the parameters was performed, in addition to the parametric sensitivity. As for the ANNs, the algorithms available in the artificial neural networks toolbox, from the same software (Matlab) were used. Results for the phenomenological models developed showed excellent fits for the polarization curve, with a RMSE (Root Mean Squared Error) value of the order of 0.352 to 0.404 mA/cm², in addition to coverage fractions consistent with the literature for the adsorbed species. The kinetic parameters with the greatest influence on the response of the models were those associated with the consumption of glyceric acid and the formation of tartronic acid, and with the dissociative adsorption of water and the formation of PtOads active sites. The parametric sensitivity made with the most significant kinetic constants shows a relevant change in the polarization curve. It was also observed the effect of changing the value of the most significant kinetic constants in the distribution of coverage fractions of all adsorbed intermediates (to maintain the fit of the model to the polarization curve). Such an evaluation brings great insight into the influence of model parameters on the degree of coverage of the catalyst (and vice versa). Regarding the neural models, excellent prediction fits were obtained for all of them, with RMSE values in the order of 0.008 to 0.014 mA/cm², denoting the possibility of representing the functional interdependence between input variables and the density cell current for cases where it would be too complex to do so via mechanistic modeling (i.e., for PtAg/C and PtAg/MnOx/C oxidation).eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)por
dc.language.isoporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectDGFCpor
dc.subjectModelagem matemáticapor
dc.subjectRedes neurais artificiaispor
dc.subjectMathematical modelingeng
dc.subjectArtificial neural networkseng
dc.titleModelagem matemática de células a combustível alcalinas a glicerol diretopor
dc.title.alternativeMathematical modelling of a direct glycerol alkaline fuel celleng
dc.typeDissertaçãopor
dc.contributor.advisor1Sousa Junior, Ruy de
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1983482879541203por
dc.description.resumoNo contexto ambiental e energético, as células a combustível são dispositivos promissores de conversão de energia limpa, sendo o hidrogênio o combustível mais utilizado. No entanto, seu armazenamento e distribuição impõem algumas dificuldades, além de possuir elevada reatividade. Com base nisso, a utilização de combustíveis líquidos, tais como polióis leves, se mostra uma alternativa viável e promissora, principalmente devido à sua baixa toxicidade e possibilidade de oxidação em baixas temperaturas. A célula a combustível de membrana sólida alcalina (SAMFC - Solid Alcaline Membrane Fuel Cell) se mostra uma opção vantajosa na utilização desses álcoois, pois exibem maiores taxas de reação em meio alcalino. Nesse contexto, o glicerol demonstra potencial atratividade, pois sua densidade energética teórica é semelhante à de outros álcoois já mais bem estabelecidos em células a combustível (metanol e etanol), possui alta disponibilidade no mercado, e sua oxidação produz compostos de elevado valor agregado, além de energia. Apesar disso, as células a combustíveis a glicerol direto (DGFC – Direct Glycerol Fuel Cell) ainda carecem de melhorias em seu desempenho elétrico, que é afetado pela atividade catalítica dos catalisadores e também por parâmetros operacionais da célula a combustível. Quando considerada uma DGFC alcalina com membrana polimérica, trata-se de SAMFC alimentada com glicerol. Nesse contexto, a modelagem matemática e simulação computacional constituem ferramentas de grande importância para o desenvolvimento de células a combustível. Assim, o objetivo deste trabalho de mestrado é realizar a modelagem cinética da oxidação do glicerol em uma DGFC alcalina, considerando duas abordagens distintas: 1) modelos fenomenológicos realísticos para a oxidação parcial do glicerol em Pt/C, considerando seus intermediários adsorvidos; 2) modelo de redes neurais artificiais (ANN – Artificial Neural Networks) para oxidação principalmente em PtAg/C e PtAg/MnOx/C. Os modelos foram ajustados a dados experimentais já disponíveis para validação e determinação de seus parâmetros, ambos utilizando o software Matlab. Os ajustes dos parâmetros do modelo fenomenológico foram obtidos pela minimização da soma dos erros ao quadrado (SSE – Sum of Squared Errors) entre densidade de corrente real e experimental da célula a combustível. Para isto, utilizou-se a função fmincon do software Matlab. Também, foi realizada a estimativa do desvio padrão dos parâmetros, além da sensibilidade paramétrica. Já com relação às ANNs, foram utilizados os algoritmos disponíveis no toolbox de redes neurais artificiais, do mesmo software (Matlab). Resultados para os modelos fenomenológicos desenvolvidos mostraram excelentes ajustes para a curva de polarização, com valor de RMSE (Root Mean Squared Error) da ordem de 0,352 a 0,404 mA/cm², além de frações de cobertura condizentes com a literatura para as espécies adsorvidas. Os parâmetros cinéticos com maior influência na resposta dos modelos foram aqueles associados ao consumo de ácido glicérico e formação do ácido tartrônico, e à adsorção dissociativa da água e formação dos sítios ativos de PtOads. A sensibilidade paramétrica feita com as constantes cinéticas mais significativas mostra relevante alteração da curva de polarização. Observou-se também o efeito da alteração do valor das constantes cinéticas mais significativas na distribuição das frações de cobertura de todos os intermediários adsorvidos (para manutenção do ajuste do modelo à curva de polarização). Tal avaliação traz grande insight a respeito da influência dos parâmetros do modelo no grau de recobrimento do catalisador (e vice-versa). Já com relação aos modelos neurais, foram obtidos ajustes de predição excelentes para todos eles, com valores de RMSE na ordem de 0,008 a 0,014 mA/cm², denotando a possibilidade de representação da interdependência funcional entre variáveis de entrada e a densidade de corrente da célula para casos em que seria muito complexo fazê-lo via modelagem mecanística (isto é, para oxidação em PtAg/C e PtAg/MnOx/C).por
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Química - PPGEQpor
dc.subject.cnpqENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICApor
dc.description.sponsorshipId88887.611390/2021-00por
dc.publisher.addressCâmpus São Carlospor
dc.contributor.authorlatteshttp://lattes.cnpq.br/5208937468457556por
dc.contributor.authororcidhttps://orcid.org/0000-0002-5281-2399por
dc.contributor.advisor1orcidhttps://orcid.org/0000-0003-4916-173Xpor


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Attribution-NonCommercial-NoDerivs 3.0 Brazil
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivs 3.0 Brazil