Show simple item record

dc.contributor.authorFacure, Murilo Henrique Moreira
dc.date.accessioned2023-10-27T12:44:38Z
dc.date.available2023-10-27T12:44:38Z
dc.date.issued2023-10-20
dc.identifier.citationFACURE, Murilo Henrique Moreira. Nanomateriais 0D e 2D baseados em pontos quânticos de Grafeno e MXenes: síntese, caracterização e aplicação em sensores e supercapacitores. 2023. Tese (Doutorado em Química) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/18832.*
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/18832
dc.description.abstractGraphene Quantum Dots (GQDs) are small fragments of one or a few layers of graphene with lateral dimensions inferior to 100 nm. GQDs present some characteristics similar to those of graphene, such as a high surface area/volume ratio and chemical stability. In addition, GQDs present a bandgap between their valence and electronic conduction bands. This bandgap gives rise to one of the most investigated properties of GQDs: their photoluminescence, which enables their application as luminescent sensors. In this sense, in the first work, hydrothermal syntheses of GQDs from graphene oxide (GO) were studied aiming at obtaining a material with greater photoluminescence intensity for application in luminescent sensors. The synthesis temperature, pH of the GO solution, and GO concentration were evaluated to optimize the quantum yield of GQDs. An optimized value of 8.9% was obtained. The influence of each parameter on the composition and properties of the GQDs was carried out from the physical-chemical characterization of the materials. The synthesized materials were used in the detection of Fe3+ ions in aqueous solutions by luminescence quenching, obtaining a detection limit of 0.136 M. Like GQDs, the discovery of a new class of materials known as MXenes was inspired by the discovery of graphene. MXenes are 2D materials, in which transition metal layers are interleaved with carbon and/or nitrogen layers. Such materials have demonstrated high energy storage capacity, being widely exploited in devices such as supercapacitors and batteries. However, the restacking of the MXene layers and the narrow potential window usually obtained limit the performance of these materials in such applications. In another work, nanodiamonds (NDs) were used to prevent the restacking of the MXene layers during its use as a supercapacitor electrode. The pillaring effect obtained with the NDs allowed a greater diffusion of protons between the layers of the MXene Ti3C2Tx, resulting in a capacitance of 235 F/g (561 F/cm3) when used in 3 M AlCl3 electrolyte. Furthermore, a wide potential window of 1.2 V could be used due to the reduced water activity in the electrolyte.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)por
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)por
dc.language.isoengpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/br/*
dc.subjectPontos quânticos de grafenopor
dc.subjectMXenespor
dc.subjectGraphene quantum dotseng
dc.subjectFluorescent sensorseng
dc.subjectSensores fluorescentespor
dc.subjectSupercapacitorpor
dc.subjectEnergy storage deviceeng
dc.subjectArmazenamento de energiaeng
dc.subjectMateriais 0Dpor
dc.subjectMateriais 2Dpor
dc.subject0D materialseng
dc.subject2D materialseng
dc.subjectSíntese hidrotermalpor
dc.subjectHydrothermal synthesiseng
dc.subjectRendimento quânticopor
dc.subjectQuantum yieldeng
dc.subjectPseudocapacitorpor
dc.title0D and 2D nanomaterials based on Graphene quantum dots and MXenes: synthesis, characterization and application in sensors and supercapacitorseng
dc.title.alternative0D e 2D baseados em pontos quânticos de Grafeno e MXenes: síntese, caracterização e aplicação em sensores e supercapacitorespor
dc.typeTesepor
dc.contributor.advisor1Corrêa, Daniel Souza
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0461451015026948por
dc.description.resumoQuantum dots de grafeno (GQDs) são pequenos fragmentos de uma ou poucas camadas de grafeno com dimensões laterais menores que 100 nm. Além de possuírem algumas características similares às do grafeno, como elevada razão área superficial/volume e estabilidade química, os GQDs apresentam um bandgap entre suas bandas de valência e de condução eletrônica. A presença do bandgap dá origem a uma das propriedades mais investigadas dos GQDs: sua fotoluminescência, que possibilita a aplicação destes materiais em sensores luminescentes. Neste sentido, em um primeiro trabalho, a síntese hidrotermal de GQDs a partir do grafeno oxidado (GO) foi estudada na busca por um material com maior intensidade da fotoluminescência visando sua aplicação em sensores luminescentes. A temperatura da síntese, o pH e a concentração da solução de GO foram avaliados para otimização do rendimento quântico dos GQDs. Um valor otimizado de 8,9% foi obtido. A influência de cada parâmetro na composição e propriedades dos GQDs foi realizada a partir da caracterização físico-química dos materiais. Os materiais sintetizados foram utilizados na detecção de íons Fe3+ em soluções aquosas por supressão de luminescência, obtendo-se um limite de detecção de 0.136 M. Assim como os GQDs, a descoberta de uma nova classe de materiais denominados MXenes foi inspirada na descoberta do grafeno. MXenes são materiais 2D, nos quais camadas de um metal de transição são intercaladas por camadas de carbono e/ou nitrogênio. Tais materiais têm demonstrado alta capacidade de armazenamento de energia, sendo muito utilizados em dispositivos como supercapacitores e baterias. No entanto, o acoplamento das camadas do material e a estreita janela de potencial geralmente alcançada são fatores que limitam a performance desses materiais nesses tipos de aplicações. Em outro trabalho, nanodiamantes (NDs) foram utilizados para evitar o acoplamento das camadas do MXene durante sua utilização como supercapacitor. O efeito obtido com os NDs permitiu uma maior difusão de prótons por entre as camadas do MXene Ti3C2Tx, resultando em capacitância de 235 F/g (561 F/cm3) ao ser utilizado em eletrólito 3 M AlCl3. Além disso, uma ampla janela de potencial de 1.2 V foi obtida devido à reduzida atividade da água no eletrólito.por
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-Graduação em Química - PPGQpor
dc.subject.cnpqENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::MATERIAIS NAO METALICOSpor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICApor
dc.description.sponsorshipId2017/10582-8por
dc.description.sponsorshipId2021/11683-8por
dc.publisher.addressCâmpus São Carlospor
dc.contributor.authorlatteshttp://lattes.cnpq.br/4173216607463824por
dc.contributor.authororcidhttps://orcid.org/0000-0003-0858-0364por
dc.contributor.advisor1orcidhttps://orcid.org/0000-0002-5592-0627por


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 Brazil
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 Brazil