Show simple item record

dc.creatorSouza, Alan Roger Moreno
dc.date.accessioned2019-02-19T11:20:29Z
dc.date.available2019-02-19T11:20:29Z
dc.date.issued2018-10-03
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/10988
dc.description.abstractThe great interest in using diamond-like carbon (DLC) thin films is justified by their remarkable properties. The DLC film may incorporate other atomic elements depending on the precursor gas and the deposition conditions of the films, which provide different optical and mechanical properties to the film. The incorporation of nitrogen in the DLC film (a-C:H(N)) causes the decrease in the amount of carbon atoms in the state of hybridization sp3 and decreases the internal tension of the film, thus increasing the adhesion of the film to the substrate. Therefore the deposition parameters were studied in order to avoid high internal stresses present in the films that impair its adhesion to the metallic substrate and promote properties of interest. The objective of this work was to produce and study the effect of nitrogen incorporation in DLC (a-C:H) films on their chemical, mechanical and structural properties. The a-C: H and a-C: H (N) films were deposited on glass substrates, titanium alloy (Ti6Al4V) and cobalt (WC-Co) carbide machining tool. The plasma-assisted vapor deposition technique (PECVD) using DC-pulsed source was used as the precursor methane gas with dilute argon, for the reproduction of a-C:H film, and nitrogen diluted in methane gas for the production and characterization of the aC:H(N) film. Studies on the physical cleaning, deposition of the interlayer film (a-Si), growth of a-C:H(N) film and study of the incorporation of nitrogen into the a-C:H film were made. For the characterizations, the techniques of visual evaluation, Fourier Transform Infrared Spectroscopy (FTIR), profilometry, dispersive energy spectroscopy (EDS) using scanning electron microscopy (SEM), Raman spectroscopy, photoelectron spectroscopy, X (XPS), nanoindentation and machining test. The results obtained were a-C:H and a-C:H(N) adherent films. The adhesion, deposition rate and mechanical and optical properties of DLC films are related to the following parameters: total gas flow, gas ratio, power, temperature and pre-treatments used, such as physical cleaning and deposition of silicon interlayer films. The physical cleaning of the substrate showed the best result when the concentration of the argon and hydrogen gases were made in equal proportions and with total gas pressure of approximately 2 Torr. The a-C:H film had a hydrogen concentration of 26.64%, hardness of 14 GPa and 39.1% of sp3 hybridization between carbons. With the characteristics described the film produced can be classified as a hard film of a-C:H, according to previous research (Robertson, 2002). For the a-C:H(N) films the increase in the amount of nitrogen incorporated into the film was observed with the increase in the N2 gas flow diluted during the treatment. The concentration increased from 2 to 8% when the proportion of nitrogen inserted during the treatment was increased, from 10 to 60%, respectively. It was observed the increase in the deposited film thickness when the nitrogen was inserted diluted concentrations of 10 to 40% in methane, but in nitrogen concentrations higher than 50 and 60%, the deposition rate decreased. The spectra obtained by FTIR showed C-C and C-H2 bonds with most sp3 bonds for the a-C:H film, while the presence of nitrogen bands was found for the a-C:H (N) film. For characterization by Raman spectroscopy, the change of the position of the G band to higher wave numbers denote the decrease of carbon with hybridized bonds sp3, this is due to the increase of the incorporation of nitrogen in the film. No significant change in film hardness was observed with different nitrogen incorporations. In the milling test, it was observed that, among the a-C:H(N) films produced, the film with a 20% dilution of nitrogen in methane provided a longer life for the cutting tool. The tool with no film deposition with a life of 6.2 minutes and the tool with a-C:H(N) film with 8.1 minutes of machining. However, the a-C:H film still had the best tool life with its total machining time of 9.2 minutes. The test specimen presented lower surface roughness for the tools with the deposition of DLC film when compared to the test body machined with the tool without deposition.eng
dc.description.sponsorshipNão recebi financiamentopor
dc.language.isoporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rights.uriAcesso abertopor
dc.subjectDLCpor
dc.subjecta-C:Hpor
dc.subjecta-C:H(N)por
dc.subjectXPSpor
dc.subjectRamanpor
dc.subjectUsinagemeng
dc.subjectMachiningeng
dc.subjectFilmes finospor
dc.subjectThin filmseng
dc.titleProdução e Caracterização de Filme de a-C:H(N)por
dc.title.alternativeProduction and characterization of a-C:H(N) filmeng
dc.typeDissertaçãopor
dc.contributor.advisor1Rossino, Luciana Sgarbi
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0139027055418391por
dc.creator.Latteshttp://lattes.cnpq.br/8167885483299338por
dc.description.resumoO grande interesse no uso de filmes finos de carbono amorfo tipo diamante (“Diamond-Like Carbon” – DLC) é justificado por suas notáveis propriedades. O filme de DLC pode ter incorporação de outros elementos atômicos dependendo do gás precursor e das condições de deposição dos filmes, que proporcionam diferentes propriedades ópticas e mecânicas ao filme. A incorporação de nitrogênio no filme DLC (a-C:H(N)) causa o decréscimo na quantidade de átomos de carbono em estado de hibridização sp3 e diminui a tensão interna do filme, aumentando assim a adesão do filme ao substrato. Portanto os parâmetros de deposição foram estudados a fim de evitar altas tensões internas presentes nos filmes que prejudicam a adesão deste sobre o substrato metálico e promover propriedades de interesse. O objetivo deste trabalho foi produzir e estudar o efeito da incorporação do nitrogênio nos filmes DLC (a-C:H) em suas propriedades químicas, mecânicas e estruturais. Os filmes a-C:H e a-C:H(N) foram depositados em substratos de vidro, liga de titânio (Ti6Al4V) e em ferramenta de usinagem de carbeto de tungstênio e cobalto (WC-Co). Para tanto, foi empregada a técnica de deposição química de vapor assistida por plasma (PECVD) utilizando fonte DC-pulsada, tendo como precursor o gás metano com argônio diluído, para a reprodução do filme de a-C:H, e nitrogênio diluído em gás metano para a produção e caracterização do filme de a-C:H(N). Foram feitos os estudos a respeito da limpeza física, deposição do filme de intercamada (a-Si), crescimento do filme de a-C:H(N) e estudo da incorporação do nitrogênio no filme de a-C:H. Para as caracterizações foram empregadas às técnicas de avaliação visual, espectroscopia de infravermelho com transformada de Fourier (FTIR), perfilometria, espectroscopia de energia dispersiva (EDS) via microscopia eletrônica de varredura (MEV), espectroscopia Raman, espectroscopia de fotoelétrons excitados por raios-X (XPS), nanoindentação e ensaio de usinagem. Como resultados foram obtidos filmes aderentes de a-C:H e a-C:H(N). Foi constatada que a aderência, a taxa de deposição e as propriedades mecânicas e ópticas dos filmes de DLC estão relacionadas aos parâmetros: fluxo total dos gases, proporção dos gases, potência, temperatura e os pré-tratamentos empregados, como a limpeza física e a deposição de filmes de intercamada de silício. A limpeza física do substrato apresentou o melhor resultado quando feita a concentração dos gases de argônio e hidrogênio em proporções iguais e com pressão total dos gases de aproximadamente 2 Torr. O filme de a-C:H apresentou concentração de hidrogênio de 26,64%, dureza de 14 GPa e 39,1% de ligações hibridizadas sp3 entre carbonos. Com as características descritas o filme produzido pode ser classificado como um filme duro de a-C:H, de acordo com pesquisas anteriores (Robertson, 2002). Para os filmes de a-C:H(N) foi observado o aumento na quantidade de nitrogênio incorporado ao filme com o aumento no fluxo do gás N2 diluído durante o tratamento. A concentração atômica de nitrogênio no filme apresentou o aumento de 2 para 8% quando foi aumentada a proporção de nitrogênio inserida durante o tratamento, de 10 a 60%, respectivamente. Foi observado o aumento na espessura do filme depositado quando o nitrogênio foi inserido diluído em concentrações de 10 a 40% no metano, porém em concentrações de nitrogênio maiores como 50 e 60%, ocorreu a diminuição na taxa de deposição. A análise dos espectros obtidos por FTIR apresentaram ligações C-C e C-H2 com maioria de ligações sp3, para o filme a-C:H, enquanto que a presença de bandas nitrogenadas foi encontrada para o filme a-C:H(N). Para a caracterização por espectroscopia Raman, a mudança do posicionamento da banda G para maiores números de onda denotam o decréscimo de carbono com ligações hibridizadas sp3, isso ocorre devido o aumento da incorporação de nitrogênio no filme. Não foi observada alteração significativa na dureza do filme com diferentes incorporações de nitrogênio. No ensaio de usinagem por fresamento foi observado que, entre os filmes a-C:H(N) produzidos, o filme com diluição de 20% de nitrogênio em metano proporcionou maior vida útil à ferramenta de corte. A ferramenta sem deposição de filme apresentou a vida útil de 6,2 minutos e a ferramenta com filme de a-C:H(N) com 8,1 minutos de usinagem. Porém o filme de a-C:H ainda apresentou a melhor vida útil para a ferramenta, com seu tempo total de usinagem de 9,2 minutos. O corpo de prova apresentou menor rugosidade superficial para as ferramentas com a deposição de filme de DLC quando comparado com o corpo de prova usinado com a ferramenta sem deposição.por
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-graduação em Ciência dos Materiais (Campus SOROCABA)por
dc.subject.cnpqENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA::METALURGIA DE TRANSFORMACAO::RECOBRIMENTOSpor
dc.ufscar.embargoOnlinepor
dc.publisher.addressCâmpus Sorocabapor


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record