Show simple item record

dc.contributor.authorSantos, Mariane Oliveira dos
dc.date.accessioned2019-09-02T13:03:03Z
dc.date.available2019-09-02T13:03:03Z
dc.date.issued2019-05-29
dc.identifier.citationSANTOS, Mariane Oliveira dos. Estudo de concretos com adição de nanosílica submetidos à ação combinada de cloretos e CO2. 2019. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11762.*
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/11762
dc.description.abstractCorrosion of reinforcement is one of the most severe pathological manifestations that can affect reinforced concrete structures, and the main aggressive agents of corrosion are chloride and CO2. Chlorine ions can cause corrosion even in situations in which the concrete is alkaline and the action of the CO2 results in the carbonation, that is the responsible for the despassivation of reinforcement. The study of these aggressive agents in an isolated manner is widely exploited, existing consensus in the results obtained in the experimental research. However, the study of the combined action is something more recent and yet there is not agreement in the obtained results, as the influence of the conjoint action of these aggressive agents in the durability of the reinforced concrete structures. Concurrently with this question, there is the need of to attain more durable concrete structures and, for this, incorporations are made to the concrete. Among the most used additions one could mention the active silica and most recently, with the advance of the nanotechnology, the nanosilica. These addictions promote the filling effect and pozzolanic effect in the cement matrix, resulting in a more durability of the concrete structure. This research was developed with the main objective of evaluating the behavior of the concretes with nanosilica addiction, when subjected the combined action of the chloride ions and the CO2. To achieve this, concrete cylindrical specimens were molded, in two relations water/binder ratios, 040 and 0,56. Concretes with the incorporation of 0%, 1%, 5% and 10% of nanosilica colloidal and 10% of active silica were studied. It was used superplasticizer additive only in the concretes with relation water/binder ratio 0,40 and the content to be used was determined by means of a consistency test, being fixed in (230±10) mm. Firstly, the concretes were subjected to tests of resistance to compression and absorption of water by concrete capillarity and, in both, the better results were presented by the concretes with the relation equal to 0,40, with the most efficient use being 10% of nanosilica. Sequentially, the concretes were subjected to durability tests, CO2 action and the attack of chlorides in isolated and combined form. In the accelerated carbonation tests, only the concretes with water / agglomeration relation equals to 0.56 presented a carbonation front, which occurred after 140 days of testing. The greatest advance of the carbonation front was verified in the tracing with the incorporation of 1% of nanosilica and 10% of active silica. In the combined tests, of chloride/accelerated carbonation, it was possible to verify the presence of carbonation front only in the concretes with water / agglomeration relation equals to 0.56, however, the fact happened faster, after 84 days in carbonation chamber. Hence, it can be concluded that the chlorine ions acted accelerating the carbonation process of the concretes. Both in isolated chloride tests and in the combined ones, in all the water / agglomeration relations studied, the use of mineral additives led to a reduction in the penetration depth of chlorine ions, with the addition of 10% of nanosilica being the most efficient. Comparing the isolated and combined tests, it is concluded that the CO2 acted contributing to a smaller advance of the chlorine ions in the concretes studie.eng
dc.description.sponsorshipNão recebi financiamentopor
dc.language.isoporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rights.uriAcesso abertopor
dc.subjectConcretospor
dc.subjectDurabilidadepor
dc.subjectNanosílicapor
dc.subjectCarbonataçãopor
dc.subjectIons cloretopor
dc.subjectAção combinadapor
dc.subjectConcreteseng
dc.subjectDurabilityeng
dc.subjectCarbonationeng
dc.subjectIons chlorideeng
dc.subjectCombined actioneng
dc.titleEstudo de concretos com adição de nanosílica submetidos à ação combinada de cloretos e CO2por
dc.title.alternativeStudy of concrete with addition of nanosilica subjected to the combined action of chlorides and CO2eng
dc.typeDissertaçãopor
dc.contributor.advisor1Ferreira, Fernanda Giannotti da Silva
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0329487394818763por
dc.description.resumoA corrosão de armaduras é uma das manifestações patológicas mais graves que podem afetar as estruturas de concreto armado, sendo os principais agentes agressivos iniciadores da corrosão os íons cloreto e o CO2. Os íons cloreto são capazes de ocasionar a corrosão mesmo em situações nas quais o concreto encontra-se alcalino e a ação do CO2 resulta na carbonatação, que é a responsável pela despassivação das armaduras. O estudo desses agentes agressivos de modo isolado é amplamente explorado, existindo consenso nos resultados obtidos nas pesquisas experimentais. Porém, o estudo da ação combinada é algo mais recente e ainda não existe concordância nos resultados verificados, quanto a influência da ação conjunta desses agentes agressivos na durabilidade das estruturas de concreto armado. Paralelamente a esta questão, existe a necessidade de se obter estruturas de concreto mais duráveis e, para isso, uma das alternativas é a utilização de materiais suplementares ao concreto, entre as mais utilizadas pode-se citar a sílica ativa e mais recentemente, com o avanço da nanotecnologia, a nanosílica. Essas adições minerais promovem o efeito fíler e pozolânico na matriz cimentícia, resultando assim em uma maior durabilidade da estrutura de concreto. Esta pesquisa foi desenvolvida com o objetivo principal de se avaliar o comportamento de concretos com a adição de nanosílica, quando submetidos à ação combinada dos íons cloreto e do CO2. Para isso, foram moldados corpos de prova cilíndricos de concreto, com traço 1:m=3,2 e em duas relações água/aglomerante, 0,40 e 0,56. Foram estudados concretos com a incorporação de 0%, 1%, 5% e 10% de nanosílica coloidal e 10% de sílica ativa. Utilizou-se aditivo superplastificante apenas nos concretos de relação água/aglomerante igual a 0,40 e o teor a ser utilizado foi determinado por meio de ensaio de consistência, sendo fixada em (230 ±10) mm. Os concretos foram submetidos primeiramente a ensaios de resistência à compressão e absorção de água por capilaridade e, em ambos, os ensaios os melhores resultados foram apresentados pelos concretos de relação água/aglomerante igual a 0,40, sendo mais eficiente a utilização 10% de nanosílica em substituição ao cimento. Na sequência, os concretos foram submetidos aos ensaios de durabilidade, carbonatação acelerada e ataque por cloretos de forma isolada e combinada. Nos ensaios isolados de carbonatação acelerada, somente os concretos de relação água/agl igual a 0,56 apresentaram frente de carbonatação, o que ocorreu apenas após 140 dias de ensaio. O maior avanço da frente de carbonatação foi verificada no traço com a incorporação de 1% de nanosílica e 10% de sílica ativa. Nos ensaios combinados, cloretos/ carbonatação acelerada, também só foi possível verificar a presença de frente de carbonatação nos concretos de relação água/aglomerante igual a 0,56, porém isso ocorreu em menos tempo, após 84 dias em câmara de carbonatação. Sendo assim, pode-se concluir que os íons cloreto atuaram acelerando o processo de carbonatação dos concretos. Tanto nos ensaios isolados de cloretos como nos combinados, em ambas as relações água/aglomerante estudadas, a utilização de adições minerais levou a uma redução na profundidade de penetração dos íons cloreto, sendo a adição de 10% de nanosílica a mais eficiente. Comparando-se o ensaio isolado e o combinado, conclui-se que a CO2 atuou contribuindo para um menor avanço dos íons cloreto nos concretos estudados.por
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Civil - PPGECivpor
dc.subject.cnpqENGENHARIAS::ENGENHARIA CIVIL::CONSTRUCAO CIVILpor
dc.subject.cnpqENGENHARIAS::ENGENHARIA CIVIL::ESTRUTURASpor
dc.ufscar.embargoOnlinepor
dc.publisher.addressCâmpus São Carlospor
dc.contributor.authorlatteshttp://lattes.cnpq.br/2040285870215774por


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record