Show simple item record

dc.contributor.authorAndrade, Raíssa Gabrielle Silva Araújo
dc.date.accessioned2020-04-27T12:09:43Z
dc.date.available2020-04-27T12:09:43Z
dc.date.issued2020-02-18
dc.identifier.citationANDRADE, Raíssa Gabrielle Silva Araújo. Precipitador eletrostático: influência das condições operacionais e dos eletrodos de descarga na eficiência de remoção de nanopartículas. 2020. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12470.*
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/12470
dc.description.abstractThe industrial activities are the main cause of the particulate material emission, which results in the elevation of air pollution indices and respiratory diseases. One of the most common types of equipment to reduce emitted particle concentration in the atmosphere is the electrostatic precipitator, for its high versatility and for achieving high collection efficiency. Its operation consists of the air ionization containing the dispersed particles which will be electrically charged by the ions formed and attracted to the collecting electrodes, which reduces the particulate material concentration. The efficiency of electrostatic precipitation depends directly on the operating conditions and the geometrical characteristics of the equipment. In this context, the present study evaluated the influence of the operating conditions such as air velocity (1.03, 2.04 and 4.08 cm/s), electrical field (3.08-3.38 kV/cm) and discharge electrodes on NaCl nanoparticles removal efficiency. The electrostatic precipitator used was a single-stage wire-plate type, with two collecting plates with a height and length of 10 and 30 cm, respectively, spaced 6.5 cm apart. The studies were conducted in 3 steps, step 1 consisted of the discharge electrode number variation (1-4), with a wire diameter of 0.4 mm, spaced apart in 6.5 cm, with NaCl solution concentration of 0.1 and 0.5 g/L. In step 2, the configurations that presented the lowest collection efficiency in step 1 (1 and 2 wire experiments) were selected to compare the results obtained with the experiments performed with a new wire diameter, 0.3 mm, spaced at 6.5 cm. In step 3, the effect of increased wire spacing was analyzed, and the results of the experiments carried out in the previous 2-wire discharge steps, with wire diameters of 0.3 and 0.4 mm, were compared to the obtained data. for both wire diameters, with the new 12 cm spacing. The results proved the precipitator's efficiency in removing nanoparticles and evidenced the negative effect of the velocity increase in particle collection. The electrical field improved the collection efficiencies, due to the higher electric currents. Also, reducing the number of discharge wires impaired particulate collection in most experiments, as fewer emitters reduce the generated electrical current. The data obtained with the wire diameter of 0.3 mm proved the positive effect of the wire diameter reduction in the precipitator efficiency, as well as the increase in the discharge wire spacing. The results were used to determine the most predominant forces in the phenomenon of electrostatic precipitation, for the operating conditions used. From the obtained data, it was identified that the electric forces exerted a greater influence on the particle collection, which was intensified with the increase of the electrical field. In some cases, the same behavior occurred with an increasing number of wires. In contrast, the increase in velocity increased the action of viscous forces. Thus, the data collected showed that the best efficiencies were obtained for the lowest speed, along with the largest electric field, 3.38 kV/cm, and the best performance configuration used 4 discharge wires, with a concentration of 0.1 g/L with 99.99% removal. Finally, a statistical analysis was performed with the main operating conditions of each step, from which it was possible to prove the significant effect of the number of wires and the diameter of the wires, in steps 1 and 2. However, the data analysis of the step 3 showed that the wire spacing was not significant for the 3.08 and 3.38 kV/cm electric fields and had a very small positive effect for the 3.08 and 3.23 kV/cm electric fields.eng
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)por
dc.language.isoporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectPrecipitador eletrostáticopor
dc.subjectNanopartículaspor
dc.subjectEficiência de coletapor
dc.subjectElectrostatic precipitatoreng
dc.subjectNanoparticleseng
dc.subjectCollection efficiencyeng
dc.titlePrecipitador eletrostático: influência das condições operacionais e dos eletrodos de descarga na eficiência de remoção de nanopartículaspor
dc.title.alternativeElectrostatic precipitator: influence of operating conditions and discharge electrodes on the efficiency of nanoparticle removaleng
dc.typeDissertaçãopor
dc.contributor.advisor1Béttega, Vádila Giovana Guerra
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0752059622240208por
dc.description.resumoAs atividades industriais são a principal causa da emissão de material particulado, o que acarreta a elevação dos índices de poluição do ar e doenças respiratórias na população. Um dos equipamentos mais utilizados para redução da concentração das partículas emitidas na natureza é o precipitador eletrostático, pela sua alta versatilidade e por atingir elevada eficiência de coleta. Seu funcionamento consiste em ionizar o ar contendo partículas dispersadas que são carregadas eletricamente pelos íons formados e atraídas para os eletrodos de coleta, reduzindo a concentração de material particulado. A eficiência da precipitação eletrostática depende diretamente das condições operacionais e das características geométricas do equipamento. Com base no que foi exposto, o presente trabalho avaliou a influência das condições operacionais da velocidade do ar (1,03, 2,04 e 4,08 cm/s), do campo elétrico (3,08-3,38 kV/cm) e dos eletrodos de descarga na eficiência de remoção de nanopartículas de NaCl. O precipitador eletrostático utilizado foi do tipo placa-fio de simples estágio, com duas placas coletoras com altura e comprimento de 10 e 30 cm, respectivamente, espaçadas em 6,5 cm. Os estudos foram conduzidos em 3 etapas, a etapa 1 consistiu na variação do número de eletrodos de descarga (1-4), para o diâmetro de fio de 0,4 mm, espaçados em 6,5 cm, com as concentrações da solução de NaCl de 0,1 e 0,5 g/L. Na etapa 2, foram selecionadas as configurações que apresentaram menor eficiência de coleta na etapa 1 (experimentos com 1 e 2 fios), a fim de comparar os resultados obtidos com os experimentos realizados com um novo diâmetro de fio, 0,3 mm, espaçados em 6,5 cm. Na etapa 3, foi analisado o efeito do aumento do espaçamento entre os fios, os resultados dos experimentos realizados nas etapas anteriores com 2 fios de descarga, com os diâmetros de fio de 0,3 e 0,4 mm, foram comparados aos dados obtidos para ambos os diâmetros de fios, com o novo espaçamento de 12 cm. Os resultados comprovaram a eficiência do precipitador em remover nanopartículas, e evidenciaram o efeito negativo do aumento da velocidade na coleta de partículas. O aumento do campo elétrico favoreceu as eficiências de coleta, em decorrência das maiores correntes elétricas. Além disso, a redução do número de fios de descarga prejudicou a coleta de partículas na maior parte dos experimentos, visto que um menor número de emissores reduz a corrente elétrica gerada. Os dados obtidos com o diâmetro de fio de 0,3 mm comprovaram o efeito positivo da redução do diâmetro de fio na eficiência do precipitador, bem como o aumento do espaçamento entre os fios de descarga. Os resultados foram utilizados para determinação das forças de maior predominância no fenômeno da precipitação eletrostática, para as condições operacionais utilizadas. Pelos dados obtidos, foi identificado que as forças elétricas exercem maior influência na coleta de partículas, que são intensificadas com o aumento do campo elétrico. Em alguns casos, o mesmo comportamento ocorreu com o aumento do número de fios. Em contrapartida, o aumento da velocidade elevou a atuação das forças viscosas. Assim, os dados coletados mostraram que as melhores eficiências foram obtidas para a velocidade mais baixa, juntamente com o maior campo elétrico, 3,38 kV/cm, sendo a configuração de melhor desempenho a que utilizou 4 fios de descarga, com a concentração de 0,1 g/L, com 99,99% de remoção. Por fim foi realizada uma análise estatística com as principais condições operacionais de cada etapa, a partir da qual foi possível comprovar o efeito significativo do número de fios e do diâmetro dos fios, nas etapas 1 e 2. Entretanto, a análise dos dados da etapa 3 mostrou que o espaçamento entre os fios não foi significativo para os campos elétricos de 3,08 e 3,38 kV/cm e apresentou um efeito positivo muito pequeno para os campos elétricos de 3,08 e 3,23 kV/cm.por
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Química - PPGEQpor
dc.subject.cnpqENGENHARIAS::ENGENHARIA QUIMICApor
dc.description.sponsorshipIdCNPq: 132829/2018-5por
dc.publisher.addressCâmpus São Carlospor
dc.contributor.authorlatteshttp://lattes.cnpq.br/7711873793019553por


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Brazil
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Brazil