Show simple item record

dc.contributor.authorNakashima, Gabriela Tami
dc.date.accessioned2020-06-30T11:43:28Z
dc.date.available2020-06-30T11:43:28Z
dc.date.issued2020-05-29
dc.identifier.citationNAKASHIMA, Gabriela Tami. Production, soil amendment and sustainability of sugarcane trash biochar. 2020. Tese (Doutorado em Planejamento e Uso de Recursos Renováveis) – Universidade Federal de São Carlos, Sorocaba, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12985.*
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/12985
dc.description.abstractIn the past, sugarcane was harvested manually with the aid of fire to facilitate cutting. And because of the Law of the State of São Paulo n. 11,241, which establishes the end of the use of the burning, the sugarcane trash that was previously burned, today is a residue in the plantations. To add value and give a better destination to this residue, some alternatives for its use as raw material are studied. Biochar is a product of pyrolysis of biomass, rich in carbon, which has qualities as a soil conditioner. Therefore, the objectives of this thesis were: to verify the best conditions (pyrolysis temperature and residence time) for biochar production of sugarcane straw and its characterization (Chapter 2), how the biodegradation of this biochar influences for carbon sequestration (Chapter 3) and check the development of sugarcane seedlings with the addition of percentages of biochar in soil (Chapter 4). To verify the best conditions for biochar production (Chapter 2), 6 treatments with 3 different pyrolysis temperatures and 2 residence times were chosen: 200 °C - 2 hours, 200 °C - 4 hours, 325 °C - 2 hours, 325 °C - 4 hours, 450 °C - 2 hours, 450 ° C - 4 hours. The treatments were submitted to proximate analysis, gravimetric yield, porosity, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy analysis (FTIR), X-ray diffraction analysis (XRD) and hydrophobicity test. For biochar biodegradation (Chapter 3), the treatments were: sugarcane straw in natura, 200 °C - 2 hours, 325 °C - 2 hours, 450 °C - 2 hours. These biochars were characterized by their elemental composition (C - carbon, H - hydrogen, N - nitrogen). The biochar (6.3 g/flask) was incubated in 4 flasks by treatment with characterized soil. The quantification of the gases (CH4, CO2, NO2) was performed to verify the influence of biochar on carbon sequestration will occur in a period of 85 days, one sampling per week. For pot experiment (Chapter 4), the biochar produced at 330 °C - 1 hour was mixed to the soil in different application rates: 0 t ha- 1, 1 t ha-1, 5 t ha-1, 15 t ha-1, 30 t ha-1. It was installed 15 plots per dosage/treatment, totalizing 150 plants. Height and diameter measurements were collected every 20 days for 257 days. At the end of the pot experiment it was obtained the dry mass of the aerial part and roots. The soil used was analyzed chemically before and after the pot experiment. The results of the characterization of the biochar produced by Chapter 2, showed that the pyrolysis temperature was a factor that has more influence on the final characteristics of the biochar than the residence time. In Chapter 3, it was observed that the highest rates of greenhouse gas (GHG) emissions were released by treatments with in natura and with biochar 200 ° C, with treatments at 325 °C and 450 °C being more stable and resistant to biodegradation. In Chapter 4, the incorporation of biochar did not result in improvements in the growth of sugarcane but did influence the increase in the pH of the soil. In general, the 325 °C biochar with 2 hours of residence time showed enough results for its application to the soil. Biochar has also proved to be a viable alternative for reducing GHG emissions.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)por
dc.language.isoengpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectBiocarvãopor
dc.subjectBiocharpor
dc.subjectAplicação no solopor
dc.subjectSoil applicationpor
dc.subjectBiomasspor
dc.subjectBiomassapor
dc.subjectFixador de carbonopor
dc.subjectCarbon fixationpor
dc.titleProduction, soil amendment and sustainability of sugarcane trash biocharpor
dc.title.alternativeProdução, melhorador do solo e sustentabilidade do biochar de palha de cana-de-açúcarpor
dc.typeTesepor
dc.contributor.advisor1Yamaji, Fábio Minoru
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4787449634914831por
dc.contributor.advisor-co1Yamamoto, Hiroyuki
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/7817296537223703por
dc.description.resumoAntigamente, a colheita da cana-de-açúcar era realizada manualmente com auxílio de fogo para facilitar o corte. A Lei do Estado de São Paulo n° 11.241, de 19 de setembro de 2002, que estabeleceu o fim do uso da queima da palha da cana-de-açúcar que, com isso, passou a ser um resíduo nos plantios. Para dar um melhor destino a este resíduo, algumas alternativas estão sendo estudadas como a utilização na produção do biochar. O biochar é um produto da pirólise da biomassa, rico em carbono, que possui qualidades como condicionador do solo. Neste contexto, os objetivos deste estudo foram: verificar as melhores condições (temperatura de pirólise e tempo de residência) para a produção de biochar de palha de cana-de-açúcar e sua caracterização (capítulo 2), como a biodegradação deste biochar influencia no sequestro de carbono (capítulo 3) e o desenvolvimento de mudas de cana-de-açúcar com a adição de porcentagens de biochar aplicados em solo (capítulo 4). Para verificar as melhores condições de produção do biochar (cap.2), foram escolhidos 6 tratamentos, com 3 diferentes temperaturas de pirólise e 2 tempos de residência: 200 °C – 2 horas, 200 °C – 4 horas, 325 °C – 2 horas, 325 °C – 4 horas, 450 °C – 2 horas, 450 °C – 4 horas. Os tratamentos foram submetidos à análise imediata, rendimento gravimétrico, porosidade, análise termogravimétrica (TGA), análise de espectroscopia de infravermelhos com transformadas de Fourier (FTIR), análise de difração de raios-X (DRX) e análise de hidrofobicidade. Para biodegradação do biochar (cap.3) os tratamentos foram: palha de cana-de-açúcar in natura, 200 °C – 2 horas, 325 °C – 2 horas, 450 °C – 2 horas. Estes biochar foram caracterizados pela sua composição elementar (C - carbono, H - hidrogênio, N - nitrogênio). Para verificação da influência do biochar no sequestro de carbono, foram quantificados os gases CH4, CO2 e NO2 durante um período de 85 dias, sendo uma coleta por semana. Para o experimento em vasos (cap. 4), o biochar foi incorporado ao solo em diferentes dosagens, simulando: 0 ton ha-1, 1 ton ha-1, 5 ton ha-1, 15 ton ha-1, 30 ton ha-1. Foram instaladas 15 parcelas para cada dosagem, totalizando 150 plantas (vasos). As medições de altura e diâmetro das canas-de-açúcar foram coletadas a cada 20 dias durante 9 meses. Ao final do experimento, foi obtida a massa seca da parte aérea e das raízes. O solo utilizado foi analisado quimicamente antes e depois do experimento em vasos. Os resultados da caracterização dos biochar produzidos pelo Cap. 2, mostraram que a temperatura de pirólise foi um fator que tem mais influência nas características finais do biochar do que o tempo de residência. No Cap. 3, foi observado que as maiores taxas de emissões de gases do efeito estufa (GEE) foram liberadas pelos tratamentos com a palha in natura e com o biochar 200 °C, sendo os tratamentos a 325 °C e 450 °C mais estáveis e resistentes a biodegradação. No Cap. 4, a incorporação do biochar não resultou em melhoras no crescimento da cana-de-açúcar, mas influenciou no aumento do pH do solo. De um modo geral, o biochar de 325 °C com 2 horas de tempo de residência apresentou resultados suficientes para sua aplicação no solo. O biochar ainda se mostrou uma alternativa viável para a redução da emissão de GEE.por
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-Graduação em Planejamento e Uso de Recursos Renováveis - PPGPUR-Sopor
dc.subject.cnpqCIENCIAS AGRARIAS::AGRONOMIA::CIENCIA DO SOLO::FERTILIDADE DO SOLO E ADUBACAOpor
dc.subject.cnpqCIENCIAS AGRARIAS::ENGENHARIA AGRICOLApor
dc.subject.cnpqCIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTALpor
dc.description.sponsorshipId88882.427071/2019-01por
dc.description.sponsorshipId88881.132475/2016-01por
dc.description.sponsorshipId001por
dc.publisher.addressCâmpus Sorocabapor
dc.contributor.authorlatteshttp://lattes.cnpq.br/6568518277464223por


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Brazil
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Brazil