Show simple item record

dc.contributor.authorSilva, Alisson Henrique Marques da
dc.date.accessioned2020-10-07T14:36:45Z
dc.date.available2020-10-07T14:36:45Z
dc.date.issued2020-08-25
dc.identifier.citationSILVA, Alisson Henrique Marques da. Síntese de compostos C2+ a partir de CO2 e H2O aplicando materiais de Cu e Cu-Zn: estudos na catálise heterogênea em fase gasosa e eletrocatálise. 2020. Tese (Doutorado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/13325.*
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/13325
dc.description.abstractStrategies aimed at recycling of CO2 in producing chemicals and fuels are needed to reduce the environmental impacts caused by this gas and attend the industrial interests. Among the all applied strategies, we highlight those that include gas-phase catalysis and electrocatalysis. Through catalysis and electrocatalysis it is possible to produce chemicals with high industrial applicability, such as liquid fuels and other molecules containing two or more carbons (C2+ compounds) from CO2. In the electrochemical system, the synthesis of C2+ compounds are extensively investigated by applying pure Cu and Cu-based electrodes (eg CuZn, CuAu and CuAg). In this system, applying an electric potential and providing up of an CO2-saturated aqueous solution (containing ion conductors - electrolyte), Cu-based electrode can be produced, among others, ethylene, ethanol, and propanol. On the other hand, in the gas phase catalytic system, applying temperature, pressure and Cu-based catalysts, the hydrogenation of CO2 with H2 results only in C1 compounds (methanol, CO, and CH4). Many questions arise about these differences, such as the why in the electrocatalytic system C2+ compounds can be formed while in the gas phase catalytic system these compounds are not identified. One of the differences between both systems is the use of water as a source of atomic H in the electrochemical system whereas H2 is used in the gaseous system. Since water can play an important role in the synthesis of C2+ compounds, this work aimed investigate the synthesis of C2+ compounds from CO2 with water by applying Cu and Cu-Zn based catalysts in the electrocatalytic and gas phase catalytic systems. Regarding the electrocatalytic results, it was possible to show that the distribution of C2+ products was influenced by the surface metallic area of the electrode, the composition of Cu-Zn and by the geometry of the particles exposed in the electrodes. However, although the increase in surface roughness and changes in chemical composition have led to a higher faradaic efficiency for C2+ compounds, the production of these molecules was more strongly influenced by the nanoparticle geometry exposed in the electrodes. In the gas-phase catalytic system, CO2 hydrogenation with water steam at atmospheric pressure over pure Cu resulted in the formation of ethanol (a result not observed when the CO2 hydrogenation with H2 was performed). For the first time, it is reported the possibility of synthesizing ethanol at atmospheric pressure in the CO2 hydrogenation in gas-phase using water as unique source of hydrogen. The ethanol productivity was investigated under different conditions and it was shown to be impacted by the reaction temperature, Cu surface area, particle geometry, stability, and catalyst composition. Cu/ZnO/Al2O3 and X-Cu/ZnO/Al2O3 (X = Li, Na, K or Cs) were also investigated in the CO2 hydrogenation with water steam and, by chemometric optimization, it was possible to show that the increase in size of the cation added to the catalyst is a more significant variable than the temperature in ethanol productivity. The role of water was evaluated by DRIFTS tests and it was possible to show that the wavenumbers referring to the adsorption of CO at Cu sites, pointed out as a key intermediary of the reaction, was lower in the presence of water than when in the presence of H2. This result suggest that the C-O bond of the adsorbate attached to the metal surface has been weakened in the presence of water while the carbon-metal bond has been strengthened. Therefore, these compounds are more likely to continue reacting rather than desorbing as reaction products. This result may explain why C2+ compounds are observed in the presence of water while only C1 compounds are identified in the presence of H2. Finally, it is believed that the results obtained in this work have an impact not only on studies at a fundamental level with regard to the hydrogenation of CO2 in gas-phase, but also have the potential for direct applications in industry.eng
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)por
dc.language.isoporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectHidrogenação de CO2por
dc.subjectRedução de CO2por
dc.subjectCO2 hydrogenationeng
dc.subjectCO2 reductioneng
dc.subjectCueng
dc.titleSíntese de compostos C2+ a partir de CO2 e H2O aplicando materiais de Cu e Cu-Zn: estudos na catálise heterogênea em fase gasosa e eletrocatálisepor
dc.title.alternativeSynthesis of C2 + compounds from CO2 and H2O using Cu and Cu-Zn materials: studies in heterogeneous catalysis in gas-phase and electrocatalysiseng
dc.typeTesepor
dc.contributor.advisor1Assaf, José Mansur
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9563312407691130por
dc.contributor.advisor-co1Gomes, Janaina Fernandes
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/6718634914051168por
dc.description.resumoEstratégias que buscam a reciclagem do CO2 para a produção de insumos químicos são necessárias para reduzir os impactos ambientais causados por esse gás e, ao mesmo tempo, atender aos interesses industriais. Dentre as estratégias propostas, aquelas que incluem a catálise em fase gasosa e a eletrocatálise se destacam, pois através delas é possível produzir, a partir do CO2, combustíveis líquidos e outras moléculas contendo dois ou mais carbonos (compostos C2+) que são de alta aplicabilidade industrial. No sistema eletroquímico, a síntese de compostos C2+ é vastamente investigada aplicando-se Cu puro e eletrodos à base de Cu (ex.: CuZn, CuAu e CuAg). Nesse sistema, aplicando-se um potencial elétrico e dispondo-se de uma solução aquosa (contendo íons condutores – solução eletrolítica) saturada com CO2 e na presença de um eletrodo à base de Cu, pode-se produzir, por exemplo, eteno, etanol e propanol. Por outro lado, no sistema catalítico em fase gasosa, aplicando-se temperatura, pressão e catalisadores à base de Cu, a hidrogenação de CO2 com H2 resulta apenas à compostos C1 (metanol, CO e CH4). Muitas questões surgem acerca dessas diferenças observadas como, por exemplo, o porquê que no sistema eletrocatalítico os compostos C2+ podem ser formados enquanto que no sistema catalítico em fase gasosa esses compostos não são identificados. Uma das diferenças entre ambos os sistemas é a utilização da água como fonte de H atômico no sistema eletroquímico ao passo que H2 é utilizado no sistema gasoso. Visto que a água pode ter um papel importante na síntese dos compostos C2+, este trabalho teve como objetivo principal investigar a síntese de compostos C2+ a partir da conversão do CO2 com água aplicando-se catalisadores à base de Cu e Cu-Zn no sistema eletrocatalítico e no sistema catalítico em fase gasosa. Em relação aos resultados eletrocatalíticos, pôde-se mostrar que a distribuição dos produtos C2+ foi influenciada pela área metálica exposta do eletrodo, composição do Cu-Zn e pela geometria das partículas expostas nos eletrodos. Entretanto, embora o aumento da rugosidade superficial e mudanças na composição química tenham levado a uma maior eficiência faradaica à formação de compostos C2+, a produção destas moléculas foi mais fortemente influenciada pela geometria da partícula exposta nos eletrodos. No sistema catalítico em fase gasosa, a hidrogenação de CO2 com vapor de água à pressão atmosférica sobre Cu puro resultou na formação de etanol (resultado não observado quando realizada a hidrogenação de CO2 com H2). Pela primeira vez reporta-se a possibilidade de sintetizar etanol na hidrogenação do CO2 em fase gasosa, à pressão atmosférica, utilizando-se água como fonte única de hidrogênio sobre Cu puro. A produtividade a etanol foi investigada em diferentes condições e ela se mostrou impactada pela temperatura de reação, área de Cu, geometria da partícula, estabilidade e composição do catalisador. Cu/ZnO/Al2O3 e X-Cu/ZnO/Al2O3 (X = Li, Na, K ou Cs) também foram investigados na hidrogenação de CO2 com vapor de água e, por otimização quimiométrica, pôde-se mostrar que o aumento do tamanho do cátion adicionado ao catalisador é uma variável mais significativa que a temperatura na produtividade a etanol. O papel da água foi avaliado por ensaios DRIFTS e pôde-se mostrar que os números de onda referentes à adsorção de CO em sítios de Cu, apontado como um intermediário chave da reação, foi menor na presença de água que quando na presença de H2. Esse resultado indica que a ligação C-O do adsorbato ligado à superfície do metal foi enfraquecida na presença de água enquanto a ligação carbono-metal foi fortalecida e, desta forma, estes compostos são mais susceptíveis a continuar reagindo ao invés de se dessorverem como produtos de reação. Esse resultado pode explicar porque compostos C2+ são observados na presença de água enquanto somente compostos C1 são identificados na presença de H2. Por fim, acredita-se que os resultados obtidos neste trabalho impactam não só em estudos a nível fundamental no que se refere à hidrogenação do CO2 em fase gasosa, mas também tem potencial para aplicações diretas na indústria.por
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Química - PPGEQpor
dc.subject.cnpqENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICApor
dc.subject.cnpqENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICApor
dc.description.sponsorshipIdCNPq: 141482/2016-8por
dc.description.sponsorshipIdCAPES/PDSE:88881.189108/2018-01por
dc.publisher.addressCâmpus São Carlospor
dc.contributor.authorlatteshttp://lattes.cnpq.br/7696132500255779por


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Brazil
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Brazil