Mostrar el registro sencillo del ítem

dc.contributor.authorCosta, Alexandre
dc.date.accessioned2023-02-24T11:19:31Z
dc.date.available2023-02-24T11:19:31Z
dc.date.issued2020-08-03
dc.identifier.citationCOSTA, Alexandre. Estudo teórico de nano sistemas de azulenos: azulfenos, ANTs, poliazulenos e polinaftalenos. 2020. Tese (Doutorado em Química) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17412.*
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/17412
dc.description.abstractAzulene-based nanographene-like materials are predicted and studied to reveal the molecular properties of these new materials. C48H18/(G-48), C68H22/(G-68), and C88H26/(G-88) nanographenes and their isomers based on azulene molecule (azulphene) as A-48, A-68, and A-88 were studied to infer general properties for large azulphene systems. Nanotubes from azulphenes are also obtained and studied. The isoelectronic graphene and azulphene materials have significant differences concerning, e.g., electric dipole, aromaticity, bond length, and bond stress. In the present studies, it was used the Density Functional Theory (DFT) and including the version of Grimme´s D dispersion for the different spin multiplicities: singlet close-shell (CS) and open-shell (OS), triplet, and quintet. For example, the ground-state of A-(48-68-88) structures is a singlet. The UV-visible spectra of all compounds exhibit maximum absorption peaks attributed to the electronic transition π→π*. The IR spectrum of G-88 and A-88 shows an intense set of absorption peaks in the range [600:1700 cm-1]. The following IR frequencies could be used as an indicator of azulphene structures: 1124, 1162, 1436, 1542, and 1597 cm-1. The azulphene sheets have a non-uniform distribution of the electron density, unlike graphene systems, which makes them promising candidates for regioselective chemical modification. The nucleus independent chemical shift calculations show that the five-membered rings are aromatic, and the seven-membered rings are anti-aromatic similar to azulene molecule. Our study also showed that smaller diameter tubes based on azulene (C57NTs) might be more stable than their conventional C6NTs isomer. The geometries, the electronic structures and the aromaticity of the [n]-azulene and [n]-naphthalene polymers were studied, by using the Density Functional Theory (DFT) and the Møller–Plesset (MP2) Pertubation Theory, for the different multiplicities (M=2S+1): singlet (S=0, closed and open shell), triplet (S=1) and quintet (S=2). The ground-states of the [n]-azulene polymers were a singlet (closed shell) for any values of n (n≤10). The ground-states of the [n]-naphthalene polymers were a singlet (closed shell) for n≤6 and triplet for 7≤n≤10. The electric dipole moment of the odd [n]-azulene polymers varied with the length of the polymer chain, while exhibiting a local minimum for [5]-azulene. The dipole of the even [n]-azulene and the (even and odd) [n]-naphthalene polymers were null by symmetry, essentially as a result of the non-polar structure of the azulene dimer and the benzene molecule. The [n]-azulene polymers could be considered as semiconductors, since for the large chain, the HOMO-LUMO gap was estimated at 0.70 eV. The large naphthalene polymers perhaps reached zero gaps. All of the polymers had electronic transition peaks in the visible region and their maximum was red-shifted for the increasing chains. The nucleus independent chemical shift (NICS) calculations have shown that ring tension was an important factor in the aromaticity loss, as shown, for example, for the flat, the cycle, and the Möbius strip [20]-polymers. The Aromatic Stabilization Energies (ASEs) that were based on the homodesmotic and isodesmic reactions were also obtained.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)por
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)por
dc.language.isoporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectPoliazulenospor
dc.subjectPolinaftalenospor
dc.subjectGrafenopor
dc.subjectNanotubos de carbonopor
dc.subjectDefeitos de Stone-Walespor
dc.subjectAromaticidadepor
dc.subjectPolyazuleneseng
dc.subjectPolynaphthaleneseng
dc.subjectGrapheneeng
dc.subjectCarbon nanotubeseng
dc.subjectStone–Wales Defectseng
dc.subjectAromaticityeng
dc.titleEstudo teórico de nano sistemas de azulenos: azulfenos, ANTs, poliazulenos e polinaftalenospor
dc.title.alternativeTheoretical study of nano azulene systems: azulphenes, ANTs, polyazulenes and polynaphthaleneseng
dc.typeTesepor
dc.contributor.advisor1Lopez Castillo, Alejandro
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2599181118729458por
dc.description.resumoOs materiais do tipo nanografeno à base de azuleno são previstos e estudados para revelar as propriedades moleculares desses novos materiais. Foram estudados os nanografenos C48H18/(G-48),C68H22 /(G-68) e C88H26/(G-88) e seus isômeros baseados na molécula de azuleno (azulfeno) como A-48, A-68 e A-88 afim de inferir propriedades gerais para sistemas maiores de azulfeno. Nanotubos de azulfenos também foram obtidos e estudados. Os materiais isoeletrônicos de grafeno e azulfeno apresentam diferenças significativas em relação, por exemplo, dipolo elétrico, aromaticidade, comprimento da ligação e tensão da ligação. Nos presentes estudos, utilizou-se a Teoria Funcional da Densidade (DFT) e incluiu a versão da dispersão de Grimme para as diferentes multiplicidades de spin: singleto camada fechada (CS) e camada aberta (OS), tripleto e quinteto. Por exemplo, o estado fundamental das estruturas A-(48-68-88) foram singleto. Os espectros UV-vis de todos os compostos exibem picos máximos de absorção atribuídos à transição eletrônica π → π *. O espectro de IR dos G-88 e A-88 mostra um conjunto intenso de picos de absorção no intervalo [600: 1700 cm-1]. As seguintes frequências de IV podem ser usadas como um indicador das estruturas de azulfeno: 1124, 1162, 1436, 1542 e 1597 cm-1. As folhas de azulfeno têm uma distribuição não uniforme da densidade de elétrons, diferentemente dos sistemas de grafeno, o que os torna candidatos promissores à modificação química regioseletiva. Os cálculos de deslocamento químico independente do núcleo mostram que os anéis de cinco membros são aromáticos e os anéis de sete membros são anti-aromáticos semelhantes à molécula de azuleno. Nosso estudo também mostrou que tubos de menor diâmetro à base de azuleno (C57NTs) podem ser mais estáveis do que seu isômero C6NTs convencional. As geometrias, as estruturas eletrônicas e a aromaticidade dos polímeros [n] -azuleno e [n]-naftaleno foram estudadas usando a Teoria Funcional da Densidade (DFT) e a Teoria da Pertubação de Møller – Plesset (MP2), para as diferentes multiplicidades (M =2S+1): singleto (S=0, camada fechada e aberta), tripleto (S=1) e quinteto (S=2). Os estados fundamentais dos polímeros [n]-azuleno foram um singleto (camada fechada) para quaisquer valores de n (n≤10). Os estados fundamentais dos polímeros de [n]-naftaleno foram um singleto (camada fechado) para n≤6 e tripleto para 7≤n≤10. O momento dipolo elétrico dos polímeros ímpares de [n]-azuleno variou com o comprimento da cadeia polimérica, enquanto exibia um mínimo local para [5]-azuleno. O dipolo do polímero [n]-azuleno par e dos polímeros [n]-naftaleno (pares e ímpares) foram nulo por simetria, essencialmente como resultado da estrutura não polar do dímero de azuleno e da molécula de benzeno. Os polímeros de [n]-azuleno podem ser considerados semicondutores, uma vez que para uma cadeia maior o gap HOMO-LUMO foi estimado em 0,70 eV. Os polímeros maiores de naftaleno talvez atingem gaps zero. Todos os polímeros têm picos de transição eletrônica na região visível e seu máximo foi desviado para o vermelho para as cadeias maiores. Os cálculos do deslocamento químico independente do núcleo (NICS) mostraram que a tensão do anel foi um fator importante na perda da aromaticidade, como mostrado, por exemplo, para os polímeros planos, ciclo e da fita de Möbius [20]. As Energias de Estabilização Aromáticas de (ASEs) que foram baseadas nas reações homodesmóticas e isodósmicas também foram obtidas.por
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-Graduação em Química - PPGQpor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICA::QUIMICA TEORICApor
dc.description.sponsorshipIdCAPES: Código de financiamento 001por
dc.description.sponsorshipId2010/11385-2 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)por
dc.publisher.addressCâmpus São Carlospor
dc.contributor.authorlatteshttp://lattes.cnpq.br/4811445469385118por


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivs 3.0 Brazil
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivs 3.0 Brazil