Show simple item record

dc.contributor.authorSantana, Diego de Araujo
dc.date.accessioned2023-05-09T18:40:45Z
dc.date.available2023-05-09T18:40:45Z
dc.date.issued2023-03-22
dc.identifier.citationSANTANA, Diego de Araujo. Design, processing, and characterization of high strength precipitation-hardened CrCoNiAlTi high entropy alloys. 2023. Tese (Doutorado em Ciência e Engenharia de Materiais) – Universidade Federal de São Carlos, São Carlos, 2023. Disponível em: https://repositorio.ufscar.br/handle/ufscar/17986.*
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/17986
dc.description.abstractHigh Entropy Alloys (HEAs) have been attracting considerable interest in literature. While early studies focused on producing single-phase HEAs, more recent investigations have expanded to multi-phase compositions to take advantage of precipitation hardening or other benefits of having multiple phases in the microstructure. In this work, two approaches were used to design precipitation-hardened HEAs with an FCC matrix and L12 precipitates. In the first approach, the focus was to introduce L12 precipitates into a highly concentrated Cr-Co-Ni matrix. The Cr29.7Co29.7Ni35.4Al4.0Ti1.2 (at. %) alloy was designed using the CALPHAD method by replacing some Cr, Co, and Ni with Al and Ti, so that an FCC+L12 field was stable at high temperatures. This alloy was produced, processed, and characterized. The results showed that the precipitates were effective in increasing the yield stress of the alloy by about ~55% compared to its homogenized counterpart. Moreover, this approach yielded insights for designing new precipitation-hardened HEAs with optimized strength. In this context, a second approach was proposed to effectively explore the large compositional landscape typical of these multi-component systems and design strong HEAs with an FCC matrix and L12 precipitates. Specifically, thermodynamic calculations using the CALPHAD method were used to screen a series of Cr-Co-Ni-Al-Ti alloys. A total of 11235 compositions was analyzed. After applying specific filtering criteria, the remaining alloys had their solid solution hardening and maximum precipitation hardening contributions to yield strength estimated. To assess the effectiveness of the proposed methodology, three alloys were selected, processed, and characterized using various microstructural and mechanical characterization techniques. The good qualitative agreement between the results and predictions suggests that the approach taken in this study has the potential to significantly expedite the identification and development of new precipitation-hardened alloys with optimized mechanical properties, making it a promising pathway for future research.eng
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)por
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)por
dc.language.isoengpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectHigh entropy alloyseng
dc.subjectSuperalloyseng
dc.subjectPrecipitation hardeningeng
dc.subjectLigas de alta entropiapor
dc.subjectSuperligaspor
dc.subjectEndurecimento por precipitaçãopor
dc.titleDesign, processing, and characterization of high strength precipitation-hardened CrCoNiAlTi high entropy alloyseng
dc.title.alternativeDesenvolvimento, processamento e caracterização de ligas de alta entropia CrCoNiAlTi de alta resistência endurecidas por precipitaçãopor
dc.typeTesepor
dc.contributor.advisor1Coury, Francisco Gil
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8609825406277730por
dc.contributor.advisor-co1Kiminami, Claudio Shyinti
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/5443002033733395por
dc.description.resumoLigas de alta entropia (LAE) têm despertado considerável interesse na literatura. Enquanto estudos iniciais focaram na produção de LEA monofásicas, trabalhos mais recentes expandiram-se para composições multifásicas para possibilitar o endurecimento por precipitação ou outros benefícios de ter múltiplas segunda fases na microestrutura. Neste trabalho, duas abordagens foram utilizadas para desenvolver LAE endurecidas por precipitação com uma matriz CFC e precipitados L12. Na primeira abordagem, o foco foi introduzir precipitados L12 em uma matriz Cr-Co-Ni altamente concentrada. A liga Cr29.7Co29.7Ni35.4Al4.0Ti1.2 (%at.) foi projetada usando o método CALPHAD, substituindo parte de Cr, Co e Ni por Al e Ti, de modo que um campo CFC + L12 fosse estável em altas temperaturas. Essa liga foi produzida, processada e caracterizada. Os resultados mostraram que os precipitados foram eficazes em aumentar o limite de escoamento da liga em cerca de ~55% em comparação com sua contraparte homogeneizada. Além disso, essa abordagem proporcionou ideias para o desenvolvimento de novas LAE endurecidas por precipitação com resistência mecânica otimizada. Nesse contexto, uma segunda abordagem foi proposta para explorar efetivamente o vasto espaço composicional típico desses sistemas multi-componentes e desenvolver LAE resistentes com matriz CFC e precipitados L12. Especificamente, cálculos termodinâmicos usando o método CALPHAD foram usados para varrer uma série de ligas do Sistema Cr-Co-Ni-Al-Ti. Um total de 11235 composições foi analisado. Após aplicação de alguns critérios de filtragem, as ligas restantes tiveram seu endurecimento por solução sólida e as contribuição máxima de endurecimento por precipitação para o limite de escoamento estimados. Para avaliar a eficácia da metodologia proposta, três ligas foram selecionadas, processadas e caracterizadas usando várias técnicas de caracterização microestrutural e mecânica. A boa concordância qualitativa entre os resultados e as previsões sugere que a abordagem adotada neste estudo tem o potencial de acelerar significativamente a identificação e o desenvolvimento de novas ligas endurecidas por precipitação com propriedades mecânicas otimizadas, tornando-se um caminho promissor para pesquisas futuras.por
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEMpor
dc.subject.cnpqENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICApor
dc.description.sponsorshipIdProcesso nº 2018/26390-3, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)por
dc.description.sponsorshipIdProcesso nº 2021/10997-9, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)por
dc.description.sponsorshipIdProcesso nº 167552/2018-0, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)por
dc.publisher.addressCâmpus São Carlospor
dc.contributor.authorlatteshttp://lattes.cnpq.br/0359964830012097por
dc.contributor.authororcidhttps://orcid.org/0000-0002-0362-2150por
dc.contributor.advisor1orcidhttps://orcid.org/0000-0002-0457-2087por
dc.contributor.advisor-co1orcidhttps://orcid.org/0000-0001-8231-7316por


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Brazil
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Brazil