Mostrar el registro sencillo del ítem

dc.contributor.authorOrzari, Luiz Otávio
dc.date.accessioned2024-10-04T14:10:52Z
dc.date.available2024-10-04T14:10:52Z
dc.date.issued2024-07-26
dc.identifier.citationORZARI, Luiz Otávio. (Nano)partículas metálicas para diferentes arquiteturas de dispositivos eletroquímicos. 2024. Tese (Doutorado em Ciência dos Materiais) – Universidade Federal de São Carlos, Sorocaba, 2024. Disponível em: https://repositorio.ufscar.br/handle/ufscar/20728.*
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/20728
dc.description.abstractIn this doctoral thesis, new architectures of electrochemical systems for fuel cells, sensors and biosensors were developed. To this end, various methodologies for adding metallic particles to the surface of the working electrode were explored, following characterizations and investigations into their behavior and subsequent applications in energy efficiency and/or determination of analytes. Firstly, a multifunctional device was developed, exploring the combination of fuel cells with electrochemical sensing, in a single system. To this end, compositions of carbon-supported electrocatalysts were investigated, involving the metals Pd, Ag and Bi. In the ethanol oxidation reaction, the Pd50Ag45Bi05/C catalyst demonstrated interesting behavior and cost-efficiency, being subsequently used for the determination of dopamine in synthetic urine samples. Two analytical curves were obtained for the sensor: one involving the direct oxidation of dopamine from 4.0 to 40 µmol L−1, with a detection limit (LOD) equal to 0.035 µmol L−1; and another, due to the complexation that occurs between catecholamines and metal surfaces, from 0.2 to 1.0 µmol L−1, with a LOD of 0.14 µmol L−1. The second device is an electrochemical sensor and immunosensor, in which Pd nanoparticles were electrodeposited on the surface of the working electrode. To this end, a new conductive carbon black and polyvinyl acetate ink was developed to manufacture the three-electrode system. With the aid of Design of Experiments, the parameters for metal deposition were investigated and the sensor was applied to determine epinephrine in synthetic cerebrospinal fluid samples. Afterwards, the sensor was modified with cysteamine and glutaraldehyde for proper immobilization of Anti--synuclein. The biosensor was then used to construct a calibration curve of -synuclein phosphate buffer, with a linear range between 1.5 and 15 g mL−1 (LOD = 0.13 g mL−1) and in samples of human blood serum, in a linear range of 6.0 and 100.5 g mL−1 (LOD = 1.31 g mL−1), by electrochemical impedance spectroscopy, demonstrating its efficiency in more complex environments. The third system involved the use of Au microflowers electrodeposited on the surface of the previously developed conductive ink, to increase the capacitance response of the material. Design of Experiments was used to optimize the conditions of the self-assembled layers for biosensor modification. Once the best working conditions were defined, non-faradaic electrochemical impedance spectroscopy was used to find a linear range between capacitance and PARK7/DJ-1 concentration, corresponding to the region of 20 to 120 ng mL−1. The LOD obtained for this system was 0.207 ng mL−1. The device was then applied to a fortified synthetic cerebrospinal fluid sample, where it showed attractive responses using the spike and recovery method. Finally, a last device was developedfor the oxidation of ethanol, seeking to combine the properties of Au and Bi to produce a more attractive device for catalytic processes. Full factorial and Doehlert matrix designs were used to find an optimal composition between the metals. An extensive morphological and electrochemical characterization was carried out, seeking to understand the behavior of the conductive ink modified with each of the metals separately, as well as with their mixture. Considered a less efficient catalyst due to its high chemical stability, Au becomes much more efficient in synergy with low concentrations of Bi, but the material does not have complete regeneration of its surface, being more suitable for processes in which current generation must be high in a short space of time.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)por
dc.language.isoporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectPartículas Metálicaspor
dc.subjectSensor Eletroquímicopor
dc.subjectBiossensor Eletroquímicopor
dc.subjectCélula à Combustívelpor
dc.subjectPlanejamento de Experimentospor
dc.subjectEletrodeposição de Metaispor
dc.subjectMetallic Particlesen
dc.subjectElectrochemical Sensoren
dc.subjectElectrochemical Biosensoren
dc.subjectFuel Cellen
dc.subjectMetal Electrodepositionen
dc.title(Nano)partículas metálicas para diferentes arquiteturas de dispositivos eletroquímicospor
dc.title.alternativeMetallic (nano)particles for different electrochemical devices architecturesen
dc.typeTesepor
dc.contributor.advisor1Janegitz, Bruno Campos
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7746094938977989por
dc.description.resumoNa presente tese de doutorado foram desenvolvidas novas arquiteturas de sistemas eletroquímicos para células à combustível, sensores e biossensores. Para isso, variadas metodologias para a adição de partículas metálicas sobre a superfície do eletrodo de trabalho foram exploradas, dando sequência a caracterizações e investigações sobre seus comportamentos e posteriores aplicações em desempenho energético e/ou determinação de analitos. Primeiramente, um dispositivo de intuito multifuncional foi desenvolvido, explorando-se unir o uso em células a combustível com sensoriamento eletroquímico, num único sistema. Para tanto, composições de eletrocatalisadores suportados em carbono foram investigadas, envolvendo os metais Pd, Ag e Bi. Na reação de oxidação de etanol, o catalisador Pd50Ag45Bi05/C demonstrou interessante comportamento e custo-benefício, sendo utilizado posteriormente para a determinação de dopamina em amostras de urina sintética. Duas curvas analíticas foram obtidas para o sensor: uma envolvendo a oxidação direta da dopamina de 4,0 a 40 µmol L−1, com limite de detecção (LOD) igual a 0,035 µmol L−1; e outra, devido à complexação que ocorre entre catecolaminas e superfícies metálicas, de 0,2 a 1,0 µmol L−1, com LOD de 0,14 µmol L−1. O segundo dispositivo se trata de um sensor e imunossensor eletroquímico, em que nanopartículas de Pd foram eletrodepositadas à superfície do eletrodo de trabalho. Para tanto, uma nova tinta condutora de negro de fumo e poliacetato de vinila foi desenvolvida para a confecção do sistema de três eletrodos. Com o auxílio de Planejamento de Experimentos, os parâmetros para a deposição do metal foram investigados e o sensor foi aplicado para a determinação de epinefrina em amostras de líquido cerebrospinal sintético. Após, o sensor foi modificado com cisteamina e glutaraldeído para devida imobilização de Anti--sinucleína. O biossensor foi então utilizado para a construção de uma curva de calibração de -sinucleína tampão fosfato, com faixa linear entre 1,5 e 15 g mL−1 (LOD = 0,13 g mL−1) e em amostras de soro de sangue humano, numa faixa linear de 6,0 e 100,5 g mL−1 (LOD = 1,31 g mL−1), por espetroscopia de impedância eletroquímica, demonstrando sua eficiência em ambientes mais complexos. O terceiro sistema envolveu o uso de microflores de Au eletrodepositadas sobre a superfície da tinta condutora desenvolvida anteriormente, para incrementar a resposta de capacitância do material. Planejamento de Experimentos foi empregado para otimizar as condições das camadas automontadas para a modificação embiossensor. Definidas as melhores condições de trabalho, espectroscopia de impedância eletroquímica não faradáica foi utilizada para encontrar uma faixa linear entre capacitância e a concentração de PARK7/DJ-1, correspondente à região de 20 a 120 ng mL−1. O LOD obtido para este sistema foi de 0,207 ng mL−1. O dispositivo foi então aplicado em amostra de líquido cerebrospinal sintético fortificado, onde apresentou atrativas respostas pelo método de adição e recuperação. Por fim, um último dispositivo foi desenvolvido para a oxidação de etanol, buscando-se combinar as propriedades de Au e Bi para o desenvolvimento de um dispositivo mais atraente em processos catalíticos. Planejamento fatorial completo e de Doehlert foram empregados para encontrar uma composição ótima entre os metais. Uma extensa caracterização morfológica e eletroquímica foi efetuada, buscando-se entender os comportamentos da tinta condutora modificada com cada um dos metais, bem como com a mistura deles. Tido como um catalisador menos eficiente pela sua alta estabilidade, o Au se torna muito mais eficiente em sinergia com baixas concentrações de Bi, mas o material não possui uma completa regeneração de sua superfície, sendo mais indicado para processos em que a geração de corrente seja alta, em pouco espaço de tempo.por
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-Graduação em Ciência dos Materiais - PPGCM-Sopor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::QUIMICApor
dc.description.sponsorshipId2019/23342-0por
dc.description.sponsorshipId2022/13157-4por
dc.publisher.addressCâmpus Sorocabapor
dc.contributor.authorlatteshttp://lattes.cnpq.br/3384547719546332por
dc.contributor.advisor-co1orcidhttps://orcid.org/0000-0001-9707-9795por


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivs 3.0 Brazil
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivs 3.0 Brazil