Show simple item record

dc.contributor.authorSuarez, Carlos Alberto Galeano
dc.date.accessioned2016-06-02T19:55:39Z
dc.date.available2014-07-31
dc.date.available2016-06-02T19:55:39Z
dc.date.issued2014-02-27
dc.identifier.citationSUAREZ, Carlos Alberto Galeano. Otimização da produção de etanol 2G a partir de hexoses e pentoses. 2014. 165 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2014.por
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/3950
dc.description.abstractThe industrial production of fuel ethanol and sugar generates the main byproduct of sugarcane bagasse, which is burned in boilers for power generation. However, as a lignocellulosic material (consisting basically of three polymers: cellulose, hemicellulose and lignin), bagasse can be reused for the production of second generation bioethanol (2G), which is a renewable and environmentally friendly biofuel. For industrial 2G bioethanol production becomes economically feasible, the use of all fermentable fractions present in the bagasse is required: C6 fraction (cellulose) and C5 fraction (hemicellulose). These fractions are subjected to hydrolysis processes that generate as main sugars glucose and xylose respectively. It is important, therefore, that the microorganism employed for the production of ethanol 2G is able to utilize all the sugars generated during the hydrolysis process. In this work we chose the yeast Saccharomyces cerevisiae to be the main microorganism used in the industrial production of ethanol, although unfortunately, this yeast is unable to ferment xylose. However, while S. cerevisiae does not use xylose, can ferment xylulose obtained by isomerization of xylose by the enzyme glucose isomerase. The objective of this study was to develop and evaluate technological alternatives for the production of ethanol 2G from hexoses and pentoses using wild S. cerevisiae. In relation to the C6 fraction, in this work two important aspects have been addressed: i) study of the operation regime of a fed-batch reactor enzymatic hydrolysis of the C6 fraction of bagasse from sugarcane, yielding values of final glucose concentration of 200 g.L-1, higher than 45 g.L-1 achieved in batch reactor; ii) kinetic modeling of complex systems (enzymatic hydrolysis of lignocellulosic substrates), in which an interpolator was developed using fuzzy logic as an important tool to represent the processes of enzymatic hydrolysis of lignocellulosic materials for rugged and reliable manner. Now, in relation to the C5 fraction initially applied simple techniques of Evolutionary Engineering, leading to the selection of a different strain of S. cerevisiae, adapted to assimilate xylulose in minimal medium and characterized by reduced formation of xylitol, which demonstrated a selectivity of ~7 getanol.gxilitol -1, significantly higher than the selectivity achieved by the wild strain of ~2 getanol.gxilitol -1. The selected strain was studied in batch cultures conducted in bench scale reactor under different conditions of oxygen limitation. It was found that the production of ethanol is favored over the formation of xylitol, keeping the flow of consumed xylulose above 0,5 mmol.gMS -1.h-1 for flow of oxygen consumption of 0.1 mmol.gMS -1.h-1, reaching in this condition selectivities around 4 getanol.gxilitol -1. For zero flow of oxygen (anaerobic culture) or above 0,3 mmol.gMS -1.h-1, ethanol production is drastically reduced , regardless of the flow xylulose assimilated by the cells.eng
dc.description.sponsorshipUniversidade Federal de Sao Carlos
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAcesso Abertopor
dc.subjectEngenharia químicapor
dc.subjectHidrólise enzimáticapor
dc.subjectCelulosepor
dc.subjectBagaço de canapor
dc.subjectBiorreatorespor
dc.subjectBatelada alimentadapor
dc.subjectXilulosepor
dc.subjectS. cerevisiaepor
dc.subjectInterpolador fuzzypor
dc.subjectEnzymatic hydrolysiseng
dc.subjectCelluloseeng
dc.subjectSugarcane bagasseeng
dc.subjectBioreactoreng
dc.subjectFed batcheng
dc.subjectXyloseeng
dc.subjectXyluloseeng
dc.subjectFuzzy interpolatoreng
dc.titleOtimização da produção de etanol 2G a partir de hexoses e pentosespor
dc.typeTesepor
dc.contributor.advisor1Zangirolami, Teresa Cristina
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4546701843297248por
dc.description.resumoA produção industrial de etanol combustível e de açúcar gera como principal subproduto o bagaço de cana de açúcar, que é queimado nas caldeiras para geração de energia. Entretanto, por ser um material lignocelulósico (constituído basicamente por três polímeros: celulose, hemicelulose e lignina), o bagaço pode ser reaproveitado para a produção de bioetanol de segunda geração (2G), que é um biocombustível renovável e ambientalmente amigável. Para que a produção industrial de etanol 2G se torne economicamente viável, é necessário o aproveitamento de todas as frações fermentescíveis presentes no bagaço de cana: fração C6 (celulose) e fração C5 (hemicelulose). Estas frações são submetidas a processos de hidrólise que geram como principais açúcares glicose e xilose respetivamente. É importante, portanto, que o microrganismo empregado para a produção de etanol 2G seja capaz de utilizar todos os açúcares gerados no processo de hidrólise. Neste trabalho foi escolhida a levedura Saccharomyces cerevisiae por ser o principal microrganismo utilizado na produção industrial de álcool combustível, embora, infelizmente, esta levedura seja incapaz de fermentar xilose. No entanto, embora S. cerevisiae não utilize xilose, pode fermentar a xilulose obtida pela isomerização de xilose pela enzima xilose isomerase conhecida industrialmente como glicose isomerase. Assim, o objetivo do presente trabalho foi desenvolver e avaliar alternativas tecnológicas para a produção de etanol 2G a partir de hexoses e pentoses, utilizando S. cerevisiae selvagem. Em relação à Fração C6, neste trabalho foram abordados dois aspectos importantes: i) estudo da operação em regime de batelada alimentada de um reator de hidrólise enzimática da fração C6 do bagaço de cana de açúcar, obtendo-se valores de concentração final de glicose de cerca de 200 g.L-1, superiores aos 45 g.L-1 alcançados em reator operado em bateladas simples; ii) modelagem cinética de sistemas complexos (hidrólise enzimática de substratos lignocelulósicos), no qual foi desenvolvido um interpolador utilizando a lógica fuzzy como uma ferramenta importante para representar os processos de hidrólise enzimática de materiais lignocelulósicos de forma robusta e confiável. Já em relação à Fração C5, inicialmente aplicou-se técnicas simples de Engenharia Evolutiva, levando à seleção de uma linhagem diferenciada de S. cerevisiae, adaptada à assimilação de xilulose em meio mínimo e caracterizada por reduzida formação de xilitol, a qual apresentou uma seletividade de ~7 getanol.gxilitol -1, valor significativamente superior à seletividade alcançada pela linhagem selvagem, de ~2 getanol.gxilitol -1. A linhagem selecionada foi então estudada em cultivos em batelada conduzidos em biorreator de bancada, sob diferentes condições de limitação por oxigênio. Verificou-se que a produção de etanol é favorecida, em detrimento da formação de xilitol, mantendo-se o fluxo de xilulose consumida acima de 0,5 mmol.gMS -1.h-1, para fluxo de oxigênio consumido de 0,1 mmol.gMS -1.h-1, alcançando-se nessa condição seletividades em torno de 4 getanol.gxilitol -1. Para fluxos de oxigênio nulo (cultivo anaeróbio) ou acima de 0,3 mmol.gMS -1.h-1, a produção de etanol é drasticamente reduzida, independentemente do fluxo de xilulose assimilado pelas células.por
dc.publisher.countryBRpor
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Química - PPGEQpor
dc.subject.cnpqENGENHARIAS::ENGENHARIA QUIMICApor
dc.contributor.authorlatteshttp://lattes.cnpq.br/5911055089145779por


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record