Show simple item record

dc.creatorSouza, Leandro Teixeira Lopes de
dc.date.accessioned2016-06-02T20:06:02Z
dc.date.available2009-08-25
dc.date.available2016-06-02T20:06:02Z
dc.date.issued2009-02-26
dc.identifier.citationSOUZA, Leandro Teixeira Lopes de. Modelos de séries temporais com coeficientes variando no tempo. 2009. 87 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.por
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/4528
dc.description.abstractIn this work they are presented extensions of Auto Regressive and Auto Regressive Conditional Heteroscedasticity models with coefficients varying in time. These coefficients have been used as models for non stationary real time series, specially for financial series. The objective of this work is to present the models and the techniques involved in estimating time-varying coefficients, moreover, it is made an introduction to financial modeling and some suggestions in order to facilitate implementation and use of models with time-varying coefficients. The simulation studies and the application on real data showed that the models have great potential to be exploited in the analysis of non-stationary series. The suggestions in confidence band and forecasting for the Auto regressive models with time-varying coefficients enable the use of models in financial data and other series that show a non-stationary characteristic. The modified algorithm for estimation of ARCH models varying in time was to increase the rate of convergence. The creation of a method for forecasting for ARCH models require a deeper study, although the algorithm has shown promising results in simulation study, giving some evidences that it can be applied in real situation. Finally, the contributions in the creation of functions for a free software that facilitate the use and the analysis of the models studied and the use of the proposed methods.eng
dc.description.sponsorshipFinanciadora de Estudos e Projetos
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAcesso Abertopor
dc.subjectAnálise de séries temporaispor
dc.subjectModelos tvARpor
dc.subjectModelos tvARCHpor
dc.subjectProcessos não estacionáriospor
dc.subjectModel tvAR and tvARCHeng
dc.subjectNon-stationary processeseng
dc.subjectTime serieseng
dc.titleModelos de séries temporais com coeficientes variando no tempopor
dc.typeDissertaçãopor
dc.contributor.advisor1Moura, Maria Sílvia de Assis
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9410151859448447por
dc.creator.Latteshttp://lattes.cnpq.br/9758799382568880por
dc.description.resumoNo presente trabalho são apresentadas extensões dos modelos Auto Regressivo e Auto Regressivo Condicionalmente Heteroscedasticos com coeficientes variando ao longo do tempo. Estes têm sido utilizados como modelos para séries temporais reais não estacionárias, em especial as séries financeiras. O objetivo desse trabalho é apresentar os modelos e as técnicas envolvidas para estimar esses coeficientes que variam no tempo, além disso, é feito uma introdução a modelagem financeira e algumas sugestões para facilitar a aplicação e utilização dos modelos com coeficientes variando no tempo. Os estudos de simulação e a aplicação em dados reais mostraram que os modelos têm um grande potencial a ser explorados na análise de séries não estacionárias. As sugestões de banda de confiança e previsão para os modelos Auto Regressivos com coeficientes variando no tempo viabilizam a utilização dos modelos em dados financeiros e outras séries que apresentam uma característica de não estacionariedade. As modificações no algoritmo de estimação dos modelos ARCH variando no tempo foram para aumentar a taxa de convergência. A criação de um método para previsão dos modelos ARCH necessitam de um estudo mais profundo, porém o algoritmo mostrou resultados promissores no estudo de simulação, dando alguns indícios de que pode ser aplicada na prática. Por fim, as contribuições na criação de funções para um software livre que facilitam a utilização e a análise dos modelos estudados bem como a utilização dos métodos propostos.por
dc.publisher.countryBRpor
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-graduação em Estatísticapor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICApor


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record