Show simple item record

dc.creatorPaz, Rosineide Fernando da
dc.date.accessioned2016-06-02T20:06:07Z
dc.date.available2013-05-23
dc.date.available2016-06-02T20:06:07Z
dc.date.issued2013-04-03
dc.identifier.citationPAZ, Rosineide Fernando da. Aspectos práticos da estimação do modelo de mistura via processo de Dirichlet. 2013. 80 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2013.por
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/4568
dc.description.abstractWe review the Dirichlet process mixture model and investigate its performance as a classification method. The first aspect considered is its sensibility to the choice of location parameter of the base distribution. The second aspect considers the performance of the model regarding the departure of the parameters of the component distributions. Simulation results with mixture of normal distributions indicate sensibility to location parameters choices, of the base distribution, and good performance even when components with normal distributions differ only in variances. Finally, we apply the method to three data sets.eng
dc.description.sponsorshipFinanciadora de Estudos e Projetos
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAcesso Abertopor
dc.subjectEstatísticapor
dc.subjectInferência bayesianapor
dc.subjectProcessos de Dirichletpor
dc.subjectModelos com mistura de distribuiçõespor
dc.titleAspectos práticos da estimação do modelo de mistura via processo de Dirichletpor
dc.typeDissertaçãopor
dc.contributor.advisor1Milan, Luis Aparecido
dc.creator.Latteshttp://lattes.cnpq.br/0773010734982168por
dc.description.resumoNeste trabalho, analisamos os aspectos práticos de um modelo bayesiano não paramétrico conhecido como modelo de mistura por processo de Dirichlet. Procedemos a um estudo de simulação com o objetivo de investigar a performance do modelo, no que diz respeito à classi _cação de dados oriundo de populações heterogêneas, em subgrupos (ou componentes). Os dados em cada componente identificado são assumidos terem uma distribuição normal, de forma que os dados de todos os componentes, juntos são assumidos serem originados de uma mistura de distribuições normais. Para veri_car este desempenho, procedemos a uma análise para investigar dois aspectos. O primeiro aspecto considerado está relacionado a sensibilidade do modelo, quanto a escolha do parâmetro de locação da distribuição base adotada, normal-gama-invertida, para o processo de Dirichlet, o qual é usado como distribuição a priori para o modelo, como em um simples problema de Bayes. O segundo aspecto diz respeito à performance do modelo em relação ao afastamento dos parâmetros, média e variância, das distribuições dos componentes. Os resultados das simulações com estas misturas de distribui ções normais, indicam sensibilidade do método para a escolha do parâmetro de locação da distribuição base normal-gama-invertida e também indicam uma boa performance, mesmo quando os componentes com distribuições normais diferem entre si apenas na variabilidade dos dados. Finalmente, aplicamos este método para três conjuntos de dados reais, sendo o último uma aplicação em dados de mistura de modelos de regressão.por
dc.publisher.countryBRpor
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-graduação em Estatísticapor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICApor


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record