Show simple item record

dc.creatorVigas, Valdemiro Piedade
dc.date.accessioned2016-06-02T20:06:09Z
dc.date.available2014-07-02
dc.date.available2016-06-02T20:06:09Z
dc.date.issued2014-03-07
dc.identifier.citationVIGAS, Valdemiro Piedade. Extensões dos modelos de sobrevivência referente a distribuição Weibull. 2014. 89 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2014.por
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/4579
dc.description.abstractIn this dissertation, two models of probability distributions for the lifetimes until the occurrence of the event produced by a specific cause for elements in a population are reviewed. The first revised model is called the Weibull-Poisson (WP) which has been proposed by Louzada et al. (2011a). This model generalizes the exponential-Poisson distributions proposed by Kus (2007) and Weibull. The second, called long-term model, has been proposed by several authors and it considers that the population is not homogeneous in relation to the risk of event occurence by the cause studied. The population has a sub-population that consists of elements who are not liable do die by the specific cause in study. These elements are considered as immune or cured. In relation to the elements who are at risk the minimum value of time of the event accurance is observed. In the review of WP the expressions of the survival function, quantile function, probability density function, and of the hazard function, as well the expression of the non-central moments of order k and the distribution of order statistics are detailed. From this review we propose, in an original way, studies of the simulation to analyze the paramenters of frequentist properties of maximum likelihood estimators for this distribution. And also we also present results related to the inference about the parameters of this distribution, both in the case in which the data set consists of complete observations of lifetimes, and also in the case in which it may contain censored observations. Furthermore, we present in this paper, in an original way a regression model in a form of location and scale when T has WP distribution. Another original contribution of this dissertation is to propose the distribution of long-term Weibull-Poisson (LWP). Besides studying the LWP in the situation in which the covariates are included in the analysis. We also described the functions that characterize this distribution (distribution function, quantile function, probability density function and the hazard function). Moreover we describe the expression of the moment of order k, and the density function of a statistical order. A study by simulation viii of this distribution is made through maximum likelihood estimators. Applications to real data set illustrate the applicability of the two considered models.eng
dc.description.sponsorshipFinanciadora de Estudos e Projetos
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAcesso Abertopor
dc.subjectAnálise de sobrevivênciapor
dc.subjectDados censuradospor
dc.subjectDistribuição Weibullpor
dc.subjectModelos de regressãopor
dc.subjectFração de curapor
dc.subjectRegressão log weibull-poissonpor
dc.subjectLonga duraçãopor
dc.subjectSurvival analisyseng
dc.subjectCensored dataeng
dc.subjectWeibull-Poisson distributioneng
dc.subjectLog Weibull-Poisson regressioneng
dc.subjectLong-termeng
dc.titleExtensões dos modelos de sobrevivência referente a distribuição Weibullpor
dc.typeDissertaçãopor
dc.contributor.advisor1Louzada Neto, Francisco
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0994050156415890por
dc.creator.Latteshttp://lattes.cnpq.br/0661688648741476por
dc.description.resumoNesta dissertação são revistos dois modelos de distribuições de probabilidade para os tempos de vida até a ocorrência do evento provocado por uma causa específica para elementos em uma população. O primeiro modelo revisto é o denominado Weibull-Poisson (WP) que foi proposto por Louzada et al. (2011a), esse modelo generaliza as distribuições exponencial Poisson proposta por Kus (2007) e Weibull. O segundo, denominado modelo de longa duração, foi proposto por vários autores e considera que a população não é homogênea em relação ao risco de ocorrência do evento pela causa em estudo. A população possui uma sub-população constituída de elementos que não estão sujeitos ao evento pela causa especifica em estudo, sendo considerados como imunes ou curados. Em relação à parcela dos elementos que estão em risco observa-se o valor mínimo dos tempos da ocorrência do evento. Na revisão sobre a WP são detalhadas as expressões da função de sobrevivência, da função quantil, da função densidade de probabilidade e da função de risco, bem como a expressão dos momentos não centrais de ordem k e a distribuição de estatísticas de ordem. A partir desta revisão, é proposta de forma original, estudos de simulação com o objetivo de analisar as propriedades frequentistas dos estimadores de máxima verossimilhança dos parâmetros desta distribuição. E apresenta-se resultados relativos à inferência sobre os parâmetros desta distribuição, tanto no caso em que o conjunto de dados consta de observações completas de tempos de vida, como no caso em que ele possa conter observações censuradas. Alem disso, apresentamos de forma original neste trabalho um modelo de regressão na forma de locação e escala quando T tem distribuição WP. Outra contribuição original dessa dissertação é propor a distribuição de longa duração Weibull-Poisson (LWP), alem de estudar a LWP na situação em que as covariáveis são incluídas na análise. Realizou-se também a descrição das funções que caracterizam essa distribuição (função distribuição, função quantil, função densidade de probabilidade e função de risco). Assim como a descrição da expressão do momento de ordem k e da função densidade da estatística de ordem. É feito um estudo por simulação desta distribuição via máxima verossimilhança. Aplicações à conjuntos de dados reais ilustram a utilidade dos dois modelos considerados.por
dc.publisher.countryBRpor
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-graduação em Estatísticapor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICApor


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record