Mostrar registro simples

dc.creatorMachado, Robson José Mariano
dc.date.accessioned2016-06-02T20:06:09Z
dc.date.available2014-08-01
dc.date.available2016-06-02T20:06:09Z
dc.date.issued2014-03-28
dc.identifier.citationMACHADO, Robson José Mariano. Modelos mistos semiparamétricos parcialmente não lineares. 2014. 61 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2014.por
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/4582
dc.description.abstractCorrelated data sets with nonlinear structure are common in many areas such as biostatistics, pharmacokinetics and longitudinal studies. Nonlinear mixed-effects models are useful tools to analyse those type of problems. In this dissertation, a generalization to this models is proposed, namely by semiparametric partially nonlinear mixed-effects model (MMSPNL), with a nonparametric function to model the mean of the response variable. It assumes that the mean of the interest variable is explained by a nonlinear function, which depends on fixed effects parameters and explanatory variables, and by a nonparametric function. Such nonparametic function is quite flexible, allowing a better adequacy to the functional form that underlies the data. The random effects are included linearly to the model, which simplify the expression of the response variable distribution and enables the model to take into account the within-group correlation structure. It is assumed that the random errors and the random effects jointly follow a multivariate normal distribution. Relate to the nonparametric function, it is deal with the P-splines smoothing technique. The methodology to obtain the parameters estimates is penalized maximum likelihood method. The random effects may be obtained by using the Empirical Bayes method. The goodness of the model and identification of potencial influent observation is verified with the local influence method and a residual analysis. The pharmacokinetic data set, in which the anti-asthmatic drug theophylline was administered to 12 subjects and serum concentrations were taken at 11 time points over the 25 hours (after being administered), was re-analysed with the proposed model, exemplifying its uses and properties.eng
dc.description.sponsorshipUniversidade Federal de Sao Carlos
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAcesso Abertopor
dc.subjectAnálise de regressãopor
dc.subjectModelos semiparamétricospor
dc.subjectModelos mistos não-linearespor
dc.subjectDiagnóstico de influência localpor
dc.subjectSuavizaçãopor
dc.subjectInfluência localpor
dc.subjectP-splinespor
dc.subjectNonlinear mixed-effects modelseng
dc.subjectSemiparametric modelseng
dc.subjectSmoothingeng
dc.subjectLocal influenceeng
dc.titleModelos mistos semiparamétricos parcialmente não linearespor
dc.typeDissertaçãopor
dc.contributor.advisor1Noveli, Cibele Maria Russo
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1011098065426388por
dc.creator.Latteshttp://lattes.cnpq.br/4313549163258792por
dc.description.resumoDados correlacionados com estrutura não linear são comuns em bioestatística, estudos farmacocinéticos e longitudinais. Modelos mistos não lineares são ferramentas úteis para se analisar esses tipos de problemas. Nesta dissertação, propõe-se uma generalização desses modelos, chamada de modelo misto semiparamétrico parcialmente não linear (MMSPNL), com uma função não paramétrica para se modelar a média da variável resposta. Assume-se que a média da variável de interesse é explicada por uma função não linear, que depende de parâmetros de efeitos fixos e variáveis explicativas, e por uma função não paramétrica. Tal função não paramétrica possui grande flexibilidade, permitindo uma melhor adequação à forma funcional que subjaz aos dados. Os efeitos aleatórios são incluídos linearmente ao modelo, o que simplifica a expressão da distribuição da variável resposta e permite considerar a estrutura de correlação intra grupo. É assumido que os erros aleatórios e efeitos aleatórios conjuntamente seguem uma distribuição normal multivariada. Em relação a função não paramétrica, utiliza-se a técnica de suavização com P-splines. A metodologia para se obterem as estimativas dos parâmetros é o método de máxima verossimilhança penalizada. Os efeitos aleatórios podem ser obtidos usando-se o método de Bayes empírico. A qualidade do modelo e a identificação de observações aberrantes é verificada pelo método de influência local e por análise de resíduos. O conjunto de dados farmacocinéticos, em que o antiasmático theophylline foi administrado a 12 sujeitos e concentrações séricas foram tomadas em 11 instantes de tempo durante as 25 horas (após ser administrado), foi reanalisado com o modelo proposto, exemplificando seu uso e propriedades.por
dc.publisher.countryBRpor
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-graduação em Estatísticapor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICApor


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples