Show simple item record

dc.contributor.authorOliveira, Edson Rafael Cardozo de
dc.date.accessioned2016-06-02T20:16:55Z
dc.date.available2015-05-15
dc.date.available2016-06-02T20:16:55Z
dc.date.issued2015-04-01
dc.identifier.citationOLIVEIRA, Edson Rafael Cardozo de. Modulation effect on confinement topology in quasi zero-dimensional systems induced by electric field. 2015. 102 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2015.por
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/5078
dc.description.abstractQuantum dots grown by epitaxial techniques for optical and transport studies are usually capped by a layer of the same material on which the QDs were grown. Recently, several studies have shown how the growth parameters and materials used in this layer significantly affect the morphological, optical and electrical properties of these nanostructures. In this work Indium Arsenide quantum dots capped with a layer of Gallium Arsenide and Antimony are studied. After the growth, a rapid thermal annealing was performed, which improved significantly the size distribution of the quantum dots, increasing the optical eficiency, and inducing a change in the band structure from a Type-I to Type-II. The investigations performed by magnetophotoluminescence have shown that the effects of the topology confinement on the band structure of these quasi zero-dimensional systems are strongly modulated by an external electric field applied parallel to the magnetic field orientation. Purely quantum effects such as Aharonov-Bohm interference and the inversion of the excitonic Landfie g-factor were observed at low temperatures and for specific values of electric fields, showing that the choice of the material and growth conditions of quantum dots capping layer leads to controlled experimental results which could not be achieved using conventional growth methods of semiconductor quantum dots.eng
dc.description.sponsorshipUniversidade Federal de Sao Carlos
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAcesso Abertopor
dc.subjectFísica da matéria condensadapor
dc.subjectAharonov-Bohm, Teoria depor
dc.subjectPontos quânticospor
dc.subjectInAs/GaAsSbpor
dc.subjectAharonov-Bohm effecteng
dc.subjectQuantum dotseng
dc.titleEfeito da modulação da topologia do confinamento em sistemas quase zero-dimensionais induzida por campo elétricopor
dc.title.alternativeModulation effect on confinement topology in quasi zero-dimensional systems induced by electric fieldeng
dc.typeDissertaçãopor
dc.contributor.advisor1Teodoro, Marcio Daldin
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5602634309535528por
dc.description.resumoPontos quânticos crescidos por técnicas epitaxiais para estudos ópticos e de transporte são comumente cobertos com uma camada do mesmo material sobre o qual os pontos foram crescidos. Recentemente diversos estudos têm demonstrado como os parâmetros de crescimento e materiais utilizados nesta camada afetam significativamente as propriedades morfológicas, ópticas e elétricas destas nanoestruturas. Neste trabalho são estudados pontos quânticos tradicionais de Arseneto de Índio cobertos com uma camada de Arseneto de Gálio e Antimônio. Após o crescimento foi realizado um tratamento térmico rápido que melhorou significativamente a distribuição de tamanhos dos pontos, com um aumento na eficiência óptica e uma indução na estrutura de bandas do Tipo-I para Tipo-II. As investigações por magnetofotoluminescência revelaram que os efeitos da topologia de confinamento na estrutura de bandas deste sistema quase zero-dimensional são fortemente modulados pela aplicação de um campo elétrico externo paralelo _a orientação do campo magnético. Efeitos de caráter puramente quântico como a interferência Aharonov-Bohm e a inversão do fator-g de Landé excitônico foram observados a baixas temperaturas e para valores específicos de campo elétrico, demonstrando assim que a escolha do material e condições de deposição da camada de cobertura de pontos quânticos levam a efeitos e resultados controlados experimentalmente que não poderiam ser observados utilizando métodos convencionais de crescimento de pontos quânticos semicondutores.por
dc.publisher.countryBRpor
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-Graduação em Física - PPGFpor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::FISICApor
dc.contributor.authorlatteshttp://lattes.cnpq.br/3121276256053722por


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record