Show simple item record

dc.creatorSilva, Tiago Pasqualini da
dc.date.accessioned2017-06-01T17:49:38Z
dc.date.available2017-06-01T17:49:38Z
dc.date.issued2016-07-01
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/8811
dc.description.abstractThe rapid popularization of smartphones has contributed to the growth of SMS usage as an alternative way of communication. The increasing number of users, along with the trust they inherently have in their devices, makes SMS messages a propitious environment for spammers. In fact, reports clearly indicate that volume of mobile phone spam is dramatically increasing year by year. SMS spam represents a challenging problem for traditional filtering methods nowadays, since such messages are usually fairly short and normally rife with slangs, idioms, symbols and acronyms that make even tokenization a difficult task. In this scenario, this thesis proposes and then evaluates a method to normalize and expand original short and messy SMS text messages in order to acquire better attributes and enhance the classification performance. The proposed text processing approach is based on lexicography and semantic dictionaries along with the state-of-the-art techniques for semantic analysis and context detection. This technique is used to normalize terms and create new attributes in order to change and expand original text samples aiming to alleviate factors that can degrade the algorithms performance, such as redundancies and inconsistencies. The approach was validated with a public, real and non-encoded dataset along with several established machine learning methods. The experiments were diligently designed to ensure statistically sound results which indicate that the proposed text processing techniques can in fact enhance SMS spam filtering.eng
dc.description.sponsorshipNão recebi financiamentopor
dc.language.isoporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rights.uriAcesso abertopor
dc.subjectSmartphonespor
dc.subjectAplicativos móveispor
dc.subjectMobile appseng
dc.subjectProcessamento de linguagem natural (Computação)por
dc.subjectNatural language processing (Computer science)eng
dc.subjectFiltragem de SMS spampor
dc.subjectAprendizado de máquinapor
dc.subjectCategorização de textopor
dc.subjectSMS spam filteringeng
dc.subjectText categorizationeng
dc.subjectMachine learningeng
dc.titleNormalização textual e indexação semântica aplicadas da filtragem de SMS spampor
dc.title.alternativeTexto normalization and semantic indexing to enhance SMS spam filteringeng
dc.typeDissertaçãopor
dc.contributor.advisor1Almeida, Tiago Agostinho de
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5368680512020633por
dc.creator.Latteshttp://lattes.cnpq.br/4030198351353056por
dc.description.resumoA popularização dos smartphones contribuiu para o crescimento do uso de mensagens SMS como forma alternativa de comunicação. O crescente número de usuários, aliado à confiança que eles possuem nos seus dispositivos tornam as mensagem SMS um ambiente propício aos spammers. Relatórios recentes indicam que o volume de spam enviados via SMS está aumentando vertiginosamente nos últimos anos. SMS spam representa um problema desafiador para os métodos tradicionais de detecção de spam, uma vez que essas mensagens são curtas e geralmente repletas de gírias, símbolos, abreviações e emoticons, que torna até mesmo a tokenização uma tarefa difícil. Diante desse cenário, esta dissertação propõe e avalia um método para normalizar e expandir amostras curtas e ruidosas de mensagens SMS de forma a obter atributos mais representativos e, com isso, melhorar o desempenho geral na tarefa de classificação. O método proposto é baseado em dicionários lexicográficos e semânticos e utiliza técnicas modernas de análise semântica e detecção de contexto. Ele é empregado para normalizar os termos que compõem as mensagens e criar novos atributos para alterar e expandir as amostras originais de texto com o objetivo de mitigar fatores que podem degradar o desempenho dos métodos de classificação, tais como redundâncias e inconsistências. A proposta foi avaliada usando uma base de dados real, pública e não codificada, além de vários métodos consagrados de aprendizado de máquina. Os experimentos foram conduzidos para garantir resultados estatisticamente corretos e indicaram que o método proposto pode de fato melhorar a detecção de spam em SMS.por
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-graduação em Ciência da Computação (Campus SOROCABA)por
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOpor
dc.ufscar.embargoOnlinepor
dc.publisher.addressCâmpus Sorocabapor


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record