• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
About
  • Policies
  • Instructions to authors
  • Contact
    • Policies
    • Instructions to authors
    • Contact
View Item 
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Engenharia Química - PPGEQ
  • Teses e dissertações
  • View Item
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Engenharia Química - PPGEQ
  • Teses e dissertações
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument TypeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument Type

My Account

Login

Estudos sobre a síntese da zeólita Beta na presença de íons fluoreto

Thumbnail
View/Open
4987.pdf (3.457Mb)
Date
2013-02-27
Author
Franco, Gil César Pereira
Metadata
Show full item record
Abstract
One alternative to increase the octane rating of gasoline without the use of toxic or polluting compounds, banned by environmental legislation, is the transformation of linear paraffins of low octane number into branched paraffins of high octane number. This transformation occurs through the use of bifunctional catalysts that perform the isomerization reaction through catalytic dehydrogenate/hydrogenate and acid sites. Nanocrystalline zeolite Beta is an excellent material for these catalysts because it presents strong acid sites and supports metallic sites (to dehydrogenate/ hydrogenate) easily. This work aims the synthesis of zeolite Beta with different crystals dimensions (micrometrical scale) for, in the future, use as a bifunctional catalyst. In the future, these catalysts will be compared to previously studies on the efficiency of catalysts nanocrystalline zeolite Beta based. For this hydrothermal synthesis at 140 °C, it was used a reaction mixture of Si/Al ratio = 12,5 and neutral pH. TEOS was used as a silicon source, aluminum metal as aluminum source, TEAOH as a structural directing agent and fluoride as mineralizing agent. Parameters, such as, aging time temperature, crystallization time, aging system type (opened or closed) and ethanol vaporization through forced ventilation were varied. Typical diffractograms of Beta structure were obtained varying aging temperature materials (31 to 48 °C) in only two days of crystal lization time, furthermore structure characteristic crystal morphology in varied sizes of 2 to 6 μm were obtained. It was found the presence of ethanol prevents formation of Beta structure, acting to prevent TEOS hydrolysis, thus a mass decrease, about 50 %, during aging time is needed.
URI
https://repositorio.ufscar.br/handle/ufscar/4110
Collections
  • Teses e dissertações

UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT
 

 


UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT