• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
About
  • Policies
  • Instructions to authors
  • Contact
    • Policies
    • Instructions to authors
    • Contact
View Item 
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Estatística - PPGEs
  • Teses e dissertações
  • View Item
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Estatística - PPGEs
  • Teses e dissertações
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument TypeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument Type

My Account

Login

Algoritmo ejeção-absorção metropolizado para segmentação de imagens

Thumbnail
View/Open
6510.pdf (2.110Mb)
Date
2014-12-19
Author
Calixto, Alexandre Pitangui
Metadata
Show full item record
Abstract
We proposed a new split-merge MCMC algorithm for image segmentation. We describe how an image can be subdivided into multiple disjoint regions, with each region having an associated latent indicator variable. The latent indicator variables are modeled with a prior Gibbs distribution governed by a spatial regularization parameter. Regions with same label define a component. Pixels within a component are distributed according to a Gaussian distribution. We treat the spatial regularization parameter and the number of components K as unknown. To estimate K, the spatial regularization parameter and the component parameters we propose the Metropolised split-merge (MSM) algorithm. The MSM comprises two type of moves. The first one, is a data-driven split-merge move. These movements change the number of components K in the neighborhood K _ 1 and are accepted according to Metropolis-Hastings acceptance probability. After a split-merge step, the component parameters, the spatial regularization parameter and latent allocation variables are updated conditional on K by using the Gibbs sampling, the Metropolis- Hastings and Swendsen-Wang algorithm, respectively. The main advantage of the proposed algorithm is that it is easy to implement and the acceptance probability for split-merge movements depends only of the observed data. The performance of the proposed algorithm is verified using artificial datasets as well as real datasets.
URI
https://repositorio.ufscar.br/handle/ufscar/4496
Collections
  • Teses e dissertações

UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT
 

 


UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT