• português (Brasil)
    • English
    • español
  • português (Brasil) 
    • português (Brasil)
    • English
    • español
  • Entrar
Sobre
  • Políticas
  • Instruções aos autores
  • Contato
    • Políticas
    • Instruções aos autores
    • Contato
Ver item 
  •   Página inicial
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Estatística - PPGEs
  • Teses e dissertações
  • Ver item
  •   Página inicial
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Estatística - PPGEs
  • Teses e dissertações
  • Ver item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Navegar

Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresOrientadorTítulosAssuntosÁreas do CNPqPrograma de pós-graduaçãoTipo de documentoEsta coleçãoPor data do documentoAutoresOrientadorTítulosAssuntosÁreas do CNPqPrograma de pós-graduaçãoTipo de documento

Minha conta

Entrar

Algumas extensões da distribuição Birnbaum-Saunders: uma abordagem bayesiana

Thumbnail
Visualizar/Abrir
4066.pdf (4.688Mb)
Data
2012-01-09
Autor
Cahui, Edwin Chaiña
Metadata
Mostrar registro completo
Resumo
The Birnbaum-Saunders Distribution is based on an physical damage that produces the cumulative fatigue materials, This fatigue was identified as an important cause of failure in engineering structures. Recently, this model has been applied in other areas such as health sciences, environmental measures, forestry, demographic, financial, among others. Due to it s importance several distributions have been proposed to describe the behavior of fatigue resistance. However there is not an argument about which is more effective for the analysis of data from fatigue. A major problem to choose a statistical distribution, is that often several models fit the data well in the central, but, however, the extremes of distribution raise questions about the decision to select some of their models. The lack of data at the extremes distribution is justified to consider other arguments like the use of a specific statistical distribution, and thus reject other models. In this work we study some extensions of the distribution Birnbaum-Saunders with a mixture of normal scale, in which the procedure will for obtaining inferences will be considered from a Bayesian perspective based on the methods Monte Carlo Markov Chain (MCMC). to detect possible observations influential in the models considered, we used the Bayesian method of analysis influence in each case based on the Kullback-Leibler divergence. Moreover, the geometric Birnbaum-Saunders model is proposed , for data survival.
URI
https://repositorio.ufscar.br/handle/ufscar/4551
Collections
  • Teses e dissertações

UFSCar
Universidade Federal de São Carlos - UFSCar
Deixe sua opinião

UFSCar

IBICT
 

 


UFSCar
Universidade Federal de São Carlos - UFSCar
Deixe sua opinião

UFSCar

IBICT