• Estimativas a priori para problemas elípticos via desigualdade de Hardy-Sobolev 

      Aranda, Jose Miguel Mendoza; http://lattes.cnpq.br/8615067875072268 (Universidade Federal de São Carlos, UFSCar, Programa de Pós-graduação em Matemática, , 28/02/2014)
      In this thesis we study a priori bounds for positive solutions of a class of nonlinear elliptic equations. More precisely, we establish a priori bounds for positive solutions of the problem (continue...)
    • Problemas elípticos superlineares com ressonância 

      Ferreira, Fabiana Maria; http://lattes.cnpq.br/6448780169865730 (Universidade Federal de São Carlos, UFSCar, Programa de Pós-graduação em Matemática, Câmpus São Carlos, 14/08/2015)
      The aim of this work is to present results about the existence of non-trivial solutions for some classes of resonant and superlinear eliptic systems employing topological methods. More specifcally, we use a-priori bounds ...
    • Local coercivity for semilinear elliptic problems 

      Mendoza Aranda, José Miguel; http://lattes.cnpq.br/8615067875072268 (Universidade Federal de São Carlos, UFSCar, Programa de Pós-graduação em Matemática, Câmpus São Carlos, 13/03/2018)
      We study a non-homogeneous semilinear eliptic problem with Dirichlet condition baundary in a bounded domain and we show existence of solution. Also extend the result to the fraccionary laplacian case and to the homogeneous ...
    • Resultados do tipo Ambrosetti-Prodi para problemas quasilineares 

      Nascimento, Moisés Aparecido do; http://lattes.cnpq.br/8054908059721556 (Universidade Federal de São Carlos, UFSCar, Programa de Pós-graduação em Matemática, Câmpus São Carlos, 04/12/2015)
      We present results of Ambrosseti-Prodi type to quasilinear problems involving the p-Laplace operator. We consider the scalar case and a a problem with systems of equations. In the scalar case, we work with the conditions ...
    • Problemas elípticos superlineares com não linearidades assimétricas 

      Rosa, Wallisom da Silva; http://lattes.cnpq.br/7545491567456923 (Universidade Federal de São Carlos, UFSCar, Programa de Pós-graduação em Matemática, Câmpus São Carlos, 06/03/2015)
      The aim of this work is to present results of existence of solutions for a class of nonlinear asymmetryc elliptic problems. The asymmetry that we consider here has linear behavior on - infnity and superlinear on + infnity. ...
    • Existence and multiplicity of solutions for problems involving the Dirac operator 

      Somavilla, Fernanda; http://lattes.cnpq.br/0280451137694299 (Universidade Federal de São Carlos, UFSCar, Programa de Pós-graduação em Matemática, Câmpus São Carlos, 30/07/2019)
      In this thesis, we study equations that involving the Dirac operator and which have the form $-i \alpha \cdot \nabla u + a \beta u + M(x)u = F_{u}(x,u), em \mathbb{R}^{3},$ where $\alpha = (\alpha_1, \alpha_2, \alpha_3),$ ...