Show simple item record

dc.creatorAndrade, Allan Edley Ramos de
dc.date.accessioned2016-06-02T20:28:25Z
dc.date.available2011-03-23
dc.date.available2016-06-02T20:28:25Z
dc.date.issued2011-03-04
dc.identifier.citationANDRADE, Allan Edley Ramos de. D-classes de homotopia, uma generalização da teoria de Δ-classes de homotopia. 2011. 72 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2011.por
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/5872
dc.description.abstractThis work is based on Ph.d. thesis of R.Brooks [1]. R.Brooks develops his work in three parts, first establishes Nielsen s theory (Essential class, Nielsen s number, estimates for the Nielsen s number) for determined classes of pairs of homotopy, called _-classes of homotopy. In the second part using homology and cohomology develop an index, that associates to each tuple (f, A,B), a homomorphism L∗(f, A,B). In the third part he relates Nielsen s theory for _-classes of homotopy with the index theory of the second part. In this work we will extend to the concept of _-classes of homotopy for D-classes of homotopy, and will study the D-number of Nielsen, n(f, p,D), for (f, p) ∈ D, after that we will define an index, L∗(f, p, s(B)), with the objective to detect when n(f, p,D) > 0.eng
dc.description.sponsorshipFinanciadora de Estudos e Projetos
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAcesso Abertopor
dc.subjectNielsen, Número depor
dc.subjectTopologia algébricapor
dc.titleD-classes de homotopia, uma generalização da teoria de Δ-classes de homotopiapor
dc.typeDissertaçãopor
dc.contributor.advisor1Penteado, Dirceu
dc.contributor.advisor1Latteshttp://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4787968E0por
dc.creator.Latteshttp://lattes.cnpq.br/6801447171421372por
dc.description.resumoEste trabalho é baseado na tese de doutorado de R.Brooks [1]. R.Brooks desenvolve seu trabalho em três partes. Primeiramente, estabelece a teoria de Nielsen (Classes essenciais, número de Nielsen, estimativas do número de Nielsen) para determinadas classes de pares de homotopias, chamadas de _-classes de homotopia. Na segunda parte usando homologia e cohomologia desenvolve um índice, que associa a cada terna admissível, (f, A,B), um homomorfismo L∗(f, A,B). Na terceira parte relaciona a teoria de Nielsen para _-classes de homotopia com a teoria de índice da segunda parte. Neste trabalho estenderemos o conceito de _-classes de homotopia para D-classes de homotopia, e estudaremos o D-número de Nielsen, n(f, p,D), para (f, p) ∈ D, além disso definiremos um índice, L∗(f, p, A, s(B)), com o objetivo de detectar quando n(f, p,D) > 0.por
dc.publisher.countryBRpor
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-graduação em Matemáticapor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::MATEMATICApor


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record