Show simple item record

dc.creatorSantos, Maria Rosilene Barroso dos
dc.date.accessioned2016-06-02T20:28:26Z
dc.date.available2011-05-16
dc.date.available2016-06-02T20:28:26Z
dc.date.issued2011-03-04
dc.identifier.citationSANTOS, Maria Rosilene Barroso dos. A Equação de Codazzi em superfícies. 2011. 92 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2011.por
dc.identifier.urihttps://repositorio.ufscar.br/handle/ufscar/5875
dc.description.abstractIn this work, based on the article The Codazzi Equation for Surfaces by Juan A. Aledo, José M. Espinar and José A. Gálvez [8], we describe some applications of an abstract theory for the Codazzi equation on surfaces. This theory deals with abstract pairs of quadratic forms on a surface, in particular the so-called Codazzi pairs, for which the Codazzi equation is satisfied. Among the applications, we give a proof of an abstract version of a classical theorem due to Hopf on immersed spheres in Euclidean space R3 with constant mean curvature. Other applications are proofs of Liebmann s theorem on complete surfaces with constant Gaussian curvature in R3 and of Grove s theorem on the rigidity of ovaloids. We also study the existence of holomorphic quadratic differentials associated with Codazzi pairs. This is used, in particular, in the classification of complete embedded elliptic special Weingarten surfaces of non-minimal type in R3 whose Gaussian curvature does not change sign.eng
dc.description.sponsorshipFinanciadora de Estudos e Projetos
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de São Carlospor
dc.rightsAcesso Abertopor
dc.subjectGeometriapor
dc.subjectCodazzi, Equação depor
dc.subjectPar de Codazzipor
dc.subjectCurvaturas médias e gaussianapor
dc.subjectWeingarten, Superfícies depor
dc.subjectHopf, Diferencial depor
dc.subjectCodazzi equationeng
dc.subjectCodazzi paireng
dc.subjectGaussian and mean curvatureseng
dc.subjectWeingarten surfaceeng
dc.subjectHopf differentialeng
dc.titleA Equação de Codazzi em superfíciespor
dc.typeDissertaçãopor
dc.contributor.advisor1Figueiredo Junior, Ruy Tojeiro de
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9930999514347198por
dc.creator.Latteshttp://lattes.cnpq.br/5772735504029374por
dc.description.resumoNesta dissertação, baseada no artigo The Codazzi Equation for Surfaces de Juan A. Aledo, José M. Espinar e José A. Gálvez [8], descrevemos algumas aplicações de uma teoria abstrata para a equação de Codazzi em superfícies. Nessa teoria são estudados de modo abstrato, pares de formas quadráticas definidos em uma superfície satisfazendo certas propriedades, em particular os chamados pares de Codazzi, para os quais a equação de Codazzi é satisfeita. Dentre as aplicações, apresentamos uma demonstração de uma versão abstrata do clássico teorema de Hopf sobre superfícies homeomorfas à esfera imersas em R3 com curvatura média constante. Outras aplicações são demonstrações do teorema de Liebmann sobre superfícies completas em R3 com curvatura Gaussiana constante positiva e do teorema de Grove sobre rigidez dos ovalóides. Estudamos também a existência de diferenciais quadráticas holomorfas associadas a pares de Codazzi, as quais são usadas, em particular, na classificação das superfícies de Weingarten especiais elípticas de tipo não-mínimo, completas e mergulhadas em R3, cuja curvatura Gaussiana não muda de sinal.por
dc.publisher.countryBRpor
dc.publisher.initialsUFSCarpor
dc.publisher.programPrograma de Pós-Graduação em Matemática - PPGMpor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::MATEMATICApor


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record