• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
About
  • Policies
  • Instructions to authors
  • Contact
    • Policies
    • Instructions to authors
    • Contact
View Item 
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Ciência e Engenharia de Materiais - PPGCEM
  • Teses e dissertações
  • View Item
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Ciência e Engenharia de Materiais - PPGCEM
  • Teses e dissertações
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument TypeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument Type

My Account

Login

Degradação da resistência à corrosão de aços inoxidáveis duplex, devido ao envelhecimento em baixas temperaturas por tempos prolongados.

Thumbnail
View/Open
TeseJRSM.pdf (4.097Mb)
Date
2004-08-30
Author
Moreno, João Roberto Sartori
Metadata
Show full item record
Abstract
Although duplex stainless steels exhibit good performance in many severe corrosive environments, their corrosion resistance can be hampered by precipitation of chromium (Cr) rich phases during aging heat treatments. Microstructural changes and corrosion behavior in two alloys with high and low content of chromium were investigated. Duplex stainless steels samples were aged at low temperatures (300°C and 400°C) for 3000, 5000 and 7000 hours. The changes at the microstructure were followed during the annealing time using an optical microscopy and measurements of phase percentages. Nanohardness was used in order to identify the phase responsible for the increasing in the global hardness. Immersion tests in ferric chloride cloreto férrico (FeCl3.6H2O 10%) and surface analysis by XPS were conducted intending to quantify the depletion in the corrosion resistance and identify the oxides presented in the surface oxide layer. G phase precipitation and α phase due to spinodal decomposition was identified by transmission electron microscopy. It was detected that the micro-structural changes affect the global properties, remarkably the global hardness and the corrosion resistance. TEM results showed that the Cr rich precipitation occurs manly in the ferritic phase. Spinodal decomposition and heterogeneous precipitation of G phase were found to be responsible for degradations of the corrosion properties. The results also showed a difference between the kinetics of precipitation of the lower Cr content sample and the higher Cr sample. The phenomena of precipitation and coalescence of Cr rich phases must be related with the increasing and decreasing tendencies of hardness, respectively and, inversely, the decreasing and increasing tendency of the resistance to localized corrosion and corrosion rates, which were determined by two electrochemical techniques (Tafel extrapolation and polarization resistance methods) and were compared with the rates determined by weight-loss measurements.
URI
https://repositorio.ufscar.br/handle/ufscar/677
Collections
  • Teses e dissertações

UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT
 

 


UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT