Permeabilidade de filmes plásticos com nanopartículas de prata utilizados na armazenagem de morangos
Abstract
Due to the high postharvest losses of fruit and vegetable, the development of new
technologies, aiming to reduce losses and maintain quality has greatly increased.
Improved packaging can bring great benefits to the whole production chain, including
enhancing shelf life, ensuring quality, and increasing product sale potential. It is
important to know each packaging material properties, such as the barrier properties.
Moreover, recognizing and evaluating the potential use of new technologies, such as
adding metallic nanoparticles to the materials used in packaging production, can
improve their properties and contribute to reduce the high postharvest losses. This
research aimed to develop a simple and effective method for evaluating permeability
of plastic films containing silver nanoparticles used for food storage, as well as to
evaluate their permeability in regular storage conditions. To determine the
permeability of plastic films, permeation chambers were designed and constructed.
Those chambers allow both the gas exchange through a plastic film and permeability
measurements for each specific film. Low density polyethylene (LDPE) and polyvinyl
chloride (PVC) films, with and without silver nanoparticle (NpAg) addition, were
evaluated. The as-prepared permeation chambers were also used to evaluate the
plastic film permeability during storage of strawberries. The results evidence that the
permeation chambers as well as the developed method for measuring the
permeability are efficient and convenient. Such chambers can also be used for many
types of polymeric films. Likewise, the developed method for evaluating the
permeability in storage conditions of fruits and vegetables is effective; thus, it can
assist for planning modified atmosphere packaging applied to different produces.
The difference found in permeability values of the tested films under storage
conditions was up to 50% when compared to the values obtained under experimental
conditions. However, there were no significant permeability differences in films with
NpAg when compared to films without that additive.