• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
About
  • Policies
  • Instructions to authors
  • Contact
    • Policies
    • Instructions to authors
    • Contact
View Item 
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Ciência e Engenharia de Materiais - PPGCEM
  • Teses e dissertações
  • View Item
  •   Home
  • Centro de Ciências Exatas e de Tecnologia - CCET
  • Programas de Pós-Graduação
  • Ciência e Engenharia de Materiais - PPGCEM
  • Teses e dissertações
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument TypeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument Type

My Account

Login

Vitrocerâmicas do sistema Li2O - Al2O3 - SiO2 (LAS) via sinterização com cristalização concorrente

Thumbnail
View/Open
DissVOS.pdf (9.491Mb)
Date
2007-03-02
Author
Soares, Viviane Oliveira
Metadata
Show full item record
Abstract
LAS (Li2O-Al2O3-SiO2) glasses have been often used to produce glass- ceramics with near zero thermal expansion coefficient. These glass-ceramics are very important for applications that require high thermal shock resistance. However, they are still produced by traditional techniques, such as melting and forming followed by internal nucleation (induced by the addition of catalysts) and crystal growth in the volume of monolithic glass pieces. An alternative route for the production of glass-ceramics is via sintering of catalyst-free glass particles with controlled surface crystallization. The purpose of the present work was to determine the appropriate compositions and sintering conditions to produce dense LAS glass-ceramics having almost null porosity. Three compositions were analyzed to achieve near zero thermal expansion coefficient. The precursor glasses were analyzed by thermal analysis, and the glassceramics were analyzed by X-ray diffraction, optical microscopy and electron microscopy. Dense glass-ceramics were obtained with porosity below 1.5%. The results show that reduction of crystallization by an ion exchange promotes sintering. However, the high amount of vitreous phase present in these samples increases the thermal expansion coefficient. At least for one composition we obtained a glass-ceramic having a porosity of 1.4% and a thermal expansion coefficient of 0.5 x 10 -6 °C-1, a value similar to that of vitreous silica.
URI
https://repositorio.ufscar.br/handle/ufscar/759
Collections
  • Teses e dissertações

UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT
 

 


UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT