• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
About
  • Policies
  • Instructions to authors
  • Contact
    • Policies
    • Instructions to authors
    • Contact
View Item 
  •   Home
  • Centro de Ciências em Gestão e Tecnologia - CCGT
  • Programas de Pós-Graduação
  • Ciência da Computação - PPGCC-So
  • Teses e dissertações
  • View Item
  •   Home
  • Centro de Ciências em Gestão e Tecnologia - CCGT
  • Programas de Pós-Graduação
  • Ciência da Computação - PPGCC-So
  • Teses e dissertações
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument TypeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument Type

My Account

Login

Filtragem automática de opiniões falsas: comparação compreensiva dos métodos baseados em conteúdo

Thumbnail
View/Open
CARDOSO_Emerson_2017.pdf (3.146Mb)
Date
2017-08-04
Author
Cardoso, Emerson Freitas
Metadata
Show full item record
Abstract
Before buying a product or choosing for a trip destination, people often seek other people’s opinions to obtain a vision of the quality of what they want to acquire. Given that, opinions always had great influence on the purchase decision. Following the enhancements of the Internet and a huge increase in the volume of data traffic, social networks were created to help users post and view all kinds of information, and this caused people to also search for opinions on the Web. Sites like TripAdvisor and Yelp make it easier to share online reviews, since they help users to post their opinions from anywhere via smartphones and enable product manufacturers to gain relevant feedback quickly in a centralized way. As a result, most people nowadays trust personal recommendations as much as online reviews. However, competition between service providers and product manufacturers have also increased in social media, leading to the first cases of spam reviews: deceptive opinions published by hired people that try to promote or defame products or businesses. These reviews are carefully written in order to look like authentic ones, making it difficult to be detected by humans or automatic methods. Thus, they are used, in a misleading way, in attempt to control the general opinion, causing financial harm to business owners and users. Several approaches have been proposed for spam review detection and most of them use techniques involving machine learning and natural language processing. However, despite all progress made, there are still relevant questions that remain open, which require a criterious analysis in order to be properly answered. For instance, there is no consensus whether the performance of traditional classification methods can be affected by incremental learning or changes in reviews’ features over time; also, there is no consensus whether there is statistical difference between performances of content-based classification methods. In this scenario, this work offers a comprehensive comparison between traditional machine learning methods applied in spam review detection. This comparison is made in multiple setups, employing different types of learning and data sets. The experiments performed along with statistical analysis of the results corroborate offering appropriate answers to the existing questions. In addition, all results obtained can be used as baseline for future comparisons.
URI
https://repositorio.ufscar.br/handle/ufscar/9141
Collections
  • Teses e dissertações

UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT
 

 


UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT