• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
About
  • Policies
  • Instructions to authors
  • Contact
    • Policies
    • Instructions to authors
    • Contact
View Item 
  •   Home
  • Centro de Ciências em Gestão e Tecnologia - CCGT
  • Programas de Pós-Graduação
  • Ciência da Computação - PPGCC-So
  • Teses e dissertações
  • View Item
  •   Home
  • Centro de Ciências em Gestão e Tecnologia - CCGT
  • Programas de Pós-Graduação
  • Ciência da Computação - PPGCC-So
  • Teses e dissertações
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument TypeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsCNPq SubjectsGraduate ProgramDocument Type

My Account

Login

Aumentando o poder preditivo de classificadores lineares através de particionamento por classe

Thumbnail
View/Open
Dissertação - texto completo (2.893Mb)
Carta do orientador (102.3Kb)
Date
2018-01-25
Author
Souza, Nahim Alves de
Metadata
Show full item record
Abstract
This work describes a new classification technique called P2C - Partitioning to Classify. The main goal is to achieve reasonable classification performances using linear prediction methods, even on datasets with non-linear separable data. The proposed technique, inspired by the division-and-conquer strategy, applies a clustering method on each partition made of samples of the same class. Subsequently, the union among the clusters inside each partition is performed, creating a single partition, where each group can contain linearly separable samples. Then, one or more linear classifiers are trained, according to the number of groups. Experiments performed using datasets with different structural and complexity level indicate the overall performance of the prediction is similar or superior to well-known non-linear classification methods. The main advantages of P2C technique are (i) the need for less effort and computational resources, and (ii) the possibility of treating large datasets due to the ease of parallelization of the steps.
URI
https://repositorio.ufscar.br/handle/ufscar/9530
Collections
  • Teses e dissertações

UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT
 

 


UFSCar
Universidade Federal de São Carlos - UFSCar
Send Feedback

UFSCar

IBICT