Uma nova caracterização dos Espaços de Sobolev W^{1,p}(R^n)
Abstract
In this work we will present a new characterization of the Sobolev space W^{1,1}(\R^n) and also we give another proof of the characterization of the Sobolev space W^{1,p}(\R^n), 1<p<\infty, in terms of Poincaré inequalities. Both characterization was proved by Piotr Hajlasz in the paper "A new characterization of the Sobolev spaces" published in the journal Studia Mathematica in 2003.
Collections
Related items
Showing items related by title, author, creator and subject.
-
Resultados de existência para as equações críticas de Klein-Gordon-Maxwell
Cunha, Patrícia Leal da (Universidade Federal de São Carlos, UFSCar, Programa de Pós-Graduação em Matemática - PPGM, , 10/02/2011)In this work we analyze the existence of radially symmetric solutions, positive solutions as well as the existence of ground state solutions for a class of Klein-Gordon-Maxwell equations when the nonlinearity exhibits ... -
Existência e multiplicidade de soluções para uma classe de problemas envolvendo operadores fracionários
Gabert, Rodrigo de Freitas (Universidade Federal de São Carlos, UFSCar, Programa de Pós-Graduação em Matemática - PPGM, Câmpus São Carlos, 14/08/2019)In this work, we study existence and multiplicity of weak solutions for three problems involving fractional operators, with emphasis on critical growth nonlinearities. The first problem deals with the existence of sign-changing ... -
Hipoelipticidade global de campos vetoriais no toro TN
Nascimento, Moisés Aparecido do (Universidade Federal de São Carlos, UFSCar, Programa de Pós-Graduação em Matemática - PPGM, , 21/06/2010)In this work, we will see that if the transpose operator of a smooth real vector field L defined on the N-dimensional torus, regarded as a linear differential operator with coefficients in C1(TN), is globally hypoelliptic, ...