Estudos sobre A-identidades polinomiais
Carregando...
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de São Carlos
Resumo
The aim of this work is to study A-identities in associative algebras. More specifically, we study the A-identities of the tensor square of the unitary and infinite dimensional Grassmann algebra E, denoted by R, and we find the minimum degree of an A-identity of R. Due to Kemer's Tensor Product Theorem, in characteristic zero the algebras M_{1,1}(E) and R are PI-equivalent. Thus, in several moments we deal with the algebra M_{1,1}(E). In a second moment, we study the Z_2-graded A-identities of M_{1,1}(E). In this sense, we describe the set of such identities and calculate its respective graded A-codimensions.
Descrição
Citação
NAVES, Fernando Augusto. Estudos sobre A-identidades polinomiais. 2021. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14762.
Coleções
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Attribution-NonCommercial-NoDerivs 3.0 Brazil
